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Abstract 

 

The thesis mainly deals with the study of the effects of magnetic field on momentum 

and heat transfer in a porous stretching surface; a flat plate and porous substrate; over 

a permeable surface; over an exponentially stretching surface; a shrinking surface etc. 

of electrically conducting, viscous, incompressible fluid. The magnetic Reynolds 

number, which determines the diffusion of magnetic field along the streamline, is 

assumed to be small so that the induced magnetic field may be neglected. In most of 

the cases Ohm’s law is assumed to hold and the fluid properties including the 

electrical conductivity are considered as constant. The flow is considered steady 

except in the last chapter where we consider unsteady flow. The similar solutions of 

momentum and energy equations have been obtained in all chapters by suitable 

transformations of dependent and independent variables. The linear or non-linear 

partial differential equations, with two point boundary conditions, have been solved 

by converting the initial value problems using numerical method suggested by Collatz 

(1966) and then integrated numerically by Runge-Kutta-Nystron scheme by using 

MATLAB programming. 
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Chapter 1 

Introduction 

 

Magnetofluiddynamics (MFD) is the study of the flow of an electrically conducting 

fluid in the presence of a magnetic field. The title Magnetohydrodynamics (MHD) or 

Hydromagnetics is selected when the fluid is incompressible, such as liquid mercury, 

and its other properties like viscosity, thermal conductivity and electrical conductivity 

are regarded as constants. When compressible fluids are used, such as an ionized gas, 

where its other physical properties are variable, specially temperature dependent the 

term Magnetogasdynamics (MGD) is used. Since an ionized gas is often called a 

plasma, one uses the word Plasma dynamics in place of MFD or MGD. However, it 

may be pointed out that in MFD the continuum approach is generally taken and the 

fluid is regarded as a continuous media. The other approach is the particle study 

followed in Plasma Physics.  

In 1832, Faraday gave the law of Magnetic Induction, which states that when a 

charged particle moves in a magnetic field, it experiences a force normal to the plane 

of the magnetic field and the motion of the particles. Meanwhile, Ritchie, a 

contemporary of Faraday, discovered that when mutually perpendicular electric and 

magnetic fields were applied to a conducting fluid, it pumped the fluid in a direction 

perpendicular to both the fields. Hence it was concluded that the motion of the 

conducting fluid across the magnetic field generates electric currents, which changes 

the magnetic field, and the action of the magnetic field on these currents gives rise to 
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mechanical forces which resist the fluid motion. This force is called Loretz’s force F


 

which is a body force acting on the fluid and is written as- 

     F J B
  

          (1.1) 

where J


 is the current density vector and B


 is the magnetic induction vector. This 

discovery opened a new era in science known as MFD.  

The principle of MHD power generator is also based on Faraday’s law. He suggested 

that electricity is generated by the motion of a conductor through a magnetic field. In 

MHD power generators the internal energy of the electrically conducting fluid is 

converted into electrical energy when it moves through a magnetic field. The practical 

applications of Faraday’s ideas came with Smith and Slepian’s (1917) invention, of an 

instrument for measurements of Ship’s speed, and with Williams’s (1930) MFD flow 

meter, which was based on the principle that the induced voltage is proportional to the 

flow rate. The fundamental work in this area was done by Hartmann (1937) and 

Hartmann and Lazarus (1937), who studied channel flow of mercury.  

MFD has its importance in many natural phenomena and engineering problems. 

However, its basic importance lies in considering the ‘Cosmic’ problems, by which 

we mean the problems of Geophysics and Astrophysics. These are the problems of the 

earth’s interior, the sun, the stars or interstellar space. It is useful in Astrophysics 

because much of the universe is filled with charged particles and permitted by 

magnetic fields. So the continuum assumption becomes applicable whereas 

Geophysicists use it in the interactions of conducting fluids and magnetic fields which 
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are present in and around heavenly bodies. It is only recently Magnetofluiddynamics 

attracted the attention of aerodynamicists, mechanical engineers and applied 

mathematicians because of the interaction of two classical disciplines viz., 

electromagnetism and fluid dynamics. MFD principles are used by engineers in the 

design of heat exchangers, pumps, flow meters and submarines; in solving space 

vehicle propulsion; in designing communications and radar systems; in making power 

generators; and in developing confinement schemes for controlled fusion. It is also 

applicable in radio wave propagation in ionosphere, space communication systems, 

diagnostic techniques, solar flares, geomagnetic storms, and plasma jets. 

Theoretically, in ordinary fluid dynamics (OFD) or the dynamics of real fluids 

(Newtonian and isotropic), the fundamental equations are the Navier-Stokes equation 

with no dissipation of energy in a spherically symmetrical expansion or compression, 

so there is only one coefficient of viscosity. But in MFD, the fundamental equations 

are the electromagnetic and fluid dynamic equations, which are modified to take 

account of the interaction between the motion of the conducting fluid and the 

magnetic field or we can say that MFD equations are coupled equations of fluid 

dynamics with electromagnetic equations. 

While deriving the complete equations of MFD, we can follow either of the two 

approaches, macroscopic or microscopic. In the macroscopic or gasdynamic 

approach, one modifies the well-known conservation equations of classical fluid 

dynamics by incorporating into them suitable momentum and energy terms, obtained 

from Maxwell’s equations and Ohm’s law. On the other hand, in the microscopic or 
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gas kinetic treatment, one combines Boltzmann’s equation with electromagnetic terms 

to obtain the fundamental equation of MFD. 

For the purpose of most engineering problems, the macroscopic approach is more 

adequate, and can be applied to situations involving gross electrical conduction, wave 

propagation, instability, slow motion, boundary layer and turbulence. In the present 

thesis we use the macroscopic approach. 

As stated already, the subject of MFD or MHD comes when electromagnetic 

phenomenon is combined with fluid dynamics phenomenon. The former are generally 

expressed by the Maxwell’s equations which are linear in form, and the latter are 

expressed, at least as far as momentum is concerned, by the Navier-Stokes equations 

which are non-linear in character. It may therefore be concluded that following 

realities have to be accepted- 

(i) Since no general solution exists for the Navier-Stokes equations, no general 

solution can be expected for the MFD equations. 

(ii) The Maxwell’s equations introduced the additional boundary conditions 

which have to be determined and satisfied. 

(iii) Because of the occurrence of magnetic and/or electric fields, the external 

force term in the Navier-Stokes equation may not be treated as constant. 

 

1.1 Fundamental Equations of Magnetofluiddynamics 

In the study of MFD, we wish to find out, in addition to the determination of 

electromagnetic field variables, the velocity distributions as well as the state variables 
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of the fluid over the whole space for all time. There are, therefore, twenty two 

unknowns viz., sixteen electromagnetic field variables E


, B


, D


, H


, J


 and e ; the 

three components of velocity vector v


, and the state variables viz., the temperature 

,T  the pressure p  and the density   of the fluid. These unknowns are obtained from 

the following twenty two equations [Bansal (1994)]- 

I. Electromagnetic Field Equations 

(i) Current Continuity Equation  

ediv J
t

 
 


    (Conservation of charge)         (1.2) 

where J


 is the current density vector and e  the charge density. 

(ii) Maxwell’s Equations  

 

B
Curl E

t


 
 


   (Faraday’s law)           (1.3) 

 

D
Curl H J

t


  
 


   (Ampere’s law)           (1.4) 

ediv D 


    (Gauss’ law)           (1.5) 

0div B


     (Magnetic field continuity)         (1.6) 

where E


 is the electrical field vector, B


 the magnetic field vector, H


 the magnetic 

intensity vector and D


 the displacement vector in an isotropic medium.  
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It may be noted that the divergence equations (1.5) and (1.6) follow from the curl 

equations (1.3) and (1.4) and therefore act as constraints or as initial conditions on the 

electromagnetic field and cannot be regarded as independent equations. 

(iii) Constitutive Equations 

D E
 

                (1.7) 

 
eB H

 

                 (1.8) 

where   is the electrical permittivity or dielectric constant of the medium and e  is 

the magnetic permeability of the medium, which in the present case is an electrically 

conducting fluid. 

Ordinarily, we may assume that both   and e  are constants for a given isotropic 

material. For anisotropic matter we should consider both   and e  as tensor 

quantities and in that case neither D


 and  E


 are parallel to each other nor B


 and H


. 

In the study of Magnetofluiddynamics we assume that both   and e  are constants 

and it is sufficient to take their values in vacuum (free space) as a first approximation.  

(iv) Generalized Ohm’s Law  

e eJ E v B v 
     
    

 
            (1.9) 

where e  is the electrical conductivity of the fluid. 
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II. Fluiddynamic Field Equations 

(i) Equation of State  

Variables that depend only upon the thermodynamic system are called variables of 

state and these are the pressure p , the density   and the temperature T . The 

equation of state of a perfect gas is  

p RT             (1.10) 

where R  is the gas constant. 

When the fluid is incompressible the equation of state is simply 

constant              (1.11)  

(ii) Equation of Continuity - Conservation of Mass 

This equation expresses that the rate of generation of mass within a given volume is 

entirely due to the net inflow of mass through the surface enclosing the given volume. 

Therefore the equation of continuity is  

0
D

div v
Dt






             (1.12) 

where .
D

v
Dt t

  
   
  

 is the material derivative.  

In the case of steady compressible flow the equation of continuity reduces to  

0div v
 

 
 

      `      (1.13) 
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and for incompressible flow we have 

0div v


             (1.14) 

(iii) Equations of Motion - Conservation of Momentum 

The equations of motion are derived from Newton’s second law of motion, which 

states that- 

Rateof changeof linear momentum Total force      

Therefore the equations of motion are- 

( )ex

e

D v
F E J B grad p div

Dt
   


     

      
 

        (1.15) 

where ( )exF


 is the external force and 


 is the tangential stress, given by 

2
2

3
ij ij kk ije e    



              (1.16) 

where   is the coefficient of viscosity, 
1

2

ji
ij

j i

vv
e

x x

 
     

 the rate of strain tensor 

and 
1

0
ij

if i j

if i j



 


 the Kronecker tensor. 

(iv) Equation of Energy - Conservation of Energy 

The equation of energy is obtained by the conservation of energy which states that the 

difference in the rate of supply of energy and the rate at which the energy goes out 
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must be equal to the net rate of increase of energy. Thus the following general 

equation of energy is obtained- 

 
 

2
p

e

D C T Dp Q J
div grad T

Dt Dt t
  




    


       (1.17) 

where 
pC  is the specific heat at constant pressure, Q  the quantity of heat added per 

unit mass of the gas,   the thermal conductivity and  . .div v v div  
  

  
 

 the heat 

generated due to frictional forces and is known as ‘dissipation function’. 

 

1.2 Physical Importance of Non-dimensional Parameters 

Dimensionless parameter plays an important role in fluid mechanics because they 

give an idea about the terms which are dominant in the governing equations, so that 

only those terms are retained to find an appropriate solution to the equations. In order 

to bring out the essential features of the flow problems, it is desirable to find some 

important dimensionless parameters which characterize the flow problem. They are 

very useful in the analysis of experimental results and are determined either by 

inspection analysis or by dimensional analysis. In the inspection analysis we reduce 

the fundamental equations to a non-dimensional form and obtain the non-dimensional 

parameters from the resulting equations. In dimensional analysis we form non-

dimensional parameters from the physical quantities occurring in the problem, even 

when the knowledge of the governing equations is missing. Both methods give the 

same results. 
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(i) Reynolds Number 

The Reynolds number Re  is defined as the ratio of inertial forces 
2U

L


 to viscous 

forces 
2

U

L


, i.e. 

                

2

2
Re

U L UL

U L



 
            

where,  , U , L ,   and   are some characteristic values of the density, velocity, 

length, viscosity and kinematic viscosity of the fluid respectively. It is a parameter for 

viscosity, for if Re  is small the viscous forces will be predominant and the effect of 

viscosity will be felt in the whole flow field. On the other hand if Re  is large the 

inertial forces will be predominant and in such a case the effect of the viscosity can be 

considered to be confined in a thin layer, known as velocity boundary layer, adjacent 

to a solid boundary. However, if Re  is very large the flow ceases to be laminar and 

becomes turbulent. 

(ii) Magnetic Reynolds Number 

The magnetic Reynolds number Re  is defined as ratio of fluid flux UL  to magnetic 

diffusivity 
1

H

e e


 

 , i.e. 

                            

Re e e

H

UL
UL  


      

where, U , L , e  and e  are some characteristic values of the velocity, length, 

electrical conductivity and magnetic permeability of the fluid respectively. This 
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number has a similar form as ordinary Reynolds number Re , with the kinematic 

viscosity   replaced by magnetic diffusivity H , thus it is called magnetic Reynolds 

number. However, the physical significance of  Re  and Re  differs very much. 

Ordinary Reynolds number Re  is interpreted as the ratio of inertial force to the 

viscous force which is a dynamic consideration whereas the magnetic Reynolds 

number Re  will be interpreted on how the magnetic field is affected by the fluid 

motion, which is a kinematic consideration.  

(iii) Magnetic Pressure Number 

The magnetic pressure number ReH  
is defined as the ratio of magnetic pressure 

2

2

eH
 to dynamic pressure 

2

2

U
, i.e. 

                            

2 2

2 2

2
Re

2

e e
H

H H

U U

 

 
    

where e , H ,   and U  are some characteristic values of the magnetic permeability, 

magnetic intensity, density and velocity of the fluid respectively. It is a measure of the 

effect of the magnetic field on the fluid motion. Only when ReH  is of the order of 

unity or larger the fluid will be influenced noticeably by the magnetic field otherwise 

when Re 1H   the magnetic effects on the fluid flow may be disregarded.  

(iv) Magnetic Parameter 

The magnetic parameter Rem  
is defined as the square root of ratio of magnetic force 

2 2

e eUH   to inertial force 
2U

L


, i.e. 
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2 2

2
Re Re Re

e e e

m e H

UH L
H

U L U


  


 
       

where e , 
e , U , H ,  , L , ReH

 and Re  are some characteristic values of the 

electrical conductivity, magnetic permeability, velocity, magnetic intensity, density, 

length, magnetic pressure number and magnetic Reynolds number of the fluid 

respectively. The magnetic parameter Rem  gives an idea of the importance of 

magnetic force relative to the inertial force. 

