

SecREAD: Security-aware Requirements

Elicitation, Assessment and Design

Methodology

Ph.D. Thesis

RAJAT GOEL
ID No. 2013RCP9052

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

October 2018

SecREAD: Security-aware Requirements

Elicitation, Assessment and Design

Methodology

Submitted in

fulfillment of the requirements for the degree of

Doctor of Philosophy

by

RAJAT GOEL

ID No. 2013RCP9052

Under the Supervision of

 Prof. Mahesh Chandra Govil

Dr. Girdhari Singh

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

October 2018

© Malaviya National Institute of Technology Jaipur - 2018.

All rights reserved.

 i

Declaration

I, RAJAT GOEL, declare that this thesis titled, “SecREAD: Security-aware

Requirements Elicitation, Assessment and Design Methodology” and the work

presented in it, are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this university.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this university or any other institution, this has

been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself, jointly with others, I

have made clear exactly what was done by others and what I have contributed myself.

 Date: Rajat Goel

 (ID: 2013RCP9052)

 ii

Certificate

This is to certify that the thesis entitled “SecREAD: Security-aware

Requirements Elicitation, Assessment and Design Methodology” being

submitted by RAJAT GOEL (2013RCP9052) is a bonafide research work carried

out under our supervision and guidance in fulfillment of the requirement for the

award of the degree of Doctor of Philosophy in the Department of Computer
Science and Engineering, Malaviya National Institute of Technology, Jaipur,

India. The matter embodied in this thesis is original and has not been submitted to
any other University or Institute for the award of any other degree.

Supervisiors

(Prof. Mahesh Chandra Govil) (Dr. Girdhari Singh)
MNIT Jaipur Associate Professor
(Presently Director, NIT Sikkim) MNIT Jaipur

Place : Jaipur
Date:

 iii

Acknowledgment
I express my sincere gratitude to my supervisors, Prof. M.C. Govil and Dr. Girdhari

Singh for providing valuable guidance throughout my research work. It is pertinent to

mention that Prof. Govil spared countless hours for me, out of his busy schedule,

throughout my research journey. Moreover, the co-operative and serene attitude of Dr.

Girdhari Singh facilitated me to accomplish my task.

I owe great thanks to the DREC members Dr. E.S. Pilli, Dr. Dinesh Gopalani and Dr.

Yogesh Kumar Meena for their useful insights to shape my work.

I extend my thanks to the DPGC convener Dr. Namita Mittal, faculty members and

staff of Computer Science and Engineering department for their cooperation.

I am thankful to MNIT for providing me the necessary infrastructure and conducive

environment to expedite my work.

I may also like to thank my fellow scholars and friends for fruitful discussions as also

for keeping me rejuvenated during this period.

It would also not be out of place to mention the names of Dr. Nidhi Govil, Devang &

Prajjwal for providing me a homely atmosphere, necessary for any researcher.

Finally, I would like to earnestly reveal that my parents showered on me countless

blessings for my success and my sister provided necessary moral support all

throughout. The sincere role of my wife, during the latter part of my research work is

also worth mentioning, who kept me free from all domestic responsibilities so that I

may concentrate on my goal.

Date: Rajat Goel

(ID: 2013RCP9052)

 iv

Dedication

Dedicated to my beloved late Grand Father

Abstract
Software is now a part and parcel of our lives and involves sensitive and personal

information. This makes security an integral part of software. There exist a multitude

of models and methodologies to develop a software but a very few of them

concerntrate on integrating security in the development process. The software today

are in a dire need of such security-based development process models as the general

practice of treating security as an add-on can jeopardize the success of software. The

research has been carried out to address this critical issue. The expansive literature

survey conducted during the course of the research has revealed that security

measures ought to be imbibed in the early phases of developemnt i.e. requirement and

design. From a systematic and critical analysis of the prior works, their positive

aspects are assimilated and enhanced to fill in the research gaps by introducing novel

concepts. This has led to the contemplation of a holistic process, “Security-aware

Requirements Elicitation, Assessment and Design (SecREAD) Methodology”,

proposed in this research work.

Requirements and Design phases pose many challenges while integrating security.

Obtaining the precise and clear requirement specification is indispensable but quite

difficult to achieve. Similarly, modeling the requirements or their diagramatic

representation is essential for unambiguous communication between the users and the

development team. Further, for modeling the requirements effectively, an efficient

modeling language is required. But, the existing modeling languages do not suffice in

this regard. In the light of all the above factors, SecREAD methodology is proposed

that attempts to overcome all the above problems.

SecREAD puts forward a formal process to elicit and model the requirements. It

provides a range of diagrams to model the security concerns of the software. The

methodology allows gathering of requirements in natural language in the form of

Stories, facilitating the involvement of all kinds of stakeholders that may or may not

be technically conversant. These stories are represented graphically. For this a notion

of Story Conversion Diagram (SCD) has been introduced that provides a clear and

unambiguous view. From the stories entities viz. stakeholders, assets and

functionalities are identified. The entities undergo rigorous refinement process to

remove inconsistencies and ambiguities, if any. Refinement is conducted at different

levels and every time the SCDs simplify the process. A mapping mechanism then

 vi

establishes the associations among the entities. The previously obtained SCDs are

modified to reflect these associations. The stakeholders rank the assets for security on

pertinent parameters. Mapping ensures that the stakeholders rank their relevant assets

only. This makes the ranking more realistic. Following the ranking process, empirical

analysis is conducted to consolidate the ranks given by different stakeholders and

produce final security ranks for every asset and functionality of the software. This

rank information is accomodated in the SCDs to produce the rank diagrams. All

diagrams are coupled with textual templates which further minimize the ambiguities.

In this manner, SecREAD attempts to formalize the development process.

Furthermore, SecREAD envisages the continual involvement of client and experts

with the developers to smoothen the process.

The concepts of mapping, empirical analysis and such type of diagrams is unique to

this methodology. These diagrams are incremental in nature that grow with the

information obtained at various levels, making them easy to draw and understand.

