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Abstract 

 

A cross-field effect of magnetic forces in the electrically conducting viscous 

incompressible laminar fluids has been the subject of investigation in recent years but 

very few works are available in which viscous dissipation and Joule heating effects 

are considered. This thesis is presented to explore these effects in flow and heat 

transfer problems over the variety of geometrical environments like flow over linear 

or nonlinear, stretching or shrinking surfaces; over a flat plate and porous medium; 

over a permeable surface; flow near stagnation point; with suction or injection effects; 

with heat source or sink effects; with radiation and Newtonian heating effects; etc. 

Magnetic Reynolds number is considered very small so that the induced magnetic 

field may be neglected. In all the considered cases Ohm’s law is assumed to hold and 

the electrical conductivity is also taken as constant. Investigation is also a 

combination of both steady and unsteady flow problems. Almost in all the chapters, 

governing boundary layer partial differential equations have converted into a set of 

nonlinear ordinary differential equations by using suitable similarity variables and 

then solved by various numerical methods such as Perturbation technique, Finite 

element method, and Runge-Kutta method with shooting technique, with the help of 

MATLAB programming. Effects of patience parameters on velocity and temperature 

profiles are analyzed, discussed and demonstrated graphically while shear stress and 

heat transfer rate are presented numerically in tabular form, discussed in detail and 

compared with previously published works for non-magnetic case in every part of the 

research. 
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1 

Basic Concepts and Technologies 

 

Advancement of fluid dynamics was initiated in 1755 when Euler presented the 

equations of fluid flow for ideal fluids entitled ‘General principles of the motion of 

fluids’. Fluid mechanics is divided into two subcategories i.e. fluid statics and fluid 

dynamics. Fluid statics refers to the fluids that are at rest while fluid dynamics is 

concerned with fluids that are in motion. Any material in the state of gas or liquid can 

be considered as a fluid which has no definite shape. If the deformation in the material 

continues without limit under the action of shear stress, however small in magnitude, 

the material is called a fluid. Another governing property of fluid dynamics is the 

continuum assumption, also known as the continuum hypothesis. Fluids are known to 

be composed of microscopic, discrete particles, thus this hypothesis states that they 

are continuous and that their properties vary evenly throughout. Further, one of the 

characteristics of fluid is viscosity or internal friction which exhibits a certain 

resistance to alterations of form. The coefficient of viscosity 
 
of a fluid is defined as 

the required tangential force per unit surface area to maintain a unit velocity gradient 

or unit relative velocity between two layers unit distance apart. Newton’s law of 

viscosity states that the shear stress 
 
is proportional to the shear rate or velocity 

gradient  
du

dy  

 i.e. 



2          Chapter 1  

U du

d dy
             (1.1) 

where U  is the velocity of the plate , d  is the distance between two parallel plates 

and u  is the velocity of a layer of the fluid at a distance y from the lower plate. 

1.1 Fluid Flow 

Movement of fluid particles from one place to another place is known as flow of the 

fluids. The motion of a fluid is subjected to external forces and continues as long as 

external forces are applied. Types of fluid flow are as follows 

(i) Steady and Unsteady Flows 

If the flow properties of the fluid at every point do not depend upon time then it is 

considered as a steady flow. Mathematically, 0
P

t





 for steady flows, where P  is 

any fluid property like density, pressure or velocity, and t  is the time. In unsteady 

flow, time is one of the independent variable which affects every fluid property. One 

or more of the following considerations may dominate in the making of unsteady 

flow- either the time which has elapsed following the initiation of motion is not large, 

or the main stream velocity fluctuates, or the boundary layer is unstable. The most 

common occurrence of unsteady flow is when the motion is periodic or it starts from 

the rest. 

(ii) Compressible and Incompressible Flows 

Compressibility of the fluid is a measure of the relative change in density due to high 

pressure gradient. It is a thermo dynamical characteristic of that fluid. An 

incompressible fluid is one in which the fluid density does not change with pressure. 
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Incompressibility is the material property of the fluid and material derivatives of the 

density must be vanished in this case. In a compressible fluid, the applied force at one 

end of a system does not result in an immediate flow throughout the system. Instead, 

the fluid compresses near where the force was applied, i.e., its density increases 

locally in response to the force. Liquid and gas may be modeled as incompressible 

fluids in both microscopic and macroscopic calculations. 

1.2 Boundary Layer Flow 

In 1904, Prandtl has given a new dimension to fluid dynamics by introducing the 

viscosity of the fluid. Before this the effects of viscosity were completely neglected in 

ideal flow solutions. Boundary layer phenomenon may take place when the influence 

of a physical quantity is restricted to small regions near the boundary surface. Prandtl 

made a hypothesis that for fluids with small kinematic viscosity (small momentum 

diffusivity 





 , where   is the density of the fluid), the flow past a solid body can 

be divided into a thin region near the boundary surface, known as the velocity 

boundary layer or viscous boundary layer, and remaining region where the viscosity 

is insignificant and the fluid is regarded as inviscid. After this hypothesis, the Navier-

Stokes equations were reduced to an amenable form, which are called the boundary 

layer equations.  

Similarly, in the heat transfer problems the transmission of heat takes place by 

conduction and convection at relatively low temperature. When the thermal 

conductivity is small (small thermal diffusivity 
pC





 , where   is the thermal 



4          Chapter 1  

conductivity and  
pC   is the specific heat at constant pressure), the conduction heat 

transfer is comparable to the heat transfer due to convection only across a thin layer in 

the neighboring of the surface of the body. It implies that temperature field which 

spreads from body extends, essentially, over a narrow zone in the immediate vicinity 

of its boundary surface, called the thermal boundary layer, whereas the fluid at a 

large distance from the surface is not materially affected by the heated body. This 

concept is very helpful to refine the energy equation. In the books by Pai (1956), 

Bansal (2004) and White (2006), the details have been described. 

1.3 Magnetohydrodynamics 

The term Magnetohydrodynamics (MHD) is derived from magneto (magnetic field), 

hydro (liquid) and dynamics (movement). It is related to the study of the motion of 

electrically conducting fluids and their interactions with magnetic fields. In the study 

of MHD flows, the incompressible fluids are considered and its other properties such 

as viscosity, thermal conductivity and electrical conductivity are regarded as 

constants. Faraday (1832) presented the Magnetic Induction law, which states that 

when a conductor carrying electric current moves through a magnetic field, it 

experiences a force at the right angle to the motion of the particles and the plane of 

the magnetic field. Hence the motion of the conducting fluid in the presence of 

magnetic field generates electric currents, which influences the magnetic field and 

also the motion of the fluid. The interaction of magnetic field with electric field 

creates a mechanical force which resists the fluid motion. This force is known as 

Lorentz’s force F


 which is a body force acting on the negative direction of the fluid 
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and is written as F J B
  

  , where J


 is the current density vector and B


 is the 

magnetic induction vector.  

1.4 Fluid Dynamic Field Equations 

Mathematical expressions of basic physical concepts of fluid flow are given by set of 

equations. From these equations, pressure, velocity components and temperature of 

the flowing fluid can be determined. These basic equations are 

(i) Equation of State  

A relation between the variables that depend on state of the system is known as the 

equation of State. Variables that depend only upon the thermodynamic system are 

called variables of state and these are the pressure p , the density  , and the 

temperature T . The equation of state of a perfect gas is  

p RT             (1.2) 

where R  is the gas constant. 

When the fluid is incompressible the equation of state is simply 

constant 
              (1.3) 

(ii) Equation of Continuity 

Continuity equation is governed by the law of conservation of mass. It states that 

matter is conserved i.e. it is neither being created nor destroyed. Thus the rate of 

increase of the mass in the closed volume is equal to the mass of the fluid entering per 

unit time through the surface enclosing the volume. Therefore the equation of 

continuity in vector notation is given by 
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0
D

divv
Dt


 


            (1.4) 

where  .
D

v
Dt t


  



 is the material derivative, v


 is the velocity vector and 

ˆˆ ˆi j k
x y z

  
   

  
 is the vector operator. 

In the case of steady compressible flow the equation of continuity converted to  

  0div v 


 `                (1.5) 

and for incompressible flow it becomes 

0divv 


              (1.6) 

(iii) Equations of Motion 

Newton’s second law of motion states that the rate of change of linear momentum is 

equal to the total force acting on the flowing fluid in the arbitrary volume. Equations 

of motion are based on conservation of momentum, and derived by the Newton’s 

second law of motion. The equations of motion are 

( )ex

e

D v
F E J B grad p div

Dt
   


     

      
 

     (1.7) 

where 
( )exF


 is the external force, e  is the electrical density, E


 is the electrical field 

vector and 


 is the tangential stress, given by 

2
2

3
ij ij kk ije e    



           (1.8) 

where 
1

2

ji
ij

j i

vv
e

x x

 
     

 is the rate of strain tensor and 
1

0
ij

if i j

if i j



 


 is the 

Kronecker delta. 
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(iv) Equation of Energy 

To obtain the energy equation, the law of conservation of energy is applied which 

requires that the rate of increase of energy of the fluid in a closed volume is equal to 

the difference in the rate of supply of energy and the rate at which the energy goes out 

through the controlled surface enclosing the volume. Thus the general equation of 

energy is 

 
 

2

1p c

e

D C T JQDp
div grad T

Dt Dt t
  




    


         (1.9) 

where 
1Q  is the quantity of heat added per unit mass of the fluid, cJ  is the conduction 

current, e  is the electrical conductivity, and . .div v v div  
    

  
 

 is the heat 

generated due to frictional forces and is known as ‘dissipation function’. 

1.5 Electromagnetic Field Equations  

In the study of electromagnetic fluid flow, it will be compulsory to determine the 

electromagnetic field variables as well as state variables and velocity components. 

Therefore, there are twenty two unknowns in which six are determined by fluid 

dynamic field equations. Remaining sixteen electromagnetic field variables, the 

current density vector J


, the charge density e , the electrical field vector E


, the 

magnetic field vector B


, the magnetic intensity vector H


 and the displacement 

vector D


 in an isotropic medium can be obtained from the following mathematical 

expressions of basic physical concepts [Bansal (1994)] 
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(i) Charge Conservation Equation  

ediv J
t

 
 

      
(Current continuity equation)  (1.10) 

(ii) Maxwell’s Equations  

B
Curl E

t


 
 

     
(Faraday’s law)   (1.11) 

D
Curl H J

t


  
 


    (Ampere’s law)   (1.12) 

ediv D 



    

(Gauss’ law)    (1.13) 

0div B


     (Magnetic field continuity equation) (1.14) 

It may be noted that the divergence Eqs. (1.13) and (1.14) follow from the curl Eqs. 

(1.11) and (1.12), and therefore act as constraints or as initial conditions on the 

electromagnetic field and cannot be regarded as independent equations. 

(iii) Constitutive Equations 

D E
 

                  (1.15) 

 eB H
 


                  (1.16) 

where   is the electrical permittivity or dielectric constant of the medium and e  is 

the magnetic permeability of the medium, which in the present case is an electrically 

conducting fluid. In the study of Magnetofluiddynamics, the values of both   and e  

are assumed as constants and it is sufficient to take their values in vacuum (free 

space) as a first approximation. 
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(iv) Generalized Ohm’s Law 

e eJ E v B v 
     
    

 
              (1.17) 

1.6 Heat Transfer 

The subject of heat transfer deals with the analysis of the heat transfer rate taking 

place in the system. According to the second law of thermodynamics, migration of 

heat energy is always in the direction from a body at higher temperature to a body at 

the lower temperature. The amount of heat transfer per unit area per unit time is 

known as heat flux which can be determined from the law relating the heat flux to the 

temperature gradient.  

Heat flow and temperature distribution problems have attracted a lot of attention of 

researchers due to its vast applications in many branches of science and engineering 

such as in the design of nuclear reactor cores, heat exchanger like boilers, radiators 

and condensers, in aerospace technology, and in heating and air conditioning 

applications. There are three distinct mode of heat transfer e.g. conduction, 

convection and radiation. Physically, temperature distribution in a medium is 

controlled by the combination of all these modes and it is impossible to isolate one 

mode from the other modes. However for the simplicity in the analysis, one mode is 

considered in any one problem and other two modes are considered negligible. 

(i) Conduction 

Heat Conduction is exchange of heat between contiguous bodies or parts of a body 

which are at different temperatures. This exchange is considered as a transfer of 

kinetic energy of the molecules of the warmer body to those of the colder body. When 
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a solid is heated, atoms and molecules of the solid get energy and they oscillate, 

collide, rotate and the kinetic energy is transmitted to the neighbouring atoms. The 

basic law of heat conduction is 

2Q T
l

A
            (1.18) 

where 
2Q  is the rate of heat flow through a constant area A , l  is the thickness of the 

plane plate and T  is the temperature difference. 

Initially, Biot (1804, 1816) originated this law and later on it was presented by Fourier 

(1822) as given below 

0y

T
q

y




 
   

 
         (1.19) 

where q  is the heat flux and 
0y

T

y


 
 
 

is the rate of heat transfer at the surface. 

(ii) Convection 

When the fluid moves on a solid surface or inside of channel with the different 

temperature of the fluid and solid body, heat transfer takes place as a consequence of 

the motion of the fluid and called convection. The heat convection is the 

transportation of heat due to the mixing motion of different parts of a fluid. It is 

governed by the laws of fluid dynamics in combination with the law of heat 

conduction. The mathematical expression for heat convection is given by 

2
s

Q
q h T

A
            (1.20) 

where sh  is the coefficient of heat transfer.  

It is often called Newton’s cooling law [Grigull (1984)]. There are two types of heat 

convection i.e. free convection and forced convection.  



Basic Concepts and Technologies            11 

 
 

(iii) Radiation 

All bodies emit energy continuously due to their temperature, and thus emitted energy 

is called thermal radiation. The radiation energy emitted by a body is transmitted in 

the space in the form of electromagnetic waves according to Maxwell’s classic 

electromagnetic wave theory or in the form of discrete photons according to the 

Planck’s hypothesis. Both concepts are utilized in the study of radiative heat transfer. 

Thus it is evident that the thermal radiation becomes important at high absolute 

temperature levels only. For the total radiation, Stefan (1879) found an equation 

which was proved theoretically by Boltzmann (1884) for a perfectly black surface 

   
* 4q T          (1.21) 

where is  the emissivity which lies between zero and unity while 
*  is the Stefan-

Boltzmann’s constant.  

Moreover, thermal radiation is of great importance in space applications and is 

commonly known to be very useful in engine cooling, furnaces, integrated circuit 

engines, leakage of heat by the evacuated walls of a thermos flask, in nuclear 

reactions such as in the sun, boilers, solar radiation fire, the heat dissipations from the 

filament of a vacuum tube, furnaces, and in nuclear explosions.  Details about thermal 

radiation can be found in the book by Brewster (1992). 

1.7 Physical Importance of Non-dimensional Parameters 

In this section, some of the basic non dimensional parameters have been discussed 

which are utilized in this study. These parameters give an idea about the terms which 

are dominant in the basic flow equations. Realizing that the governing equations are 
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much difficult to solve, one must concentrate on casting them in the most efficient 

possible form by using dimensionless parameters, thereby increasing the usefulness of 

whatever solutions one can find. They are also very important in the analysis of 

experimental results and are determined either by inspection analysis or by 

dimensional analysis. In the inspection analysis, fundamental equations are used to 

reduce into a non-dimensional form and some non-dimensional parameters from the 

resulting equations are obtained. In dimensional analysis, some non-dimensional 

parameters are formed by the physical quantities occurring in the problem without 

considering the governing equations. Similar results can be found by both of the 

analyses. Some non dimensional parameters are as follows 

(i) Reynolds Number 

The Reynolds number Re  measures the extent to which a convective process prevails 

over a diffusive one, and represented as the ratio of inertial forces 
2U

L


 to viscous 

forces 
2

U

L


, i.e. 

2

2
Re

U L UL

U L



 
 

 

where L  is the characteristic length. For small values of Re , viscous forces will be 

prevalent and the effect of viscosity will be felt in the entire flow domain. Besides 

this, the inertial forces will be prevalent if Re  is large and in this case the effect of the 

viscosity can be assumed to be restrained in a thin layer which is known as velocity 

boundary layer. However, the laminar flow becomes the turbulent if the values of Re  

is very large. 
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(ii) Magnetic Parameter 

In the momentum equation, the ratio of magnetic force 
2 2

e eUH   to inertial force 

2U

L


 is called the magnetic parameter M

 
and is defined as 

2 2

2
Re Re

e e

H

UH
M

U L


 


   

where H  is the magnetic intensity, and ReH  and Re are some characteristic values 

of magnetic pressure number and magnetic Reynolds number of the fluid respectively. 

It can be seen that the magnetic parameter is also represented as the product of the 

magnetic pressure number and the magnetic Reynolds number. Here, the magnetic 

pressure number ReH  is the ratio of the magnetic pressure 
2

2

eH
 over the dynamic 

pressure 
2

2

U
 while the ratio of fluid flux UL  to magnetic diffusivity 

1
H

e e


 

  is 

known as the magnetic Reynolds number Re . 

(iii) Suction or Injection Parameter 

The suction or injection parameter S  is defined as the ratio of the suction or injection 

velocity 0V  ( 0 0V   for suction and 0 0V   for injection) to the characteristic velocity

L


 , i.e. 

0 0

/

V V L
S

L 
   

Generally, this parameter is used to control the boundary layer. By injecting the fluid, 

the kinetic energy of the fluid increases which allows the flow to proceed further 
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against an adverse pressure gradient and delay the separation. When the retarded fluid 

particles in the boundary layer are sucked, it gives a chance to cause separation.  

(iv) Prandtl Number 

For the study of temperature distribution, the Prandtl number Pr is an important 

physical non-dimensional parameter and is a measure of the ratio of the kinematic 

viscosity 





  to the thermal diffusivity 
pC





  of the fluid, expressed as 

Pr
p

p

C

C

  

   
  

 

The Prandtl number is a material property like the viscosity and thermal conductivity, 

and it varies from fluid to fluid. If the value of Pr  is small, it means thermal 

diffusivity dominates the kinematic viscosity and the thickness of thermal boundary 

layer is much bigger than the velocity boundary layer. In this case, conduction is more 

effective than convection to transfer the heat. On the other hand, if Pr is large, then 

the velocity boundary layer dominates the thermal boundary layer thickness.  

Table 1.1 Values of Pr  for some well known fluids 

Fluid Mercury Air Water (at 60
0
F) Glycerine 

Pr  0.044 0.7 (Approx) 7.0 (Approx) 7250 

 

(v) Eckert Number 

Another important physical parameter appearing in the thermal problem is the Eckert 

number Ec  which is defined as the ratio of the kinetic energy 
2U  to the thermal 

energy pC T , i.e. 
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2 2

p p

U U
Ec

C T C T




 

 

Due to adiabatic compression, the fluid temperature increases relatively by the Eckert 

number in compressible fluids. The similar behavior continues for incompressible 

flow if the frictional heat is also considered into the account, but the interpretation 

with reference to adiabatic compression will no longer be true. 

(vi) Local Skin Friction Coefficient 

Skin friction arises due to friction of the fluid against the surface of the object that is 

moving through it. It is directly related to the area of the surface of the solid body that 

is in contact with the fluid. The local skin-friction coefficient 
fC  is defined as 

0

2 22 2

yw
f

u

y
C

U U




 



 
 
 

 

 

where 
0

w

y

u

y
 



 
  

 
is the local shearing stress on the surface of the body. 

(vii) Nusselt Number - Dimensionless Coefficient of Heat Transfer 

In the heat transfer problems, the Nusselt number plays very important role because it 

is the ratio of the strength of convective to conductive heat transfer. The conductive 

component is measured under the same conditions as the stagnated flow convection or 

conduction and convection are of similar magnitude the Nusselt number is close to 

one and the flow is characteristic of laminar flow. A large Nusselt number shows that 

the convection is more active than conduction. The Nusselt number Nu  is defined as 



16          Chapter 1  

the ratio of temperature gradient at the surface 
0y

T
L

y


 
 
 

 to the temperature 

difference between the temperature of the wall and that of the fluid wT T , i.e.   

 
0y

w

T
L

y
Nu

T T





 
 
 

 


 

1.8 Flows in Various Geometric Configurations 

In the present investigations, various geometric structures are considered to describe 

the physical problems of MHD flow. Some particular geometrics are as follows 

(i) Flow over a Stretching or Shrinking Surface 

The flow driven by a stretching of a flat surface which moves continuously along its 

axis with constant or variable velocity because of the application of stress is known as 

stretching flow. Flow over stretching surface arises number of industrial 

manufacturing applications in the production of sheeting material including both 

metal and polymer sheets. A tangential velocity is applied to the surface which 

induces motion in the neighboring layer of the fluid and alters the convection also. 

Moreover, in the manufacturing of plastic and rubber sheets where it is necessary to 

blow a gaseous medium and where the stretching force depends on time, the similar 

concept is used. It can be assumed that the surface can affect the fluid due to a large 

viscosity near the surface. Further, on the shrinking surface the generated vorticity is 

not confined within a boundary layer and a steady flow is not possible unless adequate 

suction is applied at the surface. The applications of shrinking surface include 

packaging of bulk products, a rising shrinking balloon and shrinking film. Several 
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researchers like Gupta and Gupta (1977), Ali (1995), Elbashbeshy and Bazid (2004), 

Ishak et al. (2008b), Fang and Zhang (2010), and Chaudhary and Kumar (2013a) 

presented the problem of a stretching or shrinking surface in different ways.  

(ii) Fluid Flow through a Porous Medium 

Porous media or porous material is a solid (often called frame or matrix) permeated 

by an interconnected network of pores (voids) filled with a fluid (liquid or gas). 

Usually both the solid matrix and the pore network (also known as pore space) are 

assumed to be continuous, so as to form to interpenetrating continua such as in 

sponge. Many natural substances namely rocks, soils, biological tissues (e.g. bones) 

and manmade materials for example cement, foams and ceramics can be considered 

as porous media. Fluid flow through porous medium is a subject to most common 

interest and has emerged a separate field of study. The study of more general 

behaviour of porous media involving deformation of solid frames is called 

poromechanics. The porosity of a medium is defined as the ratio of the pore volume to 

the total volume. In case of the flow through porous media, this definition describes 

the absolute or total porosity and the pores of the medium that is responsible for flow 

is termed as effective porosity. However, some frequent method used to measure the 

porosity are optical, density, gas expansion methods, etc. A detailed coverage of the 

porous medium has been given in the books by Bejan et al. (2004), and Nield and 

Bejan (2012). 

(iii) Permeability  

Permeability is the property of a porous material which characterizes the case when a 

fluid flows through the material by an applied pressure gradient. The permeability of a 
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porous material is very natural to express a relationship between permeability of the 

medium and effective porosity but for necessarily with absolute porosity. In the other 

words, it is a statistical average of the fluid percolation of all the flow channels in the 

medium. This permeability constant was demonstrated by Darcy (1856). His 

experiment on steady-state unidirectional flow in a uniform medium reveals that the 

flow rate is proportional to the applied pressure difference, i.e. 

K P
u

x


 


 

where 
P

x




 is the pressure gradient in the flow direction. The coefficient K  is known 

as specific or intrinsic permeability of the medium and in single phase flow problem it 

is abbreviate to permeability. The permeability is independent of the nature of the 

fluid but is dependent on the geometry of the medium.  

(iv) Stagnation Point Flows 

A point on the surface where the fluid velocity of the potential flow is zero is called 

stagnation point and the flow surrounding this point is known as stagnation point 

flow. The Bernoulli equation shows that the static pressure is highest when the 

velocity is zero and hence static pressure is at its maximum value at stagnation points, 

named as the stagnation pressure. Stagnation point actually appears in almost all flow 

fields of engineering. It is also evident that the solution of stagnation point flows is 

valid in a small region near the stagnation point of a two or three dimensional body 

but they represent a number of physical flows of technological significance. Heimenz 

(1911) introduces the stagnation point flow and Homann (1936) extended that 

problem for axisymmetric case. 

http://en.wikipedia.org/wiki/Velocity
http://en.wikipedia.org/wiki/Bernoulli%27s_principle
http://en.wikipedia.org/wiki/Static_pressure
http://en.wikipedia.org/wiki/Stagnation_pressure
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(v) Slip Flows 

It is the central tenet of the Navier–Stokes theory that a liquid adheres to a solid 

boundary which is known as no slip condition. However, there are numerous real 

situations where this condition is not appropriate. In such a flow, the fluid at the 

surface has a finite tangential velocity, which is known as Slip, along the surface. The 

applications of slip flow can be found in various technological processes such as 

polishing of artificial heart valves and inertial cavities. For such fluid, the motion of 

the fluid is still described by the Navier-Stokes equations, but slip condition use to 

take at the place of the usual no-slip condition. The slip flow model depicted the non-

equilibrium region near the flow-boundary interface more accurately. The flow with 

partial slip boundary condition has been presented by Wang (2003), Hron et al. (2008) 

and Das (2014) over different structures. 