(v) Prandtl Number 

The Prandtl number Pr  is defined as the ratio of the kinematic viscosity 





  to the 

thermal diffusivity 
pC





  of the fluid, i.e. 

                           

Pr
p

p

C

C

  

   
  

 

where  ,  ,   and 
pC  are some characteristic values of the viscosity, density, 

thermal conductivity and specific heat at constant pressure of the fluid respectively. It 

is a measure of the relative importance of heat conduction and viscosity of the fluid. 

The Prandtl number, like the viscosity and thermal conductivity, is a material property 

and it thus varies from fluid to fluid. For air Pr 0.7  (approx.) and for water at 60
0 

F, 

Pr 7.0  (approx.). For liquid metals the Prandtl number is very small, e.g. for 

mercury Pr 0.044 , but for highly viscous fluids it may be very large, e.g. for 

glycerine Pr 7250 . 
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(vi) Eckert Number 

 The Eckert number Ec  is defined as the ratio of the kinetic energy 2U  to the 

thermal energy 
pC T , i.e. 

                            

2 2

p p

U U
Ec

C T C T




         

where,  , U , 
pC  and T  are some characteristic values of the density, velocity, 

specific heat at constant pressure and temperature of the fluid respectively. In 

compressible fluids it determines the relative rise in temperature of the fluid due to 

adiabatic compression. It can also be retained in incompressible flow, if the frictional 

heat is to be considered, but the interpretation with reference to adiabatic compression 

will no longer be true. 

(vii) Local Skin Friction Coefficient 

The dimensionless shearing stress on the surface of a body, due to a fluid motion, is 

known as local skin-friction coefficient 
fC  and is defined as- 

                        

0

2 22 2

yw
f

u

y
C

U U




 



 
 
 

         

where 
0

w

y

u

y
 



 
  

 
,  , 

u

y




,   and U  are some characteristic values of the local 

shearing stress on the surface of the body, viscosity, velocity gradient, density and 

velocity of the fluid respectively.  
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(viii) Nusselt Number - Dimensionless Coefficient of Heat Transfer 

The dimensionless coefficient of heat transfer at the surface, Nusselt number Nu  is 

defined as the ratio of temperature gradient at the wall 
0y

T
L

y


 
 
 

 to overall 

temperature difference wT T , i.e.   

 
0y

w

T
L

y
Nu

T T





 
 
 

 


        

where L , T , and wT T  are some characteristic values of the length, temperature 

and difference between the temperature of the wall and that of the fluid respectively.  

 

1.3 Boundary Layer Flow 

The boundary layer flow is one of the most interesting class of problems of viscous 

flow in fluid dynamics. The formulation of the boundary layer theory paved the way 

for understanding the phenomenon related to fluid friction at large Reynolds numbers. 

Boundary layer phenomenon occurs when the influence of a physical quantity is 

restricted to small regions near confining boundaries. This phenomenon occurs, when 

the non-dimensional diffusion parameters viz. the Reynolds number or magnetic 

Reynolds number are large. The boundary layers are then the velocity and thermal or 

magnetic boundary layers and each thickness of the boundary layer is inversely 

proportional to the square root of the associated diffusion number. 
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Prandtl (1904) introduced the concept of boundary layer in OFD. He made a 

hypothesis that for fluids with small viscosity (small momentum diffusivity    ) 

the flow about a solid body can be divided into two regions- 

(i) A very thin layer in the neighborhood of the body, known as the velocity 

boundary layer or viscous boundary layer. 

(ii) The region outside this layer where the viscous effects may be considered as 

negligible and the fluid is regarded as inviscid.  

With the aid of this hypothesis, he simplified the Navier-Stokes equations to a 

mathematically tractable form, which are called the boundary layer equations, and 

thus succeeded in giving a physically penetrating explanation to the importance of 

viscosity in assessment of frictional drag and flow separation.  

In fluids flowing past heated or cooled bodies the transfer of heat takes place by 

conduction and convection (heat radiation is negligible unless the temperature is very 

high). Thus in a similar manner, when the thermal conductivity of the fluid is small 

(small thermal diffusivity 
pC   ) the heat transport due to conduction is 

comparable to that due to convection only across a thin layer near the surface of the 

body. This means that temperature field which spreads from body extends, essentially, 

over a narrow zone in the immediate vicinity of its surface, known as the thermal 

boundary layer, whereas the fluid at a large distance from the surface is not 

materially affected by the heated body. This leads to the simplification of the energy 

equation. In the books by Pai (1956), Rosenhead (1963), Evans (1968), Schlichting 



 

Introduction                                                                                                                   

16 
 

(1968), Rehberg et al. (1998), Oleinik and Samokhin (1999), Sobey (2000), Bansal 

(2004), Date (2005) and White (2006), the details may be found. 

The MHD boundary layers, may be classified into two types by considering the 

limiting cases of large and small electrical conductivity- 

(i) When the electrical conductivity of the fluid is large (small magnetic 

diffusivity 1H e e   , i.e. large magnetic Reynolds number) the diffusion of 

the magnetic field takes place in a narrow zone, called the magnetic boundary 

layer, and is ordinarily of the same size as the viscous and thermal boundary 

layers. In this case it is the axial component of the externally applied magnetic 

field which differentiates the MHD equations from OFD equations and the 

MHD boundary layer equations, for incompressible flow, for velocity and 

magnetic field must be solved simultaneously and thereafter the solution of the 

energy equation may be obtained for the temperature field. 

(ii) When the electrical conductivity of the fluid is small (magnetic Reynolds 

number is small), the thickness of the magnetic boundary layer is very large. In 

this case the flow direction component of the magnetic interaction and the 

corresponding Joule heating is only a function of the transverse magnetic field 

and the local velocity in the flow direction. Changes in the transverse magnetic 

field component and pressure across the boundary layer are negligible. The 

induced magnetic field is neglected in comparison of the applied magnetic field, 

which is taken in the transverse direction. 
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It was probably Rossow (1958) who first studied the boundary layer flow of an 

incompressible electrically conducting fluid, in the presence of transverse magnetic 

field past a flat plate. He studied both the cases- for the magnetic field fixed to the 

plate and fixed to the fluid. Similar solutions of the same have been studied by 

Lykoudis (1958), Bush (1958, 1960), Wilcox (1962), Gribben (1965, 1967), 

Ramamoorthy (1965, 1968), Nath (1971, 1973), Bansal (1979, 1981), Bansal and Jat 

(1984, 1985, 1986, 1988), Bansal et al. (1987, 1988, 1989) and Jat and Chaudhary 

(2007, 2008, 2009, 2010) for the hydromagnetic compressible and incompressible, 

steady and unsteady, boundary layer flows about flat plates, and wedges assuming 

that the magnetic forces, generally, act only on the boundary layer. Some aspects of 

the magnetohydrodynamic boundary layers may be found in books of Pai (1962), 

Cambel (1963), Jeffrey (1966), Ferraro and Plumpton (1966), Cabannes (1970), 

Cramer and Pai (1973), Bansal (1994) and Gerbeau et al. (2006). 

The significance of unsteady boundary layer lies in the fact that practically all flows 

which occurs are, in a sense, unsteady. One of the independent variable of unsteady 

flow is time. In making the flow unsteady one or more of the following circumstances 

may prevail-either the time which has elapsed following the initiation of motion is not 

large (initial value problem) or there are fluctuations in the main stream velocity 

(Periodic motion problem) or boundary layer is unstable (instability problem). The 

unsteady boundary layer flow problems have been studied by several authors 

including Sano (1977), Gorla (1981), Wang (1990), Nazar et al. (2004) and Jat and 

Chaudhary (2009).   
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1.4 Fluid Flow through a Porous Medium 

Porous medium is a material consisting of a solid matrix (a body composed of a 

persistent solid part) with an interconnected void. We suppose that the solid matrix is 

either rigid (the usual situation) or it undergoes small deformation. One or more fluids 

can flow through the voids due to their interconnections these flow can be- 

(i) Single-phase flow- the voids are saturated by single flow or 

(ii) Two-phase flow- a liquid and a gas share the void space. 

With respect to shape and size the distribution of pores in a natural porous medium is 

irregular. Common examples of natural porous media are beach sand, sandstone, 

limestone, rye bread, wood, and the human lung. On the pore scale (the microscopic 

scale) the flow quantities (velocity, pressure, etc.) will be clearly irregular. But when 

the quantities of interest are measured over areas consisting of many pores, and such 

space-averaged (macroscopic) quantities change in a regular manner with respect to 

space and time, and hence are amenable to theoretical treatment. The details are found 

in the books written by Muskat (1937), Bear and Bachmat (1990), Kaviany (1995), 

Crolet and Hatri (1998), Bejan et al. (2004), Nield and Bejan (2006) and George and 

William (2008). 

 

1.5 Darcy’s Law- Permeability 

Henry Darcy’s (1856) investigations into the hydrology of the water supply of Dijon 

and his experiments on steady-state unidirectional flow in a uniform medium revealed 

a proportionality between flow rate and the applied pressure difference, i.e. 
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K P
u

x


 


        (1.18) 

where 
P

x




 is the pressure gradient in the flow direction and   is the dynamic 

viscosity of the fluid. The coefficient K  is called specific permeability or intrinsic 

permeability of the medium and in case of single phase flow it is abbreviate to 

permeability. Its dimensions are (length)
2
 and is independent of the nature of the fluid 

but is dependent on the geometry of the medium. It should be noted that here P  

denotes an intrinsic quantity. Darcy’s law and its extensions have been studied by 

Scheidegger (1974), Bear (1972) and Nield and Bejan (2006). 

 

1.6 Stagnation Point Flows 

Stagnation point is a point (on a surface of object) where the velocity is zero in the 

potential flow (i.e., the flow of an ideal fluid). The flow in the surrounding of a 

stagnation point is called stagnation point flow. Stagnation points exist at the surface 

of objects in the flow field, where the fluid is brought to rest by the object. The 

Bernoulli equation shows that the static pressure is highest when the velocity is zero 

and hence static pressure is at its maximum value at stagnation points. This static 

pressure is called the stagnation pressure.  

Hiemenz (1911) was the first one to introduce the two-dimensional stagnation flow 

which is also known as the Hiemenz flow. He presented the idea that the Navier-

Stokes equations governing the flow can be transformed to an ordinary differential 

equation of third order by means of a similarity transformation and gave an exact 

http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Bernoulli%27s_principle
http://en.wikipedia.org/wiki/Static_pressure
http://en.wikipedia.org/wiki/Stagnation_pressure
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solution to the governing equations. The idea of stagnation point flow was 

implemented to stretching or shrinking sheet with forced convection, mixed 

convection involving heat transfer and chemical reaction. The study of stagnation 

point flow for various aspects have been done by Hayday and Bowlus (1967), 

Ghoshal and Ghoshal (1970), Howarth (1975), Gorla (1979), Nikaien and Peddieson 

(1988), Gorla et al. (1993) and Jat and Chaudhary (2007, 2008, 2010). 

 

1.7 Radiation Heat Transfer 

Thermal radiation, commonly known as radiation heat transfer, is proportional to the 

difference of the individual absolute temperatures of the bodies, each raised to the 

fourth power. Thus it is evident that the importance of radiation becomes intensified 

at high absolute temperature levels. Consequently, radiation contributes substantially 

in combustion application such as fire, furnaces, IC engines, in nuclear reactions such 

as in the sun or in nuclear explosions and so on.   

Thermal radiation is an electromagnetic phenomenon and is transferred by 

electromagnetic waves, photons, which may travel a long distance without interacting 

with a medium. Thus thermal radiation is of great importance in vacuum and space 

applications. Some common examples are heat leakage through the evacuated walls of 

a thermos flask, or the heat dissipations from the filament of a vacuum tube, engine 

cooling, furnaces, boilers and solar radiation. Radiation is used to reject waste heat 

from a power plant operating in space. Cess (1961, 1966), Viskanta and Grosh (1962), 

Hossain and Takhar (1996), Hossain et al. (1998), Chamkha et al. (2001), Ganesan 
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and Loganathan (2002), Molla and Hossain (2007), Jat and Chaudhry (2010) and Ali 

et al. (2011) have studied radiation heat transfer in different aspects. 

 

1.8 Present Investigations 

The subject matter of the thesis has been divided into seven chapters, the details of 

which are as follows- 

Chapter 1 deals with the introduction of the subject, recent investigations and the 

description of the problems investigated in the present thesis. 

In Chapter 2 a general analysis has been developed to study the two-dimensional, 

laminar flow of a viscous, incompressible, electrically conducting fluid near a 

stagnation point of a stretching sheet through a porous medium with heat generation 

in the presence of a magnetic field. The governing boundary layer equations 

transformed to ordinary differential equations by using suitable similarity variables. 

The solutions of momentum and energy equations have been obtained independently 

by a perturbation technique for a small magnetic parameter. The effects of the various 

parameters such as magnetic parameter, porosity parameter, stretching parameter, 

Prandtl number, Eckert number and heat generation coefficient for velocity and 

temperature distributions along with local skin friction coefficient and local Nusselt 

number have been studied in detail through graphical and numerical representations.   

Chapter 3 deals with the study of the flow and heat transfer for an electrically 

conducting fluid with a porous substrate and a flat plate under the influence of 

magnetic field is considered. The magnetic field is assumed to be uniform and also 
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along normal to the surface. The momentum and energy equations are transformed to 

ordinary differential equations by using suitable similarity transformation and are 

solved by standard techniques. But the energy equation is solved by considering two 

boundary layers, one in the porous substrate and the other above the porous substrate. 

Numerical results are presented through graphs with various values of magnetic 

parameter for both velocity and thermal boundary layers along with Nusselt number 

and for various values of Prandtl number and Eckert number in thermal boundary 

layer. 

In Chapter 4 we have studied the steady two-dimensional, laminar flow of a viscous, 

incompressible, electrically conducting fluid near a stagnation point with heat transfer 

over a permeable surface in the presence of a uniform magnetic field. Taking suitable 

similarity variables, the governing boundary layer equations are transformed to 

ordinary differential equations and solved numerically by Shooting method. The 

effects of suction parameter, magnetic parameter, Prandtl number and Eckert number 

are studied on velocity and temperature distributions along with local skin friction 

coefficient and local Nusselt number.   