In this research work, the proposed methodology has been applied on two case studies

namely, Internet Banking and Smart Building to demonstrate its applicability in

varied domains.

 vii

Contents

Declaration ... i

Certificate .. ii

Acknowledgment ...iii

Dedication ... iv

Abstract ... v

List of Tables .. xiv

List of Figures ... xvii

Acronyms and Abbreviations... xxi

1 Introduction ... 1

1.1 Software Development Life Cycle (SDLC) ...2

1.1.1 Waterfall Model ...3

1.1.2 V-Shaped Model ...4

1.1.3 Prototyping Development Model ...4

1.1.4 Incremental Development Model ...5

1.1.5 Spiral Development Model ..6

1.1.6 Win-Win Spiral Model ...6

1.1.7 CBSE and COTS‐based Application Process Decision Framework7

 viii

1.1.8 Rapid Application Development (RAD) Model ..7

1.1.9 Rational Unified Process (RUP) ...8

1.1.10 The Incremental Commitment Spiral Model (ICSM)8

1.2 Modeling and UML ..9

1.2.1 Diagrams in UML ..10

1.2.2 Advantages of UML ...10

1.2.3 Limitations of UML ...11

1.3 Stakeholders and Assets ...12

1.4 Principles of Secure Software Development ..12

1.5 Sources causing insecurity in software ..13

1.6 Problem and Motivation ...13

1.7 Objectives of the Research ...14

1.8 Organization of the Thesis ...14

2 Literature Survey .. 15

2.1 Why Security in SDLC? ...15

2.2 Security in SDLC: Suitable Phase(s) ..16

2.2.1 Requirements Engineering ...17

2.2.2 Security in Design ..18

2.2.3 Human Factors and Team Composition for security19

2.3 Security Parameters ..20

2.4 Empiricalness in Software Engineering ...21

 ix

2.5 Related Works: Existing Secure Lifecycle Models & Methodologies22

2.5.1 Agile Software Development Methodology ...22

2.5.2 Extreme Programming (XP) ...23

2.5.3 Comprehensive, Lightweight Application Security Process (CLASP)24

2.5.4 Security Development Lifecycle (SDL) ...24

2.5.5 Secure Software Development Methodology (SecSDM)25

2.5.6 Security-aware Software Development Life Cycle (SaSDLC)25

2.6 Security Techniques/Models for Requirements Engineering26

2.6.1 Iterative Requirement Elicitation (IRE) for Global Software Development .26

2.6.2 Risk-based security Requirements Elicitation and Prioritization

(RiskREP) ...27

2.6.3 Common Criteria ..27

2.6.4 The Security Analysis Process ...28

2.6.5 PREview ...28

2.6.6 CORAS ...28

2.6.7 Controlled Requirement (CORE) ...29

2.6.8 Use Processes ...29

2.6.9 Quality Function Deployment (QFD) ..30

2.6.10 Miscellaneous Methodologies ..30

2.7 Secure Design Techniques/Models ..31

2.7.1 Requirements Visualization of UML (REVU) ...31

 x

2.7.2 Security Design Patterns ...31

2.7.3 Focus Group Discussion for Requirements Elicitation (FGDRE)31

2.7.4 Misuse Cases ..32

2.7.5 Threat Modeling ...33

2.7.6 STRIDE ..34

2.7.7 UMLsec ..34

2.7.8 Miscellaneous Methodologies ..34

2.8 Security oriented Improvements in development team35

2.8.1 Team Software Process (TSP) ..35

2.8.2 SDLC with Developers Working with Security ...36

2.9 Inferences drawn from the literature survey ...36

3 SecREAD Methodology .. 37

3.1 Proposed Methodology: SecREAD ..39

3.2 Identification ..40

3.2.1 Story and Story Conversion Diagram (SCD) ...40

3.3 Refinement ...49

3.3.1 Redundancy Removal ...50

3.3.2 Decomposition and Aggregation ..51

3.3.3 Culmination of Spiral ...53

3.4 Mapping ..53

3.4.1 Asset-Functionality and Stakeholder-Functionality Relevance Matrices53

 xi

3.4.2 Asset – Stakeholder Relevance Matrix...54

3.4.3 Consolidated Story Conversion Diagram (CSCD) ...57

3.4.4 Stakeholder-Parameter Relevance Matrix ..59

3.4.5 Rank Matrix: A practical approach to ranking ...59

3.5 Ranking ..61

3.5.1 Cell Computation ...62

3.5.2 Calculating Asset Rank ..63

3.5.3 Calculating Parameter Rank ...64

3.5.4 Calculating Functionality Rank ..65

3.5.5 Authorization Computation ..66

3.6 Analysis ..66

3.7 Design ...67

3.7.1 Functionality Rank Diagram (FRD) ...68

3.7.2 Comprehensive Rank Diagram (CRD) ...70

3.7.3 Authorization Rank Diagram (ARD) ...71

3.8 Development of the Tool ..74

3.9 Summary ..74

4 Case Study: Internet Banking ... 76

4.1 Identification ..77

4.2 Refinement ...84

4.2.1 Redundancy Removal ...85

 xii

4.2.2 Aggregation ..88

4.2.3 Decomposition ..89

4.2.4 Culmination of Spiral ...90

4.3 Mapping ..96

4.4 Ranking and Analysis ...101

4.4.1 Rank Matrix ..101

4.4.2 Results and Discussion ...102

4.5 Design ...104

4.5.1 FRD and CRD ..104

4.5.2 Authorization Rank Diagram (ARD) ...108

4.6 Summary ..110

5 Case Study: IoT-Enabled Smart Building 112

5.1 Internet of Things ...112

5.2 Smart Buildings ..113

5.3 Major functionalities of Smart Buildings ...114

5.3.1 Security System ..115

5.3.2 Fire Safety System ..115