 

(vi) Effect of Heat Source or Sink 

A heat sink is an environment or object that absorbs and dissipates heat from another 

object using thermal contact. A wide range of applications of heat sinks includes heat 

engines, refrigeration, lasers and cooling electronic devices where efficient heat 

dissipation is required. It is actually transferring thermal energy (heat) from an object 

at a high temperature to second object at relatively lower temperature with a much 

greater heat capacity. The transfer of thermal energy ends when the first object 

becomes in thermal equilibrium with the second, and it plays a major role in cooling 

devices. Heat sink performance is a function of material, geometry, and overall 

surface heat transfer coefficient. Generally, by increasing the thermal conductivity of 

the heat sink materials, the surface area or the overall heat transfer coefficient, forced 
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convection heat sink thermal performance can be improved. Further, in ceramic tiles 

production problem, heat source or sink effect is very useful. Cortell (2005), and 

Elbashbeshy and Emam (2011) investigated the flow and heat transfer behavior of a 

fluid with heat generation or absorption.  

1.9 Layout of the Investigation 

This thesis presents the mathematical modelling as well as the numerical solutions of 

some boundary layer MHD flow problems with various geometric environments. The 

governing equations obtained from modelling are solved using different efficient 

computational techniques. The content of the thesis is divided into seven chapters 

whose details are as follows 

Initially, the Chapter 1 is introductory in nature, and contains the basic concepts and 

historical background of the subject with recent investigations and applications. The 

description of the problems investigated in the present thesis is also given a proper 

space in this chapter. 

After this introductory chapter, Chapter 2 is devoted to analyze computational 

simulation to study the partial slip and thermal radiation effects on the flow of a 

viscous incompressible electrically conducting fluid through an exponentially 

stretching surface with suction or blowing in presence of magnetic field. Using 

suitable similarity variables, the nonlinear boundary layer partial differential 

equations are converted to ordinary differential equations and solved numerically by 

Runge-Kutta fourth order method in association with perturbation technique. Effects 

of suction or blowing parameter, velocity slip parameter, magnetic parameter, thermal 

slip parameter, thermal radiation parameter, Prandtl number and Eckert number are 
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demonstrated graphically on velocity and temperature profiles while skin friction 

coefficient and surface heat transfer rate are presented numerically. Moreover, 

comparison of numerical results for non-magnetic case is made with previously 

published work under limiting cases. 

In Chapter 3, an analysis is carried out to investigate two dimensional viscous 

incompressible magnetohydrodynamic boundary layer flow and heat transfer of an 

electrically conducting fluid over a continuous moving flat surface taking into account 

the viscous dissipation and Joule heating. Suitable similarity variables are introduced 

to reduce the governing nonlinear boundary layer partial differential equations to 

ordinary differential equations. A numerical solution of the resulting two-point 

boundary value problem is carried out by using the finite element method with the 

help of Newton-Raphson technique. A comparison of obtained results is made with 

the previous work under the limiting cases. Behavior of flow and thermal fields 

against various governing parameters like mass transfer parameter, moving flat 

surface parameter, magnetic parameter, Prandtl number and Eckert number are 

analyzed and demonstrated graphically. Moreover, shear stress and heat flux at the 

moving surface for various values of the physical parameters are presented 

numerically in tabular form and discussed in detail. 

A comprehensive numerical study of a steady two-dimensional stagnation point flow 

towards a heated linearly stretching or shrinking sheet in a porous medium immersed 

in viscous, incompressible and electrically conducting fluid in the presence of a 

uniform transverse magnetic field is presented in Chapter 4. Using similarity 

transformation, the governing boundary layer partial differential equations are 
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converted into non-linear ordinary differential equations and solved by Runge-Kutta 

fourth order method along with shooting technique. Some significant features of the 

flow and heat transfer in terms of velocity and temperature for various values of the 

governing parameters like, stretching or shrinking parameter, Prandtl number, 

permeability parameter, magnetic parameter and Eckert number are analyzed, 

discussed, and presented through graphs while skin-friction coefficient and Nusselt 

number are shown numerically. Results of shear stress and heat transfer rate are also 

compared with the results of previous researchers. 

Further, Chapter 5 deals with the steady two dimensional forced convection 

boundary layer flow of a viscous incompressible electrically conducting fluid at a 

forward stagnation point of an infinite solid surface with Newtonian heating, constant 

wall temperature and constant heat flux is investigated in the presence of magnetic 

field. Governing boundary layer equations for the problem are formulated and 

transformed to nonlinear ordinary differential equations by using suitable similarity 

variables. An efficient finite element method with Newton-Raphson technique is used 

to solve the resultant ordinary differential equations. Variation in velocity and 

temperature distributions against the pertinent parameters like magnetic parameter, 

Prandtl number and Eckert number displayed graphically while skin-friction 

coefficient and Nusselt number are discussed quantitatively. A comparison of the 

computational results is found in excellent agreement with open literature for limiting 

cases. 

Chapter 6 presents the effects of viscous dissipation and Joule heating on an 

unsteady laminar two-dimensional flow of a viscous incompressible electrically 
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conducting fluid over a stretching permeable surface in the presence of a uniform 

transverse magnetic field. Similarity solutions for the problem have been formulated, 

and reduced nonlinear ordinary differential equations have been solved numerically 

using fourth order Runge-Kutta method with shooting technique. Influences of 

various parameters, namely, mass transfer parameter, unsteadiness parameter, 

magnetic parameter, Prandtl number and Eckert number on velocity and temperature 

distributions have been plotted graphically while skin-friction coefficient and Nusselt 

number have been shown numerically. A comparison of the obtained numerical 

results has been made with previously published results for non-magnetic case. 

Finally, Chapter 7 is associated with a boundary layer analysis of the effects of 

thermal radiation on the flow of an incompressible viscous electrically conducting 

fluid over an unsteady stretching sheet embedded in a porous medium in the presence 

of heat source or sink. Governing boundary layer equations are transformed to 

ordinary differential equations by using suitable similarity transformation and solved 

numerically by Runge-Kutta fourth order method in association with quasilinear 

shooting technique. Effects of unsteadiness parameter, permeability parameter, 

magnetic parameter, thermal radiation parameter, Prandtl number, heat source or sink 

parameter and Eckert number are represented graphically on velocity and temperature 

profiles while local skin friction coefficient and local Nusselt number are represented 

numerically. Numerical results for the non-magnetic case are in good agreement with 

earlier published work. 
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2 

Partial Slip and Thermal Radiation Effects on 

Hydromagnetic Flow over an Exponentially Stretching 

Surface with Suction or Blowing 

 

2.1  Introduction 

The phenomenon of laminar flow and heat transfer of a viscous incompressible fluid 

driven by a linearly stretching surface has received great appreciation due to its 

applications in several technological processes. These applications involve paper 

production, hot rolling, annealing of copper wires and glass blowing. It is also 

important in geothermal areas because the shallow surface layers are being stretched 

with a small velocity. It is worth mentioning that the hydromagnetic flows over a 

moving surface have been extensively studied in the past few decades, because of its 

increasing applications in various manufacturing processes, such as the enhanced 

recovery of petroleum resources, spinning of metals and extrusion of plastic sheets. In 

all of the above engineering processes, to get the desired thickness the mixture issued 

from a slit is subsequently stretched. An analytical solution of the steady two-

dimensional flow was first studied by Crane (1970) over linearly stretching surface in 

a quiescent incompressible fluid. Later, many researchers such as Chakrabarti and 

Gupta (1979), Carragher and Crane (1982), Kumaran and Ramanaiah (1996), Ishak et 
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al. (2006) Liu and Andersson (2008), Jat and Chaudhary (2009b), Sahoo and Do 

(2010), Mahapatra et al. (2012) and Makinde et al. (2013) have presented various 

aspects of linear stretching surface problem for non-magnetic and magnetic cases. 

From practical point of view, a continuous surface stretched with a linear velocity is 

not appropriate for the problem of filaments from a die and continuous extrusion of 

polymer sheet. Therefore the stretching velocity is expected to be nonlinear. The 

boundary layer flow over exponential stretching surface under different situations 

were studied by Elbashbeshy (2001), Parhta et al. (2005), Sanjayanand and Khan 

(2006), Sajid and Hayat (2008), Bidin and Nazar (2009), Nadeem et al. (2011), 

Mukhopadhyay and Gorla (2012) and Raju et al. (2016).  

The central tenet of the boundary layer problems is no-slip boundary conditions. In 

this case the fluid velocity is zero at the surface. But in the existence of slip flow the 

fluid velocity is non-zero at the solid-fluid interface. In various technological 

processes, the assumption of no-slip is not applicable and must be substituted by 

partial slip boundary conditions. Such flow situations are encountered in a wide 

variety of industrial processes like foams and polymer solutions, polishing of artificial 

heart valves and internal cavities, and emulsion suspensions. Pursuing the pioneering 

studies of Hasimoto (1958), the flow with partial slip boundary condition has been 

investigated by Wang (2003), Ariel (2007), Hron et al. (2008) and Fang et al. (2010). 

Recently, Sajid et al. (2010) and Das (2014) studied about flow and heat transfer with 

different conditions and slip effects. 

Forecasting of heat transfer characteristics of viscous incompressible flow with 

suction or blowing is very important in engineering and physics namely thermal oil 
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recovery, design of radial diffusers and thrust bearings, prevent corrosion or scaling, 

reducing the drag and transition to turbulence. In chemical processes, suction can be 

used to remove reactants while to add reactants, blowing is used. The low energy fluid 

from the system is removed by suction, whereas blowing reduces the wall shear stress 

and hence the frictions drag. The boundary layer flow with suction or blowing was 

first presented by Gupta and Gupta (1977). Further, Chen and Char (1988), Ali 

(1995), Seddeek (2002), Pantokratoras (2002) and Cortell (2005) studied the various 

aspects of the flow problems with suction or blowing. 

Meanwhile, in most of the investigations, the thermal radiation effects on the flow and 

heat transfer have not been taken into the account. Boundary layer flow and heat 

transfer with radiation have a great importance in high temperature processes and 

space technology. It also plays an important role in many applications in engineering 

areas which occur at high temperature, like various propulsion devices or aircraft, 

design of reliable equipments, high temperature plasmas, liquid metal fluids, gas 

turbines, satellites, missiles and space vehicles. When the difference between the 

surface temperature and the ambient temperature is very large then thermal radiation 

effects become more important besides the convective heat transfer. The radiative 

heat flux is described by using the Rosseland approximations in the energy equations. 

The thermal radiation effects on the flow with and without a magnetic field with 

several cases were presented by Bestman and Adjepong (1988), Naroua et al. (1998), 

Ouaf (2005), Makinde and Ogulu (2008), Pal and Mondal (2009), Jat and Chaudhary 

(2010). Most recently, Elbashbeshy and Emam (2011), Khan et al. (2015), Chaudhary 

et al. (2015) and Sandeep et al. (2016) analyzed the radiation effects over viscous 

incompressible and MHD flow. 
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Keeping the above literature in view, and inspired by the research paper of 

Mukhopadhyay and Gorla (2012), the main motive of this article is to describe the 

partial slip effects as well as the effects of thermal radiation on hydromagnetic fluid 

over an exponentially stretching surface with suction or blowing. The present study of 

the boundary layer flow will be highly beneficial in various engineering and 

technological processes such as magnetohydrodynamic flight, foodstuff processing, 

MHD-power generators and in the field of planetary magnetosphere. It is hoped that 

the current work will be extensively used over previous contents. 

2.2  Formulation of the Problem 

Figure 2.1 describes the geometrical structure of two-dimensional flow of a viscous 

incompressible electrically conducting fluid past an exponentially stretching sheet 

with thermal radiation and partial slip boundary conditions. In order to study the 

considered problem, the following assumptions are made 

(i) The exponentially stretching sheet is placed along the x axis with the slot 

as the origin and is stretched along both ends of the sheet with the velocity  

  /

0

x L

wU x U e  where 0U  is the reference velocity, x  is the coordinate 

measured along the exponentially stretching sheet and L  is the reference 

length. 

(ii) The flow is confined in half plane 0y   and velocity components are u  

and v  in the directions of x  and y axes respectively. 

(iii)  A uniform magnetic field of strength 0B  is assumed to be applied normal 

to the stretching surface. 
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(iv) The magnetic Reynolds number is taken very small than unity so the 

induced magnetic field is negligible in comparison with the applied 

magnetic field.  

(v) Surface temperature along the exponentially stretching sheet is 

  /2

0

x L

wT x T T e   where T  is the free stream temperature and 0T  is the 

reference temperature. 

(vi) The time independent suction or blowing at the surface is also considered. 

(vii) All the fluid properties are constant throughout the motion. 

    

Fig. 2.1 Schematic diagram of the problem

Under the above mentioned assumptions, the governing boundary layer equations are 

given as follows 

0
u v

x y

 
 

 
         (2.1)

22

0

2

eBu u u
u v u

x y y






  
  

  
       (2.2) 
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22
2 2

02

r
p e

qT T T u
C u v B u

x y y y y
   

      
       

       
    (2.3)    

with the appropriate boundary conditions 

     0   :       ,     ,     

 :       0,   

w w w

u T
y u U N x v V x T T D x

y y

y u T T





 
      

 

  
 (2.4) 

where  





   is the kinematic viscosity,   is the coefficient of fluid viscosity,   is 

the fluid density, e  
 
is the electrical conductivity, 

pC  is the specific heat at constant 

pressure, T  is the temperature of the fluid,   is the thermal conductivity, rq
 
is the 

radiative heat flux,   /2

1

x LN x N e  is the velocity slip factor, 1N  is the initial value 

of velocity slip factor,   /2

0

x L

wV x V e  is the velocity of suction and blowing at the 

surface when   0wV x   and   0wV x   respectively, 0V  is the initial strength of 

suction,   /2

1

x LD x D e  is the thermal slip factor and 
1

D  is the initial value of 

thermal slip factor. 

The radiative heat flux rq  can be written by using the Rosseland approximation for 

radiation [Brewster (1992)] as 

* 4

*

4

3
r

T
q

k y

 
 


         (2.5) 

where *  and *k  are the Stefan-Boltzmann constant and the absorption coefficient 

respectively. 
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Considering that the differences of temperature within the flow is such that the term 

4T  can be expanded in a Taylor series about T  and neglecting higher-order terms to 

yield 

4 3 44 3T T T T            (2.6) 

In view of Eqs. (2.5) and (2.6), Eq. (2.3) becomes  

2* 32 2
2 2

02 * 2

16

3
p e

TT T T T u
C u v B u

x y y k y y


   

       
       

       
  (2.7) 

2.3  Analysis  

In order to investigate the heat transfer on exponentially stretching surface the 

following dimensionless similarity variables [Mukhopadhyay and Gorla (2012)] are 

introduced 

/2

0( , ) 2 ( )x Lx y LU e f            (2.8) 

/20

2

x LU
e y

L



           (2.9)  

 /2

0

x LT T T e   
        

(2.10)   

where ( , )x y  is the stream function defined as u
y






 and v

x


 


 which 

automatically satisfy the continuity Eq. (2.1),  f   is the dimensionless stream 

function,   is the similarity variable, y  is the coordinate measured along normal to 

the exponentially stretching sheet and ( )   is the dimensionless temperature. Finally 
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the momentum and energy Eqs. (2.2) and (2.7) subject to the boundary conditions Eq. 

(2.4), can be transformed to nonlinear ordinary differential equations             

22 0f ff f Mf      
       

(2.11)                               

 2 24
1 Pr 0

3
R f f Ec f Mf  

                
     (2.12) 

with the transformed boundary conditions 

0  :      ,     1 ,    1

:     0,    0

f S f f

f

   

 

       

  
    (2.13) 

where the prime denotes differentiation with respect to  . 
22 e o

w

L B
M

U




  is the 

magnetic parameter, 
* 3

*

4 T
R

k




  is the thermal radiation parameter, Pr

pC


  is the 

Prandtl number, 
2

/2

0

x Lw

p

U
Ec e

C T

  is the Eckert number, 0

0

2L
S V

U


 
 is the suction or 

blowing parameter, 0
1

2

U
N

L


  is the velocity slip parameter and 0

1
2

U
D

L



   is 

the thermal slip parameter. 

2.4  Numerical Solution 

For computations of the Eqs. (2.11) and (2.12) along with the boundary conditions 

Eq. (2.13), applying a perturbation method assuming the power series in a small 

magnetic parameter M  as 

   
0

i

i

i

f M f 





 

(2.14) 
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   
0

j

j

j

M   





 

(2.15) 

Using Eqs. (2.14) and (2.15) and its derivatives in Eqs. (2.11) and (2.12) subject to the 

boundary conditions Eq. (2.13) and comparing the coefficients of like terms of M  up 

to second order, the following set of ordinary differential equations is obtained 

2

0 0 0 02 0f f f f             (2.16) 

  2

0 0 0 0 0 0

4
1 Pr Pr

3
R f f Ecf  

          
 

     (2.17) 

1 0 1 0 1 0 1 04f f f f f f f f               (2.18) 

     2

1 0 1 0 1 1 0 1 0 0 1 0

4
1 Pr Pr 2

3
R f f f f Ec f f f    

                        

(2.19)                                            

2

2 0 2 0 2 0 2 1 1 1 14 2f f f f f f f f f f f             
    

(2.20) 

   

 

2 0 2 0 2 1 1 1 1 2 0 2 0

2

0 2 1 0 1

4
1 Pr Pr

3

2 2

R f f f f f f

Ec f f f f f
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                  

      


 

(2.21) 

subject to the boundary conditions 

0 0 0 0 00  :      , =0,    1 ,    ,    1 ,   

:     0,     0;      0, 0

i i i i i

j j

f S f f f f f

f i j

      

 

           

    
 (2.22) 

The Eq. (2.16) was also obtained by Mukhopadhyay and Gorla (2012) in the absence 

of the magnetic field and the remaining equations are ordinary differential equations 

and have been solved numerically by Runge-Kutta method of fourth order along with 
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shooting technique taking the step size 0.001. Accuracy of sixth decimal place is 

considered for the sake of convergence. 

2.5  Rate of Shear Stress and Rate of Heat Transfer 

The physical quantities of primary interest are the skin friction coefficient 
fC  and the 

local Nusselt number xNu , which are defined by 

2

2

w
f

w

C
U




           (2.23) 

 
w

x

w

xq
Nu

T T 




         (2.24) 

where 
0

w

y

u

y
 



 
  

 
 is the wall shear stress and 

0

w r

y

T
q q

y




 
   

 
 is the heat 

transfer from the sheet. In the present case, the Eqs. (2.23) and (2.24) can be 

expressed in the following forms 

 
2

0
Re

f

x

C f 

        

(2.25) 

 
4

Re 1 0
3

x xNu
R


 

   
 

       (2.26) 

where Re w

x

U x


  is the local Reynolds number. The rate of shear stress  0f  and the 

rate of heat transfer  0  are proportional to the skin friction coefficient fC  and the 

local Nusselt number xNu , respectively.  



34          Chapter 2 

2.6  Validation of the Proposed Method

In order to validate the numerical method which was proposed in the previous section, 

the results of heat transfer rate  0 for different values of the thermal radiation 

parameter R , the Prandtl number Pr and the Eckert  number Ec  are  compared in the 

absence of the suction or blowing parameter S , the velocity slip parameter  , the 

magnetic parameter M  and the thermal slip parameter   with  the  earlier  

researchers  like  Bidin  and  Nazar (2009), Nadeem et al. (2011), and Mukhopadhyay 

and Gorla (2012) in Table 2.1. In this table, the comparison shows that the present 

results are very close to those researchers. It can also be claimed that the 

demonstrated results are reliable and efficient. 

Table 2.1 Comparison of  0 for several values of R, Pr and Ec with S = λ= M = δ = 0 and 

 0 1.2821307f     

R  Pr  Ec  
Bidin and 

Nazar (2009) 

Nadeem et al. 

(2011) 

Mukhopa-

dhyay and 

Gorla (2012) 

Present 

Resutls 

0.5 1 0.0 0.6765 0.680 0.6765 0.6859730 

 2  1.0735 1.073 1.0734 1.0737274 

 3  1.3807 1.381 1.3807 1.3805010 

 1 0.2 0.6177   0.6270190 

 2  0.9654   0.9655080 

 3  1.2286   1.2282404 

1.0 1 0.0 0.5315 0.534 0.5315 0.5527834 

 2  0.8627 0.863 0.8626 0.8653065 

 3  1.1214 1.121 1.1213 1.1214546 

 1 0.2 0.4877   0.5094000 

 2  0.7818   0.7843958 

 3  1.0067   1.0066859 
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2.7  Discussion of the Computed Results 

Figures 2.2 to 2.4 show the influence for the various values of the suction or blowing 

parameter S , the velocity slip parameter  and the magnetic parameter M  on the 

velocity distribution  f  respectively, while the other parameters are constant. 

From these figures, it is observed that the velocity decreases with the increasing 

values of the suction or blowing parameter S , the velocity slip parameter   and the 

magnetic parameter M  while an opposite phenomenon occurs for the velocity slip 

parameter at 2.7   in Fig. 2.3.  

 

 

 

Fig. 2.2 Influence of S on velocity against η for λ=0.1 and M=0.1 
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Fig. 2.3 Influence of λ on velocity against η for S=0.1 and M=0.1 

 

Fig. 2.4 Influence of M on velocity against η for S=0.1 and λ=0.1 
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thermal slip parameter  , the thermal radiation parameter R , the Prandtl number Pr  

and the Eckert number Ec  are presented in Figs. 2.5 to 2.11 respectively, keeping 

other parameters constant. It is ascertained from these figures that the temperature 

decreases with the increasing values of the suction or blowing parameter S , the 

thermal slip parameter and the Prandtl number Pr  but the reverse is true for the 

velocity slip parameter  , the magnetic parameter M , the thermal radiation parameter

R  and the Eckert number Ec . When a uniform magnetic field is applied normal to 

the flow direction, a force is produced which acts in negative direction of flow. This 

force is known as Lorentz force. The increasing values of the magnetic parameter 

make this force stronger, which ultimately slows down the fluid flow and accelerate 

the temperature. 

 

 

Fig. 2.5 Influence of S on temperature against η for λ=0.1, M=0.1, δ=0.1, R=10, Pr=10 and 

Ec=0.01 
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Fig. 2.6 Influence of λ on temperature against η for S=0.1, M=0.1, δ=0.1, R=10, Pr=10 and 

Ec=0.01 

 

 

 

Fig. 2.7 Influence of M on temperature against η for S=0.1, λ=0.1, δ=0.1, R=10, Pr=10 and 

Ec=0.01 
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Fig. 2.8 Influence of δ on temperature against η for S=0.1, λ=0.1, M=0.1, R=10, Pr=10 and 

Ec=0.01 

 

 

Fig. 2.9 Influence of R on temperature against η for S=0.1, λ=0.1, M=0.1, δ=0.1, Pr=10 and 

Ec=0.01 
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Fig. 2.10 Influence of Pr on temperature against η for S=0.1, λ=0.1, M=0.1, δ=0.1, R=10 and 

Ec=0.01 

 

 

Fig. 2.11 Influence of Ec on temperature against η for S=0.1, λ=0.1, M=0.1, δ=0.1, R=10 and 

Pr=10 
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Table 2.2 depicts the computations for the skin friction coefficient  0f   and the 

Nusselt number  0  at the surface for different values of the suction or blowing 

parameter S , the velocity slip parameter , the magnetic parameter M , the thermal 

slip parameter , the thermal radiation parameter R , the Prandtl number Pr  and the 

Eckert number Ec . From the table, it is obvious that the local skin-friction 

coefficient  0f   and the local Nusselt number  0  decrease with the increasing 

values of the suction or blowing parameter S  but a reverse phenomenon occurs for 

the velocity slip parameter  taking other parameters constant respectively. Further it 

may be seen that the skin friction coefficient  0f   decreases while the local Nusselt 

number  0  increases with the increasing values of the magnetic parameter M . 

Moreover, it is found that the Nusselt number  0 increases with the increasing 

values of the thermal slip parameter  , the thermal radiation parameter R  and the 

Eckert number Ec while an opposite effect occurs for the Prandtl number Pr , when 

other parameters kept constant respectively. This table also shows that the skin 

friction coefficient  0f  and the local Nusselt number  0  are always negative for 

all the values of physical parameters considered. Physically, the negative sign of skin 

friction coefficient implies that the fluid exerts a drag force from the surface and 

negative local Nusselt number means there is a heat flow from the surface. 
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Table 2.2 Results of  0f   and  0  for several values of ,  ,  , , , PrS M R  and Ec  

S    M    R  Pr  Ec   0f 
 

 0  

-0.5 0.1 0.1 0.1 10 10 0.01 0.9521657 0.529612 

-0.3       1.0119855 0.575976 

0.0       1.1112839 0.655864 

0.3       1.2223470 0.748100 

0.5       1.3027500 0.815985 

0.1 0.1 0.1 0.1 10 10 0.01 1.1470008 0.685269 

 0.3      0.8788629 0.633248 

 0.5      0.7190887 0.596666 

 0.7      0.6115220 0.568730 

 0.9      0.5335684 0.546309 

0.1 0.1 0.3 0.1 10 10 0.01 1.2057009 0.667330 

  0.5     1.2604935 0.651047 

  0.7     1.3119887 0.636170 

  0.9     1.3606528 0.622508 

0.1 0.1 0.1 0.3 10 10 0.01  0.602379 

   0.5     0.537378 

   0.7     0.485038 

   0.9     0.441990 

0.1 0.1 0.1 0.1 1 10 0.01  1.924327 

    2    1.525495 

    3    1.288670 

    5    1.007521 

0.1 0.1 0.1 0.1 10 1 0.01  0.223966 

     3   0.339339 

     5   0.447530 

     7   0.548135 

0.1 0.1 0.1 0.1 10 10 0.10  0.660506 

      0.50  0.550453 

      1.00  0.412886 

      1.50  0.275318 

      2.00  0.137750 
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2.8  Conclusions 

The problem of hydromagnetic flow and heat transfer over an exponentially stretching 

surface is investigated with the radiation effects and partial slip boundary conditions. 