Chapter 5 is devoted to the radiation effects on steady two-dimensional laminar 

boundary layer flow of an incompressible, viscous, electrically conducting fluid over 

an exponential stretching sheet in the presence of the uniform transverse magnetic 

field is studied by using Rosseland approximation. The governing boundary layer 

equations transform to ordinary differential equations by using suitable similarity 

transformation and are solved numerically by a perturbation technique for a small 

magnetic parameter. The effects of various parameters such as magnetic parameter, 
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radiation parameter, Prandtl number and Eckert number for velocity and temperature 

distributions along with local skin friction coefficient and surface heat transfer have 

been discussed in detail through graphical and numerical representations.   

In Chapter 6 we have considered the two-dimensional laminar boundary layer flow 

of a viscous, incompressible, electrically conducting fluid near a stagnation point past 

a shrinking sheet with slip in the presence of a magnetic field. The governing 

boundary layer equations are transformed to ordinary differential equations by taking 

suitable similarity variables and solved numerically by Shooting method. The effects 

of velocity ratio parameter, slip parameter, magnetic parameter, Prandtl number and 

Eckert number are studied on the velocity and temperature distributions along with 

local skin friction coefficient and surface heat transfer. 

Chapter 7 is the last chapter which deals with the unsteady two-dimensional, laminar 

flow of a viscous, incompressible, electrically conducting fluid towards a shrinking 

surface in the presence of a uniform transverse magnetic field. Taking suitable 

similarity variables, the governing boundary layer equations are transformed to 

ordinary differential equations and solved numerically by a perturbation technique for 

a small magnetic parameter. The effects of various parameters such as unsteadiness 

parameter, velocity parameter, magnetic parameter, Prandtl number and Eckert 

number for velocity and temperature distributions along with local skin friction 

coefficient and local Nusselt number have been discussed in detail through graphical 

and numerical representations. 



 

Chapter 2 

Magnetohydrodynamic Stagnation Point Flow Past a Porous 

Stretching Surface with Heat Generation  

 

2.1  Introduction 

Flow of an incompressible viscous fluid over a stretching surface has important 

applications in the industry such as the extrusion of polymer in a melt-spinning 

process, the aerodynamic extrusion of plastic sheets, manufacturing plastic films, 

artificial fibers etc. Further glass blowing, continuous casting of metals and spinning 

of fibers involve the flow due to a stretching surface. Crane (1970) probably was first 

who studied the flow at a stretching sheet and produced a similarity solution in closed 

analytical form for the steady two-dimensional problem. Gupta and Gupta (1977), 

Dutta et al. (1985), Chiam (1994), Mahapatra and Gupta (2002), Andersson (2002), 

Elbashbeshy and Bazid (2003), Miklavcic and Wang (2006) and Jat and Chaudhary 

(2007) studied the heat transfer to steady the two-dimensional stagnation point flow 

over a stretching surface taking into account different aspects of the problem. 

Recently, boundary layer flow through porous media is a subject of great interest due 

to its various applications such as oil recovery, composite manufacturing process, 

filtration processes, paper and textile coating, geothermal engineering. Its engineering 

and geophysical applications are flow of groundwater, geothermal energy utilization, 

insulation of buildings, energy storage, recovery and chemical reactor engineering.  

Attia (2007), Jat and Chaudhary (2009, 2010), Pal and Hiremath (2010), 
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Bhattacharyya and Layek (2011), Rosali et al. (2011), Singh and Pathak (2012), 

Mukhopadhyay and Layek (2012) and Ram et al. (2013) studied the boundary layer 

flow near the stagnation point of a stretching sheet through porous and non-porous 

boundaries under different physical situations. Very, recently Mahapatra and Nandy 

(2013) analyzed a stability of dual solutions in stagnation point flow and heat transfer 

over a porous shrinking sheet with thermal radiation. 

In the present chapter, steady two-dimensional stagnation point flow has been 

investigated in a porous medium with heat generation of an electrically conducting 

fluid over a stretching surface in the presence of magnetic field. The results of 

velocity and temperature distribution, skin friction and surface heat transfer for 

different parameters such as the magnetic parameter, the porosity parameter, the 

stretching parameter, the Prandtl number, the Eckert number and the heat generation 

coefficient were obtained.    

 

2.2  Formulation of the Problem 

Consider the steady two-dimensional stagnation point flow ( ), , 0u v  in a porous 

medium with heat generation of a viscous incompressible electrically conducting fluid 

near a stagnation point at a surface placed in the plane 0y =  of a Cartesian 

coordinates system with the x − axis along the surface, such that the surface is 

stretched in its own plane with velocity proportional to the distance from the 

stagnation point in the presence of an externally applied normal magnetic field of 

constant strength ( )00, ,0H . The stretching surface has velocity wu  and temperature 
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wT , while the velocity of the flow external to the boundary layer is 
eu  and 

temperature ∞T . The system of boundary layer equations (refer to Fig. 2.1) is given 

by- 

0
u v

x y

∂ ∂
+ =

∂ ∂
          (2.1) 

( )
2 22

0

2

e e e
e e

du H uu u u
u v u u u

x y dx y K

σ µυ
υ

ρ
∂ ∂ ∂

+ = + + − −
∂ ∂ ∂

    (2.2) 

( )
22

2 2 2

02p e e

T T T u
C u v Q T T H u

x y y y
ρ κ µ σ µ∞

   ∂ ∂ ∂ ∂
+ = + − + +   ∂ ∂ ∂ ∂   

   (2.3) 

where υ  is the kinematic viscosity, K  the Darcy permeability, eσ  the electrical 

conductivity, eµ  the magnetic permeability, ρ  the density, 
pC  the specific heat at 

constant pressure, κ  the thermal conductivity, Q  the volumetric rate of heat 

generation  and µ  the coefficient of viscosity of the fluid under consideration. The 

other symbols have their usual meanings. 

The boundary conditions are- 

0 : , 0;

: ;

w w

e

y u u cx v T T

y u u ax T T∞

= = = = =

= ∞ = = =

      (2.4) 

where c  is a proportionality constant of the velocity of the stretching sheet and a  is a 

constant proportional to the free stream velocity far away from the stretching sheet.  
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2.3  Analysis 

The continuity equation (2.1) is identically satisfied by stream function ( ),x yψ , 

defined as 

,u v
y x

ψ ψ∂ ∂
= = −
∂ ∂

       (2.5) 

For the solution of the momentum and the energy equations (2.2) and (2.3), the 

following dimensionless variables are defined- 

( ) ( ),x y c x fψ υ η=        (2.6) 

c
yη

υ
=          (2.7) 

( )
w

T T

T T
θ η ∞

∞

−
=

−
        (2.8) 

Equations (2.5) to (2.8), transform equations (2.2) and (2.3) into 

( )2 2 2Re 0mf f f f f M f C C′′′ ′′ ′ ′ ′+ − − − − + =        (2.9) 

2 2 2Pr Pr Pr Pr Re 0mf B Ec f Ec fθ θ θ′′ ′ ′′ ′+ + + + =      (2.10) 

where the prime ( ' ) denotes differentiation with respect to η , 0Re e
m e H

c

σ
µ

ρ
=  the 

magnetic parameter, M
K c

υ
=  the porosity parameter, 

a
C

c
=  the stretching 
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parameter, Pr
pCµ

κ
=  the Prandtl number, 

p

Q
B

c Cρ
=  the heat generation coefficient 

and 
( )

2

w

p w

u
Ec

C T T∞

=
−

 the Eckert number. 

The corresponding boundary conditions are- 

0 : 0, 1; 1

: ; 0

f f

f C

η θ

η θ

′= = = =

′= ∞ = =

      (2.11) 

It may be noted that Chiam (1994) assumed Re 0m M= =  and a c=  without any 

justification and derived the solution of the equation (2.9), satisfying the equation 

(2.11), as ( )f η η=  leading to u ax= , v ay= − . From this he inferred that no 

boundary layer is formed near the stretching surface. 

For numerical solution of the equations (2.9) and (2.10), we apply a perturbation 

technique as- 

( ) ( ) ( )2

0

Re
i

m i

i

f fη η
∞

=

=∑         (2.12) 

( ) ( ) ( )2

0

Re
j

m j

j

θ η θ η
∞

=

=∑         (2.13) 

Substituting equations (2.12) and (2.13) and its derivatives in equations (2.9) and 

(2.10) and then equating the coefficients of like powers of 2Rem
, we get the following 

set of differential equations- 
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( )2 2

0 0 0 0 0 0′′′ ′′ ′ ′+ − − − + =f f f f M f C C        (2.14) 

2

0 0 0 0 0Pr Pr Prf B Ec fθ θ θ′′ ′ ′′+ + =−        (2.15) 

( )1 0 1 0 1 0 1 02f f f M f f f f f′′′ ′′ ′ ′ ′′ ′+ − + + =        (2.16) 

( )2

1 0 1 1 1 0 0 1 0Pr Pr Pr Pr 2f B f Ec f f fθ θ θ θ′′ ′ ′ ′′ ′′ ′+ + = − − +     (2.17) 

( ) ( )2 0 2 0 2 0 2 1 1 1 12 1f f f M f f f f f f f f′′′ ′′ ′ ′ ′′ ′′ ′ ′+ − + + = − + +      (2.18) 

( ) ( )2

2 0 2 2 1 1 2 0 0 2 1 0 1Pr Pr Pr Pr 2 2f B f f Ec f f f f fθ θ θ θ θ′′ ′ ′ ′ ′′ ′′ ′′ ′ ′+ + = − + − + +   (2.19) 

with the boundary conditions- 

0 0

0

0 : 0, 1, 0; 1, 0

: , 0; 0 0, 0

i j j

j i

f f f

f C f i j

η θ θ

η θ

′ ′= = = = = =

′ ′= ∞ = = = ≥ >

   (2.20) 

The equation (2.14) is obtained by Attia (2007) for the non-magnetic case and the 

remaining equations are linear ordinary differential equations and have been solved 

numerically by standard techniques. The velocity and temperature distributions for 

various values of the parameters are shown in Fig. 2.2 and Fig. 2.3 to 2.5 respectively.  

 

2.4  Skin Friction and Surface Heat Transfer 

The physical quantities of interest, the local skin friction coefficient f
C  and the local 

Nusselt number Nu  i.e. surface heat transfer are given by- 
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0

2 2/ 2 / 2

yw
f

w w

u

y
C

u u

µ
τ

ρ ρ
=

 ∂
 ∂ 

= =         (2.21) 

and 

( )
0y

w

T
x

y
Nu

T T

=

∞

 ∂
 ∂ 

= −
−

         (2.22) 

which, in the present case, can be expressed in the following forms 

   

2
(0)

Re
fC f ′′=           

      
( )2

0

2
Re (0)

Re

i

m i

i

f
∞

=

′′= ∑           (2.23) 

and 

         Re (0)Nu θ ′= −          

     
( )2

0

Re Re (0)
j

m j

j

θ
∞

=

′= − ∑        (2.24) 

where Re wu x

υ
=  is the local Reynolds number.  

Numerical values of the functions ( )0f ′′
 
and ( )0θ ′ , which are proportional to local 

skin friction and local heat transfer rate at the surface, respectively for various values 

of the parameters are presented in Table 2.1.  
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2.5  Results and Discussion 

The Figure 2.2 shows the variation of velocity distribution against η  for various 

values of the parameters, namely, the magnetic parameter Rem , the porosity 

parameter M  and the stretching parameter C . It may be observed that the velocity 

increases as the stretching parameter C  increases, whereas it decreases as the 

magnetic parameter Rem  increases for a fixed η . Also, it can be seen that the velocity 

increases as the porosity parameter M  decreases for 1C <  and when 1C > , the 

opposite phenomenon occurs. 

The Figures 2.3 to 2.5 show the variation of the temperature distribution against η  for 

various values of the parameters, namely, the magnetic parameter 
mRe , the porosity 

parameter M , the stretching parameter C , the Prandtl number Pr , the Eckert number 

Ec  and the heat generation coefficient B . From these figures it may be observed that 

the temperature distribution increases with the increasing value of the magnetic 

parameter Rem . It is also seen that for fixed Prandtl number Pr , temperature 

distribution decreases with increasing value of the stretching parameter C  and same 

phenomenon occurs for the Eckert number Ec . In Fig. 2.3 it is seen that temperature 

distribution increases with the increasing value of the porosity parameter M  for 

1C <  and when 1C > , the opposite phenomenon occurs. In Fig. 2.4, it is observed 

that the temperature distribution decreases with the increasing value of the Prandtl 

number Pr . 
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In Table 2.1 the numerical values of the functions (0)f ′′−  and (0)θ ′−  for various 

values of the magnetic parameter Rem , the porosity parameter M , the stretching 

parameter C , the Prandtl number Pr  and the Eckert number Ec  with the heat 

generation coefficient 0.1B =  are given. It may be observed from the table that the 

boundary values of (0)f ′′  and ( )0θ ′  for the non-magnetic flow are same as those 

obtained by Attia (2007). Further it may be observed from the table that for 1C < , the 

value of (0)f ′′−  increases with the increasing values of the porosity parameter M  

and the magnetic parameter Rem  and when 1C >  same phenomenon occurs for the 

magnetic parameter Rem  
while opposite phenomenon occurs for the porosity 

parameter M . It may also be observed that when the stretching parameter C  

increases, the value of (0)f ′′−  decreases. Moreover for the fixed value of the Prandtl 

number Pr , value of the function (0)θ ′−  decreases with the increasing values of the 

porosity parameter M , the Eckert number Ec  and the magnetic parameter Rem  when 

1C <  while the opposite phenomenon occurs for the porosity parameter M  when 

1C > . Again the function (0)θ ′−  increases with the increase of the Prandtl Number 

Pr  and the stretching parameter C  for the fixed value of the porosity parameter M . 

Also, when the stretching parameter C  increases, the value of  (0)θ ′−  increases.  