5.3.3 Heating, Ventilation, and Air Conditioning (HVAC)116

5.3.4 Lighting ..117

5.4 Identification and Refinement ..117

5.4.1 Redundancy Removal ...125

 xiii

5.4.2 Decomposition ..126

5.4.3 Aggregation ..127

5.4.4 Culmination of Spiral ...128

5.5 Mapping ..130

5.6 Ranking and Analysis ...133

5.6.1 Rank Matrix ..133

5.6.2 Results and Discussion ...134

5.7 Design ...136

5.7.1 FRD and CRD ..136

5.7.2 Authorization Rank Diagram (ARD) ...139

5.8 Summary ..141

6 Conclusion ... 142

6.1 Contributions of SecREAD Methodology ...145

6.2 Future Work ...146

Appendix A: Results of Internet Banking Case Study 147

Appendix B: Results of Smart Building Case Study 157

Appendix C:Publications ... 165

References ... 166

Author’s Biography .. 174

 xiv

List of Tables

Table 1.1: Steps of V-Shaped Model [5] ...4

Table 1.2 : Concerns and Requirements of Various Stakeholders [4]12

Table 2.1: Problems with Requirements and Their Effect ...18

Table 3.1: Multi-instance Stories ...45

Table 3.2 : Aggregated Stories...52

Table 3.3: Asset – Functionality Relevance Matrix X ..54

Table 3.4: Functionality – Stakeholder Relevance Matrix Y ...54

Table 3.5: Asset – Functionality Relevance Matrix X with Integral Values55

Table 3.6: Functionality – Stakeholder Relevance Matrix Y with Integral Values55

Table 3.7: Cross product of X and Y ...56

Table 3.8: Asset – Stakeholder Relevance Matrix Z with Shaded Cells56

Table 3.9: Parameter IDs ...59

Table 3.10: Stakeholder-Parameter Relevance Matrix W ...59

Table 3.11: Ranks and Numeric Values ..61

Table 3.12: Rank sheet for stakeholder S1 ...61

Table 3.13: Functionaity Tempate for F1 ...67

Table 3.14: Functionality Rank Matrix Q ..67

Table 3.15: Template for CRD ..71

Table 3.16: Stakeholder-oriented ARD Template ...72

 xv

Table 3.17: Template For Asset-oriented ARD Template ...73

Table 4.1: Identification Phase ..79

Table 4.2: Cilent-side Stakeholders ...90

Table 4.3: User-Group Stakeholders..91

Table 4.4: Functionality Set F ..91

Table 4.5: Assets Pertaining to customer ...92

Table 4.6: Assets for Security and as Credentials..92

Table 4.7: Account Related Assets ..92

Table 4.8: Functionality-specific and Miscellaneous Assets ...93

Table 4.9: Asset-Functionality Relevance Matrix X ...97

Table 4.10: Functionality-Stakeholder Relevance Matrix Y ...98

Table 4.11: Asset-Stakeholder Relevance Matrix Z ..99

Table 4.12: Stakeholder-Parameter Relevance Matrix W ...100

Table 4.13: 3-d Matrix R ...102

Table 4.14: 2-d Matrix T ..102

Table 4.15: Matrix U or Asset Rank ..103

Table 4.16: Matrix V or Parameter Rank ...103

Table 4.17: Matrix Q or Functionality Rank ...104

Table 4.18: Template of FRD for Issue Kit ...106

Table 4.19: Template for CRD ..108

Table 4.20: ARD Template for INB Officer ..109

 xvi

Table 4.21: Template for Asset-oriented ARD for DD no. ...110

Table 5.1: Stories Elicited and Entities Identified for Smart Building120

Table 5.2: Stakeholder Set S for Smart Building ...129

Table 5.3: Functionality Set F for Smart Building ..129

Table 5.4: Asset Set A for Smart Building ..130

Table 5.5: Asset-Functionality Relevance Matrix X for Smart Building131

Table 5.6: Functionality-Stakeholder Relevance Matrix Y for Smart Building131

Table 5.7: Asset-Stakeholder Matrix Z for Smart Building ..131

Table 5.8: Stakeholder- Parameter Matrix W for Smart Building133

Table 5.9: Matrix T for Smart Building ...134

Table 5.10: Asset Rank or Matrix U for Smart Building ...135

Table 5.11: Parameter Rank or Matrix V for Smart Building ...135

Table 5.12: Functionality Rank or Matrix Q for Smart Building135

Table 5.13: Template of FRD for Security System ...137

Table 5.14: Template for CRD ..139

Table 5.15: ARD Template for Resident ...140

Table 5.16: Template for Asset-oriented ARD Template for Username140

 xvii

List of Figures

Figure 2.1: Alignment of SDL with tradition SDLC ...25

Figure 2.2: Threat Modeling Process ...33

Figure 3.1: SecREAD Methodology Process Flow ...39

Figure 3.2 Generalized SCDs for single-entity stories ..42

Figure 3.3: SCD for Association between Stakeholder and Asset.....................................42

Figure 3.4: SCD for Association between Asset and Functionality43

Figure 3.5: SCD for association between Stakeholder and Functionality43

Figure 3.6: SCD for Association between Stakeholder Functionality and Asset44

Figure 3.7: SCD for many stakeholders associated with one functionality 46

Figure 3.8: SCD for many assets associated with one functionality 46

Figure 3.9: SCD for many stakeholders, one asset associated with one functionality 46

Figure 3.10: SCD for one stakeholder, many assets associated with one functionality ...47