From the results of the problem, it can be concluded that the flow field, temperature 

profiles and the quantities of physical interest are significantly affected by these 

parameters 

(i) The velocity boundary layer thickness decreases with the increasing values 

of the suction or blowing parameter, the velocity slip parameter and the 

magnetic parameter but a reverse behavior is noted being eta greater than 

2.7 in case of the velocity slip parameter.  

(ii) Thermal boundary layer thickness decreases with the increasing values of 

the suction or blowing parameter, the thermal slip parameter and the 

Prandtl number while it increases with the velocity slip parameter, the 

magnetic parameter, the thermal radiation parameter and the Eckert 

number.  

(iii)  The wall shear stress decreases with the increasing values of the suction 

or blowing parameter and the magnetic parameter although an opposite 

phenomenon occurs for the velocity slip parameter. 

(iv)  Finally the rate of heat transfer decreases with the increasing values of the 

suction or blowing parameter and the Prandtl number however it increases 

with an increment in the velocity slip parameter, the magnetic parameter, 

the thermal slip parameter, the thermal radiation parameter and the Eckert 

number. 



3 

Finite Element Analysis of Magnetohydrodynamic  

Flow over Flat Surface Moving in Parallel Free Stream with 

Viscous Dissipation and Joule Heating 

3.1  Introduction 

Laminar boundary layer flow past a flat plate in a parallel free stream of fluid has 

been investigated extensively in fluid dynamics because of its important applications 

in engineering and sciences. For the better understanding of aero-dynamical 

properties of the flow like the dynamical drag and wall friction, the boundary layer 

flows over flat surfaces are very fundamental. Blasius (1908) was the first who 

obtained a similarity solution for a viscous incompressible boundary layer flow 

towards a flat plate at zero incidences and the wall friction was calculated 0.332057 

approximately. Later, Hasimoto (1958) studied the boundary layer flow past a flat 

plate and found the slip solution. Sakiadis (1961a) extended the problem of Blasius 

(1908) on a moving surface in a still fluid and presented that the value of drag force 

for this case was 34% greater than the considered case of Blasius (1908). Thereafter, 

the flows over a stationary flat plate under various flow configurations have been 

studied widely in the literature by many authors such as Xu (2004), Allan and Syam 



Finite Element Analysis of ..…….…Dissipation and Joule Heating            45 

 
 

(2005), Pal and Mondal (2009), Rahman (2011), Malvandi et al. (2012), Rahman et 

al. (2015), Hayat et al. (2017) and Sheikholeslami (2017). 

From the technical point of view, the study of the boundary layer flow towards a 

moving sheet in otherwise quiescent fluid is of considerable interest of researchers. 

During the various engineering and metallurgical processes like the fabrication of 

sheet, roofing shingles, linoleum and fine-fiber mats, the material becomes in the 

motion customarily. The moving sheet induces motion in the neighboring fluid which 

is very important in various manufacturing processes including hot and cold extrusion 

of plastic sheets, continuous casting, hot rolling, drawing of wire, crystal growing, 

material handling conveyers and liquid film in condensation process. In virtually all 

such practical procedures, the surface moves along its own plane. This situation 

demonstrates a quiet different class of boundary layer problems which have the 

substantially different solution from the flow over stationary plate. The boundary 

layer flow on a moving continuous solid surface was first considered by Sakiadis 

(1961b). In a contemporaneous study, similarity solutions for thermal boundary flows 

over moving surfaces for different variations of temperature and wall shear stress at 

the surface are well established and widely used by Klemp and Acrivos (1976), 

Abdelhafez (1985), Bianchi and Viskanta (1993), Fang (2003), Weidman et al. 

(2006), Cortell (2007), Bachok et al. (2011), Habib and El-Zahar (2013), Abdel-

wahed et al. (2015), Yasmeen et al. (2016) and Khan et al. (2017b). 

Magnetohydrodynamics (MHD) is the most important phenomenon of fluid 

dynamics. It is characterized by the study of an interaction between the 

electromagnetic field and the fluid velocity field. Initially, MHD was applied to 
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geophysical and astrophysical problems like interstellar magnetic fields, solar 

structure, especially in outer layers, planetary magnetism and solar wind bathing the 

earth. From past few decades, the MHD flow of an electrically conducting fluid has 

attracted a lot of attention of many researchers due to its important bearings in various 

engineering and industrial areas such as MHD power generators and accelerators, 

microelectronic devices, plasma studies, foodstuff processing, cooling of nuclear 

reactors, MHD marine and ion propulsion, solidification of liquid crystals, geothermal 

energy extractions, solidification of liquid crystals, exotic lubricants, suspension 

solutions, MHD flight, MHD bearing, MHD pumps and in the field of planetary 

magnetosphere. The rate of cooling and the desired properties of final products can be 

controlled by use of electrically conducting fluid and applications of magnetic field. 

In the process of purification of molten metal from non-metallic inclusions, the 

magnetic field has been used. Andersson (1992) found an exact analytical solution for 

the MHD flow of a viscoelastic fluid on a stretching sheet. Further, Vajravelu and 

Nayfeh (1992) considered the hydromagnetic flow of a dusty fluid over a stretching 

surface. Moreover, several researchers like Mahapatra and Gupta (2001), Jat and 

Chaudhary (2008, 2010), Singh and Singh (2012), Chaudhary and Kumar (2014) and 

Chaudhary et al. (2015) have focused their attention to the various aspects of the 

problem of heat transfer and hydromagnetic flow. Recently, such problems have been 

investigated either analytically or numerically by Waqas et al. (2016), Sheikholeslami 

and Rokni (2017), and Sheikholeslami and Vajravelu (2017). 

In the natural convection flow, viscous dissipation plays a vital role when the flow 

field is in high gravity or of extreme size. Viscous dissipation is usually characterized 

by the Eckert number. The Joule heating effect on magnetic field is an important 
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macroscopic physical phenomenon in fluid mechanics. It is important in nuclear 

engineering in connection with the cooling of reactors. In electronics and physics, 

Joule heating refers to the increase in temperature of a conductor as a result of 

resistance to an electrical current flowing through it. The product of the magnetic 

parameter and the Eckert number in the energy equation characterize the Joule heating 

phenomenon. The combine effects of viscous dissipation and joule heating over fixed 

or moving surfaces corresponding to the different boundary conditions are very rare in 

the literature. Gebhart and Mollendorf (1969) studied the viscous dissipation effects 

for external natural convection flows. Later, Soundalgekar (1972) found the effect of 

viscous dissipation on the two-dimensional unsteady free convective flow past an 

infinite vertical porous plate. On the other hand, Hossain (1992) considered the 

combine effects of viscous dissipation and Joule heating on free convection flow with 

variable plate temperature. Many researchers like El-Amin (2003), Duwairi (2005), 

Cortell (2008), El-Aziz (2009), Jat and Chaudhary (2009b), and Hossain and Gorla 

(2013) presented various aspects of this problem and obtained similarity solutions. 

Recently, Sreenivasulu et al. (2016), Farooq et al. (2016), Khan et al. (2017a), and 

Sheikholeslami and Shehzad (2017) presented the combine effects of Joule heating 

and viscous dissipation over boundary layer flow in the presence or absence of 

thermal radiation and partial slip. 

Motivated by the above literature, the objective of present paper is to study the 

dynamics and heat transfer phenomenon over a flat plate continuously moving in 

parallel free stream in the presence of magnetic field. The main focus of this analysis 

is to investigate the combine effect of viscous dissipation and Joule heating, which 

have been neglected in the previous studies, on the flow of two dimensional steady 
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incompressible and electrically conducting fluid past a continuous moving surface. 

Considering these effects makes this investigation unique and shows the novelty of 

this work. Further, the conservation laws are solved numerically by Gelerkin finite 

element method. This method has advantage of the faster convergence which makes 

the results more accurate. Numerical results for the wall shear stress and temperature 

gradient are presented and compared with available literature to validate this work. 

The results of this study interpret more productive for applications, and can be used as 

significance in the engineering and technological processes. 

3.2  Governing Equations and Transformations 

A two dimensional boundary layer flow of a viscous incompressible electrically 

conducting fluid past a flat surface which moves in a parallel free stream is considered 

as illustrated in Fig. 3.1 and the details of boundary layers have been presented in Fig. 

3.2.  The x   axis is taken along the moving surface, and a uniform magnetic field 0B  

is applied along y  axis. The flow is confined to 0y  . An external force is applied 

along the x  axis so that the surface is moving continuously. The magnetic Reynolds 

number  and  the transverse applied magnetic field are assumed very small, so that the 

 
Fig. 3.1 Processing station consisting of a moving surface 
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Fig. 3.2 Schematic of boundary layers for different   

induced magnetic field is negligible. It is also assumed that the velocity of the free 

stream and flat surface are eu
 
and wu  respectively. The constant temperature of the 

moving flat surface is wT  while the temperature of the fluid far away from the sheet is 

T . Then according to the above assumption, the steady two-dimensional boundary 

layer equations can be written as 

0
u v

x y

 
 

 
         (3.1) 

 
22

0

2

e e
e e

du Bu u u
u v u u u

x y dx y






  
    

  
    (3.2) 
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e
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 

 
 
 

   
    
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   (3.3) 

with the boundary conditions 
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    (3.4) 

where u  and v  are the velocity components in the x  and y  directions, respectively, 





  is the kinematic viscosity,   is the coefficient of viscosity,   is the fluid 
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density, e  
is the electrical conductivity, T  is the temperature of the fluid,   is the 

thermal diffusivity, 
pC  is the specific heat at constant pressure and wv  is the mass 

flux velocity at the surface with 0wv  for suction and 0wv   for injection. 

Moreover, in the energy Eq. (3.3), the second and third terms on the right hand side 

signifies the viscous dissipation and the Joule heating, respectively. 

Introducing the following non-dimensional variables 

1
1/2 1/2 2

0 0

1 Re 1 Re
, , , , ,

T TL
x x y y u u v v B B T

L L U U U T



  

  
      

 
    (3.5) 

where x  and y  are dimensionless coordinates along the surface and normal to it, L  

is the characteristic length of the moving surface, Re
U L


  is the Reynolds number, 

U  
is the characteristic velocity, u  and v  are dimensionless velocities along the x  

and y   axes respectively, 0B  is the dimensionless constant magnetic field, T  is the 

dimensionless temperature and wT T T    is the characteristic temperature of the 

fluid. Thus the governing boundary layer Eqs. (3.1) to (3.3) with the boundary 

conditions Eq. (3.4) are converted into dimensionless form as 

0
u v

x y

 
 

 
         (3.6) 

 
22
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2

e e
e e
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     (3.7) 
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with the reduced boundary conditions 

0   :       , ,  1

 :      , 0

w w

e

y u u v v T

y u u T
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      (3.9) 

where Pr



  is the Prandtl number,   1/3

w wu x U x
 
and   1/3

e eu x U x  are the 

dimensionless velocities [Bachok et al. (2011)] of the moving surface and that of free 

stream respectively,
 wU and eU  are dimensionless constants with 0eU  . Further, 

0wU   and 0wU 
 
imply that the surface is moving in the same and opposite 

direction of the fluid respectively, and wv
 
is the dimensionless mass flux velocity at 

the surface. 

Using the physical stream function  ,x y , the continuity Eq. (3.6) is identically 

satisfied  

u
y





 ,  v
x


 

   
      (3.10) 

Proceeding with the mathematical analysis of the problem, similarity transformations 

are defined as follows [Bachok et al. (2011)] 

   1/2 2/3, ex y U x f         (3.11) 

1/2 1/3

eU x y          (3.12) 

 T            (3.13) 
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where  f  is the dimensionless stream function,   is the similarity variable and 

   is the dimensionless temperature. Therefore, the boundary layer governing Eqs. 

(3.7) and (3.8) are reduced to  

 2
13 2 3 1 0f ff f M f               (3.14) 

 
223

2 3 1 0
Pr

f Ec f M f         
       (3.15) 

with the transformed boundary conditions 
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where primes denote differentiation with respect to  , 
2 2

0

3

e e

e

B u
M

U


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

 

is the magnetic 

parameter, 
2 2

e

p

u U
Ec

C T




 is the Eckert number, 
3/23

2
e w es u v U  

 

 is the mass transfer 

parameter and 
w

e

U

U
  is the moving flat surface parameter. 

3.3  Solution Methodologies 

The coupled boundary layer Eqs. (3.14) and (3.15) along with the boundary 

conditions Eq. (3.16) have been solved using Galerkin finite element method. For 

numerical solutions,    is taken as max
 
and the boundary conditions for    

is fixed at max 6  , without any loss of generality. Further, the entire domain is 

discretized into 1000 identical size subdomains or line elements which are connected 

continuously and then the linear Lagrange polynomial is used for individual element.  
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Assuming  

f h           (3.17) 

then the system of Eqs. (3.14) and (3.15) with the boundary conditions Eq. (3.16) are 

transformed to 

 2 13 2 3 1 0h fh h M h             (3.18) 
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with the corresponding boundary conditions 
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For a typical element  1,e e   , the variational form of Eqs. (3.17) to (3.19) are 

expressed by 
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where 1 2,w w  and 3w  are weight functions corresponding to the functions ,f h  and 

   respectively. 
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The finite element approximations are assumed of the form 
2 2

1 1

,j j j j

j j
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where the shape functions i  for an element  1,e e    are taken as 
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The finite element model of the Eqs. (3.21) to (3.23) are assembled as 
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where 
mnK    and  1,2 and 1,2mb m n      are define as 
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   

        .  

Here each element matrix is of order 6 6  and the whole domain is divided into 1000 

linear elements. Thus the complete domain has 1001 nodes and three unknown 

functions are to be calculated at each node. After assembling of all the element 

equations, a matrix of ordered 3003 3003 is obtained. Applying the boundary 

conditions, the remaining system of 2998 equations must be solved by any iterative 

process. In the present investigation Newton-Raphson method is used to solve the 

system of equations. The step size is taken as 0.006   to be satisfactory for a 

convergence criterion of 710  in nearly all cases.

 

3.4  Physical Parameters of Practical Interest 

The physical quantities of practical interest are the shear stress at the moving surface 

w  and the wall heat flux wq , which are defined as 
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      (3.26) 

where fC  is the skin friction coefficient,   is the thermal conductivity and xNu  is 

the local Nusselt number. In the present case, using the non-dimensional variables, the 

Eqs. (3.25) and (3.26) can be expressed in the following forms 
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      (3.28) 

Therefore, the reduced shear stress at the moving surface w  and the reduced wall 

heat flux wq  are proportional to   0f   and  0 respectively. 

3.5  Validation of Numerical Method 

The validation of the proposed finite element method is presented in Table 3.1 by 

comparing the wall shear stress  0f   and the rate of heat transfer  0  for 

different values of the mass transfer parameter s , the moving flat surface parameter 

 , the magnetic parameter M , the Prandtl number Pr  and the Eckert number Ec  

with the earlier research of Bachok et al. (2011) who studied the similar problem for 

non magnetic case. Note that Bachok et al. (2011) has also neglected the viscous 

dissipation, so the values of magnetic parameter and the Eckert number are taken zero 

Table 3.1 Comparison for the values of  0f   and  0  for various values of s  and   

with 0.0M  , Pr 1.0  and 0.0Ec   

 

s    

 0f    0  

Bachok et 

al. (2011) 

Present 

results 

Bachok et 

al. (2011) 

Present 

results 

0.5 -1.2106 0.6321 0.66540 0.1032 0.104645 

1.0 -1.5148 1.0469 1.06270 0.2278 0.262163 

2.0 0.5 0.9251 0.92506 1.6036 1.603586 

4.0  1.5030 1.50300 2.8330 2.833006 

6.0  2.1233 2.12340 4.1177 4.117740 

8.0  2.7627 2.76270 5.4238 5.423825 

10.0  3.4116 3.41160 6.7399 6.739940 
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in the comparison. From this comparison, it can be concluded that the presented 

numerical results are in excellent agreement with previous published work which 

validate the applied method. The obtained results also demonstrate the reliability and 

efficiency of the proposed method. 

3.6  Results and Discussion  

In order to discuss the theoretical concept of the considered model, computational 

values of the velocity  f   and the temperature     profiles for several set of 

values of dimensionless parameters such as the mass transfer parameter s , the moving 

flat surface parameter  , the magnetic parameter M , the Prandtl number Pr  and the 

Eckert number Ec  are presented graphically. Further, Numerical values of the 

functions  0f  and  0  are also carried out through tables. 

Figures 3.3 and 3.4 display the behavior of the mass transfer parameter s  on the 

velocity  f   and the temperature     profiles respectively, while the other 

parameters are constant. These figures show that the velocity and the temperature 

decrease with the increasing values of the mass transfer parameter s . It is revealed by 

the fact that the actual effect of the mass transfer parameter is to make the velocity 

and the temperature distribution more uniform within the boundary layer. In other 

words, the enhancing mass transfer parameter has tendency to retard the flow velocity 

by sucking the fluid mass from the moving surface and to increase the temperature 

gradient. So, it can be effectively used for the fast cooling of the moving surface.  
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Fig. 3.3 Behavior of velocity profiles for different values of s  when 1.5   and 0.1M   

 

 

 

Fig. 3.4 Behavior of temperature profiles for different values of s when 1.5,  0.1,M  
 

Pr 0.7
 
and 0.1Ec   
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Effects of the moving flat surface parameter  on the fluid flow  f  and the 

temperature     distribution have been studied taking other parameters constant 

and the results are presented in Figs. 3.5 and 3.6 respectively. It is observed that 

velocity profile increases with the increasing values of the moving flat surface 

parameter   while an opposite phenomenon occurs for the temperature profile. In the 

case when the value of the moving flat surface parameter increases, boundary layer 

gets thinner due to less difference between maximum and minimum velocity vectors. 

For the higher value of the moving flat surface parameter, surface exerts a pulling 

force to the fluid and the friction force gets inverse. Thus, the boundary layer 

thickness increases, and the temperature decreases with increase in the moving flat 

surface parameter. 

 

 

Fig. 3.5 Behavior of velocity profiles for different values of   when 0.5s   and 0.1M   
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Fig. 3.6 Behavior of temperature profiles for different values of  when s 0.5,  0.1,M 
 

Pr 0.7
 
and 0.1Ec   

 

Figures 3.7 and 3.8 depict the velocity  f   and the temperature     profiles for 

different values of the magnetic parameter M  respectively keeping other parameters 

constant. From these figures it is evident that for the increasing values of the magnetic 

parameter M  the velocity decreases but the temperature distribution significantly 

increases. This is because of the interaction of electrically conducting fluid with the 

magnetic field normal to the flow direction results in a resistive type force which is 

similar to drag force. This force is known as Lorentz force and it has a mannerism to 

slow down the velocity of the fluid. Further, as the Lorentz force repulses the velocity 

of the flow, heat is generated automatically near the flat moving surface. This auto 

generated heat increases the temperature of the fluid. 
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Fig. 3.7 Behavior of velocity profiles for different values of M  when 0.5s   and 1.5   

 

 

Fig. 3.8 Behavior of the temperature profiles for different values of M when 0.5, 1.5,s  
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and 0.1Ec   
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Influence of various values of the Prandtl number Pr on the temperature   
 

distribution is illustrated in Fig. 3.9, while the other parameters are kept constant. 

Prandtl number is the ratio of momentum diffusivity to thermal diffusivity. An 

increase in the Prandtl number Pr  means the slow rate of thermal diffusion which 

results in a decrease of the temperature profile and in general lower average 

temperature within the boundary layer. From a physical point of view, a smaller value 

of the Prandtl number increases the thermal conductivities, and therefore heat is able 

to diffuse away from the moving surface. 

In Fig. 3.10, the variations of the temperature     profiles with various values of 

the Eckert number Ec  are shown taking other parameters constant. It can be seen that 

the  temperature  profiles  increase due to an increase in the  Eckert  number Ec .  The 

 

 Fig. 3.9 Behavior of temperature profiles for different values of Pr when 0.5,  1.5,s  
 

0.1M 
 
and 0.1Ec   
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Fig. 3.10 Behavior of temperature profiles for different values of Ec when 0.5, 1.5,s  
 

0.1M 
 
and Pr 0.7  

 

Eckert number conserves the kinetic energy into the internal energy by work done 

against the viscous fluid stress. It implies the loss of heat from the moving surface to 

boundary layer flow. Increment in the value of the Eckert number, energy is 

accumulated in the domain of fluid flow as a consequence of dissipation because of 

viscosity. Therefore, viscous dissipation in a flow over a continuously moving flat 

surface is beneficial for gaining the temperature. 

Moreover, Table 3.2 shows the effects of the mass transfer parameter s , the moving 

flat surface parameter  , the magnetic parameter M , the Prandtl number Pr  and the 

Eckert number Ec  on the local skin-friction coefficient  0f  and the local Nusselt 

number   0 . It can be seen that the local skin friction coefficient  0f 
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Table 3.2 Values of  0f 
 
and  0   for various values of s,  ,  , PrM

 
and Ec  

s    M  Pr  Ec  

 0f 
 

 0 
 

Exact values 
Present 

values 

Exact 

values 

Present 

values 

-1.0 1.5 0.1 0.7 0.1  0.422196   0.42220 0.34174 0.34174 

-0.5 
  

   0.49885   0.49885 0.46127 0.46127 

0.0 
  

   0.5868   0.58680 0.59854 0.59854 

0.5 
  

   0.68542   0.68542 0.751333 0.75133 

1.0 
  

   0.79374   0.79374 0.91729 0.91729 

0.5 -1.0 0.1 0.7 0.1 - 1.3512 - 1.35120 0.215837 0.21584 

 
-0.5 

 
  - 1.316241 - 1.31624 0.3829 0.38290 

 
0.0 

 
  - 1.02956 - 1.02956 0.51615 0.51615 

 
2.0 

 
   1.46413   1.46413 0.76866 0.76866 

0.5 1.5 5.0 0.7 0.1  1.33704527   1.33705 0.70764 0.70764 

 
 10.0 

 
  1.7622780904   1.76228 0.68472 0.68472 

 
 15.0 

 
  2.10014929305   2.10015 0.66823 0.66823 

 
 20.0 

 
  2.389147836791   2.38915 0.65493 0.65493 

0.5 1.5 0.1 1.0 0.1 
 

 0.94193 0.94193 

 
  2.0 

  
 1.48572 1.48572 

 
  3.0 

  
 1.96186 1.96186 

 
  5.0 

  
 2.82365 2.82365 

0.5 1.5 0.1 0.7 1.0 
 

 0.64334 0.64334 

 
   2.5 

 
 0.46336 0.46336 

 
   4.0 

 
 0.28338 0.28338 

 
   5.5 

 
 0.1034 0.10340 

 

with the increasing values of the mass transfer parameter s , the moving flat surface 

parameter   and  the magnetic  parameter M ,  taking  other  parameters  as constant. 

Thereafter, the local Nusselt number  0  decreases with the increasing values of 

the mass transfer parameter s , the moving flat surface parameter  and the Prandtl 

number Pr  but a reverse behavior is noted in the case of the magnetic parameter M

and the Eckert number Ec . From physical point of view, positive sign of skin friction 
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coefficient means the fluid exerts a drag force on the surface and negative sign means 

the opposite. It is also found that the values of the local Nusselt number are always 

negative for all the values of physical parameters considered. Physically, negative 

sign of Nusselt number implies that there is a heat flow from the surface to the 

ambient fluid. 

3.7  Conclusions 

A mathematical model consisting of magnetohydrodynamic boundary layer flow of 

viscous incompressible electrically conducting fluid over a continuous moving 

surface is developed. The governing boundary layer equations were transformed to a 

set of ordinary differential equations by using non-dimensional variables and solved 

numerically by an innovative procedure, the combination of the finite element method 

and Gauss elimination technique. Moreover numerical results for the local skin 

friction and the local Nusselt number are in a good agreement with the results of 

previous researchers under the limiting cases. From the results of the problem, it can 

be concluded that the velocity boundary layer thickness and the shear stress at the 

moving surface decrease with the increasing values of the mass transfer parameter and 

the magnetic parameter. Further, an increment in the value of the moving flat surface 

parameter leads to the increasing effects on the velocity boundary layer thickness 

while the reverse is true for the shear stress at the moving surface. Besides, the 

thermal boundary layer thickness as well as the surface heat flux decreases for the 

increasing values of the mass transfer parameter, the moving flat surface parameter 

and the Prandtl number but an opposite behavior occurs for the magnetic parameter 

and the Eckert number. 