 

2.6  Conclusions 

In this chapter, the two-dimensional stagnation point flow in a porous medium with 

heat generation of an electrically conducting fluid over a stretching surface in the 
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presence of magnetic field has been studied. Similarity equations are derived and 

solved numerically. It is found that the velocity boundary layer thickness increases 

with the increasing value of the stretching parameter and decreases with the 

increasing value of the magnetic parameter. It is further concluded that velocity 

boundary layer thickness increases with the increasing value of the porosity parameter 

when the stretching parameter is greater than one while it decreases when the 

stretching parameter is less than one, but the reverse phenomenon occurs for the 

thermal boundary layer thickness. Further the thermal boundary layer thickness 

decreases with the increasing value of the Prandtl number and the Eckert number but 

for fixed Prandtl number the thermal boundary layer thickness decreases with the 

increasing value of the stretching parameter. From the results it can be concluded that 

skin friction and Nusselt number varies in reverse phenomenon as compared to 

velocity boundary layer thickness and thermal boundary layer thickness respectively 

with different parameters. 
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Fig. 2.1 Physical model and coordinate system. 
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Fig. 2.2  Velocity distribution against η  for various values of Rem , M  and C . 
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Fig. 2.3  Temperature distribution against η  for various values of Rem , M  and C
 

with Pr 0.7= , 0.0Ec =  and 0.1 .B =  
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Fig. 2.4  Temperature distribution against η  for various values of Rem , C  and Pr  

with 3M = , 0.0Ec =  and 0.1B = . 
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Fig. 2.5  Temperature distribution against η  for various values of Rem , C  and Ec  

with 3M = , Pr 0.7=  and 0.1B = . 
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Chapter 3 

MHD Forced Convection Boundary Layer Flow with a Flat 

Plate and Porous Substrate 

 

3.1  Introduction 

During the past several years, the requirements of modern technology have stimulated 

interest in fluid flow studies which involve interaction of several phenomena. One 

such study is related to the effects of forced convection flow through a porous 

substrate which plays an important role in many engineering applications including 

geothermal energy, petroleum reservoirs, environmental pollution, fuel cells, nano-

manufacturing and nano-material processing. Vafai and Kim (1990) first discussed 

the external convection problem involving a relatively thin porous substrate attached 

to the surface of a flat plate. Huang and Vafai (1994) further studied the flow and heat 

transfer over an external boundary covered with a porous substrate. Ochoa-Tapia and 

Whitaker (1995) studied the boundary conditions at the porous medium or clear fluid 

by applying sophisticated volume-averaging technique which accounts for a jump in 

the stress at the interface. Kuznetsov (1997, 1998, 2000), Nield and Kuznetsov 

(2003), Nield and Bejan (2006), Aydin and Kaya (2008), Mukhopadhyay et al. (2012) 

and Wang (2013) reviewed the same problem of forced convection which is partly 

filled with a porous medium and partly with a clear fluid. The problem of forced 

convection of an electrically conducting fluid with a porous substrate and the flat 

plate under the influence of a magnetic field has attracted the interest of many 
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research works in view of its applications to astrophysics, engineering and to the 

boundary layer control in the field of aerodynamics. 

The objective of the present chapter is to study the flow and heat transfer for an 

electrically conducting fluid with a porous substrate and to the flat plate under the 

influence of magnetic field. For simplicity, we use a Darcy model for the flow in the 

porous substrate, and the interface between the porous medium and the fluid clear of 

solid material, with the Beavers and Joseph (1967) boundary condition. 

 

3.2   Formulation of the Problem 

The boundary layer equations for a two-dimensional flow of an electrically 

conducting, viscous, incompressible fluid past a flat plate, in a uniform stream of 

velocity ∞U  and temperature ∞T  are constant, and the wall is maintained at constant 

temperature wT , the thickness of the porous substrate is h ,  with an externally applied 

magnetic field of constant strength 0B  normal  to the plate (Fig. 3.1), are [Cramer and 

Pai (1973)]- 

0=
∂
∂

+
∂
∂

y

v

x

u
         (3.1) 

ρ
σ

υ
uB

y

u

y

u
v

x

u
u e

2

0

2

2

−
∂
∂

=
∂
∂

+
∂
∂

      (3.2) 

22
2 2

02
 p e

T T T u
C u v B u

x y y y
ρ κ µ σ

   ∂ ∂ ∂ ∂
+ = + +   ∂ ∂ ∂ ∂   

     (3.3) 
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where υ  is the kinematic viscosity, eσ  the electrical conductivity, ρ  the density, pC  

the specific heat at constant pressure, κ  the thermal conductivity and µ  the 

coefficient of viscosity of the fluid under consideration. The other symbols have their 

usual meanings. 

Since the flow of an in-viscid fluid (outside the boundary layer) is constant, pressure 

gradient in an in-viscid fluid and in the porous substrate are zero. Also, we are 

modeling the flow in the porous medium by Darcy’s equation, which means that the 

velocity in the porous medium is zero. Also, we are imposing Beavers and Joseph 

(1967) boundary condition on the boundary, instead of no-slip condition as- 

0
2

1

0 =

Β

=










=









∂
∂

y

J

y K

u

y

u α
       (3.4) 

where BJα  is the Beavers-Joseph constant and K  is the permeability of the porous 

medium. 

Therefore, in the present case, the boundary conditions are- 

1
2

2

0

u
0 :     ,   0;     

y

:     0,   ;     

w

BJ

e

K
y u v T T

Bu u
y T T

y x

α

σ
ρ ∞

 ∂
= = = = ∂ 

∂ ∂
= ∞ = = − =

∂ ∂

    (3.5) 
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3.3   Analysis of the Velocity Boundary Layer 

The boundary condition in (3.5), for the momentum equation at infinity, may be 

written as- 

( ) ( )ξ
ρ

σ
−=−==∞= ∞∞ 1  :

2

0 U
xB

UxUuy e     (3.6) 

where,  

    
2

0

∞

=
U

xBe

ρ
σ

ξ   (magnetic interaction parameter)   (3.7) 

Introducing the stream function  ( )yx,ψ  , such that  

,     u v
y x

ψ ψ∂ ∂
= = −

∂ ∂
      (3.8) 

The equation of continuity (3.1) is identically satisfied and for the solution of the 

momentum equation (3.2), applying the generalized Falkner-Skan transformation as- 

( ) ( )ηυψ ,  g1 2
1

gfxU
−

+=       (3.9) 

  ( )   g1 2
1

+=
x

U
y

υ
η        (3.10) 

where  

  ( )    
ξ

ξ
ξ

d

dU

U
g =    (magnetic parameter)    (3.11) 

Hence, 
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  ( )   
1

 
ξ

ξ
ξ

−
−=g        (3.14) 

The momentum equation (3.2), after some simplifications, reduces to the form 

( ) ( ) ( ) ( )

( )( )ηηηη

ηηηηηηη

ffffgg

ffggffggfg

gg −−=

−++++++

 12                            

 122112

2

222

   (3.15) 

with the corresponding boundary conditions- 

( )21
2

0 :   0,   1
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f f g g f

f
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η

η ζ

η

= = = + +

= ∞ =
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where, 

  
2

1

1
 




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
= ∞

x

KU

BJ υα
ζ  (Porosity parameter)    (3.17) 
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It may be noted that for a physically acceptable solution of the equation (3.15), the 

function ( )g+1  introduced in equations (3.9) and (3.10) should be positive, which 

implies that 
2
1

2

0e <=
∞U

xB

ρ
σ

ξ . It follows that  

   1 
1

 <
−

−=
ξ

ξ
g        (3.18) 

Again we assume that porosity parameter ζ  is small and therefore a rapidly 

convergent series solution of equation (3.15) can be obtained if we expand ( )η,gf  in 

power series of magnetic parameter g  and porosity parameter ζ  of the form- 

 ( ) ( ) ( )ηζη ∑∑
∞

=

∞

=

−=
0 0

,
i j

ij

ji fggf       (3.19) 

Substituting equation (3.19) and its derivatives in equation (3.15) and comparing the 

coefficients of like terms, we get the following set of equations- 

I. Terms independent of  ζ  give- 

02 000000 =′′+′′′ fff         (3.20) 
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The boundary conditions are- 

0 0

00 0

0 :   0,   0,    0

     

:   1,   0,    0

j j

j

f f j

f f j

η

η

′= = = ≥

′ ′= ∞ = = >

      (3.23) 

II. Terms containing  ζ  give- 

02 1000100010 =′′+′′+′′′ fffff        (3.24) 
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  (3.26) 

The boundary conditions are- 

1
1 10 00 11 01 00 12 02 01 002

1
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j
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f f f f f f f f f f

f j

η

η
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′= ∞ = ≥

  (3.27) 

The equations (3.20) and (3.24) are those of Nield and Kuznetsov (2003) for a non-

magnetic case. The remaining equations are linear ordinary differential equations. 

These have been solved numerically by standard techniques with the help of computer 
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programming. The velocity profiles for various values of g  are plotted against η  in 

Fig. 3.2 and 3.3. 

 

3.4   Analysis of the Thermal Boundary Layer 

Since the porous substrate is attached with the plate, there are two thermal boundary 

layers- one in the porous substrate, known as the porous thermal boundary layer, and 

other above the porous substrate, known as ordinary thermal boundary layer.  

(i) Porous Thermal Boundary Layer 

Due to stagnate fluid, the energy equation is considered a simple conduction equation 

for the temperature pT , therefore under boundary layer approximations, the energy 

equation in the porous boundary layer reduces to- 

  0
2

2

=
∂

∂

y

Tpκ         (3.28) 

We have the boundary condition 

  :     p wy h T T= − =        (3.29) 

and the matching conditions 
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p p
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y T T

y y
κ κ
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= = =
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     (3.30) 

Let 
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TT

TT

w

p

pθ        (3.31) 

The boundary and matching conditions become 

  ( )21
2

1 :    1
p

g gη λζ θ=− + + =       (3.32) 

 

  0 :     ,     
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p m

θθ
η θ θ κ

η η
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= = =
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     (3.33) 

where 

  
K

hBJα
λ =         (3.34) 

  
κ

κ
κ p

m =         (3.35) 

 

The energy equation (3.28) becomes 

  0
2

2

=
∂

∂

η

θ p
        (3.36) 

The solution of equation (3.36), satisfying (3.32) to first order in ζ  is  

  ( ){ }( )2
2
111 gg BAp +++++= ζηηλζθ     (3.37) 

where A  and B  are constants. 

The matching conditions then give- 
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( ) ( ) ( )2 21 1
2 2

0 :     1 1 ,   1mA g g A B g gηη θ λζ θ κ ζ= = + + + = + + +  (3.38) 

(ii)  Ordinary Thermal Boundary Layer 

By introducing dimensionless temperature distribution 

  ( )ζηθ ,,g
TT

TT

w

=
−

−

∞

∞        (3.39) 

The energy equation (3.3) after some simplification reduces to- 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2 22 2

2 22 2

2

2 1 Pr 1 1 2 Pr 1 1

                       2Pr 1 1  2Pr 1

                             2Pr  1

g g

g g g g f g g f

g g g f f Ec g f

Ec g g f

ηη η η ζ

η η ηη

η

θ θ ζ θ

θ θ

− + − + + + − +

= − − − − +

+ +

    (3.40) 

with the boundary conditions- 

  

0 :   1

:   0

η θ

η θ

= =

= ∞ =

       (3.41) 

where Pr
pCµ

κ
=  is the Prandtl number and 

( )

2

p w

U
Ec

C T T

∞

∞

=
−

 the Eckert number. 

For small magnetic parameter g  and porosity parameter ζ , a series solution of the 

equation (3.40) similar to the velocity boundary layer can be obtained by taking 

( )ζηθ ,,g  as 
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( ) ( ) ( )ηθζζηθ ∑∑
∞

=

∞

=

−=
0 0

,,
i j

ij

ji gg       (3.42) 

Substituting equations (3.19) and (3.42) with derivatives in equation (3.40) and 

comparing the coefficients of like terms, we get the following set of equations- 

I. Terms independent of  ζ  give- 

2

00000000 Pr2Pr2 fEcf ′′−=′+′′ θθ       (3.43) 

( ) ( )

01 00 01 00 01

2 2

00 01 00 00 01 00 00

2 Pr 2Pr

         Pr 3  2Pr 2 2

f f

f f Ec f f f f

θ θ θ

θ

′′ ′ ′+ −

′ ′′ ′′ ′′ ′= − + − − +

   (3.44) 

( ) ( )

( )

( )

02 00 02 00 02

00 01 01 00 01 01

00 01 02 00

2 2 2

00 02 01 00 01 00 01 00 00

2 Pr 4Pr

            Pr 3 2Pr 2

Pr 3 5 5

2Pr 2 4 2 3

f f

f f f f

f f f

Ec f f f f f f f f f

θ θ θ

θ θ

θ

′′ ′ ′+ −

′ ′ ′= − + + +

′− + +

′′ ′′ ′′ ′′ ′′ ′ ′ ′′ ′− + − + + −

  (3.45) 

The boundary and the matching conditions are- 

1
00 0 00 01 02 2

0

0 : 1,   0,   ,   ,   ,   j 0

:  0,   0

j m m m

j

A A A

j

η θ θ θ κ θ κ θ κ

η θ

′ ′ ′= = = = = − = >

= ∞ = ≥

 (3.46) 

II. Terms containing  ζ  give- 

100000101000100010 Pr4PrPrPr2 ffEcfff ′′′′−′−=′+′+′′ θθθθ               (3.47) 
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( ) ( )

( ) ( )

11 00 11 00 11

00 01 10 00 01 10 10 01 10 01

10 11 00 00 11 00 10 01 10 00 10

2 Pr Pr

            Pr 3 Pr Pr 2Pr

               Pr 3 4Pr 2

f f

f f f f f f

f f Ec f f f f f f f f

θ θ θ

θ θ θ θ

θ

′′ ′ ′+ −

′ ′ ′ ′ ′= − + − + − +

′ ′′ ′′ ′′ ′′ ′′ ′′ ′ ′− + − − + +

         (3.48) 

( ) ( ) ( )

( ) ( )

( )