Figure 3.11: SCD for many stakeholders, many assets with one functionality47

Figure 3.12: SCD for one asset associated with many functionalities 47

Figure 3.13: SCD for many assets associated with many functionalities 48

Figure 3.14: SCD for one stakeholder associated with many functionalities 48

Figure 3.15: SCD for many stakeholders associated with many functionalities 48

Figure 3.16: SCD for many assets, many stakeholders with many functionalities48

Figure 3.17: CSCD for Functionality F1 ...57

 xviii

Figure 3.18: Structure of the rank matrix R ...60

Figure 3.19: Structure of T, U and V matrices ..65

Figure 3.20: FRD for functionality F1..68

Figure 3.21: FRD for functionality F1 with clubbed assets ..69

Figure 3.22: CRD for an example system ..70

Figure 3.23: Stakeholder-oriented ARD ...72

Figure 3.24: Stakeholder-oriented ARD with clubbed assets73

Figure 3.25: Asset-oriented ARD..73

Figure 4.1: SCD for Story 1 ...82

Figure 4.2: SCD for Story 2 ...82

Figure 4.3: SCD for Story 3 ...82

Figure 4.4: SCD for Story 4 ...83

Figure 4.5: SCD for Story 5 ...83

Figure 4.6: SCD for Story 6 ...83

Figure 4.7: SCD for Story 7 ...83

Figure 4.8: SCD for Story 8 ...84

Figure 4.9: SCD for Story 9 ...84

Figure 4.10: SCD for Story 10 ...84

Figure 4.11: SCD for story 1 after refinement ...86

Figure 4.12: SCD for story 3 after refinement ...86

Figure 4.13: SCD for story 5 after refinement ...86

 xix

Figure 4.14: SCD for story 6 after redundancy removal ...86

Figure 4.15: SCD for story 8 after refinement ...87

Figure 4.16: SCD for story 9 after redundancy removal ...87

Figure 4.17: SCD for story 10 after refinement ...87

Figure 4.18: Aggregated SCD for Funds Transfer ...88

Figure 4.19: Aggregated SCD for Print Statement ..89

Figure 4.20: Decomposed SCD for Funds Transfer ..89

Figure 4.21: CSCD for Issue Kit functionality ..100

 Figure 4.22: 3-d View of Rank Matrix R and Rank Sheet for Customer101

Figure 4.23: FRD for Issue Kit ..105

Figure 4.24: CRD for the complete INB Software ..107

Figure 4.25: Authorization rights of a stakeholder INB officer109

Figure 4.26: Asset-Oriented ARD for DD no. ...110

Figure 5.1: SCD for story 1 ...122

Figure 5.2: SCD for story 2..122

Figure 5.3: SCD for story 3..122

Figure 5.4: SCD for story 4..123

Figure 5.5: SCD for story 5..123

Figure 5.6: SCD for story 6..123

Figure 5.7: SCD for story 7..124

Figure 5.8: SCD for story 8..124

 xx

Figure 5.9: SCD for story 9..124

Figure 5.10: SCD for story 10..124

Figure 5.11: SCD for story 1 after redundancy removal ...126

Figure 5.12: SCD for story 4 after redundancy removal ...126

Figure 5.13: Decomposition of figure 5.8 ..127

Figure 5.14: Aggregated SCD for HVAC System ...127

Figure 5.15: Aggregated SCD for Security System ...128

Figure 5.16: CSCD for Smart Security System ...132

Figure 5.17: 3-d View of R for Smart Building ...134

Figure 5.18: FRD for Security System ..136

Figure 5.19 : CRD for Smart Building System ..138

Figure 5.20 : Authorization rights of a stakeholder Resident ..139

Figure 5.21: Asset-Oriented ARD for Username ..140

 xxi

Acronyms and Abbreviations

SecREAD Security-aware Requirements Elicitation, Assessment and Design

INB Internet Banking

UML Unified Modeling Language

SRS Software Requirements and Specification

RE Requirements Engineering

COM Component Object Model

CBSE Component-based Software Engineering

COTS Components-off-the-Shelf

RAD Rapid Application Development

WYSIWYG What You See is What You Get

RUP Rational Unified Process

ICSM Incremental Commitment Spiral Model

CBA Cots-based Application

 FISMA Federal Information Security Management Act

OMG Object Management Group

XP Extreme Programming

CLASP Comprehensive Lightweight Application Security Process

SDL Security Development Lifecycle

SaSDLC Security-aware Software Development Life Cycle

IRE Iterative Requirement Elicitation

GSD Global Software Development

RiskREP Risk-based Security Requirements Elicitation and Prioritization

CC Common Criteria

EAL Evaluation Assurance Level

 xxii

PREview Perspective Requirements Engineering View

CORE Controlled Requirement

UC Use Cases

BP Business Process

FODA Feature Oriented Domain Analysis

IBIS Issue-based Information System

JAD Joint Application Design

REVU Requirements Visualization of UML

FGDRE Focus Group Discussion for Requirements Elicitation

ADORA Analysis and Description of Requirement and Architecture

TSP Team Software Process

SCD Story Conversion Diagram

CSCD Consolidated Story Conversion Diagram

FRD Functionality Rank Diagram

CRD Comprehensive Rank Diagram

ARD Authorization Rank Diagram

WP Write with Permission

FD Fixed Deposit

OTP One Time Password

NEFT National Electronic Funds Transfer

RTGS Real Time Gross Settlement

IoT Internet of Things

CCTV Close Circuit Television

HVAC Heating, Ventilation and Air Conditioning

 1

Chapter 1

Introduction

“Our civilization runs on software.”

- Bjarne Stroustrup [1]

In today’s era of ever growing digitization, software is becoming a part of every

aspect of human lives. Software are applied in varied domains like banking, bill

payments, atomic energy, medical, ticket-booking, shopping, entertainment etc. They

may involve flow of finances and sensitive information. Undoubtedly, software play a

significant role and in this context it is indispensable to make them secure.

Researchers have put in a lot of efforts in this regard and have concluded that security

ought to be imbibed in the development process itself.

According to B. W. Boehm [2], Software engineering is the application of science

and mathematics by which the properties of software are made useful to

people. Although, numerous models and methodologies are available today but to

develop a software, very few of them deal with security concerns. The developers

usually focus on functional requirements considering nonfunctional requirements like

security at the end. This approach compromises the security. The extensive literature

survey has revealed that security is best imbibed in the early phases of Software

Development Life Cycle (SDLC) i.e. requirements and design. In the proposed

Security-aware Requirements Elicitation, Assessment and Design (SecREAD)

Methodology, the requirements engineering is formalized by eliciting requirements by

all kinds of stakeholders. The stakeholders can be very varied in their technical

knowledge. To accommodate this, the proposed methodology allows narration of

requiremnts even in natural language. From these requirements the various entities are

obtained and mapped to each other according their relevance. The design process is

based on an intricate ranking mechanism and empirical analysis. The diagrams are

developed as per the analysis. These diagrams are easy to draw and they very lucidly

illustrate the security concerns of the software. The diagrams are incremental in

 2

nature that grow with the information obtained at various levels. SecREAD attempts

to overcome the limitations of existing methodologies while assimilating their

positive aspects and imbibes the good practices as suggested by different researchers.

To substantiate and demonstrate the methodology, it has been applied on the two case

studies viz. Internet Banking (INB) and Smart Building.

In the upcoming sections, an introduction to various conventional and popular

Software Development Life Cycle (SDLC) models is presented to make better

understanding of security-oriented models and methodologies that follow in Chapter

2. Unified Modeling Language (UML) too is described along with its advantages and

drawbacks. The chapter also includes the problem & motivation and the objectives.

1.1 Software Development Life Cycle (SDLC)

There are many definitions of SDLC. According to Janczura and Golińska [3], “It

covers the time span from the point of realizing the necessity for creating a system, to

the moment of its decommission.” A Software Development Life Cycle (SDLC) is a

systematic process that helps to ensure the successful development, operation, and

retirement of information systems [4]. R. S. Pressman [5] considers it a methodology

to build a software of high quality. A software development process is the collection

of activities to be performed to build a software system. The organisation of software

process is given by a process model. It broadly consists of the requirements analysis,

design, development, testing and maintenance steps. According to I. Sommerville [6]

the fundamental activities of software development process are the Software

Specification that defines its functionalities, Design, Implementation, Validation to

check whether the software does what the customer wants and Evolution that

concerns with the evolution of software to accommodate customer’s changing needs.

Earlier researchers were not convinced on whether adherence to the existing process

models leads to the development of a secure product. Several security-oriented

models have been proposed by various researchers, discussed in Chapter 2. However,

for easier understanding of those, becoming conversant with the classical and

established models will be useful. Hence, these models have been discussed briefly in

the following sub-sections.

 3

1.1.1 Waterfall Model

Waterfall model is a well-known classical sequential model. In a sequential model of

this kind firstly the requirements are gathered and analyzed followed by design,

implementation & testing, installation and maintenance phases. The phases are clearly

separated and well-organized. The description of the different phases is as follows.

• Requirements Elicitation, Analysis and Specification: Requirements are gathered

correctly from the customer and communicated to the developers of the system.

They are then specified and the outcome of this phase is a Software Requirements

and Specification (SRS) document which serves as a baseline for rest of the

development process. A.V. Lamsweerde [7] calls it Requirements Engineering

(RE) that deals with the elicitation of objectives to be achieved, specifying them,

assigning responsibilities to the software, devices and/or humans and the

evolution of requirements over the time.

• Design: The software system abstractions and their relationships are identified and

detailed. Design may be depicted graphically by various diagrams using a

modeling language.