4 

Heat and Mass Transfer by MHD Flow near the 

Stagnation Point over a Stretching or Shrinking Sheet in 

a Porous Medium  

 

4.1  Introduction  

The practical applications of the dynamics of fluid flow over a stretching surface are 

of utmost importance, for example, extrusion of plastic sheets, glass blowing, paper 

production, drying of papers and textiles, drawing plastic films, metal spinning, 

continuous casting and spinning of fibers, etc. Since the quality of final product 

depends to a large extent on the skin friction coefficient and the surface heat transfer 

rate, so in all of the above cases, a study of the flow field and heat transfer can be of 

significant importance. Many researchers have investigated various aspects of this 

problem, such as consideration of mass transfer, exponentially stretching surface, 

magnetic field and application to non-Newtonian fluids, and similarity solutions have 

been obtained. Initially, Sakiadis (1961a) presented the boundary layer flow on a 

moving continuous solid surface. Later, Crane (1970) studied a closed form solution 

of the two dimensional flow over stretching sheet by considering the stretching 

velocity proportional to the distance from the slot. The problems of the flow through 

stretching surface have been investigated by Wang (1984), Troy et al. (1987), 
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Vajravelu and Nayfeh (1993), Mukhopadhyay and Andersson (2009), and Jat and 

Chaudhary (2010) in various conditions. Recently, Makinde and Aziz (2011), 

Mahapatra et al. (2012) and Chaudhary et al. (2015) analyzed the flow over stretching 

surface in different cases. 

In comparison to stretching sheet, less work has been done on the flow over a 

shrinking sheet. The boundary layer flow due to a shrinking surface has a wide area of 

applications like on a rising shrinking balloon, shrinking film and packaging of bulk 

products. On the shrinking surface, the generated vorticity is not confined physically 

within a boundary layer and a steady flow is not possible unless adequate suction is 

applied at the surface. Goldstein (1965) presented the backward boundary layer flow 

in converging passages. Heat and mass transfer for viscous incompressible flow over 

shrinking surfaces have been discussed by Miklavcic and Wang (2006), Fang (2008), 

Fang and Zhang (2010) and Lok et al. (2011). 

Stagnation point virtually appears in all flow fields of engineering and science, so 

stagnation point flow is a topic of significance in fluid mechanics. The stagnation 

region encounters the highest heat transfer, the highest pressure and the highest rate of 

mass decomposition. Stagnation point flow has various applications in many 

manufacturing processes in industry. The applications include the boundary layer 

along material handling conveyers, the aerodynamic extrusion of plastic sheets, blood 

flow problems, processes in the textile and paper industries, flow over the tips of 

rockets, aircrafts, submarines and oil ships. The pioneering work in this area was 

carried out by Heimenz (1911) who studied the steady boundary layer flow in the 

region of a stagnation point on an infinite wall. The extension to the axisymmetric 
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case was presented by Homann (1936). Later, a large number of analytical and 

numerical studies explaining various physical situations of the boundary layer 

stagnation point flow are presented by Sparrow et al. (1962), Chiam (1994), Amin and 

Riley (1996), Mahapatra and Gupta (2002) and Wang (2008). Most recently, Rosali et 

al. (2011), Mahapatra and Nandy (2013), and Lok and Pop (2014) considered the 

problem of stagnation point flow in various situations. 

Flow through porous media has attracted a lot of attention because these are quite 

prevalent in nature. Such type of flow finds its applications in a broad spectrum of 

disciplines including chemical engineering and geophysics. It is also important in 

many technological processes, geothermal energy usage and in astrophysical 

problems. Many other applications may also benefit from a better understanding of 

fundamentals of mass, momentum, and energy transport in porous media, namely, 

petroleum reservoir operations, food processing, cooling of nuclear reactors, building 

insulation, underground disposal of nuclear waste, and casting and welding in 

manufacturing processes. Enhancement of forced convection by the use of a porous 

substrate has been the subject of several investigations. Comprehensive references on 

flow in porous media can be found in books by Ingham and Pop (1998), Schlichting 

and Gersten (2000), Vafai (2005), and Nield and Bejan (2012). Moreover, Vafai and 

Kim (1990) reported a composite system problem involving a relatively thin porous 

substrate attached to the surface of a flat plate. Thereafter, representative studies 

dealing with these effects have been studied by researchers such as Huang and Vafai 

(1994), Yih (1998), Jat and Chaudhary (2009a), Chaudhary and Kumar (2014) and 

Khader (2014). 
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In recent years, a number of simple fluid flow problems of viscous incompressible 

fluid have attained new attention in the more general context of 

magnetohydrodynamics. The desired properties of the end product and the rate of 

cooling can be controlled by the use of electrically conducting fluid and applications 

of magnetic field. The study of magnetohydrodynamic flow through a heated surface 

has important applications in many technological processes such as exotic lubricants 

and suspension solutions, magneto-hydrodynamic flight, foodstuff processing, MHD 

power generators, solidification of liquid crystals, the boundary layer control in 

aerodynamics, and in the field of planetary magnetosphere. Hydromagnetic boundary 

layer flow over a stretching surface has attracted attention of many researchers in 

recent time due to its important applications in metal-working processes and modern 

metallurgy. It seems that the magnetohydrodynamic flow over a stretching surface 

was first investigated by Andersson (1992). On the other hand, the problem of MHD 

stagnation point flow past a stretching sheet was presented by Mahapatra and Gupta 

(2001). Later, Abel and Mahesha (2008), Ramesh et al. (2012), Singh and Singh 

(2012), Makinde et al. (2013), Olajuwon and Oahimire (2014), and Chaudhary and 

Kumar (2015) analyzed and presented MHD flow problems considering various 

aspects of the problems.  

Inspired by Rosali et al. (2011), the objective of this present study is to investigate the 

effects of the magnetic parameter and the Eckert number on the boundary layer 

magnetohydrodynamic stagnation point flow over a stretching or shrinking surface 

immersed in a porous medium. It is expected that the obtained results can be served as 

a complement to previous studies providing useful information for applications. 
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4.2  Description of the Problem 

Consider a steady, two-dimensional stagnation point flow of a viscous incompressible 

electrically conducting fluid impinging normally on a stretching or shrinking surface 

of constant temperature wT  in a porous medium. The stretching or shrinking surface is 

placed along x axis. The fluid is subjected to a uniform transverse magnetic field of 

strength 0B
 
in the direction of y axis, as shown in Fig. 4.1. The induced magnetic 

field is assumed to be small compared to the applied magnetic field, so it is negligible. 

The external flow velocity varies linearly along x axis, i.e.,  eu x ax , where 

0a   is the strength of the stagnation flow and x  is the coordinate measured along 

the stretching or shrinking surface. The ambient fluid temperature T  
is a constant. It 

is assumed  that the velocity  of  the  stretching  or  shrinking  surface  is   wu x bx ,  

 

(a) Stretching sheet 
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(b) Shrinking sheet  

Fig. 4.1 Physical model of the problem 

where b  is the stretching rate with 0b   for stretching and 0b   for shrinking. 

Therefore, with these assumptions the governing boundary layer equations can be 

expressed as 
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where u  and v  are the velocity components in the x  and y  directions, respectively, 

y is the coordinate measured along normal to the stretching or shrinking surface,   is 

kinematic viscosity, 1K  is the permeability of the porous medium, e is the electrical 

conductivity,   is the fluid density, T  is the temperature of the fluid,  is the thermal 

diffusivity,  is the coefficient of viscosity and 
pC  is the specific heat at constant 

pressure.           

4.3  Similarity Solution 

To obtain the similarity solution of the Eqs. (4.1) to (4.3), with the boundary 

conditions Eq. (4.4), the stream function and the dimensionless variables can be 

defined as follows [Rosali et al. (2011)] 

 ( , ) ex y xu f              (4.5)
 

eu
y

x



           (4.6)  

   wT T T T             (4.7)   

where  ,x y is the stream function defined as u
y





 and v
x


 


, which 

automatically satisfy the continuity Eq. (4.1),  f   is the dimensionless stream 

function,   is the similarity variable and ( )   is the dimensionless temperature.   

Substituting Eqs. (4.5) to (4.7) into the momentum and the energy Eqs. (4.2) and 

(4.3), the following nonlinear ordinary differential equations are obtained             
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   2
Pr 1 1 1 0f ff f K f M f           

     
(4.8)                               

 
22

Pr 1 0f Ec f M f         
       

(4.9) 

with the transformed boundary conditions 

0  :      0,     ,    1

:     1,   0

f f c

f

 

 

   

  
       (4.10) 

where primes denote differentiation with respect to  , Pr



  is the Prandtl number, 

1

K
aK


  is the permeability parameter, 

2

2

Ree o x

e

B
M

u

 


  is the magnetic parameter, 

Re e
x

u x


  is the local Reynolds number, 

 

2

e

p w

u
Ec

C T T




 is the Eckert number and 

b
c

a


 
is the stretching or shrinking parameter with 0c  for stretching and 0c   for 

shrinking. 

4.4  Numerical Procedure 

Equations (4.8) and (4.9) along with the boundary conditions Eq. (4.10), are solved 

numerically using Runge-Kutta fourth order method along with shooting technique. 

By converting them into the following simultaneous linear differential equations of 

first order 

1 2p p           (4.11) 

2 3p p            (4.12) 
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   2

3 1 3 2 2 2

1
1 1 1

Pr
p p p p K p M p          

    
(4.13) 

and 

1 2q q           (4.14) 

  2

2 3 2

2

1 2 Pr 1q p M pp q Ec     
 

     (4.15) 

with the converted boundary conditions 

1 2 1

2 1

0 : 0,   ,  1

: 1, 0

p p c q

p q





   

     
    (4.16) 

where  1 2 3 1,    ,    ,    p f p f p f q       and 2 q  . 

To solve Eqs. (4.13) and (4.15) as an initial value problem, the values of  3 0p
 
and 

 2 0q
 
are required. But no such values are given at the boundary. So the suitable 

guess values for  3 0p and  2 0q  are chosen and the fourth order Runge-Kutta 

method with step size 0.001 is applied to obtain the solution. The computations have 

been carried out for various values of the stretching or shrinking parameter c , the 

Prandtl number Pr , the permeability parameter K , the magnetic parameter M  and 

the Eckert number Ec . A sixth decimal place accuracy is restricted for the sake of 

convergence. 

4.5  Local Skin Friction and Surface Heat Transfer 

The physical quantities of interest are the local skin friction coefficient 
fC  and the 

surface heat transfer i.e. local Nusselt number xNu , which are defined as 
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        (4.18) 

Using the similarity variables (4.5) to (4.7), Eqs. (4.17) and (4.18) becomes 

 
1

Re 0
2

f xC f 
 

       (4.19) 

 0
Re

x

x

Nu
 

 

       (4.20) 

where the function (0)f  and (0)  present the wall shear stress and the heat transfer 

rate at the surface respectively. 

4.6  Numerical Results and Discussion 

This section is devoted for the demonstration of computational results in graphical 

and tabular form with discussion of the results. In order to develop a better 

understanding of the physical problem, as display the influences of various parameters 

such as the stretching or shrinking parameter c , the Prandtl number Pr , the 

permeability parameter K , the magnetic parameter M  and the Eckert number Ec  on 

the velocity  f  , the temperature    , the shear stress  0f   and the heat 

transfer rate  0  . 
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Figures 4.2 and 4.3, display the effects of the stretching or shrinking parameter c  on 

the velocity  f   and the temperature     profiles respectively, while the other 

parameters are constant. These figures show that the velocity increases with the 

increasing values of the stretching or shrinking parameter c  while the temperature 

decreases for an increment in the stretching or shrinking parameter c . Thus the actual 

effect of the stretching or shrinking parameter is to make the temperature distribution 

more uniform within the boundary layer. So, it can be effectively used for the fast 

cooling of the sheet. 

 

 

 

Fig. 4.2 Effects of c  on the velocity distribution for Pr 1.0, 0.1K  and 0.1M   
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Fig. 4.3 Effects of c  on the temperature distribution for Pr 1.0, 0.1K  , 0.1M   and 

0.1Ec   

 

The velocity  f   and the temperature     distribution for various values of the 

Prandtl number Pr  are shown in Figs. 4.4 and 4.5 respectively, keeping other 

parameters constant. From these figures it is evident that the velocity decreases with 

the increasing values of the Prandtl number Pr  while in the same case the temperature 

increases accordingly. This is due to the fact that the increasing values of the Prandtl 

number reduce the thermal boundary layer thickness. It can be noticed that the 

temperature distribution asymptotically approaches to zero in the free stream region. 

So, in heat transfer problems the Prandtl number controls the relative thickness of 

flow and thermal boundary layers, and can be used to increase the cooling rate. 
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Fig. 4.4 Effects of  Pr  on the velocity distribution for 0.1, 0.1c K   and 0.1M   

 

 

Fig. 4.5 Effects of  Pr  on the temperature distribution for 0.1, 0.1, 0.1c K M     and 

0.1Ec   
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Figures 4.6 and 4.7 plotted the influences of the permeability parameter K  on the 

velocity  f   and the temperature     profiles respectively, taking other 

parameters constant. From these figures it can be seen that the velocity increases with 

the increasing values of the permeability parameter K  but the reverse is true for the 

temperature distribution. For higher values of the permeability parameter the velocity 

profile is nearly uniform in which the velocity boundary layer is confined within a 

very thin region. This phenomenon occurs for the assumption of pure Darcy flow. It is 

also clear that the velocity is more sensitive to the permeability parameter than the 

temperature profiles, as compared in these figures. 

 

 

Fig. 4.6 Effects of  K  on the velocity distribution for 0.1,Pr 1.0c   
 
and 0.1M   
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Fig. 4.7 Effects of  K  on the temperature distribution for
 

0.1,Pr 1.0, 0.1c M     and 

0.1Ec    

 

The influence of different values of the magnetic parameter M  on the velocity  f   

and the temperature   
 
distribution are presented in Figs. 4.8 and 4.9 respectively, 

where the other parameters are kept constant. These figures indicate that the velocity 

increases with the increasing values of the magnetic parameter M  but the opposite 

behavior is true for the temperature distribution. From a physical point of view, this 

can be explained by the fact that the application of a uniform magnetic field normal to 

the flow direction gives rise to a force which is known as Lorentz force. This force is 

positive and consequently as the magnetic parameter increases, the force also 
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Fig. 4.8 Effects of  M  on the velocity distribution for 0.1,Pr 1.0c   
 
and 0.1K   

 

 

Fig. 4.9 Effects of  M  on the temperature distribution for 0.1,Pr 1.0, 0.1c K     and 

0.1Ec   
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Figure 4.10 exhibits the temperature     profiles for the variation in the Eckert 

number Ec  keeping other parameters constant. In this case, it is noteworthy that the 

Eckert number Ec  has an increasing effect on the temperature profiles. This is a 

consequence of the fact that for higher values of the Eckert number, there is 

significant generation of heat due to viscous dissipation near the sheet. Therefore, 

viscous dissipation in a flow through porous surface is beneficial for gaining the 

temperature. 

 

 

Fig. 4.10 Effects of Ec  on the temperature distribution for 0.1,Pr 1.0, 0.1c K     and

0.1M   

 

Table 4.1 shows the effects of the stretching or shrinking parameter c , the Prandtl 

number Pr , the permeability parameter K  and the magnetic parameter M  on the wall 

shear stress  0f  . It is seen that the wall shear stress  0f  decreases with the 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6

Ec=0.1

Ec=0.3

Ec=0.5

Ec=0.7

η

θ
(η

)



Heat and Mass Transfer by MHD ………….. in a Porous Medium            83 

 
 

increasing values of the stretching or shrinking parameter c  and the Prandtl number

Pr  when other parameters are constant while a reverse phenomenon occurs for the 

permeability parameter K  and the magnetic parameter M . From physical point of 

view, positive sign of skin friction coefficient means the fluid exerts a drag force on 

the surface while the negative sign means the opposite. 

Table 4.1 Numerical values of  0f   for different values of , Pr,c K and M  

c  Pr  K  M   0f   

- 0.5 1.0 0.1 0.1 1.640077 

- 0.2 
 

  1.474584 

  0.2 
 

  1.109737 

  0.5 
 

  0.747083 

- 0.1 0.7 0.1 0.1 1.670304 

 
1.0 

 
 1.397476 

 
2.0 

 
 0.988166 

 
5.0 

 
 0.625275 

- 0.1 1.0 1.0 0.1 1.742807 

 
 2.0 

 
2.060220 

 
 3.0 

 
2.335104 

- 0.1 1.0 0.1 1.0 1.742807 

 
  3.0 2.335104 

 
  5.0 2.805457 

 

The variation of the reduced Nusselt number  0   for several values of the 

stretching or shrinking parameter c , Prandtl number Pr , the permeability parameter

K , the magnetic parameter M  and the Eckert number Ec  are presented in Table 4.2. 

It is numerically seen that the heat transfer rate   0 
 
decreases with the increasing 



84          Chapter 4  

values of the stretching or shrinking parameter c  and the permeability parameter K  

but an opposite behavior is noted in the case of the Prandtl number Pr , the magnetic 

parameter M and the Eckert number Ec , taking other parameters constant. Moreover 

it is quite evident that the values of the heat transfer rate  0 
 
are always negative 

for all the values of physical parameters considered. Practically, negative sign of 

Nusselt number means that there is a heat flow from the surface. 

Table 4.2 Numerical values of  0   for different values of , Pr, ,c K M and Ec  

c  Pr  K  M  Ec
 

 0  

- 0.5 1.0 0.1 0.1 0.1 0.314390 

- 0.2 
 

   0.437600 

0.2 
 

   0.583240 

0.5 
 

   0.676620 

- 0.1 0.7 0.1 0.1 0.1 0.511050 

 
1.0 

 
  0.476115 

 
2.0 

 
  0.401936 

 
5.0 

 
  0.291996 

- 0.1 1.0 1.0 0.1 0.1 0.484310 

 
 2.0 

 
 0.487360 

 
 3.0 

 
 0.487370 

- 0.1 1.0 0.1 1.0 0.1 0.457348 

 
  3.0  0.418457 

 
  5.0  0.383180 

- 0.1 1.0 0.1 0.1 0.3 0.326960 

 
   0.5 0.177807 

 
   0.7 0.028650 
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In order to validate the accuracy of computational results obtained in present study, 

the values of the wall shear stress and the heat transfer rate are compared with the 

previous results of Sparrow et al. (1962), Yih (1998), and Lok and Pop (2014) in 

Table 4.3. From the table it can be seen that the results are in an excellent agreement. 

Table 4.3 Comparison of the values of  0f  and  0 with the previous literature results 

for  Pr 1.0 , 0.0K   and 0.0Ec   

c  M  

 0f    0  

Spa-

rrow 

(1962) 

Yih 

(1998) 

Lok and 

Pop 

(2014) 

Present 

Study 

Spar-

row 

(1962) 

Yih 

(1998) 

Present 

Study 

-0.5 0.0   1.49567 1.49567    

-0.2    1.05113 1.05113    

 0.5    0.71329 0.713295    

0.0 0.0 1.231 1.232588 1.23259 1.232588 0.5705 0.570465 0.570465 

 1.0 1.584 1.585331  1.585331 0.5953 0.595346 0.595346 

 4.0 2.345 2.346663  2.34666262 0.6341 0.634132 0.6341319 

 

4.7  Concluding Notes 

The combined effects of the stretching or shrinking parameter, the Prandtl number, 

the permeability parameter, the magnetic parameter and the Eckert number on two-

dimensional boundary layer magnetohydrodynamic stagnation point flow were 

studied numerically. The governing equations were transferred to a set of ordinary 

differential equations by using similarity variables and computational results for the 

velocity, the temperature, the wall shear stress and the heat transfer rate at the surface 

are made by Runge-Kutta fourth order method in the association with shooting 

technique. From the results of the problem, it can be concluded that the velocity 

profile is changing due to the stretching or shrinking parameter, the permeability 
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parameter, the magnetic parameter and the Prandtl number. These changes are 

revealed by the velocity increases with the increasing values of the stretching or 

shrinking parameter, the permeability parameter and the magnetic parameter while it 

decreases with the increase in the Prandtl number. On the other hand, the thermal 

boundary layer thickness decreases for the increasing values of the stretching or 

shrinking parameter, the permeability parameter and the magnetic parameter but an 

opposite behavior occurs for the Prandtl number and the Eckert number. Moreover the 

local skin friction coefficient decreases with the stretching or shrinking parameter and 

the Prandtl number while the reverse phenomenon occurs for the permeability 

parameter and the magnetic parameter. Finally, the surface heat transfer rate decreases 

with the stretching or shrinking parameter and the permeability parameter but the 

reverse behavior is noted for the Prandtl number, the magnetic parameter and the 

Eckert number.  

 

 

 

 

 

 

 

 

 



5 

MHD Forced Convection Flow near Stagnation 

Point and Heat Transfer with Newtonian Heating, Constant 

Wall Temperature and Constant Heat Flux by  

Finite Element Method 

 

5.1  Introduction  

Free convection occurs due to the temperature difference of the fluid in its entire fluid 

domain while forced convection is the heat flow occurring due to externally applied 

forces. Forced convection is generally used to enhance the heat transformation rate. 

This is brought about by various methods like enhancing the thermal conductivity, 

changing flow geometry and boundary conditions of the fluid. It plays a vital role in 

many manufacturing and technological processes such as mixing of one substance 

within another, heating and cooling of body parts by blood circulation, fluid radiator 

systems, cooling processes of foods, action of a propeller in a fluid and in 

aerodynamic heating. In all the above processes, to reduce heat as much as possible, it 

is necessary to increase the heat transfer rate from the body surface to encompassing 

fluid medium. Even small improvements in the heat transfer characteristics may lead 

to significant savings. In many electronic components like capacitors, solenoids, 



88           Chapter 5 

inductors and transistors, external fans are required to prevent component damage 

because natural convection has a relatively poor cooling efficiency. The relevant 

literature can be found in the books by Kuznetsov (2000), Shang (2010), Nield and 

Bejan (2012) and Bejan (2013). Moreover, a large number of investigations have been 

made on flow heat transfer past a surface under the condition of forced convection by 

many researchers like Jackson et al. (1959), Schneider (1979), Lin and Lin (1987), 

Seddeek (2002), El-Amin, (2003), Nield and Kuznetsov (2003), Duwairi (2005), and 

Merkin and Pop (2011). Recently, Sasmal et al. (2013), and Chaudhary and Kumar 

(2014) have considered various aspects of this problem and obtained similarity 

solutions.  

The phenomenon of stagnation point flow of a viscous incompressible fluid has an 

important bearing on various engineering and technological processes. So, the flow 

near the stagnation point has attracted the attention of many researchers for more than 

a century. Stagnation point actually appears in almost all flow fields of engineering 

and sciences. Sometimes flow is stagnated by a solid surface while in rest stagnation 

point or a line exists inside the fluid domain. The highest pressure, the highest heat 

transfer and the highest rate of mass decomposition are encountered by the stagnation 

region. It should be noted that the solution of stagnation point flows are valid in a 

small region in the vicinity of the stagnation point of a two or three dimensional body 

but they represent a number of physical flows of technological and industrial 

significance. This problem arises in a large class of industrial manufacturing and 

engineering processes such as flow over the tips of rockets, blood flow problems, 

cooling of electronic devices by fans, processes in the textile and paper industries, 

central receivers exposed to wind currents, submarines, boundary layer along material 
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handling conveyers, the aerodynamic extrusion of plastic sheets, oil ships and 

aircrafts. It is also noted that increment in magnetic field increases the velocity at 

stagnation point when the free stream velocity is greater than the stretching velocity. 

Heimenz (1911) became the first person who studied the boundary layer flow in the 

stagnation region over an infinite surface. Later, Homann (1936) extended that 

problem for axisymmetric case. Further a large number of analytical and numerical 

studies explaining various physical situations of the boundary layer stagnation point 

flow are presented by Eckert (1942), Sano (1981), Amin and Riley (1996), Mahapatra 

and Gupta (2002), Lok et al. (2006), and Yacob and Ishak (2012). Recently, 

Mahapatra and Nandy (2013), Lok and Pop (2014), and Chaudhary and Choudhary 

(2016a) considered the problem of stagnation point flow in different situations. 