12 00 12 00 12

00 01 11 00 01 11 00 01 02 10

00 01 02 10 10 02 10 02 10 11 01

10 11 01

2 Pr 3Pr

            Pr 3 Pr 3 Pr 3 5 5

               Pr Pr 4Pr  Pr 3

               2Pr 2 Pr 3

f f

f f f f f f f

f f f f f f f

f f

θ θ θ

θ θ θ

θ θ θ θ

θ

′′ ′ ′+ −

′ ′ ′ ′= − + + + − + +

′ ′ ′ ′ ′ ′− + + − + − +

′ ′+ + − ( )

(

)

10 11 12 00

00 12 00 11 01 11 00 11 00 10 01 10

02 10 00 10 01 10

5 5

               4Pr 2 3 2

               

f f f

Ec f f f f f f f f f f f f

f f f f f f

θ ′+ +

′′ ′′ ′′ ′′ ′′ ′′ ′ ′ ′′ ′′ ′′ ′′− − + + + −

′′ ′′ ′ ′ ′ ′+ − +

   (3.49) 

The boundary and the matching conditions are- 

1 1
10 11 12 10 11 122 2

1

0 :  ,  ,  ,  ,  ,  

:  0,   0

m m m

j

A A A B B B

j

η θ λ θ λ θ λ θ κ θ κ θ κ

η θ

′ ′ ′= = = − = = = − =

= ∞ = ≥

    (3.50) 

Equations (3.43) to (3.50) with the boundary and matching conditions have been 

solved numerically by standard techniques and the corresponding temperature profiles 

against η  are shown graphically in Fig. 3.4 to 3.7 for different .g  

 

3.5   Surface Heat Transfer 

The heat flux at the boundary is 
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0y

T
q

y
κ

=

 ∂
=  ∂ 

         (3.51) 

If the Nusselt number is defined by 

( )w

qx
Nu

T Tκ ∞

= −
−

        (3.52) 

which, in the present case becomes 

( ) ( ) ( )∑∑
∞

=

∞

=

∗ ′−++−=
0 0

2

2
1 01

i j

ij

ji ggg Nu θζ      (3.53) 

where 

Re

Nu
Nu =∗          (3.54) 

and 

υ
xU∞=Re   ( local Reynolds number )     (3.55) 

The Nusselt numbers for various values of magnetic parameter g  against Prandtl 

number Pr  are shown in Fig. 3.8 and 3.9. 

 

3.6   Results and Discussion 

From Figures 3.2 and 3.3 it is evident that the velocity increases with the increasing 

value of the magnetic parameter g . It is further observed that in the presence of the 
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porous substrate the velocity profiles decrease more rapidly with the increase in the 

magnetic parameter g . Similarly, for the temperature distribution i.e. from the Fig. 

3.4 and 3.5, it is observed that the temperature distribution increases with the 

increasing value of the magnetic parameter g  for 1<η  and afterwards it decreases 

with the increasing value of the magnetic parameter g  whereas the temperature 

distribution decreases with the increasing values of the Prandtl number Pr  and the 

Eckert number Ec  respectively. The Fig. 3.6 and 3.7 also shows the variation of 

temperature distribution in the presence of porous substrate, the temperature 

distribution decreases with the increase in the magnetic parameter g . Also, in Fig. 3.6 

it can be seen that for 31 <<η , the temperature distribution decreases for the 

increasing value of the Prandtl number Pr  and the temperature distribution increases 

for the increasing values of the Prandtl number Pr  for other value of η . But in Fig. 

3.7, it can be seen that the temperature distribution increases with the increase in the 

Eckert number Ec . For 5.2<η  the temperature distribution decreases with the 

increase in η   and for 5.2>η , reverse phenomenon occurs. The Fig. 3.8 and 3.9 

show the variation of the Nusselt number against the Prandtl number Pr . It is 

observed that the Nusselt number increases with the increasing value of the magnetic 

parameter g . Further it is observed that for the given magnetic parameter g , the 

Nusselt number increases with the Prandtl number Pr  faster than corresponding to the 

absence of the porous substrate. 
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3.7   Conclusions 

In this chapter, it is concluded that in the porous substrate the effect of the magnetic 

field is to retard the flow for 5.2≤η whereas it accelerates the flow for 5.2>η . The 

Nusselt number increases with the increasing values of both the magnetic parameter 

and the Prandtl number. 
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Fig. 3.1 The schematic of the problem and coordinate system. 
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Fig. 3.2 Velocity distribution (non-porous) against η  for various values of g . 
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Fig. 3.3 Velocity distribution (porous) against η  for various values of g . 
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Fig. 3.4 Temperature distribution (non-porous) against η  for various values of g  and 

Pr with 0.0=Ec . 
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Fig. 3.5 Temperature distribution (non-porous) against η  for various values of g  and 

Ec  with 72.0Pr = . 
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Fig. 3.6 Temperature distribution (porous) against η  for various values of g  and Pr  

with 0.0=Ec . 
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Fig. 3.7 Temperature distribution (porous) against η  for various values of g  and Ec  

with 72.0Pr = . 
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Fig. 3.8 Nusselt number (non-porous) against Pr  for various values of g . 
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Fig. 3.9 Nusselt number (porous) against Pr  for various values of g . 



Chapter 4 

MHD Stagnation Point Flow and Heat Transfer over a 

Permeable Surface 

         

4.1  Introduction  

In recent years, the requirements of modern technology have stimulated interest in 

fluid flow studies which involve interaction of several phenomena. One such study is 

stagnation point flow over a permeable surface which plays an important role in many 

engineering problems, petroleum industries, ground water flows, extrusion of a 

polymer sheet from a dye and boundary layer control. More importantly, the quality 

of the products, in the above mentioned processes, depends on the kinematics of 

stretching and the simultaneous heat and mass transfer rates during the fabrication 

process. Crane (1970) studied the flow over a linearly stretching sheet in an ambient 

fluid and gave a similarity solution in closed analytical form for the study of two-

dimensional problem. Heat transfer in the flow over a permeable surface has been 

investigated by several authors such as Gupta and Gupta (1977), Carragher and Crane 

(1982), Chiam (1994), Magyari and Keller (2000), Mahapatra and Gupta (2002), 

Elbashbeshy and Bazid (2003), Liao and Pop (2004), Jat and Chaudhary (2007, 2008) 

and Bhattacharyya and Layek (2011). 

The object of the present chapter is to study the stagnation point flow and heat 

transfer for an electrically conducting fluid over a permeable surface in the presence 

of a magnetic field. The fluid is acted upon by an external uniform magnetic field and 
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a uniform injection or suction is directed normal to the plane of the wall. The wall and 

stream temperatures are assumed to be constants. Numerical results are obtained for 

velocity, temperature, skin friction and surface heat transfer using Shooting method. 

 

4.2  Mathematical Model 

Consider the steady two-dimensional stagnation point flow ( ), , 0u v
 
of a viscous  

incompressible electrically conducting fluid near a stagnation point  over a permeable 

surface placed in the plane 0y =  of a Cartesian coordinates system with the x − axis 

along the surface, in a uniform injection or suction velocity 0v±  at the boundary of 

the surface and in the presence of an externally applied normal magnetic field of 

constant strength ( )00, ,0H .  The stretching surface has a uniform temperature 
w
T  

while the velocity of the flow external to the boundary layer is eu  and temperature 

.T∞  The system of boundary layer equations (which model Fig. 4.1) are given by- 

0
u v

x y

∂ ∂
+ =

∂ ∂
          (4.1) 

2 22

0

2

e e e
e

du H uu u u
u v u
x y dx y

σ µ
υ

ρ
∂ ∂ ∂

+ = + −
∂ ∂ ∂

      (4.2) 

22
2 2 2

02p e e

T T T u
C u v H u

x y y y
ρ κ µ σ µ

   ∂ ∂ ∂ ∂
+ = + +   ∂ ∂ ∂ ∂   

    (4.3) 

where υ  is the kinematic viscosity, eσ  the electrical conductivity, eµ  the magnetic 

permeability, ρ  the density, 
pC  the specific heat at constant pressure, κ  the thermal 
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conductivity and µ  the coefficient of viscosity of the fluid under consideration. The 

other symbols have their usual meanings. 

The boundary conditions are- 

00 : 0, ;

: , ;

w

e

y u v v T T

y u u ax v ay T T∞

= = = ± =

= ∞ = = = − =

     (4.4) 

where a  is a constant proportional to the free stream velocity far away from the 

stretching surface.   
                 

  

   

4.3  Similarity Analysis  

The continuity equation (4.1) is identically satisfied by stream function ( ),x yψ , 

defined as 

,u v
y x

ψ ψ∂ ∂
= = −
∂ ∂

       (4.5) 

For the solution of the momentum and the energy equations (4.2) and (4.3), the 

following dimensionless variables are defined- 

( ) ( ),x y a x fψ υ η=        (4.6) 

a
yη

υ
=          (4.7) 

( )
w

T T

T T
θ η ∞

∞

−
=

−
        (4.8) 
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Equations (4.5) to (4.8), transform equations (4.2) and (4.3) into 

2 2Re 1 0mf f f f f′′′ ′′ ′ ′+ − − + =                      (4.9) 

2 2 2Pr Pr Pr Re 0mf Ec f Ec fθ θ′′ ′ ′′ ′+ + + =       (4.10) 

where the prime ( ' ) denotes differentiation with respect to η , 
0

Re e
m e

H
a

σ
µ

ρ
=  the 

magnetic parameter, Pr
pCµ

κ
=  the Prandtl number and 

( )

2

e

p w

u
Ec

C T T∞
=

−
 the 

Eckert number.  

The corresponding boundary conditions are- 

  

0 : , 0; 1

: 1; 0

f A f

f

η θ

η θ

′= = = =

′= ∞ = =

      (4.11) 

where 0vA
aυ

= ±  is the suction parameter. 

 For numerical solution of the equations (4.9) and (4.10), we apply the following 

power series in a small magnetic parameter 2Rem   as- 

( ) ( ) ( )2

0

Re
i

m i

i

f fη η
∞

=

=∑         (4.12) 

( ) ( ) ( )2

0

Re
j

m j

j

∞

=

=∑θ η θ η         (4.13) 
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Substituting equations (4.12) and (4.13) and its derivatives in equations (4.9) and 

(4.10) and then equating the coefficients of like powers of 2Rem , we get the following 

set of equations- 

2

0 0 0 0 1 0f f f f′′′ ′′ ′+ − + =         (4.14) 

2

0 0 0 0Pr Prf Ec fθ θ′′ ′ ′′+ = −         (4.15) 

1 0 1 0 1 0 1 02f f f f f f f f′′′ ′′ ′ ′ ′′ ′+ − + =         (4.16) 

( )2

1 0 1 1 0 0 1 0Pr Pr Pr 2f f Ec f f fθ θ θ′′ ′ ′ ′′ ′′ ′+ = − − +      (4.17) 

( )2 0 2 0 2 0 2 1 1 1 12 1f f f f f f f f f f f′′′ ′′ ′ ′ ′′ ′′ ′ ′+ − + = − + +      (4.18) 

( ) ( )2

2 0 2 1 1 2 0 0 2 1 0 1Pr Pr Pr 2 2f f f Ec f f f f fθ θ θ θ′′ ′ ′ ′ ′′ ′′ ′′ ′ ′+ = − + − + +    (4.19) 

with the boundary conditions- 

0 0

0

0 : , 0, 0; 1, 0

: 1, 0; 0 0, 0

i j i

i j

f A f f

f f i j

η θ θ

η θ

′= = = = = =

′ ′= ∞ = = = > ≥

   (4.20) 

The equation (4.14) was obtained by Jat and Chaudhary (2007) for the non-magnetic 

case, in the absence of the suction parameter and the slip factor. The remaining 

equations are linear ordinary differential equations and have been solved numerically 

by Shooting method. The velocity and temperature distributions for various values of 

the parameters are shown in Fig. 4.2 and Fig. 4.3 to Fig. 4.4 respectively.  
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4.4  Skin Friction and Nusselt Number 

The physical quantities of interest, the local skin friction coefficient f
C  and the local 

Nusselt number Nu  i.e. surface heat transfer are given by- 

0

2 2
/ 2 / 2

yw
f

e e

u

y
C

u u

µ
τ

ρ ρ
=

 ∂
 ∂ 

= =         (4.21) 

and 

( )
0y

w

T
x

y
Nu

T T

=

∞

 ∂
 ∂ 

= −
−

         (4.22) 

which, in the present case, can be expressed in the following forms 

  

2
(0)

Re
fC f ′′=

          

  
( )2

0

2
Re (0)

Re

i

m i

i

f
∞

=

′′= ∑                 (4.23) 

  

and 

  Re (0)Nu θ ′= −           

  
( )2

0

Re Re (0)
j

m j

j

∞

=

′= − ∑ θ                  (4.24) 

where Re eu x

υ
=  is the local Reynolds number.  
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Numerical values of the functions ( )0f ′′
 
and ( )0θ ′ , which are proportional to local 

skin friction and local heat transfer rate at the surface respectively for various values 

of the parameters are presented in Table 4.1.  

 

4.5  Discussion of the Results 

The Figure 4.2 shows the variation of velocity distribution against η  for various 

values of the suction parameter A  and the magnetic parameter Rem . It may be 

observed that the velocity increases as the suction parameter A  increases, whereas it 

decreases as the magnetic parameter Rem  increases for a fixed η .   

The Figures 4.3 to 4.4 show the variation of the temperature distribution against η  for 

various values of the parameters such as the suction parameter A , the magnetic 

parameter mRe , the Prandtl number Pr  and the Eckert number Ec . From these 

figures it may be observed that the temperature distribution decreases with the 

increasing value of the suction parameter A  and same phenomena occur for the 

Prandtl number Pr . It is further observed that in Fig. 4.3 the temperature distribution 

decreases with the increasing value of the magnetic parameter mRe . In Fig. 4.4, for 

fixed suction parameter A  temperature distribution decreases with the increasing 

value of the Eckert number Ec  and reverse phenomena occurs for the magnetic 

parameter mRe . 