• Implementation and Unit Testing: The design is converted into system parts called

program units. Each of these units is tested individually to check whether it meets

the requirement specifications.

• Integration and System Testing: After testing the individual units, all the units are

integrated to form the system and tested again to ensure that it meets the

requirement specifications.

• Deployment and Maintenance: The system is deployed or installed at the

customer’s site and its usage begins. During maintenance, those errors are

corrected which remained undiscovered earlier. The system may be enhanced for

newer technologies.

This methodology is easy to use with clear milestones that are good for planning,

staffing and tracking. However, all the requirements are frozen at the very inception

itself. For changing requirements in later stages, one has to go back to the previous

phase(s). It is well-known that if the error is detected at a later stage in the

development cycle, more expensive it becomes to handle. Moreover, there is no

provision for consulting the client with a working version at an early stage. Also,

 4

many members of the project team remain unoccupied for long periods. Still this kind

of sequential models are used because of the simplicity they offer in managing a

project. The model is suitable for small or middle-sized projects with well-understood

technology where changes are limited. It is a good option for developing a new

version, porting to a new platform and quality is the priority over schedule or cost.

[3][8]

Iterative Waterfall Model is an improved and practical variation of Waterfall model

that provides option for backtracking to previous phases.

1.1.2 V-Shaped Model

V-Shaped Model [9] emphasizes over the validation and verification of the software.

It emphasizes planning for verification and validation in early stages of development

and the testing is conducted in parallel with the development. Again this model is

good for tracking the progress. However, handling dynamic requirements and

concurrent events is difficult. Systems that require high reliability usually suit this

kind of development. Steps of the model are enlisted in Table 1.1

Table 1.1: Steps of V-Shaped Model [5]

Steps Description
Project and Requirements Planning Allocate resources
Product Requirements and
specification Analysis

Complete specification of the software
system

Architecture or high level design Defines how software functions fulfil the
design

Detailed Design Develop algorithms for each architectural
component

Coding Transform algorithms into software
Unit Testing Checks that each module acts as expected
Integration and Testing Checks that modules interconnect correctly
System and Acceptance Testing Checks the entire software system in its

environment
Production operation and
Maintenance

Provides enhancement and correction

1.1.3 Prototyping Development Model

Prototyping Development Model [10] belongs to the class of Evolutionary

development models. These kinds of models allow the update of functionalities with

each update of the product [5]. Other models of this class include the Spiral model,

 5

the WinWin model, the Parallel model, the Incremental build model and the

Component Object Model (COM), discussed later. Developers build a prototype after

gathering initial requirements and quick design. Feedback from the user is sought

over the prototype and if the user is not satisfied the prototype is refined. This may be

repeated several times. At the end, the code of the prototype code is elevated to the

level of the final product to be released. Each prototype is released as a version of the

software. Using this model, a more accurate end product can be developed

assimilating the unexpected requirements. Moreover, all members of development

team remain involved. However, Kumar et al. [11] calls it is a “Quick and Dirty”

development as the system may be corrupted by continuous changes compromising

the overall maintainability. The process is not well supported by documentation.

Many times, the client may get the impression that the initial prototype is very close

to the final product and may want it to be delivered instead. Such models may prove

to be time consuming, when market forces faster release of products as the process

seems unending. Prototype Development Model is applicable when the system is new

and requirements are not well understood, or while developing user interface or while

developing parts of large systems.

1.1.4 Incremental Development Model

Incremental Development Model is a combination of the evolutionary and the

waterfall models. The phases of requirement specification, design, and

implementation are broken into smaller increments. A partial system is constructed

and then functionality is added one by one. In other words, every subsequent release

of the system adds function to the previous release. The delivery of product takes

place in increments instead of a single delivery. After developing an increment it is

validated, integrated into the previous partially built system and delivered. Each

delivered product is operational. After integration system is again validated. This goes

on until the whole system is constructed. The higher priority functionalities of the user

are included in the early increments facilitating their delivery early. In this manner,

the functionality with the highest priority is tested the most. Customer can give their

feedback for each increment. However, the model requires good planning, design and

well-defined module interfaces. It is applicable when it is possible to deliver the

system in small parts which is not easy always owing to the fact that it requires an

 6

early specification of the whole system. The methodology is inconvenient due to

frequent meetings with the users. It is a good option when there is a need to release

the prioritized functionality early in the market when the project has a lengthy

development schedule or when project is based on a new technology.

1.1.5 Spiral Development Model

The Spiral Model introduced by B.W. Boehm [10] represents the development

activities in a spiral fashion rather than as a sequence. Throughout the process, risks

are considered, assessed and resolved. It can be seen as a combination of prototype

and iterative methodologies. It allows development of critical functions first.

Feedback from users can be sought. There are no fixed phases. Each loop in the spiral

represents a phase in the process. One activity is performed in each of the four

quadrants per loop. These include:

• Determination of objectives, constraints and alternatives

• Evaluation of alternatives, and identification and resolution of risks

• Development of next-level product

• Planning of the next phase

Although effective, it is a complex process and difficult to adhere to. Risk evaluation

and resolution requires expertise and a lot of time. A lot of time is spent in resetting

objectives, planning and prototyping. It has high human resource requirements and

keeps much of that idle during non-developmental phases. This model is suitable

when the requirements are unclear and expected to change, when creation of

prototype is possible, for projects that represent new product line and when costs and

risk evaluation is important.

1.1.6 Win-Win Spiral Model

WIN-WIN spiral model [12] is a more practical variant of Spiral Model. It includes

negotiation activities at the beginning of each spiral where the developer simply asks

the customer what is required. The customer may have to balance functionality and

performance cost and time. It can be said that the customer wins by getting the

product that satisfies his/her majority of requirements and the developer wins by

achieving deadlines within the budget.

 7

1.1.7 CBSE and COTS‐based Application Process Decision Framework

Component-based Software Engineering (CBSE) is a reuse-oriented methodology that

emphasizes on making intensive use of existing components or Commercial-off-the-

shelf (COTS) systems instead of building components from the scratch. The COTS-

based Application Process Decision Framework [13] enables the development teams

to determine course of actions based on the appropriate combinations of Assessing,

Tailoring, Glue Coding and Custom Coding process elements that best fit their project

situation and dynamics. There are five principles for development:

• The team should start with flexible win conditions while assessing the alternative

products

• Development teams should spend more time in assessing the alternative products

and spend little time in tailoring, Glue Coding and Custom Coding

• Buy information early to reduce risk and rework

• Tailor a process to accommodate the process of COTS selection, integration and

maintenance

• A good amount of time and effort should be spent in assessing the market and

products since average upgrade time is ten months

COTS facilitate faster development and reliable product. However, trustworthiness of

components is doubtful as source code is not available; compromise in requirements

is quite likely. The model is applicable only when a pool of existing components is

available. However, according to S. Koolmanojwong [14], while using COTS, issues

concerning tailoring and interoperability may arise.