In all of the above mentioned studies, much attention has been given to investigate the 

boundary layer flow with heat transfer through either a constant wall temperature or a 

constant heat flux at the surface. Besides this, there is another important case of 

boundary condition in which the surface heat transfer rate depends on the wall 

temperature linearly or nonlinearly. When the wall heat exchange rate is proportional 

to the local surface temperature from the surrounding wall with finite heat capacity, it 

is known as the Newtonian heating or conjugate convective flow. Although 

Newtonian heating is of utmost importance in the variety of mechanical appliances 

including heat fins, heat exchangers, etc., this heat transfer process is assumed to be 

negligible in the literature. The pioneering work in this area was carried out by 

Merkin (1994) who started to describe the term Newtonian heating in heat transfer 

problems. Later several authors like Pop et al. (2000), Lesnic et al. (2000, 2004), 
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Salleh et al. (2011), Merkin et al. (2012) and Hayat et al. (2015) have studied 

Newtonian heating effect and convective heat transfer over various geometry of flow.  

Boundary layer flow of an electrically conducting fluid in the presence of transverse 

magnetic field is a topic of significance in heat transfer problems because of its 

numerous applications in various engineering and industrial problems such as MHD 

marine propulsion, ion propulsion, microelectronic devices, cooling of nuclear 

reactors, MHD power generators, petroleum industries, boundary layer control in 

aerodynamics, growth of crystal, MHD bearings and MHD pumps. In all the above 

processes, cooling rate and the desired properties of final product can be controlled by 

using the electrically conducting fluid in the presence of magnetic field. From the last 

few decades the effect of magnetic field over electrically conducting fluid have 

presented extensively due to its frequent occurrence in many technological processes 

in geophysics, astrophysics and in the area of metallurgy like magnetic-levitation 

casting, MHD stirring of molten metal, exotic lubricants and suspension solutions, 

solidification of liquid crystals, foodstuff processing and purification of molten metal 

from non-metallic inclusions. Molten metal sprayed from a height on the substrate 

containing sulphides, oxides, silicates etc., as stagnation point flow, applied transverse 

magnetic field and electromagnetic force help to separate the non-metallic inclusions 

from the molten metal. Probably Andersson (1992) was the first who considered the 

hydromagnetic flow of visco-elastic fluid over a stretching sheet. The problem of 

MHD stagnation point flow past a stretching sheet was presented by Mahapatra and 

Gupta (2001). Following him, many researchers such as Abel and Mahesha (2008), 

Singh and Singh (2012), Olajuwon and Oahimire (2014), Chaudhary et al. (2015), and 

Chaudhary and Choudhary (2016b) discussed different magnetohydrodynamic flow 
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problems and presented analytical and numerical solutions considering various 

aspects of the problems. 

Objective of the present study is to develop a mathematical model for the steady two 

dimensional forced convection flow of an electrically conducting fluid near the 

forward stagnation point in the presence of magnetic field and viscous dissipation. 

The same problem was also considered by Salleh et al. (2009) in the absence of 

magnetic field and they also neglected the viscous dissipation near the sheet which is 

very important in variety of technological processes. In the present paper, heat 

transfer is presented and compared in three different cases as Newtonian heating 

(NH), constant wall temperature (CWT) and constant heat flux (CHF) which is not 

available in literature yet. The obtained results represent productive information for 

application and can be used as a magnification of previous results. 

5.2  Problem Formulation 

Two-dimensional forced convection laminar boundary layer flow of a viscous 

incompressible electrically conducting fluid near the forward stagnation point at a 

solid surface is considered here. In this model rectangular coordinates are used and 

x and y  axes are taken along the infinite surface and normal to it respectively, 

keeping origin at the stagnation point of the wall. A uniform transverse magnetic field 

of strength 0B
 
is subjected to the fluid in the direction of y axis, as shown in Fig. 

5.1. The magnetic Reynolds number is taken very smaller than unity so that induced 

magnetic field becomes very small compared to the applied magnetic field and can be 

neglected.  The  viscous  dissipation near the  sheet is also taken into the  account. The  
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Fig. 5.1 Flow configuration 

external free stream flow velocity   eu x ax   varies linearly along x axis, where 

a  is a positive constant and x  is the coordinate measured along the infinite surface. 

The ambient fluid temperature T  
is a constant. The wall is also subjected to a NH, 

CWT and CHF of the form 
0

s

y

T
h T

y


 
  

 
 , wT T  and 

0

w

y

qT

y 


 
  

 
 

respectively, where T  is the fluid temperature, s

a
h




 
is a constant,   is kinematic 

viscosity, wT  is the fluid temperature at the surface, wq
 
is the constant heat flux from 

the wall and   is the thermal conductivity. Therefore, under the boundary layer 

approximation the continuity, momentum and energy equations can be written as 

0
u v

x y

 
 

 
         (5.1) 

0B
0B

 , eT u x

wT


x

y

Stagnation point
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



  
    
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        (5.2) 
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2

e
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BT T T u
u v u u

x y y C y C




 

    
     

    
    (5.3)   

subject to the following boundary conditions in the case of NH, CWT and CHF  

 

0   :   0, 0,  (NH), (CWT), (CHF)

 :  ,    

w
s w

e

qT T
y u v h T T T

y y k

y u u x T T

 
       

 

  
       

(5.4) 

where u and v are the velocity components in the x  and y   directions, 

respectively, e  
is the electrical conductivity,   is the fluid density,   is the thermal 

diffusivity,   is the coefficient of viscosity and 
pC  is the specific heat at constant 

pressure. 

5.3  Similarity Analysis 

The governing Eqs. (5.1) to (5.3) along with the boundary conditions Eq. (5.4) can be 

represented in a simpler form by introducing the following dimensionless variables 

[Salleh et al. (2009)] 

   ,x y x a f  
        

(5.5) 

a
y


              (5.6) 

 

   

   

1 , NH

, CWT

/ , CHF

w

s w

T

T T T T

T h q

 

 

  



 



   
  




      (5.7) 
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where ( , )x y  is the stream function defined as u
y





 and v
x


 


 which 

identically satisfies the continuity Eq. (5.1) ,  f   is the dimensionless stream 

function,   is the similarity variable, y  is the coordinate measured along normal to 

the infinite surface and ( )   is the dimensionless temperature.  

Using Eqs. (5.5) to (5.7), the momentum and the energy Eqs. (5.2) and (5.3) can be 

converted to the following nonlinear ordinary differential equations             

 2
1 1 0f ff f M f        

      
(5.8)                               

 
221

1 0
Pr

f Ec f M f         
              (5.9) 

with the reduced boundary conditions 

       0  :  0,   0,  1 NH , 1 CWT , 1 CHF

:  1, 0

f f

f

    

 

          

  
      (5.10) 

where prime denotes differentiation with respect to  , 

2

e oB
M

a




  is the magnetic 

parameter, Pr



  is the Prandtl number and 

2

e

p

u
Ec

C T

 (NH), 
 

2

e

p w

u
Ec

C T T




 

(CWT) and 
2

e

w
p s

u
Ec

q
C h



  (CHF) is the Eckert number. 

5.4  Solution Procedure 

To obtain the computational solution of the Eqs. (5.8) and (5.9) with the appropriate 

boundary conditions Eq. (5.10), Galerkin finite element method is applied in the 
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association with Gauss elimination scheme. Initially, introducing a new dependent 

variable h  such that 

f h           (5.11) 

the Eqs. (5.8) to (5.10) were converted into the following set of differential equations 

 2 11 0h fh h M h             (5.12) 

 
221

1 0
Pr

f Ec h M h   
  

      
     

(5.13) 

with the reduced boundary conditions 

       0  :  0,  0, 1 NH , 1 CWT , 1 CHF

: 1,  0

f h

h

    

 

         

  
     (5.14) 

For the computational procedure, the free stream boundary conditions at    is 

shifted to a sufficiently large finite value at 6    which is very approximate to 

attain the free stream flow field characteristic asymptotically for all values of 

considered physical parameters. Further, the whole space is separated into 1000 equal 

two-nodded linear elements which are continuous and the linear Lagrange polynomial 

formula is imposed for every typical element.  

The weak form of Eqs. (5.11) to (5.13) for an individual element  1,e e   , is 

considered as 

 
1

1 0
e

e

w f dh







         (5.15) 
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w dh fh h M h
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


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 
1 22

3

1
1 0

Pr

e

e

w f Ec h M h d



  

            
      (5.17) 

where 1 2,w w  and 3w  are weight functions related to the functions ,f h and   

respectively. 

Introducing the shape function i  for an element  1,e e     

     1
1 2 1

1 1

, ; ,
e ee e

e e

e e e e

   
    

   




 

 
  

 
 

and the finite element approximations are assumed of the form 

2 2

1 1

,j j j j

j j

f f h h 
 

   and 
2

1

j j

j

  


  with  1 2 3 , 1,2iw w w i     . 

Now the element equations for Eqs. (5.15) to (5.17) are assembled over the entire 

space using the connected inter-element condition, which provides a large amount of 

linear equations also known as global finite element model. 

 

 

 

11 12 13 1

21 22 23 2

31 32 33 3

[ ] [ ] [ ] { }
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    
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    

      (5.18) 

where 
mnK    and  1,2 and 1,2mb m n      are define as 

1 111 12 13, , 0,
e e

e e
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i j i i j i j i j
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and also 

2 2 2 2

1 1 1 1

, , ,i i i i i i i i

i i i i

f f h h h h    
   

        . 

Here the whole domain is divided into 1000 linear subdomains. So the complete 

domain has 1001 nodes and at each node, three unknown functions ,f h  and   are to 

be evaluated. Therefore the element equations for entire domain are assembled and a 

matrix of order 3003 3003 is obtained. After imposing the boundary conditions, the 

system of 2998 equations remain to be solved by any iterative method. Newton-

Raphson scheme is used to solve the system of linear equations in the present study. 

The step size is taken as 0.006   and the iterative process is terminated when the 

following condition is satisfied 

1 710j j

i i

i

     

where   stands for either ,f h  or   and j  denotes the iterative step. 

5.5  Skin Friction and Nusselt Number 

The important physical quantities of practical interest in this study are the local skin 

friction coefficient fC  and the surface heat transfer i.e. local Nusselt number xNu , 

which are defined as 
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        (5.20) 

Using the similarity variables (5.5) to (5.7), the local skin friction coefficient fC  and 

the local Nusselt number xNu
 can be expressed as 

 
2

0
Re

f

x

C f 
 

       (5.21) 

   
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 
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0 , CWT
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 
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



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


      (5.22) 

where  Re e
x

u x




 
 is the local Reynolds number.   

5.6  Validation of the Numerical Method 

The proposed computational method, applied in the previous section is validated here. 

Table 5.1 represents the comparison of the results for the heat transfer rate  0  in 

the case of CWT for various values of the Prandtl number Pr  in the absence of the 

magnetic parameter M  and the Eckert number Ec with the earlier published works of 

Eckert (1942) and Salleh et al. (2009). Further, the numerical values of the 

temperature profile  0  in the case of CHF are also compared for some different 

values of the Prandtl number Pr  with literature of the researchers like Lok et al. 
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(2006) and Salleh et al. (2009) in limiting cases. It is evident from the table that the 

results of present study are in excellent agreement with those researchers. The 

reliability and the efficiency of the obtained results are also claimed by the table. 

Table 5.1 Comparison of  0  and  0  for various values of Pr where 0.0M Ec   

and  0 1.232588f    

Pr  

 0  (CWT)  0  (CHF) 

Eckert 

(1942) 

Salleh et 

al. (2009) 

Present 

Results 

Lok et al. 

(2006) 

Salleh et 

al. (2009) 

Present 

Results 

0.1  0.2195 0.2379586 4.5557 4.5557 4.202411 

0.2  0.2964 0.3003920 3.3743 3.3742 3.328983 

0.4  0.3958 0.3959727 2.5267 2.5267 2.525427 

0.6  0.4663 0.4663406 2.1444 2.1444 2.144356 

0.7 0.496 0.4959 0.4958680 2.0166 2.0166 2.016665 

0.8 0.523 0.5228 0.5227418 1.9130 1.9130 1.912991 

1.0 0.570 0.5705 0.5704650 1.7529 1.7529 1.752955 

5.0 1.043 1.0436 1.0434330 0.9583 0.9583 0.958375 

7.0  1.1786 1.1783750 0.8485 0.8485 0.848627 

10.0 1.344 1.3391 1.3387960 0.7468 0.7468 0.746940 

 

5.7  Numerical Results and Discussion 

This section is devoted to bring out the variations in the velocity  f  , the 

temperature    , the shear stress  0f   and the heat transfer rate  0  due to some 

pertinent parameters like the magnetic parameter M , the Prandtl number Pr and the 

Eckert number Ec . Computational results of the velocity  f   and the temperature 

    are demonstrated through graphs while the values of the shear stress  0f   and 

the heat transfer rate  0   are shown in Table. 

Effects of several values of the magnetic parameter M  on the velocity  f   profile 

and the temperature   
 
profiles for NH, CWT and CHF cases are displayed in 
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Figs. 5.2 and 5.3 to 5.5 respectively where the other parameters are kept constant. 

From these figures, the velocity within the boundary layer increases with the 

increasing values of the magnetic parameter M . Moreover, It is noted that the 

temperature decreases significantly with the increasing values of the magnetic 

parameter M  in all three considered cases while in the case of NH, the reverse 

phenomenon occurs for 1.5  . It is also noticeable that the actual effect of the 

magnetic parameter M  is negligible in all cases for higher values of  . Physically, 

the momentum boundary layer thickness decreases with the increasing values of the 

applied magnetic parameter due to damping effects. This is revealed by the fact that 

the magnetic field is applied normal to the fluid has a tendency to create a drag due to 

Lorentz force which enhances the fluid velocity.  

 

 

Fig. 5.2 Velocity distribution for various values of M  
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Fig. 5.3 Temperature distribution of the NH case for various values of M  with Pr 0.7 and 

0.1Ec   

 

Fig. 5.4 Temperature distribution of the CWT case for various values of M  with Pr 0.7

and 0.1Ec   
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Fig. 5.5 Temperature distribution of the CHF case for various values of M  with Pr 0.7 and 

0.1Ec   

 

The temperature     distribution for different values of the Prandtl number Pr  are 

shown in Figs. 5.6 to 5.8 for NH, CWT and CHF cases respectively, keeping other 

parameters constant. From these figures it is clearly appreciated that the temperature 

decreases with increasing values of the Prandtl number Pr  in all cases but in the case 

of NH the reverse phenomenon is true for 1.25  . This is due to the fact that an 

increment in the Prandtl number reduces the thermal boundary layer thickness. It may 

be observed that the temperature distribution asymptotically approaches to zero in the 

free stream region. So, the Prandtl number controls the thermal boundary layers in 

heat transfer problems, and can be used to increase the cooling rate. 
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Fig. 5.6 Temperature distribution of the NH case for various values of Pr  with 0.1M  and 

0.1Ec   

 

 

Fig. 5.7 Temperature distribution of the CWT case for various values of Pr  with 0.1M 

and 0.1Ec   
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Fig. 5.8 Temperature distribution of the CHF case for various values of Pr  with 0.1M  and 

0.1Ec   

 

Figures 5.9 to 5.11 exhibit the temperature     profiles in NH, CWT and CHF cases 

respectively for the variation in the Eckert number Ec  while the other parameters are 

constant. It is noteworthy from these figures that the Eckert number Ec  has the 

decreasing effect on the temperature profiles for the case of NH. Furthermore, the 

temperature profile increases with the increasing values of the Eckert number Ec  in 

the case of CWT and CHF respectively. This is because of the higher values of the 

Eckert number, there is significant generation of heat due to viscous dissipation near 

the sheet. Therefore, viscous dissipation in a flow near the stagnation point is 

beneficial for gaining the temperature. 
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Fig. 5.9 Temperature distribution of the NH case for various values of Ec  with 0.1M  and 

Pr 0.7  

 

 

Fig. 5.10 Temperature distribution of the CWT case for various values of Ec  with 0.1M 

and Pr 0.7  
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Fig. 5.11 Temperature distribution of the CHF case for various values of Ec  with 0.1M 

and Pr 0.7  

 

Variations in the wall shear stress  0f  , and the heat transfer rate  0
 
in the 

cases of NH and CWT for various values of the magnetic parameter M , the Prandtl 

number Pr  and the Eckert number Ec  are demonstrated in Table 5.2, taking other 

parameters constant. It is seen that the wall shear stress  0f  increases with the 

increasing values of the magnetic parameter M . It is also clear from the table that the 

values of the wall shear stress are positive for all values of the magnetic parameter 

M . From physical point of view, positive sign of wall shear stress means the fluid 

exerts a drag force on the surface in this case. The heat transfer rate  0 increases 

with the increasing values of the magnetic parameter M , the Prandtl number Pr and 

the Eckert number Ec in the cases of NH. Further, the heat transfer rate  0
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number Ec while an opposite behavior is noted for the Prandtl number Pr  in the case 

of CWT. Practically, positive sign of the heat transfer rate signifies that there is a heat 

flow to the surface and vice versa. 

Table 5.2 Values of    0 , 0f  
 
and  0  for various values of , PrM and Ec  

M  Pr  Ec   0f 
 

 0  

(NH) 

 0  

(CWT) 

 0  

(CHF) 

0.1 0.7 0.1 1.272181 1.08173 0.4539928 2.095671 

0.4   1.384316 1.128029 0.451467 2.086313 

0.7   1.488169 1.169857 0.4488157 2.079388 

1.0   1.585331 1.208139 0.4460865 2.074238 

1.5   1.7353606 1.265761 0.4414438 2.068479 

0.1 0.5 0.1  0.8285029 0.4029627 2.371311 

 1.0   1.489497 0.511926 1.850961 

 1.5   2.309527 0.5815766 1.623709 

 2.0   3.434646 0.632513 1.491046 

0.1 0.7 0.5  1.43526 0.276638 2.451568 

  1.0  1.877172 0.0549449 2.896439 

  1.5  2.3190838 -0.1667483 3.341310 

  2.0  2.760995 -0.388442 3.786181 

 

5.8  Concluding Notes 

The Newtonian heating effects in the comparison of constant wall temperature and 

constant heat flux of the magnetohydrodynamic flow near the stagnation point were 

presented theoretically. The governing conservation equations were reduced to a set 

of ordinary differential equations and solved numerically by Galerkin finite element 

method in the association with Gauss elimination technique. Computational results for 

the velocity, the temperature, the wall shear stress and the heat transfer rate at the 

surface were demonstrated with respect to the magnetic parameter, the Prandtl 
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number and the Eckert number. The main observations of present study can be 

summarized as follows 

(i) In the presence of the magnetic field, the velocity is found to be increased, 

associated with a production in the velocity gradient at the wall, and thus 

the shear stress increased. Also, the applied magnetic parameter tends to 

decrease the wall temperature in all three cases. It is also noticeable that 

behavior of the temperature in NH case slightly changes after eta greater 

than 1.5. Moreover, the surface heat transfer rate has an increasing effect 

in the cases of NH and CWT for the increasing value of the magnetic 

parameter. 

(ii) Increasing value of the Prandtl number has the effect to decrease the 

temperature profile for all three considered cases. In addition, for the case 

of NH, the behavior of the temperature profile becomes quite opposite 

after the point 1.25  . On the other hand, the heat transfer rate for the 

case of NH increases with the increasing value of the Prandtl number but a 

reverse phenomenon is noted in the case of CWT. 

(iii) Finally, the temperature profile decreases with the increasing values of the 

Eckert number in the case of NH while an opposite behavior is observed in 

the case of CWT and CHF. Consequently, increasing the Eckert number 

will produce an increase in the heat transfer rate in NH and CWT cases. 

 



6 

Viscous Dissipation and Joule Heating Effects on 

an Unsteady Magnetohydrodynamic Flow over a Linearly 

Stretching Permeable Surface with Uniform 

Wall Temperature 

 

6.1  Introduction 

Owing to the numerous applications in industrial manufacturing, modern 

metallurgical and metal-working processes such as hot rolling, glass blowing, paper 

production, wire drawing, drawing of plastic films, metal spinning, extrusion of 

plastic sheets, liquid composite molding metal and polymer extrusion etc, the study of 

magnetohydrodynamic flow of an electrically conducting fluid past a heated surface 

has attracted considerable interest of many researchers during the past few decades. 

Sakiadis (1961a) was the first who obtained boundary layer flow over a continuous 

solid surface moving with constant speed. Further, Erickson et al. (1966) extended 

this problem and included the wall suction or blowing and investigated its effects on 

the heat and mass transfer in the boundary layer. Crane (1970) studied about the 

steady two dimensional flow caused by a stretching sheet whose velocity varies 

linearly with the distance from a fixed point on the sheet, and found the exact solution 

for the flow field. The effects of heat and mass transfer for steady and unsteady flow 
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past a stretching sheet have been presented by several researchers, like Gupta and 

Gupta (1977), Chen and Char (1988), Daskalakis (1992), Ali (1994), Vajravelu and 

Roper (1999), Chamkha (1999), Mahapatra and Gupta (2002), Andersson (2002), Jat 

and Chaudhary (2008), Wang (2011), Mahapatra and Nandy (2013), Mansur et al. 

(2014) and Chaudhary et al. (2015), in the presence of different physical parameters. 

The problem of steady and unsteady laminar flow over a permeable surface has long 

been a major subject in heat transfer due to its importance from both theoretical and 

practical viewpoints and has been extensively studied. It also has many applications in 

engineering and technological processes, such as petroleum industries, ground water 

flows, extrusion of a polymer sheet from a dye and boundary layer control. Pursuing 

the pioneering studies of Beavers and Joseph (1967), the flow over a permeable 

surface has been investigated by Magyari and Keller (2000), Magyari et al. (2002) 

and Bachok et al. (2010). Recently, Cortell (2012), Rosca and Pop (2013), Chaudhary 

and Kumar (2013b) and Khader (2014) studied the flow and heat transfer over 

permeable surface in numerous cases. It has also been reviewed in books Bellman and 

Kalaba (1965), Schlichting and Gersten (2000), White (2006) and Bejan (2013). 

Fluid properties of various manufacturing processes desired for better outcome mainly 

depends on two aspects, one is the rate of stretching and other is the cooling liquid 

used. Sometimes, rapid stretching of the surface results in sudden solidification which 

destroys some expected properties of the outcomes. So, an extreme care has to given 

to control the rate of stretching. The use of electrically conducting fluid and 

applications of magnetic field can control the rate of cooling and the desired 

properties of the end product. The magnetic field has been used in the process of 
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purification of molten metal from non-metallic inclusions. The study of magneto-

hydrodynamic flow for an electrically conducting fluid past a heated surface has 

attracted a lot of attention in view of its important applications in many engineering 

problems such as plasma studies, foodstuff processing, solidification of liquid 

crystals, cooling of nuclear reactors, exotic lubricants and suspension solutions, the 

boundary layer control in aerodynamics, MHD power generators, magneto-

hydrodynamic flight and in the field of planetary magnetosphere. Andersson (1992) 

presented an exact analytical solution of the MHD flow of Walters liquid B past a 

stretching sheet. Further, Vajravelu and Nayfeh (1992) studied about hydromagnetic 

flow of a dusty fluid over a stretching surface. Later, several researchers such as 

Mahapatra and Gupta (2001), Abel and Mahesha (2008), Chen (2009), Jat and 

Chaudhary (2010), Singh and Singh (2012) and Ramesh et al. (2012) have focussed 

their attention to the various aspects of the problem of heat transfer and 

hydromagnetic flow. Recently, such problems have been investigated either 

analytically or numerically by Chaudhary and Kumar (2014), and Olajuwon and 

Oahimire (2014).  

Although viscous dissipation and Joule heating effects is of utmost importance in the 

various technological processes especially in nuclear physics and electronics, these 

effects are neglected in all above studies. Viscous dissipation plays an important role 

in the natural convection flow when the flow field is of extreme size or in high gravity 

and characterized by the Eckert number. On the other hand Joule heating plays a vital 

role in nuclear engineering in connection with the cooling of reactors and it is 

characterized by the product of the magnetic parameter and the Eckert number in the 

energy equation. In electronics and physics, Joule heating is used to enhance the 
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temperature of a conductor which opposes the electric current passing through it. 

Hossain (1992) has reported the combine effects of viscous dissipation and Joule 

heating on free convection flow with variable plate temperature. Later many 

researchers like El-Amin (2003), Israel-Cookey et al. (2003), Duwairi (2005), Cortell 

(2008), Jat and Chaudhary (2009b), Hossain and Gorla (2013) and Sreenivasulu et al. 

(2016) presented the influences of viscous dissipation and Joule heating on heat 

transfer problems. 

A quick review of literature shows that, in spite of numerous studies on the stretching 

surface and permeable surface, the effects of viscous dissipation and Joule heating on 

unsteady hydromagnetic flow over stretching permeable surface with uniform wall 

temperature is not yet available. Therefore, the aim of present paper is to extend the 

work of Ishak et al. (2009) for electrically conducting fluid in the presence of a 

uniform transverse magnetic field. 