 

MHD Stagnation Point Flow and Heat Transfer over a Permeable Surface 

71 

 

The numerical values of the functions (0)f ′′  and (0)θ ′−  for various values of the 

suction parameter A , the magnetic parameter Rem , the Prandtl number Pr  and the 

Eckert number Ec  are presented in Table 4.1. It may be observed from the table that 

the boundaries values ( )0f ′′   for non-magnetic flow, in the absence of the suction 

parameter and the slip factor, are same as those obtained by Jat and Chaudhary 

(2007). Further, it may be observed from the table that the function (0)f ′′  increases 

with the increasing values of the suction parameter A , similar results are obtained for 

(0)θ ′−  whereas the value of (0)f ′′  decreases with the increasing value of the 

magnetic parameter Rem  while opposite results are observed for (0)θ ′− . Further 

(0)θ ′−  decreases with the increasing value of the Eckert number Ec  and same for 

the Prandtl number Pr  if 0A< . 

 

4.6  Conclusions  

In this chapter, the steady two-dimensional stagnation point flow and heat transfer of 

a viscous incompressible electrically conducting fluid over a permeable surface has 

been analyzed. The similarity equations are obtained and solved numerically by a 

Shooting method. The effects of the suction parameter, the magnetic parameter, the 

Prandtl number and the Eckert number are studied in detail. The velocity boundary 

layer thickness increases with the increasing value of the suction parameter while the 

reverse phenomenon is observed for thermal boundary layer thickness. Further 

concluded when the Eckert number equal to zero the velocity as well as thermal 

boundary layer thickness decreases with the increasing value of the magnetic 
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parameter and the Prandtl number, whereas for the Eckert number not equal to zero, 

thermal boundary layer thickness increases with the increasing value of the magnetic 

parameter and decreases with the increasing value of the Eckert number. On other 

hand from the results it can be concluded that skin friction and Nusselt number varies 

similarly as velocity boundary layer thickness and thermal boundary layer thickness 

respectively with different parameters. 
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Fig. 4.1 A sketch of the physical problem. 
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Fig. 4.2 Variation of velocity with η  for several values of A  and Re
m
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Fig. 4.3 Variation of temperature with η  for several values of A , Re
m
 and Pr  when 

0.00Ec = . 
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Fig. 4.4 Variation of temperature with η  for several values of A , Re
m  

and Ec  when 

Pr 0.50= . 
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Chapter 5 

Magnetohydrodynamic Boundary Layer Flow over an 

Exponentially Stretching Sheet with Radiation Effects 

 

5.1  Introduction  

The study of laminar boundary layer flow over a stretching sheet has received much 

interest in recent years due to its numerous applications in industrial manufacturing 

processes such as wire drawing, hot rolling, manufacturing of plastic and rubber 

surfaces, condensation process of metallic plate in a cooling bath and glass, fibers 

spinning and many others. In all these cases, during such processes both stretching 

and simultaneous cooling or heating have a decisive influence on the quality of the 

final products. Sakiadis (1961) probably was first who studied the problem of 

boundary layer flow over a continuous solid surface moving with constant velocity. 

Crane (1970) extended this concept to the flow over a linearly stretching sheet and 

obtained a similar solution in closed analytical form for the steady two dimensional 

problem. Gupta and Gupta (1977), Carragher and Crane (1982), Magyari and Keller 

(1999), Elbashbeshy (2001), Mahapatra and Gupta (2002), Pop et al. (2004), Ishak et 

al. (2006) and Jat and Chaudhary (2008) studied the boundary layer flow problems 

over stretching sheet taking into various aspects of the problem. Recently, various 

aspects of such problem have been investigated either analytically or numerically by 

several researchers such as Bidin and Nazar (2009), Jat and Chaudhary (2010) and 

Bachok et al. (2012). 
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The effects of thermal radiation on boundary layer flow and heat transfer problems 

play a significant role when technological processes take place at high temperature, 

for example in electrical power generation, solar power technology, astrophysical 

flows etc. 

Realizing the increasing technical applications of the magnetohydrodynamic effects, 

we have studied in the chapter the radiation effects on two dimensional boundary 

layer flow of an incompressible viscous electrically conducting fluid over an 

exponentially stretching sheet in the presence of uniform transverse magnetic field by 

using Rosseland approximation. The results of velocity, temperature, skin friction and 

surface heat transfer for different parameters were obtained. 

 

5.2  Problem Formulation 

Consider the steady two-dimensional boundary layer flow ( ), , 0u v  of an 

incompressible viscous electrically conducting fluid over an exponentially stretching 

sheet. The x − axis is taken along the continuous stretching surface in the direction of 

motion and y − axis is perpendicular to it. A uniform magnetic field of constant 

strength ( )00, ,0H is assumed to be applied normal to the stretching surface as shown 

in Fig. 5.1. The magnetic Reynolds number is assumed to be small and therefore no 

magnetic induction is present. The surface is assumed to be highly elastic and is 

stretched in the x− direction with a velocity wu  and surface temperature wT . All the 

fluid properties are assumed to be constant throughout the motion. Therefore, under 
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the usual boundary layer approximations, the governing boundary layer equations 

with the radiation effects are 

0
u v

x y

∂ ∂
+ =

∂ ∂
                     (5.1) 

2 22

0

2

e e H uu u u
u v
x y y

σ µ
υ

ρ
∂ ∂ ∂

+ = −
∂ ∂ ∂

       (5.2) 

22
2 2 2

02

r
p e e

qT T T u
C u v H u

x y y y y
ρ κ µ σ µ

    ∂∂ ∂ ∂ ∂
+ = + − +   ∂ ∂ ∂ ∂ ∂   

    (5.3) 

where υ  is the kinematic viscosity, eσ  the electrical conductivity, eµ  the magnetic 

permeability, ρ  the density, 
pC  the specific heat at constant pressure, κ  the thermal 

conductivity, µ  the coefficient of viscosity and rq  the relative heat flux of the fluid 

under consideration. The other symbols have their usual meanings. 

The boundary conditions are- 

2
0 00 : , 0;

: 0;

x x
L L

w wy u u U e v T T T T e

y u T T

∞

∞

= = = = = = +

= ∞ = =

   (5.4) 

where 
0U  is the reference velocity, L  is the reference length, T∞  is the temperature 

far away from the sheet and 0T  is the reference temperature.  

Using Rosseland approximation [Rosseland (1936)], the radiation heat flux rq  

simplifies as- 
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* 4

*

4

3
r

T
q

k y

σ ∂
= −

∂
       (5.5) 

where *σ  is the Stefan-Boltzmann constant and *k  is the mean absorption coefficient. 

Assuming that the temperature difference within the flow is such that the terms 4T  

may be expressed as a linear function of temperature. Hence, expanding 4T  in a 

Taylor series about T∞  and neglecting higher order terms gives- 

4 3 44 3T T T T∞ ∞= −        (5.6) 

using equations (5.5) and (5.6), equation (5.3) reduces to- 

 

2* 3 2
2 2 2

0* 2

16

3
p e e

TT T T u
C u v H u

x y k y y

σ
ρ κ µ σ µ∞    ∂ ∂ ∂ ∂

+ = + + +    ∂ ∂ ∂ ∂       

(5.7) 

 

5.3  Mathematical Analysis  

The continuity equation (5.1) is identically satisfied by stream function ( ),x yψ , 

defined as 

,u v
y x

ψ ψ∂ ∂
= = −
∂ ∂

       (5.8) 

For the solution of the momentum and the energy equations (5.2) and (5.7), the 

following dimensionless variables are defined- 

( ) ( )2
0, 2

x
Lx y LU e fψ υ η=       (5.9) 
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0 2

2

x
L

U
e y

L
η

υ
=         (5.10) 

  

( )
2

0

x
L

T T

T e
θ η ∞−

=         (5.11) 

Equations (5.8) to (5.11), transform equations (5.2) and (5.7) into 

2 22 2Re 0mf f f f f′′′ ′′ ′ ′+ − − =        (5.12) 

2 2 24
1 Pr Pr Pr 2Pr Re 0

3
mK f f Ec f Ec fθ θ θ  ′′ ′ ′ ′′ ′+ + − + + = 

 
   (5.13) 

where the prime ( ' ) denotes differentiation with respect to η , 0Re e
m e

w

L
H

u

σ
µ

ρ
=  is 

the magnetic parameter, 
* 3

*

4 T
K

k

σ
κ
∞=  the radiation parameter, Pr

pCµ

κ
=  the 

Prandtl number and 
( )

2

w

p w

u
Ec

C T T∞
=

−
 the Eckert number. 

The corresponding boundary conditions are- 

0 : 0, 1; 1

: 0; 0

f f

f

η θ

η θ

′= = = =

′= ∞ = =

      (5.14) 

For numerical solution of the equations (5.12) and (5.13), through a perturbation 

technique, by assuming the following power series in a small magnetic parameter 

2Rem  as- 
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( ) ( ) ( )2

0

Re
i

m i

i

f fη η
∞

=

=∑         (5.15) 

( ) ( ) ( )2

0

Re
j

m j

j

θ η θ η
∞

=

=∑         (5.16) 

Substituting equations (5.15) and (5.16) and its derivatives in equations (5.12) and 

(5.13) and then equating the coefficients of like powers of 2Rem , we get the following 

set of equations- 

2

0 0 0 02 0f f f f′′′ ′′ ′+ − =          (5.17) 

2

0 0 0 0 0 0

4
1 Pr Pr Pr

3
K f f Ec fθ θ θ  ′′ ′ ′ ′′+ + − =− 

 
     (5.18) 

1 0 1 0 1 0 1 04 2f f f f f f f f′′′ ′′ ′ ′ ′′ ′+ − + =        (5.19) 

( ) ( )21 0 1 0 1 1 0 1 0 0 1 0

4
1 Pr Pr Pr 2 Pr

3
K f f f f Ec f f fθ θ θ θ θ  ′′ ′ ′ ′ ′ ′′ ′′ ′+ + − = − − − + 

   

(5.20) 

( )2 0 2 0 2 0 2 1 1 1 14 2 1f f f f f f f f f f f′′′ ′′ ′ ′ ′′ ′′ ′ ′+ − + = − + +      (5.21) 

( )

( )

2 0 2 0 2 1 1 1 1 2 0 2 0

2

0 2 1 0 1

4
1 Pr Pr Pr

3

Pr 2 4

K f f f f f f

Ec f f f f f

θ θ θ θ θ θ θ  ′′ ′ ′ ′ ′ ′ ′+ + − = − + − + 
 

′′ ′′ ′′ ′ ′− + +

   (5.22) 

with the boundary conditions- 
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0 00 : 0, 1, 0; 1, 0

: 0; 0 0, 0

i j j

i i

f f f

f i j

η θ θ

η θ

′ ′= = = = = =

′= ∞ = = ≥ >

    (5.23) 

The equations (5.17) and (5.18) were obtained by Bidin and Nazar (2009) for the non-

magnetic case and the remaining equations are linear ordinary differential equations 

and have been solved numerically by Runge-Kutta method of fourth order. The 

velocity and temperature distributions for various values of the parameters are shown 

in Fig. 5.2 and Fig. 5.3 to 5.7 respectively.  

 

5.4  Local Skin Friction and Surface Heat Transfer 

The physical quantities of interest the local skin friction coefficient f
C  and the local 

Nusselt number Nu  i.e. surface heat transfer are given by- 

0

2 2/ 2 / 2

yw
f

w w

u

y
C

u u

µ
τ

ρ ρ
=

 ∂
 ∂ 

= =         (5.24) 

and 

( )
0y

w

T
L

y
Nu

T T

=

∞

 ∂
 ∂ 

= −
−

         (5.25) 

which, in the present case, can be expressed in the following forms 

  

2
(0)

Re
fC f ′′=           



 

Magnetohydrodynamic Boundary Layer Flow over an .......................Radiation Effects 

87 

 

 
( )2

0

2
Re (0)

Re

i

m i

i

f
∞

=

′′= ∑                (5.26) 

and 

      
Re

(0)
2

Nu θ ′= −          

      
( )2

0

Re
Re (0)

2

j

m j

j

θ
∞

=

′= − ∑                                             (5.27) 

where Re wu L

υ
=  is the local Reynolds number.  

Numerical values of the functions ( )0f ′′
 
and ( )0θ ′ , which are proportional to local 

skin friction and local heat transfer rate at the surface respectively for various values 

of the parameters are presented in Table 5.1.  

 

5.5  Results and Discussion 

The Figure 5.2 shows the variation of velocity distribution against η  for various 

values of the magnetic parameter Rem . It is observed that the velocity distribution 

decreases with increasing value of the magnetic parameter Rem . 

The Figure 5.3 to 5.7 show the variation of the temperature distribution against η  for 

various values of the parameters such as the magnetic parameter 
mRe , the radiation 

parameter K , the Prandtl number Pr  and the Eckert number Ec . From these figures 
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it may be observed that the temperature distribution decreases with the decreasing 

values of the magnetic parameter 
mRe , the radiation parameter K  and the Eckert 

number Ec , and reverse phenomenon occurs for the Prandtl number Pr . 

In Table 5.1 the numerical values of the function (0)f ′′−  and (0)θ ′−  for various 

values the magnetic parameter Rem , the radiation parameter K , the Prandtl number 

Pr  and the Eckert number Ec  are given. It is observed from the table that the 

boundary values (0)f ′′  and ( )0θ ′  for the non-magnetic flow are the same as those 

obtained by Bidin and Nazar (2009). Further it is observed that the function ( )0f ′′  

decreases with the increasing value of the magnetic parameter Rem . Also the function 

( )0θ ′  increases with the increasing value of the magnetic parameter Rem , the 

radiation parameter K , and the Eckert number Ec  respectively taking other 

parameters constant and the reverse phenomenon occurs for the Prandtl number Pr . 