1.1.8 Rapid Application Development (RAD) Model

The RAD is an incremental software development process model that emphasizes on

extremely short development cycle by using component-based construction. Each

function is handled by a separate team and then integrated to form a whole. The focus

is on code i.e. What You See is What You Get (WYSIWYG) rather than

documentation. This approach encompasses modeling of data, process and business

generating the testing, application and turnover [15]. RAD facilitates high

productivity, low cost and risk mitigation. Involvement of customer throughout the

 8

process ensures their satisfaction. This model is a good choice when there is a

pressing deadline [16]. If requirements are well understood and project scope is

constrained, the RAD process enables a development team to create a “fully

functional system” within a very short time [17]. The RAD model faces difficulty for

large but scalable projects as they require enough human resources to create a number

of teams. Both the developers and the customers ought to be committed to the rapid-

fire activities [18]. It can be said that RAD needs well-known requirements, low risks

and scope of modularization.

1.1.9 Rational Unified Process (RUP)

The Rational Unified Process (RUP) [19] is a hybrid process model that brings

together elements from all of the generic process models, illustrates good practice in

specification and design and supports prototyping and incremental delivery. It

emphasizes on accurate documentation. The RUP is described from three perspectives

and includes four phases. The perspectives include the dynamic perspective which

shows the phases of the model over time, a static perspective which shows the process

activities including the workflows and a practice perspective which suggests good

practices to be used during the process. The phases in the RUP are firstly, Inception

that identifies all external entities and their interactions with the system. Secondly,

Elaboration, to understand the problem domain. Thirdly, Construction, involving

system design, programming, testing and integrating system parts. Fourthly,

Transition or deployment of the system at the client side. It resolves the project risks.

The highlight of the model is the recognition that deploying software in a user’s

environment is a part of the process. The development process is very complex and

hard to understand requiring an expert software developer. Integration adds the

confusion that causes more issues during the stages of testing. These problems are

recognized by Booch et al. [20] and has expressed the requirement of tailoring in this

method. The RUP is not a suitable process for all types of development e.g. embedded

systems.

1.1.10 The Incremental Commitment Spiral Model (ICSM)

The ICSM [14] emphasizes early verification and validation, but allows for multiple

incremental interpretations and alleviates sequential development. ICSM focuses on

 9

risk-driven activity prioritization, but offers an improvement by adding well-defined

milestones. It provides adaptability to unexpected changes and allows scalability. In

the Exploration phase, scope of the system is defined and alternatives are explored. In

the Valuation phase operational concept is developed, requirements are prioritized,

non-developmental products are assessed and business case is studied. In the

Foundation phase, the development team focuses on building the system and creating

a development plan. Finally, the project is delivered and deployed in the Operation

phase. In ICSM, at every milestone risk is assessed and decision is taken to skip or

repeat a phase.

1.2 Modeling and UML

Modeling is a fundamental activity within the requirements engineering process and

concerns the construction of abstract descriptions of requirements. The choice of a

modeling technique is critical whenever it is necessary to discuss the interpretation

and validation of requirements, particularly the functional requirements and when

stakeholders have divergent goals and different backgrounds and experience [21]. The

model then lets you record, communicate and analyze the important aspects of the

design [22].

Unified Modeling Language (UML) [20] is an industry-standard graphical modeling

language for visualizing, specifying, documenting and constructing the artifacts of

software systems. It is appropriate for modeling systems of varied types. It is not only

quite expressive language but easy to understand and use as well. It is independent of

implementation language. It supports diverse application areas. It simplifies the

complex process of software design. It uses graphical notation to communicate more

clearly than natural language (imprecise) and code (too detailed). The Object

Management Group (OMG) released the UML in 1997 to provide the development

community with a stable and common design language that could be used to develop

and build computer applications. The primary authors were Booch, Jacobson and

Rumbaugh. [23]

 10

1.2.1 Diagrams in UML

Following are the major diagrams in UML:

• Use Case: A use case captures and describes the system’s behavior under various

conditions as it responds to a request from a stakeholder called an actor. Scope

identifies the system and the preconditions tell what must be true before and after

the use case runs. A success scenario is a case in which nothing goes wrong. The

extensions describe what can happen differently during that scenario. The

numbers in the extensions refer to the step numbers in the main success scenario

at which each different situation gets detected [24]. The use cases together (also

called the use case model) describe the whole functionality of the system.

• Sequence Diagram: Sequence diagrams show a detailed flow for a specific use

case. The horizontal dimension shows the object instances to which the messages

are sent while the vertical dimension shows the sequence of messages/calls in the

time order that they occur.

• Class Diagram: The Class diagrams show how the different entities (people,

things, and data) relate to each other.

• Activity Diagram: The Activity diagrams show the procedural flow of control

between two or more class objects while processing an activity.

• State Chart Diagram: The State Chart diagrams model the different states that a

class can be in and how that class transits from state to state.

• Deployment Diagram: The Deployment diagrams show how a system will be

physically deployed in the hardware environment. Its purpose is to show where

the different components of the system will physically run and how they will

communicate with each other.

• Component Diagram: The Component diagrams show the dependencies that the

software has on the other software components in the system.

1.2.2 Advantages of UML

It provides different views on a system and a high degree of abstraction possible.

UML notation is widespread, well-known and acceptable [25] [26]. The UML offers

an unprecedented opportunity for high-quality critical systems development that is

feasible in an industrial context. A large number of developers are trained in UML.

 11

Compared to previous notations, UML is relatively precisely defined [27]. B. Selic

[26] believes that UML is suitable to model real time systems (and other

domains/parameters) as well because many tools from different vendors support

UML and there is an excellent conceptual match between the object paradigm and

real- time systems. You can harness tool support to make your models much

more useful than mere pictures.

1.2.3 Limitations of UML

Researchers have argued the abilities and usefulness of UML and its diagrams.

According to E. Woods [22], the UML diagrams generally don’t provide much

information but only relation between things, which is not enough. Though UML is

taught widely in academia but not used so often in industry because it has limited

building blocks to describe the design. B. Selic [26] says UML needs modification to

efficiently specify environments that support multiple paradigms and frameworks that

support multiple views. According to Konrad et al. [28] UML lacks a precise

and formally defined semantics. While it provides a nice variety of constructs

but they may prove inconsistent and choosing an appropriate construct is

difficult. Moreover, the UML semantics is both informal and problematic

[25]. Dobing and Parsons [29] say that the UML needs customization as per

the context of the project. M. Glinz [30] has found many deficiencies in UML.