6.2  Mathematical Model 

Consider an unsteady two dimensional boundary layer flow of an incompressible 

electrically conducting fluid over permeable surface coinciding with the plane 0y  , 

the flow being confined to 0y  . The x axis is chosen along the sheet, and a 

uniform magnetic field 0B  is imposed along y  axis (Fig. 6.1). The continuous 

stretching sheet is assumed to have the velocity 
1

w

ax
U

ct



 , the transpiration velocity 

through permeable wall is wV  with injection and suction for  0wV  and temperature 

w w

b
T T U

a
  ,  where a , b and  c are constants with 0,  0a b   and 

1
0 c

t
  , t   is  
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Fig. 6.1 Flow geometry and coordinate system 

 

the time, x  is the coordinate measured along the stretching sheet and  T   
is the 

temperature of  the  fluid far  away  from the sheet.  Under the boundary layer 

approximations, the unsteady two-dimensional boundary layer equations can be 

written as 

0
u v

x y

 
 

 
         (6.1) 
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   (6.3) 

subject to the boundary conditions 

     0   :       , ,  , ,  ,

 :       0,           

w w wy u U x t v V x t T T x t

y u T T

   

  
   (6.4) 

where u   and v  are the velocity components in the x  and y   directions, respectively, 
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



  is the kinematic viscosity,   is the coefficient of viscosity,   is the fluid 

density, e  
is the electrical conductivity, T  is the temperature of the fluid,   is the 

thermal diffusivity and
 pC  is the specific heat at constant pressure. 

Moreover, in the energy Eq. (6.3), the second and third terms on the right hand side 

signifies the viscous dissipation and the Joule heating, respectively. 

6.3  Similarity Transformations 

Using the physical stream function  , ,x y t , the continuity Eq. (6.1) is identically 

satisfied 

,   u v
y x

  
  
 

                (6.5) 

The mathematical analysis of the problem is simplified by introducing the following 

dimensionless coordinates [Ishak et al. (2009)] 

   , , wx y t xU f          (6.6) 

wU
y

x



          (6.7) 

 w

b
T T U

a
           (6.8) 

where  f 
 
is the dimensionless stream function,    is the similarity variable, y is 

the coordinate measured along normal to the stretching surface and    is the 

dimensionless temperature. Therefore, on using the Eqs. (6.5) to (6.8), the governing 

boundary layer Eqs. (6.2) and (6.3) with the boundary conditions Eq. (6.4), can be 

written in a non-dimensional form as 
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with the following boundary conditions 

00  :      ,     1,    1

:     0,    0

f f f

f

 

 

   

  
      (6.11) 

where primes denote differentiation with respect to  . 
c

A
a

  is the unsteadiness 

parameter, 
2

2

Ree o x

w

B
M

U

 


  is the magnetic parameter, Re w

x

U x


  is the local 

Reynolds number, Pr



  is the Prandtl number, 
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2

w

p w

U
Ec

C T T




 is the Eckert 

number and 0 Rew
x

w

V
f

U
   is the mass transfer parameter. 

6.4  Numerical Method for Solution 

The numerical solutions of the Eqs. (6.9) and (6.10) along with the boundary 

conditions Eq. (6.11) are solved by converting the boundary value problem (BVP) 

into initial value problem (IVP). Introducing the new set of dependent variables

1 2 3 1,  ,  ,  w w w p  and 2p , the following simultaneous linear equations of first order are 

obtained 

1 2w w           (6.12) 

2 3w w            (6.13) 
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     (6.14) 

and 

1 2p p           (6.15) 

 2 1 2 2 1 2 1

2 2

3 2Pr
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2
p w p A p p w p Ec w Mw      

  
    

   (6.16) 

with the boundary conditions 

1 2 1

2 1

00  :     ,     1,    1

:    0,    0

w f w p

w p




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  
     (6.17) 

where  1w f  and 1 p  . 

In order to solve Eqs. (6.14) and (6.16) subject to the boundary conditions Eq. (6.17) 

as an IVP, the values for  03w  and  02p  are required but no such values are given at 

the boundary. So the suitable estimated values for  03w  and  02p  are chosen and 

the fourth order Runge-Kutta method along with shooting technique is applied with 

step size 001.0  to obtain the solution. Comparing the calculated values for 2w  

and 1p for various values of different parameters at the far field boundary condition 

6 (say) with the given boundary conditions   062 w
 
and   061 p , the 

values of  03w  and  02p  are adjusted from the guess values to give a better 

approximation for the solution. The process is repeated until the results accuracy of 

the 610  as the criterion of convergence. 
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6.5  Skin Friction and Nusselt Number 

The physical quantities of primary interest are the local skin-friction coefficient fC  

and the local Nusselt number xNu , which are defined as 

0
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2

y

f

w

u

y
C

U







 
 
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         (6.18) 
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         (6.19) 

Using the Eqs. (6.5) to (6.8), the Eqs. (6.18) and (6.19) are converted as 

 
1

0 Re
2

f xf C          (6.20) 

 0
Re

x

x

Nu
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       (6.21) 

6.6  Computational Results and Discussion 

In order to get clear insight of the physical problem, numerical results of the velocity 

 f   and the temperature     profiles for various parameters such as the mass 

transfer parameter 0
f , the unsteadiness parameter A , the magnetic parameter M , the 

Prandtl number Pr  and the Eckert number Ec  are illustrated with the help of graphs. 

Moreover the computations of the functions  0f  and  0   which are proportional 

to local skin friction coefficient f
C  and local Nusselt number x

Nu  respectively have 

been carried out through tables. 
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Figures 6.2 and 6.3, plotted the effects of the mass transfer parameter 
0

f  on the 

velocity  f   and the temperature     profiles respectively, while the other 

parameters are constant. These figures show that the velocity and the temperature 

decrease with the increasing values of the mass transfer parameter 
0

f . Practically, 

applying suction at the boundary surface causes to draw some amount of the fluid into 

the surface, and consequently momentum and thermal boundary layer thickness get 

thinner. Thus the actual effect of the mass transfer parameter is to make the velocity 

and the temperature distribution more uniform within the boundary layer. So, it can be 

effectively used for the fast cooling of the sheet. 

 

 

 

 

Fig. 6.2 Variation of velocity  f  with   for several values of 
0f  when 0.1A   and 

0.01M   
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Fig. 6.3 Variation of temperature    with   for several values of 
0f  when 0.1A  , 

0.01M  , Pr 1.0  and 0.01Ec   

 

The effects of the unsteadiness parameter A  on the fluid flow  f  and the 

temperature     distribution have been studied taking other parameters constant, 

and the results are represented in Figs. 6.4 and 6.5 respectively. It can be observed 

that there is a special point near 2   called ‘crossing over point’, and the velocity 

and the temperature profiles have completely conflicting behaviour before and after 

that point. Further, it is evident that the velocity and the temperature decrease faster 

with the increasing values of the unsteadiness parameter A  while the reverse 

phenomenon occurs for 2  . This is because of the thermal boundary layer thickness 

rapidly decreases due to increase in unsteadiness before that point but ultimately it 

increases the thickness of boundary layer. 
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Fig. 6.4 Variation of velocity  f  with 
 
for several values of A  when

 0 1.0f   and 

0.01M   

 

 

Fig. 6.5 Variation of temperature    with  for several values of A when 0 1.0f  , 

0.01M  , Pr 1.0  and 0.01Ec   
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Figures 6.6 and 6.7 depict the velocity  f   and the temperature     profiles for 

different values of the magnetic parameter M  respectively, keeping other parameters 

constant. From these figures it is evident that the velocity decreases with the 

increasing values of the magnetic parameter M  but the reverse is true for the 

temperature distribution. This can be explained by the fact that the application of a 

uniform magnetic field normal to the flow direction gives rise to a force which acts in 

the negative direction of flow. This force is known as Lorentz force and it tends to 

slow down the movement of the fluid along the surface and increases its temperature. 

 

 

 

Fig. 6.6 Variation of velocity  f  with   for several values of M  when
 0 1.0f   and 

0.1A   
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Fig. 6.7 Variation of temperature    with   for several values of M  when
 0 1.0f  , 

0.1A  ,   Pr 1.0  and 0.01Ec   

The influence of several values of the Prandtl number Pr on the temperature   
 

distribution is displayed in Fig. 6.8 when the other parameters are kept constant. It can 

be seen that the increase in the Prandtl number Pr causes the decrease in the 

temperature profile. From a physical point of view, the fluid with a higher value of the 

Prandtl number posses a large heat capacity, and hence intensifies the heat transfer 

while, a smaller Prandtl number increases the thermal conductivity and therefore heat 

is able to diffuse away from the surface. 

In Fig. 6.9, the consequences of the variation in the Eckert number Ec  on the 

temperature     profiles are shown taking other parameters constant. It is noticed 

that the Eckert number Ec  has an increasing effect on the temperature profiles. This 

is a consequence of the fact that for higher values of the Eckert number, there is 

significant generation of heat due to viscous dissipation near the sheet. Therefore, 
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viscous dissipation in a flow through permeable surface is beneficial for gaining the 

temperature. 

 
Fig. 6.8 Variation of temperature   

 
with   for several values of Pr  when

0 1.0f  ,

0.1A  , 0.01M  and 0.01Ec   

 

Fig. 6.9 Variation of temperature    with  for several values of Ec  when 0 1.0f  ,

0.1A  ,  0.01M   and Pr 1.0  
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Finally, Table 6.1 shows the effects of the mass transfer parameter
0

f , the 

unsteadiness parameter A  and the magnetic parameter M on the local skin-friction 

coefficient  0f  . It is seen that the local skin friction coefficient  0f  decreases 

with the increasing values of the mass transfer parameter
0

f , the unsteadiness 

parameter A  and the magnetic parameter M , when other parameters kept constant. 

Moreover, it is found that the values of the local skin friction coefficient  0f  are 

always negative for all the values of physical parameters mentioned. From physical 

point of view, positive sign of skin friction coefficient means the fluid exerts a drag 

force on the surface and negative sign means the opposite. 

Table 6.1 Computed values of  0f   for various values of 0
,  f A

 
and M  

 

 

 

 

 

 

 

 

 

0f  A  M  Exact solutions 
Present  

results 

-1.0 0.1 0.01 0.6591449 0.65914 

-0.5 
 

 0.8223909 0.82239 

0.0 
 

 1.039469 1.03947 

0.5 
 

 1.316099 1.31610 

1.0 
 

 1.648648 1.64865 

1.0 0.5 0.01 1.75274 1.75274 

 
1.0 

 
1.88033775 1.88034 

 
2.0 

 
2.11780217685 2.11780 

 
3.0 

 
2.330895321488422 2.33090 

1.0 0.1 0.25 1.749477 1.74948 

 
 1.00 2.0213458 2.02135 

 
 2.25 2.38866246 2.38866 

 
 4.00 2.806244989 2.80624 
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The values for the local Nusselt number  0   are depicted in Table 6.2 for several 

values of the mass transfer parameter
0

f , the unsteadiness parameter A , the magnetic 

parameter M , the Prandtl number Pr and the Eckert number Ec . It is noteworthy that 

Table 6.2 Computed values of  0  for various values of 
0
,  ,  ,  Prf A M

 
and Ec  

0f  A  M  Pr  Ec  Exact solutions 
Present 

results 

-1.0 0.1 0.01 1.0 0.01 0.652202 0.65220 

-0.5 
 

   0.814011 0.81401 

0.0 
 

   1.029706 1.02971 

0.5 
 

   1.305087 1.30509 

1.0 
 

   1.636402 1.63640 

1.0 0.5 0.01 1.0 0.01 1.7408 1.74080 

 
1.0 

 
  1.86872986 1.86873 

 
2.0 

 
  2.10649670829 2.10650 

 
3.0 

 
  2.319587414112824 2.31959 

1.0 0.1 0.25 1.0 0.01 1.62098 1.62098 

 
 1.00 

 
 1.58185 1.58185 

 
 2.25 

 
 1.534318 1.53432 

 
 4.00 

 
 1.486899 1.48690 

1.0 0.1 0.01 0.7 0.01 1.221658 1.22166 

 
  2.0 

 
2.88804 2.88804 

 
  3.0 

 
4.04265 4.04265 

 
  5.0 

 
6.23198 6.23198 

1.0 0.1 0.01 1.0 0.50 1.283 1.28300 

 
   1.00 0.92238 0.92238 

 
   1.50 0.56177 0.56177 

 
   2.00 0.20115 0.20115 
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the local Nusselt number  0 decreases with the increasing values of the mass 

transfer parameter
0

f , the unsteadiness parameter A  and the Prandtl number Pr  but an 

opposite behaviour is noted in case of the magnetic parameter M and the Eckert 

number Ec , taking other parameters constant. Further it is quite evident that the 

values of the local Nusselt number  0
 
are always negative for all the values of 

physical parameters considered. Physically, negative sign of Nusselt number implies 

that there is a heat flow from the sheet. 

From Table 6.3, the values of the local Nusselt number are compared with some 

already published works of Ali (1994) and Ishak et al. (2009) in the absence of 

magnetic and electric fields, which validate the present results. From the table it can 

be seen that the results are in an excellent agreement with previous researchers. 

Table 6.3 Comparison of  0  for various values of 0
,  f A

 
and Pr  with 0.00M Ec   

0f  A  Pr  Ali (1994) 
Ishak et al. 

(2009) 
Present 

results 

-1.5 0.0 0.72  0.4570 0.45880 

  1.00  0.5000 0.50027 

0.0 0.0 0.01  0.0197 0.17742 

  0.72 0.8058 0.8086 0.81207 

  1.00 0.9961 1.0000 1.00048 

  3.00 1.9144 1.9237 1.92345 

1.5 0.0 0.72  1.4944 1.49457 

  1.00  2.0000 2.00001 

-1.5 1.0 1.00  0.8095 0.80957 

0.0    1.3205 1.32064 

1.5    2.2224 2.22255 
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6.7  Concluding Remarks 

In the present investigation, an unsteady MHD flow past a stretching surface with 

viscous dissipation and Joule heating is analyzed. Governing equations are converted 

into non-dimensional by introducing similarity transformations and hence solved by 

Runge-Kutta fourth order method with the help of shooting technique. Further, the 

effects of the various pertinent parameters on the velocity, temperature, skin friction 

coefficient and Nusselt number are illustrated and discussed. The main observations 

of the present study are as follows 

(i) The fluid velocity, the thermal boundary layer thickness, the surface 

gradient and the rate of heat transfer decrease as the mass transfer 

parameter and the unsteadiness parameter increase while the reverse 

behaviour is noted after the ‘crossing over point’ for velocity as well as 

thermal boundary layer thickness for the unsteadiness parameter. 

(ii) In case of increase in the magnetic parameter the momentum boundary 

layer thickness as well as the surface gradient decreases while the opposite 

phenomenon occurs for the thermal boundary layer thickness and the rate 

of heat transfer. 

(iii) The thermal boundary layer thickness and the rate of heat transfer decrease 

with the increase in the Prandtl number but the effects of the Eckert 

number are quite opposite. 



 

 

7 

Effects of Thermal Radiation on Hydromagnetic Flow 

over an Unsteady Stretching Sheet Embedded in a Porous 

Medium in the Presence of Heat Source or Sink 

 

7.1  Introduction 

In recent years, a lot of attention has been gained by the study of hydrodynamic flow 

and heat transfer over a stretching sheet due to its applications in industries and many 

technological processes. This study is also applied in geothermal areas where the 

shallow surface layers are being stretched but in these cases the velocities are very 

small. It also has applications in the field of chemical and metallurgy engineering 

processes like annealing and tinning of copper wire, drawing etc. These applications 

involve the cooling of continuous filaments or strips by drawing them through a 

quiescent fluid. It also has extensive applications in engineering processes, especially 

in packed bed reactors and the enhanced recovery of petroleum resources. Sakiadis 

(1961b) was the first to consider the boundary layer flow on a moving continuous 

solid surface. Crane (1970) extended it and found an analytical solution to the 

boundary layer equations for the steady two-dimensional flow obtained by stretching 

of elastic flat surface in a quiescent incompressible fluid taking into account the case 

of a linearly stretched surface. Several researchers such as Gupta and Gupta (1977), 
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Carragher and Crane (1982), Banks (1983), Grubka and Bobba (1985), Dutta et al. 

(1985), Ali (1995), Andersson et al. (2000), Magyari and keller (2000), Chen (2003), 

Ariel (2003), Elbashbeshy and Bazid (2004) and Ishak et al. (2008b) investigated the 

problem of the flow past a stretching surface in various ways. The combination of 

both stagnation flow and stretching surface was considered by Chiam (1994), 

Mahapatra and Gupta (2002, 2003), and Jat and Chaudhary (2008). Later, Wang 

(2008) studied the stagnation flow towards a shrinking sheet and obtained that 

solutions do not exist for large shrinking rates. Recently, the flow over a shrinking 

sheet was investigated by Fang and Zhang (2010), and Chaudhary and Kumar 

(2013a). 

Radiation effects have important applications in engineering and physics. The 

temperature distribution and the heat transfer in the boundary layer flow of 

participating fluid are significantly affected by thermal radiation at high temperatures. 

Some of the applications of radiative heat transfer from a vertical wall to conductive 

gray fluids are cooling of nuclear reactors, high temperature plasma, power generation 

systems and liquid metal fluids. The effects of radiation on the boundary layer flow 

under different situations were studied by Raptis (1998), Hossain et al. (2001), Kiwan 

(2007), Bataller (2008), Pal and Mondal (2009), Jat and Chaudhary (2010), and 

Mahapatra and Nandy (2013). 

Flows through porous media are of principal interest because these are quite prevalent 

in nature. Porous materials like sand and underground crushed rock are saturated with 

water which, under the influence of local pressure gradients, migrate and transport the 

fluid through the material. The transport properties of fluid-saturated porous materials 
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are important in many technological applications, and it has great importance in the 

growth of geothermal energy usage, petroleum and in astrophysical problems. A 

better understanding of convection through porous medium can benefit several areas 

like insulation design, geothermal systems, grain storage, filtering devices, heat 

exchangers, catalytic reactors, metal processing, etc. Further examples of convection 

through porous media may be found in manmade systems such as winding structures 

for high-power density electric machines, fiber and granular insulations, the cores of 

nuclear reactors, thermal insulation of buildings, geophysical systems, food 

processing and storage, electro-chemistry, metallurgy, underground disposal of 

nuclear or non-nuclear waste, the design of pebble bed nuclear reactors, cooling 

system of electronic devices, casting and welding in manufacturing processes, etc. 

Enhancement of forced convection by the use of a porous substrate has been the 

subject of several investigations. It has been reviewed in books by Ingham and Pop 

(1998), Kuznetsov (2000), Vafai (2005), Nield and Bejan (2012) and Bejan (2013). 

Further, Vafai and Kim (1990) were the first to study an external convection problem, 

namely a composite system involving a relatively thin porous substrate attached to the 

surface of a flat plate. Later Huang and Vafai (1994) studied the same problem using 

an integral method to obtain an approximate analytic solution. Many researchers such 

as Ishak et al. (2008a), Rosali et al. (2011), Mukhopadhyay and Layek (2012), 

Chaudhary and Kumar (2014), and Khader and Megahed (2014) have considered 

various aspects of this problem and obtained similarity solutions. 

Working fluid heat generation or absorption effects are important in certain porous 

media applications. Cortell (2005) studied flow and heat transfer behavior of a fluid 

through a porous medium over a stretching sheet with internal heat generation or 
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absorption and suction or blowing. Recently, Elbashbeshy and Emam (2011) studied 

the effects of thermal radiation and heat transfer over an unsteady stretching surface 

embedded in a porous medium in the presence of heat source or sink, when the 

surface is kept at the constant temperature. 

Motivated by the above mentioned investigations and applications, the main purpose 

of the present paper is to extend the problem of Elbashbeshy and Emam (2011) and 

include an electrically conducting fluid in the presence of a uniform transverse 

magnetic field.  

7.2  Mathematical Formulation 

Consider an unsteady, two-dimensional laminar flow of a viscous incompressible 

electrically conducting fluid due to thermal radiation effects on a continuous 

stretching surface embedded in a porous medium in the presence of heat source or 

sink. The xaxis is taken along the continuous stretching surface in the direction of 

motion with the slot as the origin, and y axis is perpendicular to it and the flow is 

confined in half plane 0y  . A uniform magnetic field of strength 0B  is assumed to 

be applied normal to the stretching surface, as shown in Fig. 7.1. The magnetic 

 

                Fig. 7.1 A sketch of the physical model and coordinate system 
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Reynolds number is taken to be very small so the induced magnetic field is negligible. 

The surface is assumed to be highly elastic and is stretched in the x direction with 

surface velocity 
1

w

bx
U

t



 and surface temperature

2 3/2

1

2 (1 )
w

b
T T

x t 
 


 where 

b  is the positive constant, x  is the coordinate measured along the stretching surface, 

  is the rate of stretching constant, t  is the time, T  is the free stream temperature 

and   is the kinematic viscosity. All the fluid properties are assumed to be constant 

throughout the motion. Therefore, under the usual boundary layer approximations, the 

governing equations that describe the case are as follows 

0
u v

x y

 
 

                

(7.1) 

22

0

2

eBu u u u
u v u u

t x y y K






   
    

              

(7.2) 

 
22

2 2

02

r
p e

qT T T T u
C u v Q T T B u

t x y y y y
   

       
          

                 

(7.3)                            

with the boundary conditions  

   0   :       , ,     0,     ,

 :       0,             

w wy u U x t v T T x t

y u T T

   

    (7.4) 

where u  and v  are the velocity components in the x  and y  directions, respectively, 

K  is the permeability, e is the electrical conductivity,   is the fluid density, 
pC  is 

the specific heat at constant pressure, T  is the temperature of the fluid,   is the 

thermal conductivity, rq
 
is the radiative heat flux, Q  is the heat source when 0Q   

or heat sink when 0Q   and  is the coefficient of fluid viscosity. 
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Using Rosseland approximation for radiation [Brewster (1992)], the radiative heat 

flux is simplified as 

* 4

*

4

3
r

T
q

k y

 
 


        (7.5) 

where * and 
*k are the Stefan-Boltzmann constant and the mean absorption 

coefficient, respectively. 

Assuming that the temperature differences within the flow is such that the term 4T  

may be expressed as a linear function of temperature. Hence, expanding 4T  in a 

Taylor series about T  
and neglecting higher-order terms 

4 3 44 3T T T T  
        

(7.6) 

Using Eqs. (7.5) and (7.6), the Eq. (7.3) reduces to  

 
2* 32 2

2 2

02 * 2

16

3
p e

TT T T T T u
C u v Q T T B u

t x y y k y y


   



        
          

          

(7.7) 

7.3  Similarity Analysis  

The continuity Eq. (7.1) is satisfied by introducing a stream function ( , , )x y t  such 

that  

,   u v
y x

  
  
          

(7.8) 

The momentum and energy Eqs. (7.2) and (7.7) can be transformed into the 

corresponding ordinary differential equations by introducing the following similarity 

transformations [Elbashbeshy and Emam (2011)] 
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( , , ) ( )
(1 )

b
x y t xf

t


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
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
           

(7.9) 
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 
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b
T T
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 

       
(7.11)   

where  f   is the dimensionless stream function,   is the similarity variable, y  is 

the coordinate measured along normal to the stretching surface and ( )   is the 

dimensionless temperature. The transformed ordinary differential equations are             

 2 1
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2
f ff f A f f M f 
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(7.12)                                
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 (7.13) 

with the reduced boundary conditions 
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f f
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      (7.14) 

where primes denote differentiation with respect to  . A
b


  is the unsteadiness 

parameter, 
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thermal radiation parameter, Pr
pC


  is the Prandtl number, 

2

2

Rex

p w

Q

C U





  is the 

heat source or sink parameter and 
 

2

w

p w

U
Ec

C T T




 is the Eckert number. 

7.4  Method of Solution 

For numerical solution of the Eqs. (7.12) and (7.13), a perturbation technique is 

applied, by assuming the following power series in a small magnetic parameter M  as 

   
0

i

i

i

f M f 

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   (7.15)                                                  
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

   (7.16) 

Substituting Eqs. (7.15) and (7.16) and its derivatives in Eqs. (7.12) and (7.13) with 

the boundary conditions Eq. (7.14) and comparing the coefficients of like terms of M , 

the following set of equations has been obtained 
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with the corresponding boundary conditions 

0 00  :      0,    1,    0,    1,   0

:     0,     0,      0,       0

i j j

i i

f f f

f i j

  

 

      

    
     (7.23) 

The Eq. (7.17) was obtained by Elbashbeshy and Emam (2011) for the non-magnetic 

case and the remaining equations are ordinary linear differential equations and have 

been solved numerically by Runge-Kutta method of fourth order with quasilinear 

shooting technique for the step size 0.001. The above procedure is repeated until the 

converged results were obtained within a tolerance limit of 610 . For illustrations of 

the results, the numerical values of velocity and temperature distributions are plotted 

in Figs. 7.2 to 7.4 and 7.5 to 7.11 respectively. 

7.5  Local Skin Friction and Local Nusselt Number 

The physical quantities of interest are the local skin friction coefficient fC  and the 

local Nusselt number xNu , which are defined as 

0
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       (7.24) 
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       (7.25) 

which in the present case, can be expressed in the following forms 

 
2

0
Re

f

x

C f 

 

       (7.26) 

 
4

Re 1 0
3

x xNu R 
 

   
   

      (7.27) 

Numerical values of the function (0)f  and (0) which represent the wall shear stress 

and the heat transfer rate at the surface respectively for various values of the 

parameter are presented in Tables 7.1 and 7.2. 