 

5.6  Conclusions  

The present study gives numerical solutions for the effects of radiation on steady two-

dimensional laminar boundary layer flow of an incompressible, viscous, electrically 

conducting fluid over an exponentially stretching sheet in the presence of uniform 

magnetic field. The effects of different parameters such as the magnetic parameter, 

the radiation parameter, the Prandtl number and the Eckert number are studied in 

detail. It concludes that the velocity boundary layer thickness as well as the skin 

friction coefficient decreases with the increasing value of the magnetic parameter 
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whereas the reverse phenomenon occurs for the thermal boundary layer thickness and 

the surface heat transfer. Further the thermal boundary layer thickness and the surface 

heat transfer increases with the increasing value of the radiation parameter and the 

Eckert number whereas the reverse phenomenon occurs for the Prandtl number. 
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Fig. 5.1 Flow configuration and the coordinate system. 
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Fig. 5.2 Effects of Rem  
on velocity profiles against η . 
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Fig. 5.3 Effects of Rem  and K  on temperature profiles against η  for Pr 1=  and 

0.0Ec = . 
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Fig. 5.4 Effects of Rem  and Pr  on temperature profiles against η  for 0.5K =  and 

0.0Ec = . 
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Fig. 5.5 Effects of Rem  and Pr  on temperature profiles against η  for 1.0K =  and 

0.0Ec = . 
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Fig. 5.6 Effects of Rem  and Ec  on temperature profiles against η  for 0.5K =  and 

Pr 1= . 
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Fig. 5.7 Effects of Rem  and Ec  on temperature profiles against η  for 1.0K =  and 

Pr 1= . 
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Chapter 6 

MHD Slip Flow Past a Shrinking Sheet 

 

6.1  Introduction  

The viscous flow and heat transfer in the boundary layer region due to a stretching 

sheet has wide theoretical and technical applications in manufacturing process and in 

industries such as extraction of polymer sheet, paper production, wire drawing, glass-

fiber production, the cooling and drying of paper and textiles. Furthermore, the 

continuous surface heat and mass transfer problems are many practical applications in 

polymer processing and electro-chemistry. The study of heat transfer and flow field is 

necessary for determining the quality of the final products of such process. Crane 

(1970) was first who considered steady boundary layer flow of a viscous 

incompressible fluid over a linearly stretching plate and gave an exact similarity 

solution in closed analytical form. The effects of heat and mass transfer and magnetic 

field under various physical conditions have been investigated by several authors such 

as Chen and Char (1988), Chiam (1994), Andersson (2002), Ariel et al. (2006), Jat 

and Chaudhary (2007, 2008), Wang (2008), Fang et al. (2010), Nadeem et al. (2010), 

Bhattacharyya and Layek (2011) and Bhattacharyya et al. (2011). Recently Mahapatra 

et al. (2012)
 
studied the oblique stagnation-point flow and heat transfer towards a 

shrinking sheet with thermal radiation. 

Based on the above mentioned investigations and applications, this chapter is 

concerned with a steady, two dimensional stagnation flow of an electrically 
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conducting fluid past a shrinking sheet in the presence of a magnetic field. The 

numerical results of velocity, temperature, skin friction and surface heat transfer for 

different parameters such as the velocity ratio parameter, the slip parameter, the 

magnetic parameter, the Prandtl number and the Eckert number were obtained. 

 

6.2  Mathematical Formulation 

Consider the steady two-dimensional laminar flow ( ), ,0u v  of a viscous 

incompressible electrically conducting fluid towards a linearly shrinking sheet such 

that the sheet is shrinked in its own plane with velocity proportional to the distance 

from the stagnation point in the presence of an externally applied normal magnetic 

field of constant strength ( )00, ,0H . The shrinking surface has a linear velocity wu  

and uniform temperature wT , while the velocity of the flow external to the boundary 

layer is eu  and temperature T∞  as shown in Fig. 6.1. Therefore, under the usual 

boundary layer approximations, the governing equations of motion are- 

0
u v

x y

∂ ∂
+ =

∂ ∂
          (6.1) 

2 22

0

2

e e e
e

du H uu u u
u v u

x y dx y

σ µ
υ

ρ
∂ ∂ ∂

+ = + −
∂ ∂ ∂

      (6.2) 

22
2 2 2

02p e e

T T T u
C u v H u

x y y y
ρ κ µ σ µ

   ∂ ∂ ∂ ∂
+ = + +   ∂ ∂ ∂ ∂   

    (6.3) 
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where υ is the kinematic viscosity, eσ  the electrical conductivity, eµ  the magnetic 

permeability, ρ  the density, 
pC  the specific heat at constant pressure, κ  the thermal 

conductivity and µ  the coefficient of viscosity of the fluid under consideration. The 

other symbols have their usual meanings. 

The boundary conditions are- 

0 : , 0;

: ;

w w

e

u
y u u cx L v T T

y

y u u ax T T∞

 ∂
= = = + = = ∂ 

= ∞ = = =

     (6.4) 

where c  is a proportionality constant of the velocity of shrinking sheet, L  is a slip 

length and a is a constant proportional to the free stream velocity for away from the 

sheet. 
                 

 

 

6.3  Similarity Transformation  

The continuity equation (6.1) is identically satisfied by stream function ( ),x yψ , 

defined as 

,u v
y x

ψ ψ∂ ∂
= = −
∂ ∂

       (6.5) 

For the solution of the momentum and the energy equations (6.2) and (6.3), the 

following dimensionless variables are defined- 

( ) ( ),x y a x fψ υ η=       (6.6) 
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a
yη

υ
=          (6.7) 

( )
w

T T

T T
θ η ∞

∞

−
=

−
       (6.8) 

Equations (6.5) to (6.8), transform equations (6.2) and (6.3) into 

2 2Re 1 0mf f f f f′′′ ′′ ′ ′+ − − + =                     (6.9) 

2 2 2Pr Pr Pr Re 0mf Ec f Ec fθ θ′′ ′ ′′ ′+ + + =      (6.10) 

where the prime ( ') denotes differentiation with respect to η , 0Re e
m eH

a

σ
µ

ρ
=  is 

the magnetic parameter, Pr
pCµ

κ
=  the Prandtl number and 

( )

2

e

p w

u
Ec

C T T∞

=
−

 

the 

Eckert number.  

The corresponding boundary conditions are- 

0 : 0, ; 1

: 1; 0

c
f f f

a

f

η δ θ

η θ

′ ′′= = = + =

′= ∞ = =

      (6.11) 

where 
c

a
 is the velocity ratio parameter and 

a
Lδ

υ
=  is the slip parameter.  

For numerical solution of the equations (6.9) and (6.10), we apply the following 

power series in a small magnetic parameter 2Rem
  as- 
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( ) ( ) ( )2

0

Re
i

m i

i

f fη η
∞

=

=∑
  

     (6.12) 

( ) ( ) ( )2

0

Re
j

m j

j

θ η θ η
∞

=

=∑        (6.13) 

Substituting equations (6.12) and (6.13) and its derivatives in equations (6.9) and 

(6.10) and then equating the coefficients of like powers of 2Rem
, we get the following 

set of equations- 

2

0 0 0 0 1 0f f f f′′′ ′′ ′+ − + =         (6.14) 

2

0 0 0 0Pr Prf Ec fθ θ′′ ′ ′′+ = −                    (6.15) 

  1 0 1 0 1 0 1 02f f f f f f f f′′′ ′′ ′ ′ ′′ ′+ − + =                                (6.16) 

( )21 0 1 1 0 0 1 0
Pr Pr Pr 2f f Ec f f fθ θ θ′′ ′ ′ ′′ ′′ ′+ = − − +                            (6.17) 

( )2 0 2 0 2 0 2 1 1 1 12 1f f f f f f f f f f f′′′ ′′ ′ ′ ′′ ′′ ′ ′+ − + = − + +                (6.18) 

( ) ( )2

2 0 2 1 1 2 0 0 2 1 0 1
Pr Pr Pr 2 2f f f Ec f f f f fθ θ θ θ′′ ′ ′ ′ ′′ ′′ ′′ ′ ′+ = − + − + +

          
(6.19) 

with the boundary conditions- 

0 0 0

0

0 : 0, , ; 1, 0

: 1, 0; 0 0, 0

i j j j

j i

c
f f f f f

a

f f i j

η δ δ θ θ

η θ

′ ′′ ′ ′′= = = + = = =

′ ′= ∞ = = = ≥ >

   (6.20) 

The equation (6.14) was also obtained by Bhattacharyya et al. (2011) for the non-

magnetic case and the remaining equations are linear ordinary differential equations 
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and have been solved numerically by Newton’s shooting method with fourth-order 

Runge-Kutta integration scheme for various values of the parameters.  

The velocity and temperature distributions for various values of the parameters are 

shown in Fig. 6.2 to 6.4 and Fig. 6.5 to 6.6 respectively. 

 

6.4  Local Skin Friction and Local Nusselt Number 

The physical quantities of interest the local skin friction coefficient f
C  and the local 

Nusselt number Nu  i.e. surface heat transfer are given by- 

0

2 2/ 2 / 2

yw
f

e e

u

y
C

u u

µ
τ

ρ ρ
=

 ∂
 ∂ 

= =         (6.21) 

and 

( )
0y

w

T
x

y
Nu

T T

=

∞

 ∂
 ∂ 

= −
−

         (6.22) 

which, in the present case, can be expressed in the following forms 

  

2
(0)

Re
f

C f ′′=           

      
( )2

0

2
Re (0)

Re

i

m i

i

f
∞

=

′′= ∑         (6.23) 

and 
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        Re (0)Nu θ ′= −           

     
( )2

0

Re Re (0)
j

m j

j

θ
∞

=

′= − ∑             (6.24) 

where Re eu x

υ
=  is the local Reynolds number.  

Numerical values of the functions ( )0f ′′
 
and ( )0θ ′ , which are proportional to local 

skin friction and local heat transfer rate at the surface respectively for various values 

of the parameters are presented in Table 6.1 and 6.2.  

 

6.5  Numerical Results and Discussion 

The velocity profiles ( )f η′  for various values of the velocity ratio parameter 
c

a
, the 

slip parameter δ  and the magnetic parameter Re
m
 are shown in Fig. 6.2 to 6.4. It is 

observed that the velocity boundary layer thickness increases with the increasing 

values of the velocity ratio parameter 
c

a
 and the slip parameter δ , whereas it 

decreases as the magnetic parameter Rem  increases for a fixed η . 

The temperature profiles ( )θ η  for various values of the velocity ratio parameter 
c

a
, 

the slip parameter δ , the magnetic parameter Rem , the Prandtl number Pr  and the 

Eckert number Ec  are plotted in Fig. 6.5 to 6.6. It is observed that for the slip 

parameter 0.5δ =  the thermal boundary layer thickness decreases with the increasing 
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values of the velocity ratio parameter 
c

a
, the Prandtl number Pr  and the Eckert 

number Ec  and the reverse phenomenon is observed for the magnetic parameter 

Re .
m
 

The numerical values of the function ( )0f ′′  for various values of the velocity ratio 

parameter 
c

a
, the slip parameter δ  and the magnetic parameter Re

m
 are presented in 

Table 6.1. It is observed from the table that the boundary values ( )0f ′′  for the non-

magnetic flow are the same as those obtained by Bhattacharyya et al. (2011). Further 

it may be observed from the table that the function ( )0f ′′  decreases with the 

increasing value of the magnetic parameter Re
m
 when 0.9

c

a
> −  and opposite 

phenomenon occurs when 0.9
c

a
< −  and same phenomenon occurs for the velocity 

ratio parameter 
c

a
 at fixed slip parameter δ . Again ( )0f ′′  decreases with increasing 

value of the slip parameter δ  when the velocity ratio parameter 
c

a
 is fixed.  

The numerical values of the function ( )0θ ′−  for various values of the velocity ratio 

parameter 
c

a
, the magnetic parameter Re

m
, the Prandtl number Pr  and the Eckert 

number Ec  with the slip parameter 0.5δ =  are presented in Table 6.2 It may be 

observed from the table that the function ( )0θ ′−  increases with the increasing value 
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of the velocity ratio parameter 
c

a
, and the Prandtl number Pr  but opposite 

phenomenon occurs for the magnetic parameter Re
m  
and the Eckert number Ec .  

 

6.6  Conclusions  

In this chapter, the stagnation flow for two-dimensional of electrically conducting 

fluid past a shrinking sheet with slip boundaries in the presence of a magnetic field is 

studied. The similarity equations are derived and solved numerically. It is found that 

the velocity boundary layer thickness increases with the increasing values of the 

velocity ratio parameter, the slip parameter. Further we observed that the magnetic 

parameter decreases with the increasing value of the velocity boundary layer 

thickness but the reverse phenomenon occurs for thermal boundary layer thickness. 

Also it observed that the thermal boundary layer thickness decreases with increasing 

values of the velocity ratio parameter, the Prandtl number and the Eckert number. On 

other hand from the results it can be concluded that skin friction and Nusselt number 

varies similarly as velocity boundary layer thickness and thermal boundary layer 

thickness respectively with different parameters. 
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Fig. 6.1 Physical model of two-dimensional stagnation point flow past a shrinking 

   sheet. 
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Fig. 6.2 Influence of 
c

a
 and Rem  on velocity against η  when 0.5.δ =  
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Fig. 6.3 Influence of 
c

a
 and Re

m
on velocity against η  when 0.5.δ =  
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Fig. 6.4 Influence of δ  and Re
m  
on velocity against η  when 0.7

c

a
= − . 
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Fig. 6.5 Influence of Rem
, Pr  and Ec  on temperature against η   when 1.4

c

a
= −

 
and 

0.5δ = . 
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Fig. 6.6 Influence of 
c

a  
and Re

m  
on temperature against η  when 0.5δ = , Pr 1.0=  

and 0.00Ec = . 
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Table 6.1 Numerical values of ( )0f ′′  for several values of 
c

a
, δ  and Re

m
. 

 

 

 

 

 

 

  

 

 

 

 

 

 

δ  
c

a
 

( )0f ′′  

Re 0.0m =  Re 0.2m =  Re 0.5m =  

0.5 

-0.3 1.0340 0.9986 0.9658 

-0.5 1.1631 1.1304 1.1002 

0.0 -0.7 1.5004 1.4895 1.4804 

0.2 -0.7 1.4706 1.4496 1.4306 

0.5 -0.7 1.2796 1.2499 1.2225 

0.9 -0.7 1.0268 0.9913 0.9583 

0.5 

-0.9 1.3798 1.3536 1.3296 

-1.4 -0.2202 -0.2086 -0.1976 

-1.5 -0.1465 -0.1347 -0.1233 

-1.6 -0.0351 -0.0231 -0.011 
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Chapter 7 

Unsteady Magnetohydrodynamic Boundary Layer Flow 

near the Stagnation Point towards a Shrinking Surface 

 

7.1  Introduction  

Stagnation flow of an incompressible viscous fluid over a shrinking sheet has many 

important practical applications in engineering and industrial processes, such as the 

extrusion of a polymer in a melt-spinning process, continuous casting of metals, the 

aerodynamic extrusion of plastic sheets, the cooling of metallic sheets or electronic 

chips and many others. In all these cases, a study of fluid flow and heat transfer has 

important significance because the quality of the final product depends on the rate of 

cooling and the process of stretching. 