According to him Use cases offer limited support for eliciting security threats and

requirements [31]. C. Kobryn [32] says that Use Cases are not well integrated with the

rest of the language. Sindre and Opdahl [33] have stated that Use Cases are not

suitable for requirements specification. These are really too vague and offer limited

support for eliciting security threats and usually neglect extra-functional

requirements, such as security.

UML is still used despite its several shortcomings because it is universally known and

understandable in the designer community. Such a widespread acceptance is not

enjoyed by any other modeling language.

 12

1.3 Stakeholders and Assets

R.S. Pressman [5] describes a stakeholder as anyone in the organization that has a

direct business interest in the system or product to be built and will be rewarded for a

successful outcome or criticized if the effort fails. D’Souza and Wills [34] more

lucidly elaborate that stakeholders of any system include the end user, administrator,

developer, customer, maintainer and so on. The overall requirements and conflicting

objectives are frequently much broader and vary among the different stakeholders i.e.

roles of people who will be involved in the construction of the system. Table 1.2

describes these concerns and objectives of different stakeholders.

Table 1.2 : Concerns and Requirements of Various Stakeholders [4]
Stakeholder Concerns and Requirements

Customer within budget, on time and stable
End-user intuitive and correct behavior, helps to do tasks, performance,

reliability
System Administrator intuitive behavior, tools to aid monitoring and administration
Marketer competitive features, time to market, scores over existing products
Architect familiar domain, infrastructure, architecture, buildable, meet

requirements
Developer clear requirements, simple design
Development
Manager

predictability and tracking of project, schedule, productive use of
resources including existing or familiar code, cost

Maintainer documented, understandable and consistent design approach, easy to
modify

Assets are parts of the system that are valuable for the organization, e.g. information,

software, or hardware. They need to be protected from malicious activities in order to

achieve business goals. Within this research work data items have been considered as

assets. [35]

1.4 Principles of Secure Software Development

Saltzer and Schroeder [36] have put forward some principles to help guide secure

software development. These include designs that are simple and not secret, access

decisions not based on exclusion but permission, checking every access right to every

object, granting least possible privileges to every user or program that is enough to

complete the task, providing a robust access mechanism with two keys, and an easy-

to-use human interface. Goertzel et al. [37] manifests three security principles for

software. Firstly, it should be secure by design. Secondly, it should be secure by

 13

default i.e. the default or supplier’s configuration should be as restrictive as possible.

Thirdly, it should be secure in deployment i.e. even after the software has gone for

production its security can be maintained.

1.5 Sources causing insecurity in software

Yoder and Barcalow [38] say that usually software is developed without keeping in

mind the security aspects because the programmer is busy in learning the domain,

building prototypes or eliciting the customer’s requirements. Some major sources of

insecurity in software, as pointed out by Goertzel et al. [37], are as follows:

• Inadequate Development Principles and Practices

• Incorrect or misunderstood developer assumptions

• Insufficient capture of requirements for security properties

• Design mistakes

• Inadequate documentation

• Insufficient tools and resources for developers

• Project management decisions that undermine secure software production

1.6 Problem and Motivation

As mentioned in the Introduction (Section 1) and the discussion presented in Goel et

al. [31], the requirements and design phases are the most appropriate phases for

integrating security in the development life cycle. A proper elicitation and

specification of security requirements is obviously necessary but their precise and

clear elicitation is difficult [7]. Similarly, modeling the requirements or their

diagrammatic representation is essential for unambiguous communication between the

users and the development team [39]. Further, to model the security requirements

effectively, the existing popular language known as Unified Modeling Language

(UML) [40] is not suitable. The above issues have served as a motivation to develop

Security-aware Requirements Elicitation, Assessment and Design (SecREAD)

Methodology which is a novel and improved methodology for eliciting specifying and

modeling security requirements.

 14

1.7 Objectives of the Research

The research work has been carried out to achieve the following major objectives:

• Address the need of integrating security into the development lifecycle

• Critically analyze the existing security-oriented development models to find

appropriate development phase(s) to imbibe security and deduce effective

practices propounded by various researchers in this regard

• Develop an efficient requirements engineering process to elicit, analyze,

specify and model security requirements that reckons the concerns and

aspirations of all stakeholders of the software

• Introduce an effective security ranking process followed by empirical analysis

• Model the above requirements based through easy but effective diagrams

based on the rankings and the empirical analysis.

• All in all, to propose a new improved secure software development

methodology that overcomes the limitations of the prior works but includes

their positive aspects and other best practices advocated by different

researchers.

1.8 Organization of the Thesis

The thesis consists of six chapters where Chapter 1 throws light on general concepts

of software development along with a description of some classical and established

process models, and Unified Modeling Language (UML). Chapter 2 incorporates an

expansive literature survey that highlights the concerns raised by various researchers

over imbibing security in SDLC, justifying its need and relevance in the present

scenario. Furthermore, it critically analyses different methods and methodologies

proposed so far to cater to these concerns. Chapter 3 illustrates the SecREAD

methodology in detail. The methodology has been validated through its application on

two case studies. In Chapter 4 the case study of Internet Banking is taken up while in

Chapter 5, the methodology is applied on the case study of Smart Buildings. Finally,

the conclusions are drawn in Chapter 6. The thesis also contains two appendices A

and B that supplement the case studies presented in Chapter 4 and Chapter 5

respectively.

 15

Chapter 2

Literature Survey

“…so essential is security that no software should ever be released without these

requirements being met”

- Microsoft [41]

Both academia and industry have raised concerns on the security in software and its

inclusion in SDLC. According to Swiderski and Snyder [42] “Security is an aspect

most customers expect and all customers want.” Failures of security mechanisms may

cause very high damage. However, security is mainly taken as an add-on to the

common system development [43].

In the previous chapter, certain principles of secure software development have been

discussed along with some major sources that bring insecurity in software. This

chapter presents a discourse on the need for imbibing security in SDLC, certain

challenges or issues faced by research community, finding the most suitable phases of

the SDLC to imbibe security and certain relevant prior works in this direction.

2.1 Why Security in SDLC?

Security has lagged behind maintainability in seeking attention of developers.

Software systems are based on insecure technologies and are marked by faults and

vulnerabilities which should be avoided. There are many reasons for requirement of

security in software. Firstly, high-consequence software systems which involve

sensitive information are increasing and being exposed to the internet. Secondly,

security lags far behind correctness and maintainability as far as its application

throughout the SDLC is concerned. Thirdly, security attacks often lead to huge losses.