7.6  Discussion of the Results  

The results of the velocity  f 
 
with different values of the unsteadiness parameter

A , the permeability parameter and the magnetic parameter M  are plotted in Figs. 

7.2 to 7.4 respectively, while the other parameters are constant. From these figures, it 

is evident that the velocity decreases with the increasing values of the unsteadiness 

parameter A , the permeability parameter  and the magnetic parameter M  while in 

Fig. 7.2, a reverse phenomenon occurs for 3  . Moreover, the effects of a 

transverse magnetic field on an electrically conducting fluid gives rise to a resistive 

force called the Lorentz force. This force has tendency to slow down the fluid motion. 
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Fig. 7.2 Velocity profiles against   for various values of A  with 0.1  and 0.01M   

 

 

 

Fig. 7.3 Velocity profiles against   for various values of  with 0.8A   and 0.01M   
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Fig. 7.4 Velocity profiles against   for various values of M  with 0.8A   and 0.1   

 

Figures 7.5 to 7.11 depict the temperature profiles    for different values of the 

unsteadiness parameter A , the permeability parameter , the magnetic parameter M , 

the thermal radiation parameter R , the Prandtl number Pr , the heat source or sink 

parameter and the Eckert number Ec respectively, while the other parameters are 

constant. From these figures, it may be observed that the temperature decreases with 

the increasing values of the unsteadiness parameter A , the permeability parameter , 

the magnetic parameter M , the thermal radiation parameter R and the Prandtl number

Pr , while the reverse phenomenon occurs for the heat source or sink parameter  and 

the Eckert number Ec . Further it is noted from Figs. (7.6) and (7.7), the effects of the 

permeability parameter , the magnetic parameter M  on temperature are negligible. 
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Fig. 7.5 Temperature profiles against   for various values of A  with 0.1,  0.01,M  

0.3,  Pr 10,  0.5R      
and 0.01Ec    

 

 

Fig. 7.6 Temperature profiles against   for various values of  with 0.8,  0.01,A M   

0.3,  Pr 10,  0.5R      
and 0.01Ec    
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Fig. 7.7 Temperature profiles against   for various values of M with 

0.8,  0.1,  0.3,A R    Pr 10,  0.5   and 0.01Ec   

 

 

Fig. 7.8 Temperature profiles against   for various values of R with 0.8,  0.1,A  

0.01,  Pr 10,  0.5M      and 0.01Ec    

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6

M=0.01

M=0.16

M=0.49

M=0.81

η

θ
(η

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6

R=0.1

R=0.3

R=0.5

R=0.7

η

θ
(η

)



142          Chapter 7 

 

 

Fig. 7.9 Temperature profiles against   for various values of Pr with 0.8,  0.1,A  

0.01,  R 0.3,  0.5M     and 0.01Ec    

 

Fig. 7.10 Temperature profiles against   for various values of  with 0.8,  0.1,A  

0.01,  R 0.3,  Pr 10M    and 0.01Ec   
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Fig. 7.11 Temperature profiles against   for various values of Ec with 0.8,  0.1A  

0.01,  R 0.3,  Pr 10M    and 0.5    

The numerical results for the local skin friction coefficient  0f  with comparison of 

the results which are obtained by Elbashbeshy and Emam (2011) are tabulated in 

Table 7.1 for various values of the unsteadiness parameter A , the permeability 

parameter  and the magnetic parameter M . The results are found in excellent 

agreement. It shows that the local skin friction coefficient  0f  decreases with the 

increasing values of the unsteadiness parameter A , the permeability parameter and 

the magnetic parameter M , keeping other parameters constant. Further it is observed 

that the values of the local skin friction coefficient  0f  are always negative for all 

the values of physical parameters considered. Physically, positive sign of skin friction 

coefficient  0f  implies that the fluid exerts a drag force on the sheet and negative 

sign implies the opposite meaning. 
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Table 7.1 Comparison of  0f   for various values of ,  A  and M  

A    M  

Elbashbeshy 

and Emam 

(2011) 

Present 

result 

0.4 0.1 0.00 1.17853 1.17862910 

0.8 
 

 1.30035 1.30044740 

0.1 0.1 0.01 
 

1.08665100 

0.4 
 

 
 

1.18290589 

0.8 
 

 
 

1.30431027 

1.4 
 

 
 

1.47079970 

0.8 0.3 0.00 1.37550 1.37559607 

 
0.5 

 
1.44668 1.44676744 

 
0.7 

 
1.51445 1.51454348 

0.8 0.3 0.01 
 

1.37924361 

 
0.5 

  
1.45023268 

 
0.7 

  
1.51785169 

0.8 0.1 0.16 
 

1.36090603 

 
 0.49 

 
1.47765734 

 
 0.81 

 
1.58254599 

 

Table 7.2 illustrates the effects of the unsteadiness parameter A , the permeability 

parameter  , the magnetic parameter M , the thermal radiation parameter R , the 

Prandtl number Pr , the heat source or sink parameter   and the Eckert number Ec on 

the heat flux  0 at the surface with comparison of the results which are obtained by 

Elbashbeshy and Emam (2011). An excellent agreement has been obtained with their 

results. From this table it is observed that the local Nusselt number  0 decreases 

with the increasing values of the unsteadiness parameter A , the permeability 

parameter  , the magnetic parameter M , the thermal radiation parameter R and the 

Prandtl number Pr , while the opposite  phenomenon occurs for the heat source or sink 

parameter and the Eckert number Ec , keeping other parameters constant. Moreover 

it is found that the effects of the permeability parameter  and the magnetic parameter

M are negligible. It is also evident that the Nusselt number  0 is negative for all 
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the values of physical parameters considered, which means that there is a heat flow 

from the wall. 

Table 7.2 Comparison of  0  for various values of ,  ,  , , Pr,  A M R   and Ec  

A    M  R  Pr    Ec  

Elbashbeshy 

and Emam 

(2011) 

Present 

result
 

0.4 0.1 0.00 0.3 10 -0.5 0.00 0.53765 0.53781852 

0.8 
 

     0.98601 0.98623175 

0.1 0.1 0.01 0.3 10 -0.5 0.01   0.07981903 

0.4 
 

       0.53084391 

0.8 
 

       0.97897091 

1.4 
 

       1.47977013 

0.8 0.3 0.00 0.3 10 -0.5 0.00 1.00056 1.00077724 

 
0.5 

 
    1.01364 1.01385453 

 
0.7 

 
    1.02552 1.02573274 

0.8 0.3 0.01 0.3 10 -0.5 0.01   0.99282253 

 
0.5 

 
      1.00525101 

 
0.7 

 
      1.01651710 

0.8 0.1 0.16 0.3 10 -0.5 0.01   0.98876171 

  
0.49 

 
     1.00766495 

  
0.81 

 
     1.02332221 

0.8 0.1 0.01 0.1 10 -0.5 0.01   0.67654344 

 
  0.5 

 
    1.13528381 

 
  0.7 

 
    1.23818194 

0.8 0.1 0.01 0.3 1 -0.5 0.01   0.39989428 

 
   2 

 
   0.52616386 

 
   5 

 
   0.75224571 

0.8 0.1 0.00 0.3 10 -0.2 0.00 0.73898 0.73920476 

 
    0.2 

 
0.31343 0.31368315 

 
    0.4 

 
0.02044 0.02072673 

0.8 0.1 0.01 0.3 10 -0.2 0.01   0.73165495 

 
    0.2 

 
  0.30571691 

 
    0.4 

 
  0.01261520 

0.8 0.1 0.01 0.3 10 -0.5 0.20   0.82643493 

 
     0.50   0.58558865 

 
     1.00   0.18417817 



146          Chapter 7 

 

7.7  Conclusions 

A numerical model is developed to investigate the problem of the flow and heat 

transfer of an incompressible, viscous and electrically conducting fluid over an 

unsteady stretching sheet imbedded in a porous medium in the presence of heat source 

or sink. The governing partial differential equations for the flow and temperature 

fields are reduced to a system of coupled nonlinear ordinary differential equations. 

Finally the set of ordinary differential equations were solved. Further, numerical 

results for the wall shear stress and the heat transfer rate at the surface are in a close 

agreement with the results which were obtained by previous researchers in the 

absence of the magnetic parameter and the Eckert number. From the results of the 

problem, it was concluded that the velocity as well as the surface gradient decreases 

with the increasing values of the unsteadiness parameter, the permeability parameter 

and the magnetic parameter. Moreover, the velocity increases with an increase in the 

value of the unsteadiness parameter for eta greater than three. The thermal boundary 

layer thickness as well as the rate of heat transfer decreases with the increasing values 

of the unsteadiness parameter, the permeability parameter, the magnetic parameter, 

the thermal radiation parameter and the Prandtl number, while it increases with an  

increase in the values of the heat source or sink parameter and the Eckert number. It is 

further seen that the effects of the permeability parameter and the magnetic parameter 

on the temperature and the rate of heat transfer are negligible. 



 

 

References 

 

1. Abdelhafez TA 1985 Skin friction and heat transfer on a 

continuous flat surface moving in a parallel 

free stream. Int J Heat Mass Transf 28: 

1234−1237 

 

2. Abdel-wahed MS, 

Elbashbeshy EMA, 

Emam TG 

2015 Flow and heat transfer over a moving 

surface with non-linear velocity and 

variable thickness in a nanofluid in the 

presence of Brownian motion. Appl Math 

Comput 254: 49−62 

 

3. Abel MS, Mahesha N 2008 Heat transfer in MHD viscoelastic fluid 

flow over a stretching sheet with variable 

thermal conductivity, non-uniform heat 

source and radiation. Appl Math Model 32: 

1965–1983 

 

4. Ali ME 1994 Heat transfer characteristics of a continuous 

stretching surface. Heat Mass Transf 29: 

227−234 

 

5. Ali ME 1995 On thermal boundary layer on a power-law 

stretched surface with suction or injection. 

Int J Heat Fluid Flow 16: 280−290 

 

6. Allan FM, Syam MI 2005 On the analytic solutions of the non-

homogeneous Blasius problem. J Comput 

Appl Math 182: 362−371 

 

7. Amin N, Riley N 1996 Free convection at an axisymmetric 

stagnation point. J Fluid Mech 314: 

105−112 

 

8. Andersson HI 1992 MHD flow of a viscoelastic fluid past a 

stretching surface. Acta Mech 95: 227−230 

 



148          References                                                                                               

 

9. Andersson HI 2002 Slip flow past a stretching surface. Acta 

Mech 158: 121−125 

 

10. Andersson HI, Aarseth 

JB, Dandapat BS 

2000 Heat transfer in a liquid film on an 

unsteady stretching surface. Int J Heat 

Mass Transf 43: 69−74 

 

11. Ariel PD 2003 Generalized three dimensional flow due to 

a stretching Sheet. J Appl Math Mech 83: 

844–852 

 

12. Ariel PD 2007 Axisymmetric flow due to a stretching 

sheet with partial slip. Comput Math Appl 

54: 1169–1183 

 

13. Bachok N, Ishak A,  

Pop I 

2010 Unsteady three-dimensional boundary layer 

flow due to a permeable shrinking sheet. 

Appl Math Mech-Engl Ed 31: 1421−1428 

 

14. Bachok N, Jaradat 

MA, Pop I 

2011 A similarity solution for the flow and heat 

transfer over a moving permeable flat plate 

in a parallel free stream. Heat Mass Transf 

47: 1643−1649 

 

15. Banks WHH 1983 Similarity solutions of the boundary-layer 

equations for a stretching wall. J Mac 

Theor Appl 2: 375−392 

 

16. Bansal JL 1994 Magnetofluiddynamics of viscous fluids. 

Jaipur Pub House, India 

 

17. Bansal JL 2004 Viscous fluid dynamics. Oxford & IBH 

Publishing Co Pvt Ltd, New Delhi, India 

 

18. Bataller RC 2008 Radiation effects in the Blasius flow. Appl 

Math Comput 198: 333−338 

 

19. Beavers GS,  

Joseph DD 

1967 Boundary conditions at a naturally 

permeable wall. J Fluid Mech 30: 197−207 

 

 



References           149 

 
 

20. Bejan A 2013 Convection heat transfer, 4th edn. Wiley, 

New York 

 

21. Bejan A, Dincer I, 

Lorente S, Miguel A, 

Reis H 

2004 Porous and complex flow structures in 

modern technologies. Springer-Verlag, 

New York 

 

22. Bellman RE,  

Kalaba RE 

1965 Quasilinearization and nonlinear boundary-

value problem. American Elsevier 

Publishing Co Inc, New York 

 

23. Bestman AR,  

Adjepong SK 

1988 Unsteady hydromagnetic free-convection 

flow with radiative heat transfer in a 

rotating fluid. Astrophys Space Sci 143: 

73–80 

 

24. Bianchi MVA,  

Viskanta A 

1993 Momentum and heat transfer on a 

continuous flat surface moving in a parallel 

counter flow free stream. Heat Mass Transf 

29: 89−94 

 

25. Bidin B, Nazar R 2009 Numerical solution of the boundary layer 

flow over an exponentially stretching sheet 

with thermal radiation. Eur J Sci Res 33: 

710–717 

 

26. Biot JB 1804 Memoire sur la chaleur. Bibl Br Sci Arts 

27: 310−329 

 

27. Biot JB 1816 Traité de physique expérimentale et 

mathématique. Paris: Deterville 

 

28. Blasius H 1908 Grenzschiechten in fl¨ussigkeiten mit 

kleiner reibung. Z Angew Math Phys 56: 

1−37 

 

29. Boltzmann L 1884 Ableitung des Stefan’schen gesetzes 

betreffend die abhängigkeit der 

wärmestrahlung von der temperatur aus der 

electromagnetischen lichttheorie. Annalen 

der Physik und Chemie 22: 291−294 



150          References                                                                                               

 

30. Brewster MQ 1992 Thermal radiative transfer and properties. 

John Wiley and Sons, New York 

 

31. Carragher P, Crane LJ 1982 Heat transfer on a continuous stretching 

sheet. J Appl Math Mech 62: 564−565 

 

32. Chakrabarti A,  

Gupta AS 

1979 Hydromagnetic flow and heat transfer over 

a stretching sheet. Q Appl Math 37: 73–78 

 

33. Chamkha AJ 1999 Hydromagnetic three-dimensional free 

convection on a vertical stretching surface 

with heat generation or absorption. Int J 

Heat Fluid Flow 20: 84−92 

 

34. Chaudhary S, 

Choudhary MK 

2016a Heat and mass transfer by MHD flow near 

the stagnation point over a stretching or 

shrinking sheet in porous medium. Ind J 

Pure Appl Phys 54: 209−217 

 

35. Chaudhary S, 

Choudhary MK 

2016b Partial slip and thermal radiation effects on 

hydromagnetic flow over an exponentially 

stretching surface with suction or blowing. 

Therm Sci, doi: 10.2298/TSCI160127150C 

  

36. Chaudhary S, 

Choudhary MK, 

Sharma R 

2015 Effects of thermal radiation on 

hydromagnetic flow over an unsteady 

stretching sheet embedded in a porous 

medium in the presence of heat source or 

sink. Meccanica 50: 1977−1987 

 

37. Chaudhary S, Kumar P 2013a MHD slip flow past a shrinking sheet. Appl 

Math 4: 574−581 

 

38. Chaudhary S, Kumar P 2013b MHD stagnation point flow and heat 

transfer over a permeable surface. 

Engineering 5: 50−55 

 

39. Chaudhary S, Kumar P 2014 MHD forced convection boundary layer 

flow with a flat plate and porous substrate. 

Meccanica 49: 69−77 

 



References           151 

 
 

40. Chaudhary S, Kumar P 2015 Magnetohydrodynamic stagnation point 

flow past a porous stretching surface with 

heat generation. Ind J Pure Appl Phys 53: 

291−297 

 

41. Chen CH 2003 Heat transfer in a power-law fluid film over 

an unsteady stretching sheet. Heat Mass 

Transf 39: 791−796 

 

42. Chen CH 2009 Magneto-hydrodynamic mixed convection 

of a power-law fluid past a stretching 

surface in the presence of thermal radiation 

and internal heat generation/absorption. Int 

J Non-linear Mech 44: 596−603 

 

43. Chen CK, Char MI 1988 Heat transfer of a continuous, stretching 

surface with suction or blowing. J Math 

Anal Appl 135: 568–580 

 

44. Chiam TC 1994 Stagnation-point flow towards a stretching 

plate. J Phys Soc Japan 63: 2443–2444 

 

45. Cortell R 2005 Flow and heat transfer of a fluid through a 

porous medium over a stretching surface 

with internal heat generation/absorption 

and suction/blowing. Fluid Dyn Res 37: 

231−245 

 

46. Cortell R 2007 Flow and heat transfer in a moving fluid 

over a moving flat surface. Theor Comput 

Fluid Dyn 21: 435−446 

 

47. Cortell R 2008 Effects of viscous dissipation and radiation 

on the thermal boundary layer over a 

nonlinearly stretching sheet. Phys Letters A 

372: 631−636 

 

48. Cortell R 2012 Combined effect of viscous dissipation and 

thermal radiation on fluid flows over a non-

linearly stretched permeable wall. 

Meccanica 47: 769−781 



152          References                                                                                               

 

49. Crane LJ 1970 Flow past a stretching plate. Z Angew 

Math Phys 21: 645−647 

 

50. Darcy HPG 1856 Les fontaines publiques de la ville de Dijon.. 

Victor Dalmont, Paris 

 

51. Das K 2014 A mathematical model on 

magnetohydrodynamic slip flow and heat 

transfer over a non-linear stretching sheet. 

Therm Sci 18: S475−S488 

 

52. Daskalakis JE 1992 Free-convection effects in the boundary 

layer along a vertically stretching flat 

surface. Can J Phys 70: 1253−1260 

 

53. Dutta BK, Roy P, 

Gupta AS 

1985 Temperature field in flow over a stretching 

sheet with uniform heat flux. Int Commun  

Heat Mass Transf 12: 89–94 

 

54. Duwairi HM 2005 Viscous and joule heating effects on forced 

convection flow from radiate isothermal 

porous surfaces. Int J Numer Meth Heat 

Fluid Flow 15: 429−440 

 

55. Eckert ERG 1942 Die berechnung des wa¨rmeu¨berganges in 

der laminaren grenzschicht umstro¨mter 

ko¨ rper. VDI Forsch 461 

 

56. El-Amin MF 2003 Combined effect of viscous dissipation and 

joule heating on MHD forced convection 

over a non isothermal horizontal cylinder 

embedded in a fluid saturated porous 

medium. J Magnetism Magnetic Mat 263: 

337−343 

 

57. El-Aziz MA 2009 Viscous dissipation effect on mixed 

convection flow of a micropolar fluid over 

an exponentially stretching sheet. Can J 

Phys 87: 359−368 

 

 



References           153 

 
 

58. Elbashbeshy EMA 2001 Heat transfer over an exponentially 

stretching continuous surface with suction. 

Arch Mech 53: 643−651 

 

59. Elbashbeshy EMA, 

Bazid MAA 

2004 Heat transfer over an unsteady stretching 

surface. Heat Mass Transf 41: 1−4 

 

60. Elbashbeshy EMA, 

Emam TG 

2011 Effects of thermal radiation and heat 

transfer over an unsteady stretching surface 

embedded in a porous medium in the 

presence of heat source or sink. Therm Sci 

15: 477−485 

 

61. Erickson LE, Fan LT, 

Fox VG 

1966 Heat and mass transfer on a moving 

continuous flat plate with suction or 

injection. Ind Eng Chem Fundamen 5: 

19−25 

 

62. Euler L 1755 Principes gen´eraux du mouvement des 

fluids. Academie Royale des Sciences et 

des Belles-Lettres de ´ Berlin, Memoires´ 

11: 274–315 

 

63. Fang T 2003 Further study on a moving-wall boundary-

layer problem with mass transfer. Acta 

Mech 163: 183−188 

 

64. Fang T 2008 Boundary layer flow over a shrinking sheet 

with power-law velocity. Int J Heat Mass 

Transfer 51: 5838−5843 

 

65. Fang T, Yao S, Zhang 

J, Aziz A 

2010 Viscous flow over a shrinking sheet with a 

second order slip flow model. Commun 

Nonlinear Sci Numer Simul 15: 1831−1842 

 

66. Fang T, Zhang J 2010 Thermal boundary layers over a shrinking 

sheet: An analytical solution. Acta Mech 

209: 325−343 

 

67. Faraday M  1832 Experimental researches in electricity. Phil 

Trans R Soc London 122: 125−162 



154          References                                                                                               

 

68. Farooq M, Khan MI, 

Waqas M, Hayat T, 

Alsaedi A, Khan MI 

2016 MHD stagnation point flow of viscoelastic 

nanofluid with non-linear radiation effects. 

J Mol Liq 221: 1097−1103 

 

69. Fourier JBJ 1822 Theorie analytique de la chaleur. F Didot, 

Paris 

 

70. Gebhart B,  

Mollendorf J 

1969 Viscous dissipation in external natural 

convection flows. J Fluid Mech 38: 97−107 

 

71. Goldstein S 1965 On backward boundary layers and flow in 

converging passages. J Fluid Mech 21: 

33−45 

 

72. Grigull U 1984 Newton's temperature scale and the law of 

cooling. Warme- und Stoff 18: 195−199 

 

73. Grubka LJ, Bobba KM 1985 Heat transfer characteristics of a 

continuous, stretching surface with variable 

temperature. J Heat Transf 107: 248−250 

 

74. Gupta PS, Gupta AS 1977 Heat and mass transfer on a stretching sheet 

with suction or blowing. Can J Chem Engg 

55: 744−746 

 

75. Habib HM,  

El-Zahar ER 

2013 Mathematical modeling of heat-transfer for 

a moving sheet in a moving fluid. J Appl 

Fluid Mech 6: 369−373 

 

76. Hasimoto H 1958 Boundary-Layer Slip Solutions for a Flat 

Plate. J Aeronaut Sci 25: 68−69 

 

77. Hayat T, Ali S, Awais 

M, Alhuthali MS 

2015 Newtonian heating in stagnation point flow 

of Burgers fluid. Appl Math Mech-Engl Ed 

36: 61−68 

 

78. Hayat T, Khan MI, 

Farooq M, Yasmeen T, 

Alsaedi A 

2017 Stagnation point flow with Cattaneo-

Christov heat flux and homogeneous-

heterogeneous reactions. J Mol Liq 220: 

49−55 

 



References           155 

 
 

79. Hiemenz K 1911 Die grenzschicht an einem in den 

gleichformingen flussigkeitsstrom 

eingetauchten graden kreiszylinder. Dingl 

Polytech J 326: 321−324 

 

80. Homann F 1936 Der einfluss grosser zahigkeit bei der 

stromung um den zylinder und um die 

kugel. Z Angew Math Mech 16: 153−164 

 

81. Hossain MA 1992 The viscous and joule heating effects on 

MHD free convection flow with variable 

plate temperature. Int J Heat Mass Transf 

35: 3485−3487 

 

82. Hossain MA,  

Gorla RSR 

2013 Joule heating effect on 

magnetohydrodynamic mixed convection 

boundary layer flow with variable electrical 

conductivity. Int J Numer Meth Heat Fluid 

Flow 23: 275−288 

 

83. Hossain MA, Khanafer 

K, Vafai K 

2001 The effect of radiation on free convection 

flow of fluid with variable viscosity from a 

porous vertical plate. Int J Therm Sci 40: 

115−124 

 

84. Hron J, Roux CL, 

Malek J, Rajagopal KR 

2008 Flows of incompressible fluids subject to 

navier’s slip on the boundary. Comput 

Math Appl 56: 2128−2143 

 

85. Huang PC, Vafai K 1994 Analysis of flow and heat transfer over an 

external boundary covered with a porous 

substrate. ASME J Heat Transf 116: 

768−771 

 

86. Ingham DB, Pop I 1998 Transport phenomena in porous media. 

Elsevier Sci Ltd, U.K 

 

87. Ishak A, Nazar R,  

Pop I 

2006 Mixed convection boundary layers in the 

stagnation-point flow toward a stretching 

vertical sheet. Meccanica 41: 509–518 

 



156          References                                                                                               

 

88. Ishak A, Nazar R, 

Arifin NM, Pop I 

2008a Dual solutions in mixed convection flow 

near a stagnation point on a vertical porous 

plate. Int J Therm Sci 47: 417−422 

 

89. Ishak A, Nazar R,  

Pop I 

2008b Heat transfer over an unsteady stretching 

surface with prescribed heat flux. Can J 

Phys 86: 853−855 

 

90. Ishak A, Nazar R,  

Pop I 

2009 Heat transfer over an unsteady stretching 

permeable surface with prescribed wall 

temperature. Nonlinear Anal RWA 10: 

2909−2913 

 

91. Israel-Cookey C, 

Ogulu A, Omubo-

Pepple VB 

2003 Influence of viscous dissipation on 

unsteady MHD free-convection flow past 

an infinite heated vertical plate in porous 

medium with time-dependent suction. Int J 

Heat Mass Transf 46: 2305−2311 

 

92. Jackson TW, Harrison 

WB, Boteler WC 

1959 Free convection, forced convection, and 

acoustic vibrations in a constant 

temperature vertical tube.  J Heat Transf 

81: 68−74 

 

93. Jat RN, Chaudhary S 2008 Magnetohydrodynamic boundary layer 

flow near the stagnation point of a 

stretching sheet. Il Nuovo Cimento 123 B: 

555−566 

 

94. Jat RN, Chaudhary S 2009a Magnetohydrodynamic boundary layer 

flow past a porous substrate with beavers-

Joseph boundary condition. Ind J Pure 

Appl Phys 47: 624−630 

 

95. Jat RN, Chaudhary S  2009b Unsteady magnetohydrodynamic boundary 

layer flow over a stretching surface with 

viscous dissipation and Joule heating. Il 

Nuovo Cimento 124: 53−59 

 

 

 



References           157 

 
 

96. Jat RN, Chaudhary S 2010 Radiation effects on the mhd flow near the 

stagnation point of a stretching sheet. Z 

Angew Math Phys 61: 1151−1154 

 

97. Khader MM 2014 Laguerre collocation method for the flow 

and heat transfer due to a permeable 

stretching surface embedded in a porous 

medium with a second order slip and 

viscous dissipation. Appl Math Compute 

243: 503−513 

 

98. Khader MM,  

Megahed AM 

2014 Numerical solution for the flow and heat 

transfer due to a permeable stretching 

surface embedded in a porous medium with 

a second-order slip and viscous dissipation. 