In recent years, the boundary layer flow due to a shrinking sheet has attraction of 

many researchers because of its useful applications. A very interesting example in 

which the shrinking sheet situation occurs is of a rising shrinking balloon. Shrinking 

film is also a common application of shrinking sheet problems in engineering and 

industries. Shrinking film is very useful in packaging of bulk products because it can 

be unwrapped easily with adequate heat.  

From the stretching case, the flow of shrinking sheet is different and the fluid is 

attracted towards a slot. Physically, the generated velocity at shrinking sheet has an 
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unsteady flow due to the application of inadequate suction and is not confined within 

the boundary layer. 

In view of all these applications, Sakiadis (1961) initiated the study of boundary layer 

flow over a continuous solid surface moving with constant speed. Later Crane (1970) 

considered the problem of the flow over a linearly stretching sheet in an ambient fluid 

and gave a similarity solution in closed analytical form for the steady two-

dimensional problem. Gupta and Gupta (1977) and Vleggaar (1977) have investigated 

the solution of stretching flow problems at the constant surface temperature while 

Soundalgekar and Ramana Murty (1980) and Grubka and Bobba (1985) have 

analysed the solution of stretching flow problems with a variable surface temperature. 

Many researchers such as Magyari and Keller (1999), Elbashbeshy and Bazid (2003), 

Jat and Chaudhary (2008, 2009, 2010), Bachok et al. (2011) and Zheng et al. (2011) 

have analyzed the stretching sheet problems with different aspects of fluid, such as the 

heat transfer, the permeability of the surface and the unsteadiness flow. Mahapatra 

and Nandy (2011, 2013) studied the unsteady stagnation-point flow and heat transfer 

over an unsteady shrinking sheet. Recently Aly and Vajravelu (2014) and Chaudhary 

and Kumar (2014) discussed numerical solutions of boundary layer flow problems 

over different surfaces in a porous medium. More recently Nandy et al. (2014) and 

Rosca and Pop (2015) investigated the unsteady boundary layer flow over a 

permeable stretching or shrinking surface. 

Realizing the increasing technical applications of the magnetohydrodynamic effects, 

the aim of the present chapter is concerned with a steady, two-dimensional unsteady 
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stagnation flow of an electrically conducting fluid over a shrinking surface in the 

presence of a uniform transverse magnetic field.  

 

7.2  Flow Formulation 

Consider an unsteady two-dimensional steady flow ( ), ,0u v  of a viscous 

incompressible electrically conducting fluid near a stagnation point over a 

continuously shrinking surface placed in the plane 0y =  of a Cartesian coordinate 

system in the presence of time dependent free stream. The x− axis is taken along the 

shrinking surface in the direction of motion and y − axis is perpendicular to it. A 

uniform magnetic field of constant strength ( )00, ,0H  is assumed to be applied 

normal to the shrinking surface (Fig. 7.1). The surface is assumed to be highly elastic 

and is shrinking in the x− direction with a velocity is wu  and surface temperature 
w

T  

while the velocity of the flow, external to the boundary layer is 
eu  and temperature 

T∞ . Therefore, under the usual boundary layer and Boussinesq approximations, the 

systems of boundary layer equations are given by 

0
u v

x y

∂ ∂
+ =

∂ ∂
          (7.1) 

2 22

0

2

e e e e
e

u u H uu u u u
u v u

t x y t x y

σ µ
υ

ρ
∂ ∂∂ ∂ ∂ ∂

+ + = + + −
∂ ∂ ∂ ∂ ∂ ∂

    (7.2) 

22
2 2 2

02p e e

T T T T u
C u v H u

t x y y y
ρ κ µ σ µ

   ∂ ∂ ∂ ∂ ∂
+ + = + +   ∂ ∂ ∂ ∂ ∂   

    (7.3) 
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where υ  is the kinematic viscosity, eσ  the electrical conductivity, eµ  the magnetic 

permeability, ρ  the density, 
pC  the specific heat at constant pressure, κ  the thermal 

conductivity and µ  the coefficient of viscosity of the fluid under consideration. The 

other symbols have their usual meanings. 

The boundary conditions are- 

0 : , 0;
1

: ;
1

w w

e

cx
y u u v T T

t

ax
y u u T T

t

γ

γ ∞

= = = = =
+

= ∞ = = =
+

     (7.4) 

where c  is a constant, γ  is the shrinking rate and a  is the strength of the stagnation 

point flow.  

  
                 

 

7.3  Similarity Solution  

The continuity equation (7.1) is identically satisfied by stream function ( ), ,x y tψ , 

defined as 

,u v
y x

ψ ψ∂ ∂
= = −
∂ ∂

       (7.5) 

For the solution of the momentum and the energy equations (7.2) and (7.3), the 

following dimensionless variables are defined- 

( ) ( ), ,
1

a
x y t x f

t

υ
ψ η

γ
=

+
       (7.6) 
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( )1

a
y

t
η

υ γ
=

+
        (7.7) 

( )
w

T T

T T

∞

∞

−
=

−
θ η         (7.8) 

Equations (7.5) to (7.8), transform equations (7.2) and (7.3) into 

( )21
Re 1 0

2
mf f f f fηβ β α β ′′′ ′′ ′ ′+ + + − − + − = 

 
        (7.9) 

2 2 2

2

1 1 1
Pr Pr Pr Re 0

2
mf Ec f Ec fθ ηβ θ

α α
 ′′ ′ ′′ ′+ + + + = 
 

   (7.10) 

where the prime ( ' ) denotes differentiation with respect to η , 
a

γ
β =  is the 

unsteadiness parameter, 
c

a
α =  the velocity parameter, 0Re e

m e

w

x
H

u

σ
µ

ρ
=  the 

magnetic parameter, Pr
pCµ

κ
=  the Prandtl number and 

( )

2

w

p w

u
Ec

C T T∞
=

−
 the Eckert 

number.  

The corresponding boundary conditions are- 

0 : 0, ; 1

: 1; 0

f f

f

η α θ

η θ

′= = = =

′= ∞ = =

       (7.11) 

For numerical solution of the equations (7.9) and (7.10), through a perturbation 

technique, by assuming the following power series in a small magnetic parameter 

2Rem
  as- 
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( ) ( ) ( )2

0

Re
i

m i

i

f fη η
∞

=

=∑         (7.12) 

( ) ( ) ( )2

0

Re
j

m j

j

∞

=

=∑θ η θ η         (7.13) 

Substituting equations (7.12) and (7.13) and its derivatives in equations (7.9) and 

(7.10) and then equating the coefficients of like powers of 2Rem
, we get the following 

set of equations- 

( )0 0 0 0 0

1
1

2
f f f f fηβ β β  ′ ′′′′ ′′+ + + − = − 

 
      (7.14) 

2

0 0 0 02

1 1
Pr Pr

2
f Ec fθ ηβ θ

α
 ′′ ′ ′′+ + = − 
 

      (7.15) 

( )1 0 1 0 1 0 1 0

1
2

2
f f f f f f f fηβ β α  ′′′′ ′′ ′ ′′ ′+ + + − + = 

 
     (7.16) 

( )2

1 0 1 1 0 0 1 02

1 1
Pr Pr Pr 2

2
f f Ec f f fθ ηβ θ θ α

α
 ′′ ′ ′ ′′ ′′ ′+ + = − − + 
 

   (7.17) 

( ) ( )2 0 2 0 2 0 2 1 1 1 1

1
2

2
f f f f f f f f f f fηβ β α  ′ ′′′′′ ′′ ′ ′′ ′ ′+ + + − + = − + + 

 
   (7.18) 

( ) ( )2

2 0 2 1 1 2 0 0 2 1 0 12

1 1
Pr Pr Pr 2 2

2
f f f Ec f f f f fθ ηβ θ θ θ α

α
 ′′ ′ ′ ′ ′′ ′′ ′′ ′ ′+ + = − + − + + 
 

  (7.19) 

with the boundary conditions- 
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0 0

0

0 : 0, , 0; 1, 0

: 1, 0; 0 0, 0

i j j

j i

f f f

f f i j

η α θ θ

η θ

′ ′= = = = = =

′ ′= ∞ = = = ≥ >

   (7.20) 

The equation (7.14) was also obtained by Mahapatra and Nandy (2011) for the non-

magnetic case and the remaining equations are linear ordinary differential equations 

and have been solved numerically by Runge-Kutta method of fourth order. The 

velocity and temperature distributions for various values of the parameters are shown 

in Fig. 7.2 and Fig. 7.3 to 7.6 respectively.  

 

7.4  Skin Friction and Heat Transfer Rate 

The physical quantities of interest, the local skin friction coefficient f
C  and the local 

Nusselt number Nu  i.e. surface heat transfer are given by- 

0

2 2/ 2 / 2

yw
f

w w

u

y
C

u u

µ
τ

ρ ρ
=

 ∂
 ∂ 

= =         (7.21) 

and 

( )
0y

w

T
x

y
Nu

T T

=

∞

 ∂
 ∂ 

= −
−

         (7.22) 

which, in the present case, can be expressed in the following forms 

3
2

2
(0)

Re
fC f

α
′′=
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( )2

3
2 0

2
Re (0)

Re

i

m i

i

f
α

∞

=

′′= ∑                         (7.23) 

  

and 

 

Re
(0)Nu θ

α
′= −

 
        

     

( )2

0

Re
Re (0)

j

m j

j

θ
α

∞

=

′= − ∑                          (7.24) 

where Re wu x

υ
=  is the local Reynolds number. 

Numerical values of the functions ( )0f ′′
 
and ( )0θ ′ , which are proportional to local 

skin friction and local heat transfer rate at the surface respectively for various values 

of the parameters are presented in Table 7.1 and 7.2.  

 

7.5  Computational Results and Discussion 

The Figure 7.2 shows the variation of velocity distribution against η  for various 

values of the unsteadiness parameter β , the velocity parameter α
 
and the magnetic 

parameter Rem . It may be observed that, for the fixed value of the velocity parameter 

α , velocity distribution increases with the decreasing value of the unsteadiness 

parameter β , and opposite phenomenon occur for the magnetic parameter Rem .   
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The Figures 7.3 to 7.6 show the variation of temperature distribution against η  for the 

various values of the parameters such as the unsteadiness parameter β , the velocity 

parameter α , the magnetic parameter Rem , the Prandtl number Pr  and the Eckert 

number Ec . From these figures it may be observed that the temperature distribution 

decreases with increasing values of the unsteadiness parameter β , the velocity 

parameter α , the magnetic parameter Rem , the Prandtl number Pr  and the Eckert 

number Ec . 

In Table 7.1 the numerical values of the function ( )0f ′′  for various values of the 

unsteadiness parameter β , the velocity parameter α  and the magnetic parameter 

Rem  are given. It may be observed from the table that the boundary values  ( )0f ′′  for 

the non-magnetic flow are the same as those obtained by Mahapatra and Nandy 

(2011). The value of the function ( )0f ′′  decreases with the increasing values of the 

unsteadiness parameter β  and the magnetic parameter Rem  respectively taking other 

parameters constant and reverse phenomenon occurs for the velocity parameter α . 

Table 7.2 gives the numerical values of the function ( )0θ ′−  for the various values of 

the unsteadiness parameter β , the velocity parameter α , the magnetic parameter 

Rem , the Prandtl number Pr  and the Eckert number Ec . It may be observed from the 

table that the boundary values ( )0θ ′−  for the non-magnetic flow are same as those 

obtained by Mahapatra and Nandy (2011). The value of the function ( )0θ ′−  increases 

with the increasing value of the unsteadiness parameter β , considering other 
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parameters constant and same phenomenon occurs for the velocity parameter α , the 

magnetic parameter Rem , the Prandtl number Pr 0.5<  and the Eckert number Ec . It 

is further observed that the function ( )0θ ′−  decreases with an increasing value of the 

Prandtl number Pr 0.5>  for fixed other parameters.  

 

7.6  Conclusions  

The present work extends the two-dimensional unsteady stagnation flow of an 

electrically conducting fluid, over shrinking surface in the presence of magnetic field. 

Under some special conditions, the problem will reduce the results obtained by 

previous researchers. The effects of different parameters such as the unsteadiness 

parameter, the velocity parameter, the magnetic parameter, the Prandtl number and 

the Eckert number are studied in detail. The velocity as well as thermal boundary 

layer thickness decreases with the increasing values of the unsteadiness parameter, the 

velocity parameter, the magnetic parameter, the Prandtl number and the Eckert 

number whereas in the velocity reverse phenomenon occurs for the magnetic 

parameter. From the results it can be concluded that skin friction and Nusselt number 

varies according to the velocity and thermal boundary layers thickness respectively 

with different parameters. 
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Fig. 7.1 Coordinate system for the shrinking surface. 
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Fig. 7.2 Behavior of velocity distribution against η  for various values of β  and Rem  

with 0.1α = − . 
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Fig. 7.3 Behavior of temperature distribution against η  for various values of Rem  and 

Pr  with 0.1β = , 1.0α = −  and 0.000Ec = . 
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Fig. 7.4 Behavior of temperature distribution against η  for various values of β  and 

Rem  with 1.0α = − , Pr 1.0=  and 0.000Ec = . 
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Fig. 7.5 Behavior of temperature distribution against η  for various values of α  and 

Rem  with 0.1β = , Pr 0.5=  and 0.000Ec = . 
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Fig. 7.6 Behavior of temperature distribution against η  for various values of Rem  and 

Ec  with 0.1β = , 1.0α = −  and Pr 1.0= . 
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