Eur Phys J Plus 129: 1−10 

 

99. Khan MI, Hayat T, 

Khan MI, Alsaedi A 

2017a A modified homogeneous-heterogeneous 

reactions for MHD stagnation flow with 

viscous dissipation and Joule heating. Int J. 

Heat Mass Transf 113: 310−317 

 

100. Khan MI, Tamoor M, 

Hayat T, Alsaedi A 

2017b MHD boundary layer thermal slip flow by 

nonlinearly stretching cylinder with 

suction/blowing and radiation. Results in 

Phy 7: 1207−1211 

 

101. Khan Y, Smarda Z, 

Faraz N 

2015 On the study of viscous fluid due to 

exponentially shrinking sheet in the 

presence of thermal radiation. Therm Sci 

19: S191−S196 

 

102. Kiwan S 2007  Effect of radiative losses on the heat 

transfer from porous fins. Int J Therm Sci 

46: 1046−1055 

 

103. Klemp JB, Acrivos A 1976 A moving-wall boundary layer with reverse 

flow. J Fluid Mech 76: 363−381 

 

104. Kumaran V,  

Ramanaiah G 

1996 A note on the flow over a stretching sheet. 

Acta Mech 116: 229–233 



158          References                                                                                               

 

105. Kuznetsov AV 2000 Analytical studies of forced convection in 

partly porous configurations. In: Vafai K 

(ed) Handbook of Porous Media. Marcel 

Dekker, New York 

 

106. Lesnic D, Ingham DB, 

Pop I 

2000 Free convection from a horizontal surface 

in a porous medium with Newtonian 

heating. J Porous Media 3: 227–235 

 

107. Lesnic D, Ingham DB, 

Pop I, Storr C 

2004 Free convection boundary layer flow above 

a nearly horizontal surface in a porous 

medium with Newtonian heating. Heat 

Mass Transf 40: 665−672  

 

108. Lin HT, Lin LK 1987 Similarity solutions for laminar forced 

convection heat transfer from wedges to 

fluids of any Prandtl number. Int J Heat 

Mass Transf 30: 1111–1118  

 

109. Liu IC, Andersson HI 2008 Heat transfer in a liquid film on an 

unsteady stretching sheet. Int J Therm Sci 

47: 766−772 

 

110. Lok YY, Amin N,  

Pop I 

2006 Mixed convection near a non-orthogonal 

stagnation point flow on a vertical plate 

with uniform surface heat flux. Acta Mech 

186: 99–112  

 

111. Lok YY, Ishak A,  

Pop I 

2011 MHD stagnation-point flow towards a 

shrinking sheet. Int J Numer Methods Heat 

Fluid Flow 21: 61−72 

 

112. Lok YY, Pop I 2014 Stretching or shrinking sheet problem for 

unsteady separated stagnation-point flow. 

Meccanica 49: 1479−1492 

113. Magyari E, Keller B 2000 Exact solutions for self-similar boundary-

layer flows induced by permeable 

stretching walls. Eur J Mech B-Fluids 19: 

109−122 

 

 



References           159 

 
 

114. Magyari E, Pop I, 

Keller B 

2002 Mixed convection boundary-layer flow past 

a horizontal permeable flat plate. Fluid Dyn 

Res 31: 215−226 

 

115. Mahapatra TR,  

Gupta AS 

2001 Magnetohydrodynamic stagnation-point 

flow towards a stretching sheet. Acta Mech 

152: 191−196 

 

116. Mahapatra TR,  

Gupta AS 

2002 Heat transfer in stagnation-point flow 

towards a stretching sheet. Heat Mass 

Transf 38: 517−521 

 

117. Mahapatra TR,  

Gupta AS 

2003 Stagnation-point flow towards a stretching 

surface. Can J Chem Eng 81: 258−263 

 

118. Mahapatra TR,  

Nandy SK 

2013 Stability of dual solutions in stagnation-

point flow and heat transfer over a porous 

shrinking sheet with thermal radiation. 

Meccanica 48: 23–32 

 

119. Mahapatra TR, Nandy 

SK, Vajravelu K, Van 

Gorder RA 

2012 Stability analysis of the dual solutions for 

stagnation-point flow over a non-linearly 

stretching surface. Meccanica 47: 

1623−1632 

 

120. Makinde  OD, Aziz A 2011 Boundary layer flow of a nanofluid past a 

stretching sheet with convective boundary 

condition. Int J Therm Sci 50: 1326−1332 

 

121. Makinde OD, Khan 

WA, Khan ZH 

2013 Buoyancy effects on mhd stagnation point 

flow and heat transfer of a nanofluid past a 

convectively heated stretching/shrinking 

sheet. Int J Heat Mass Transf 62: 526–533 

 

122. Makinde OD, Ogulu A 2008 The effect of thermal radiation on the heat 

and mass transfer flow of a variable 

viscosity fluid past a vertical porous plate 

permeated by a transverse magnetic field. 

Chem Eng Commun 195: 1575–1584 

 

 



160          References                                                                                               

 

123. Malvandi A, Ganji 

DD, Hedayati F, 

Kaffash MH,  

Jamshidi M 

 

2012 Series solution of entropy generation 

toward an isothermal flat plate. Therm Sci 

16: 1289−1295 

 

124. Mansur S, Ishak A,  

Pop I 

2014 Flow and heat transfer of nanofluid past 

stretching/shrinking sheet with partial slip 

boundary conditions. Appl Math Mech-

Engl Ed 35: 1401−1410 

 

125. Merkin, JH 1994 Natural convection boundary-layer flow on 

a vertical surface with Newtonian heating. 

Int J Heat Fluid Flow 15: 392−398 

 

126. Merkin JH, Nazar R, 

Pop I 

2012 The development of forced convection heat 

transfer near a forward stagnation point 

with Newtonian heating. J Eng Math 74: 

53−60 

 

127. Merkin JH, Pop I 2011 The forced convection flow of a uniform 

stream over a flat surface with a convective 

surface boundary condition. Commun 

Nonlinear Sci Numer Simul 16: 3602−3609 

 

128. Miklavčič M,  

Wang CY 

2006 Viscous flow due a shrinking sheet. Q Appl 

Math 64: 283−290 

 

129. Mukhopadhyay S, 

Andersson HI 

2009 Effects of slip and heat transfer analysis of 

flow over an unsteady stretching surface. 

Heat Mass Transf 45: 1447−1452 

 

130. Mukhopadhyay S, 

Gorla RSR 

2012 Effects of partial slip on boundary layer 

flow past a permeable exponential 

stretching sheet in presence of thermal 

radiation. Heat Mass Transf 48:1773−1781 

 

131. Mukhopadhyay S, 

Layek GC 

2012 Effects of variable fluid viscosity on flow 

past a heated stretching sheet embedded in 

a porous medium in presence of heat 

source/sink. Meccanica 47: 863−876 

 



References           161 

 
 

132. Nadeem S, Zaheer S, 

Fang T 

2011 Effects of thermal radiation on the 

boundary layer flow of a jeffrey fluid over 

an exponentially stretching surface. Numer 

Algor 57: 187−205 

 

133. Naroua H, Ram PC, 

Sambo AS, Takhar HS 

1998 Finite element analysis of natural 

convection flow in a rotating fluid with 

radiative heat transfer. J Magnetohydrodyn 

Plasma Res 7: 257–274 

 

134. Nield DA, Bejan A 2012 Convection in porous media. 4th edn. 

Springer, New York  

 

135. Nield DA,  

Kuznetsov AV 

2003 Boundary layer analysis of forced 

convection with a plate and porous 

substrate. Acta Mech 166: 141−148 

 

136. Olajuwon BI,  

Oahimire JI 

2014 Effect of thermal diffusion and chemical 

reaction on heat and mass transfer in an 

MHD micropolar fluid with heat 

generation. Afrika Matematika 25: 

911−931 

 

137. Ouaf MEM 2005 Exact solution of thermal radiation on 

MHD flow over a stretching porous sheet. 

Appl Math Comput 170: 1117−1125 

 

138. Pai SI 1956 Viscous flow theory: I, Laminar flow. D 

Van Nostrand Company, New York 

 

139. Pal D, Mondal H 2009 Radiation effects on combined convection 

over a vertical flat plate embedded in a 

porous medium of variable porosity. 

Meccanica 44: 133−144 

 

140. Pantokratoras A 2002 Laminar free-convection over a vertical 

isothermal plate with uniform blowing or 

suction in water with variable physical 

properties. Int J Heat Mass Transf 45: 

963−977 

 



162          References                                                                                               

 

141. Parhta MK, Murthy 

PVSN, Rajasekhar GP 

2005 Effects of viscous dissipation on the mixed 

convection heat transfer from an 

exponentially stretching surface. Heat Mass 

Transf 41: 360−366 

 

142. Pop I, Lesnic D, 

Ingham DB 

2000 Asymptotic solutions for the free 

convection boundary layer flow along a 

vertical surface in a porous medium with 

Newtonian heating. Hybrid Method Eng 2: 

31−40  

 

143. Prandtl L 1904 Uber Flussigkeitsbewegung bei sehr kleiner 

Reibung, in: Verhandlungen des III, Int 

Math Kong, Heidelberg, 484−491 

 

144. Rahman MM 2011 Locally similar solutions for 

hydromagnetic and thermal slip flow 

boundary layers over a flat plate with 

variable fluid properties and convective 

surface boundary condition. Meccanica 46: 

1127−1143 

 

145. Rahman MM, Merkin 

JH, Pop I 

2015 Mixed convection boundary-layer flow past 

a vertical flat plate with a convective 

boundary condition. Acta Mech 226: 

2441−2460 

 

146. Raju CSK, Sandeep N, 

Sulochana C, 

Jayachandra Babu M 

2016 Dual solutions of MHD boundary layer 

flow past an exponentially stretching sheet 

with non-uniform heat source/sink. J Appl 

Fluid Mech 9: 555–563 

 

147. Ramesh GK, Gireesha 

BJ, Bagewadi CS 

2012 MHD flow of a dusty fluid near the 

stagnation point over a permeable 

stretching sheet with non-uniform 

source/sink. Int J Heat Mass Transf 55: 

4900−4907 

 

148. Raptis A 1998 Radiation and free convection flow through 

a porous medium. Int Commun Heat Mass 

Transf 25: 289−295 



References           163 

 
 

149. Rosali H, Ishak A,  

Pop I 

2011 Stagnation point flow and heat transfer 

over a stretching/shrinking sheet in a 

porous medium. Int Commun Heat Mass 

Transf 38: 1029−1032 

 

150. Rosca AV, Pop I 2013 Flow and heat transfer over a vertical 

permeable stretching/shrinking sheet with a 

second order slip. Int J Heat Mass Transf 

60: 355−364 

 

151. Sahoo B, Do Y 2010 Effects of slip on sheet-driven flow and 

heat transfer of a third grade fluid past a 

stretching sheet. Int Commun Heat Mass 

Transf 37: 1064−1071 

 

152. Sajid M, Ali N, Abbas 

Z, Javed T 

2010 Stretching flows with general slip boundary 

condition. Int J Mod Phys B 24: 

5939−5947 

 

153. Sajid M, Hayat T 2008 Influence of thermal radiation on the 

boundary layer flow due to an 

exponentially stretching sheet. Int Commun 

Heat Mass Transf 35: 347−356 

 

154. Sakiadis BC 1961a Boundary-layer behavior on continuous 

solid surfaces: II. The boundary layer on a 

continuous flat surface. AIChE J 7: 

221−225 

 

155. Sakiadis BC 1961b Boundary-layer behavior on continuous 

solid surfaces: I. Boundary-layer equations 

for two-dimensional and axisymmetric 

flow. AIChE J 7: 26−28 

 

156. Salleh MZ, Nazar R, 

Arifin NM, Merkin JH, 

Pop I 

2011 Forced convection heat transfer over a 

horizontal circular cylinder with Newtonian 

heating. J Eng Math 69: 101–110  

 

157. Salleh MZ, Nazar R, 

Pop I 

2009 Forced convection boundary layer flow at a 

forward stagnation point with Newtonian 

heating. Chem Eng Commun 196: 987–996 



164          References                                                                                               

 

158. Sandeep N, Sulochana 

C, Rushi Kumar B 

2016 Unsteady MHD radiative flow and heat 

transfer of a dusty nanofluid over an 

exponentially stretching surface. Engg Sci 

Tech, An Int J 19: 227−240 

 

159. Sanjayanand E,  

Khan SK 

2006 On heat and mass transfer in a viscoelastic 

boundary layer flow over an exponentially 

stretching sheet. Int J Therm Sci 45: 

819−828 

 

160. Sano T 1981 Unsteady stagnation point heat transfer 

with blowing or suction. J Heat Transfer 

103: 448−452 

 

161. Sasmal C, Radhe 

Shyam, Chhabra RP 

2013 Laminar flow of power-law fluids past a 

hemisphere: Momentum and forced 

convection heat transfer characteristics. Int 

J Heat Mass Transfer 63: 51−64 

 

162. Schlichting H,  

Gersten K 

2000 Boundary layer theory, 8
th

 edn., Springer, 

New York 

 

163. Schneider W 1979 A similarity solution for combined forced 

and free convection flow over a horizontal 

plate. Int J Heat Mass Transf 22: 

1401−1406 

  

164. Seddeek MA 2002 Effects of magnetic field and variable 

viscosity on forced non-darcy flow about a 

flat plate with variable wall temperature in 

porous media in the presence of suction and 

blowing. J Appl Mech Tech Phys 43: 13–

17 

 

165. Shang D 2010 Theory of heat transfer with forced 

convection film flows. Heat Mass Transf, 

Springer, Chapter 3 

 

166. Sheikholeslami M 2017 Numerical simulation of magnetic 

nanofluid natural convection in porous 

media. Phy Letters A 381: 494−503 



References           165 

 
 

167. Sheikholeslami M, 

Rokni HB 

2017  Numerical modeling of nanofluid natural 

convection in a semi annulus in existence 

of Lorentz force. Comp Meth Appl Mech 

Engg 317: 419−430 

 

168. Sheikholeslami M, 

Shehzad SA 

2017 Thermal radiation of ferrofluid in existence 

of Lorentz forces considering variable 

viscosity. Int J Heat Mass Transf 109: 

82−92 

 

169. Sheikholeslami M, 

Vajravelu K 

2017 Nanofluid flow and heat transfer in a cavity 

with variable magnetic field. Appl Math 

Comput 298: 272−282 

 

170. Singh RK, Singh AK 2012 MHD free convective flow past semi-

infinite vertical permeable wall. Appl 

Math Mech 33: 1207−1222 

 

171. Soundalgekar VM 1972 Viscous dissipation effects on unsteady free 

convective flow past an infinite vertical 

porous plate with constant suction. Int J 

Heat Mass transf 15: 1253−1261 

 

172. Sparrow EM, Eckert 

ER, Minkowycz WJ 

1962 Transpiration cooling in a 

magnetohydrodynamic stagnation-point 

flow. Appl Sci Res Sec A 11: 125−147 

 

173. Sreenivasulu P, 

Poornima T, Bhaskar 

Reddy N 

2016 Thermal radiation effects on MHD 

boundary layer slip flow past a permeable 

exponential stretching sheet in the presence 

of joule heating and viscous dissipation. J 

Appl Fluid Mech 9: 267−278 

 

174. Stefan J 1879 Über die beziehung der wärmestrahlung 

und der temperatur. Sitzungsberichte der 

Kaiserlichen Akademie der 

Wissenschaften, Mathematische- 

Naturwissenschaftliche Classe Abteilung II 

79: 391−428 

 

 



166          References                                                                                               

 

175. Troy WC, Overman 

EAX, Ermentrout 

HGB, Keener JP 

1987 Uniqueness of flow of a second order fluid 

past a stretching sheet. Q Appl Math 44: 

753−755 

 

176. Vafai K 2005 Handbook of porous media, 2nd edn. 

Taylor & Francis, New York 

 

177. Vafai K, Kim SJ 1990 Fluid mechanics of the interface region 

between a porous medium and a fluid 

layer-an exact solution. Int J Heat Fluid 

Flow 11: 254−256 

 

178. Vajravelu K, Nayfeh J 1992 Hydromagnetic flow of a dusty fluid over a 

stretching sheet. Int J Non-linear Mech 27: 

937−945 

 

179. Vajravelu K, Nayfeh J 1993 Convective heat transfer at a stretching 

sheet. Acta Mech 96: 47−54 

 

180. Vajravelu K, Roper T 1999 Flow and heat transfer in a second grade 

fluid over a stretching sheet. Int J Non-

linear Mech 34: 1031−1036 

 

181. Wang CY 1984 The three dimensional flow due to a 

stretching flat surface. Phys Fluids 27: 

1915−1917 

 

182. Wang CY 2003 Stagnation flows with slip: exact solutions 

of the navier-stoke equations. Z Angew 

Math Phys 54: 184−189 

 

183. Wang CY 2008 Stagnation flow towards a shrinking sheet. 

Int J Non-Lin Mech 43: 377−382 

 

184. Wang CY 2011 Review of similarity stretching exact 

solutions of the Navier-Stokes equations. 

Eur J Mech B-Fluids 30: 475−479 

 

 

 

 



References           167 

 
 

185. Waqas M, Farooq M, 

Khan MI, Alsaedi A, 

Hayat T, Yasmeen T  

2016 Magnetohydrodynamic (MHD) mixed 

convection flow of micropolar liquid due to 

nonlinear stretched sheet with convective 

condition. Int J Heat Mass Transf 102: 

766−772 

 

186. Weidman PD, 

Kubitschek DG, Davis 

AMJ 

2006 The effect of transpiration on self-similar 

boundary layer flow over moving surfaces. 

Int J Eng Sci 44: 730−737 

 

187. White FM 2006 Viscous fluid flows, 3
rd

 edn., McGraw-Hill, 

New York 

 

188. Xu H 2004 An explicit analytic solution for free 

convection about a vertical flat plate 

embedded in a porous medium by means of 

homotopy analysis method. Appl Math 

Comput 158: 433−443 

 

189. Yacob NA, Ishak A 2012 Stagnation point flow towards a 

stretching/shrinking sheet in a micropolar 

fluid with a convective surface boundary 

condition. Can J Chem Eng 90: 621−626 

 

190. Yasmeen T, Hayat T, 

Khan MI, Imtiaz M, 

Alsaedi A 

2016 Ferrofluid flow by a stretched surface in the 

presence of magnetic dipole and 

homogeneous-heterogeneous reactions. J 

Mol Liq 223: 1000−1005 

 

191. Yih KA 1998 The effect of uniform suction/blowing on 

heat transfer of magnetohydrodynamic 

Hiemenz flow through porous media. Acta 

Mech 130: 147−158 

 

 



 

 

Nomenclature 

 

a  Positive constant 

A  Constant area (Chapter 1) 

 Unsteadiness parameter (Chapter 6 & 7) 

b  Stretching rate (Chapter 4) 

Non-negative constant (Chapter 6) 

Positive constant (Chapter 7) 

0 0,B B  Uniform magnetic field 

B


 Magnetic induction vector 

c  Stretching or shrinking parameter (Chapter 4) 

 Stretching rate (Chapter 6) 

fC   Local skin-friction coefficient  

pC   Specific heat at constant pressure 

d   Distance between two parallel plates 

 D x  Thermal slip factor 

1D   Initial thermal slip factor 

D


  Displacement vector 

i je   Rate of strain tensor 

Ec  Eckert number 

E


  Electrical field vector 

f   Dimensionless stream function  

0
f

 Mass transfer parameter 

F


 Lorentz’s force 

 ex
F



 External force 
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sh  Heat transfer coefficient 

H  Magnetic intensity 

H


 Magnetic intensity vector 

cJ  Conduction current 

J


 Current density vector 

*k  Absorption coefficient 

K  Intrinsic Permeability (Chapter 1)  

 Permeability parameter (Chapter 4) 

Permeability (Chapter 7) 

1K
  Permeability of the porous medium 

l  Thickness of the plane plate 

L  Characteristic length (Chapter 1 & 3) 

 Reference length (Chapter 2) 

M  Magnetic parameter  

 N x  Velocity slip factor 

1N  Initial velocity slip factor 

, xNu Nu  Nusselt number  

p  Pressure 

Pr  Prandtl number 

q  Heat flux 

rq  Radiative heat flux 

wq  Wall heat flux  

Q  Heat source or sink 

1Q  Quantity of heat added per unit mass of the fluid 

2Q  Rate of heat flow through a constant area 

R  Gas constant (Chapter 1) 

 Thermal radiation parameter (Chapter 2 & 7) 

Re, Rex  Reynolds number 



170           Nomenclature                                                                                               

 

ReH  Magnetic pressure number 

Re  Magnetic Reynolds number 

s  Mass transfer parameter 

S  Suction or blowing parameter 

t  Time 

T   Temperature of the fluid (Chapter 1, 2, 4, 5, 6 & 7) 

  Dimensionless temperature of the fluid (Chapter 3) 

T   Temperature of the fluid 

0T  Reference temperature
 

,w wT T  Surface temperature 

,T T 
  Free stream temperature 

T   Temperature difference 

u   Velocity component in the x  direction (Chapter 2, 4, 5, 6 & 7) 

Dimensionless velocity component in the x  direction (Chapter 3) 

u  Velocity component in the x   direction 

eu   Dimensionless free stream velocity (Chapter 3) 

Flow velocity (Chapter 4) 

  External free stream velocity (Chapter 5) 

eu   Free stream velocity 

wu  Dimensionless surface velocity (Chapter 3) 

Stretching or shrinking velocity (Chapter 4) 

wu   Surface velocity 

U   Velocity of the plate 

eU   Dimensionless constant 

wU  Surface velocity (Chapter 2 & 7) 

 Dimensionless constant (Chapter 3) 

Stretching velocity (Chapter 6) 

0U  Reference velocity 

U  Characteristic velocity 
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v   Velocity component in the y direction (Chapter 2, 4, 5, 6 & 7) 

Dimensionless velocity in the y direction (Chapter 3) 

v   Velocity component in the y  direction 

wv   Dimensionless mass flux velocity at the surface 

wv   Mass flux velocity at the surface 

v


  Velocity vector 

w
V   Transpiration velocity through the permeable wall 

 wV x  Velocity of suction and blowing 

0V   Suction or injection velocity (Chapter 1) 

Initial strength of suction (Chapter 2) 

w   Weight function 

,x x   Distance along the surface 

,y y   Normal distance  

Greek symbols 

  Thermal diffusivity  

  Stretching rate 

  Similarity variable 

  Electrical permittivity or dielectric constant of the medium 

 Emissivity 

  Thermal slip parameter (Chapter 2) 

 Heat source or sink parameter (Chapter 7) 

i j  Kronecker delta 

   Dimensionless temperature  

  Thermal conductivity  

  Velocity slip parameter (Chapter 2) 

 Moving flat surface parameter (Chapter 3) 

 Permeability parameter (Chapter 7) 

  Coefficient of viscosity 
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e  Magnetic permeability 

  Kinematic viscosity 

H  Magnetic diffusivity 

   Fluid density  

e   Electrical density 

e  Electrical conductivity 

*  Stefan-Boltzmann constant 

  Shear stress 

w   Shear stress at the surface 




 Tangential stress 

  Stream function 

  Heat generated due to frictional forces 

   Shape function 
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