Fourthly, very few software engineers are aware of security concepts. Fifthly, there is

lack of software engineering tools and techniques for security. [37] [44]

Meier et al. [45] has explicitly stated that for secure design and deployment of

software, security ought to be integrated into the development life cycle. R. Anderson

 16

[46] says that integration of security into the system development is necessary to

build secure systems. Similar view is taken by On-Point Organization [4] who

believes that incorporating security into the SDLC is one of the most effective ways to

protect the assets of the organization. Furthermore, adherence to an SDLC model

increases the likelihood of project success by meeting the requirements of

stakeholders in a better way. N. Davis [47] goes on to say that a very few of the many

available processes and methodologies specifically support secure software

development from the ground up. Software security is an inevitable issue in an

increasing networked world.

Goertzel et al. [37] attributes the most critical difference between secure software and

insecure software to the nature of the development process used. Lindvall et al. [48]

says that the selection of development model is significant in decreasing risk levels.

Similarly, D. Shreyas [44] stresses for an urgent integration of security policies in the

development process. However, J. J¨urjens [27] says that security mechanisms cannot

be “blindly” inserted into a security-critical system, but the overall system

development must take security aspects into account.

Any support to aid secure systems development is thus dearly needed. Such an

inclusion will reduce cost and effort. It can be understood by some of the studies

conducted. Detecting and repairing an error during the testing phase costs 10 to 100

times more than the cost of fixing it in the earlier phases. Further, this cost may grow

up to 40 to 1,000 times if it is found after the releasing the software [49]. The return

on investment for secure software engineering can be as high as 21 percent [37].

2.2 Security in SDLC: Suitable Phase(s)

Many researchers [37][50][51][52][53][54][55] advocate that considering security

from the very start in the SDLC will be more beneficial. In this regard, [33] stresses

upon inclusion of security in requirements phase and considers that its postponement

to design and implementation phases can cause security issues which may be

forgotten or ignored. Security is seen as a qualitative or non-functional requirement

by [56][57] and [58] that must be engineered into the product rather than being added

on at the last minute.

 17

However, various other researchers [38][59][60][61] recommend the inclusion of

security in the design phase. In general it seems that the customer/user community

finds diagrammatic expression more acceptable than words and symbols [62].

Some researchers [16][27][44][63][64] believe that security should be considered

throughout the life cycle. The intent is not to disturb or add more phases to the SDLC,

rather incorporate security activities into an existing SDLC methodology [4]. The next

sub-sections discuss the significance and characteristics of requirements and design

phases respectively, as also how challenging it is to imbibe security in them.

2.2.1 Requirements Engineering

D. Shreyas [44] says that RE is an area of primary concern in software engineering.

Sharif et al. [65] considers it to be the most important phase in the development life

cycle. According to Fellir et al. [66] and Kumari and Pillai [67], the success of the

software depends on requirements engineering. Researchers [68][69][70] attribute the

software quality on the specification of requirements.

Being so important, Requirements Engineering however poses several challenges.

Breu et al. [16] and Futcher and Solms [63] consider requirement elicitation to be the

most critical and ambiguous process. A small mistake at this stage can make the

system unacceptable by the customer and may require a lot of rework, time and cost.

Babur et al. [71] says that lack of clarity in objectives makes the development of

software cumbersome. The process can be facilitated by taking into consideration the

requirements of the user and other stakeholders. This will result in greater customer

satisfaction and will enhance business value. In his research, R. Snijders [72] has

concluded that user involvement has a large potential for improving the quality of

RE and thereby the quality of software. Sabahat et al. [73] explicitly states that the

best approach is to get the correct requirements initially but Wäyrynen et al. [50]

argues that customers are usually not in a position to freeze all requirements at the

very beginning. E.R. Keith [61] says that when the environment is not stable and

requirements keep changing, it usually becomes difficult for the customers to realize

what they really want until a system is functioning. Haley et al. [74] is of the view

that there is no satisfactory integration of security requirements into requirements

 18

engineering. Chua et al. [75] has underlined the importance of complete and correct

requirements in the development of a correct system in accordance with users’ wants

and needs. However, the process of eliciting business user requirements is quite

time-consuming for both business analysts and users. Methods such as prototyping

and use cases, according to them, are insufficient for outlining requirements

completely and correctly. Problems with requirement elicitation highlighted by them

are incorporated in Table 2.1. Some elicitation methods have been proposed keeping

security in mind which will be discussed in Section 2.6.

Table 2.1: Problems with Requirements and Their Effect

Problems with Requirements Effect of the Problems
Incomplete domain knowledge Poor user collaboration
Incomplete requirements Incomplete understanding of needs
Inconsistent requirements Non-solid intentions of requesters
Ambiguous requirements Synonymous and homonymous terms
Excessive requirements Unorganized bulky information sources
Fluctuating requirements Continuous acceptance of additional

i t Overlooking tacit assumptions Incorrect requirements
Ill-defined system boundaries Misunderstanding of system purpose
Un-testable terms Unnecessary design considerations
Different views of different users Unfixed requirements
Too many requesters Over-commitment by sales staff

2.2.2 Security in Design

The practice of simple design will make the software easy to be evaluated from a

security perspective. Complex systems with many interactions are difficult to analyze

and understand which will have an impact on other security areas. According to B.H.

Wu [76] systematic presentation of design fragments and techniques can produce

effective results. High quality software needs great designers which are rare. This is

also seconded by Redwine and Davis [77]. According to N. Coblentz [78], design

flaws amount to 50% of security problems. UML is the standard designing language

that has been discussed in Section 1.2.

 19

2.2.3 Human Factors and Team Composition for security

Sawyer and Guinan [79] believe that social process affects Software production more

than the technological process. Similarly, according to Birk et al. [80] the activity of

software development is a human and knowledge intensive activity. Basri and

O’Connor [81] emphasize that software development depends on quality of

communication within the different team members and among different teams.

Further, they consider people as the greatest asset in any software organization who

are critical to the success of software development.

Certain improvements in team composition are required for security enhancement in

development of the software. According to D. Shackleford [53], the two teams of

development and security ought to work together. This has several benefits like

efficient development operations, better code and quality processes. However, there is

a basic problem. Developers and security teams have different priorities. The security

team is more concerned of integrity and confidentiality of data, which can slow down

the development team. But, developers are governed by the business requirements to

produce and revise code as quickly as possible. In this way developers focus on what

works best instead of what is most secure. To remove bugs the developer has to write

more code and since code is directly proportional to bugs, this again results in bugs.

The management personnel are governed by market forces because of which they are

more concerned in quick delivery of code and consider security team responsible for

slowing down the development process. In this manner not only programmers but

security personnel and upper management as well share the brunt of security

problems. So, a right balance between the conflicting roles of security experts,

developers and management is desired. This is summed up aptly by Viega and

McGraw [82] that the team is the basis of every software project and that achieving a

tradeoff between speedy development and satisfying security requirements is a

challenge. Other modifications suggested are the inclusion of testers in the team by J.

Rasmussen [83]. Redwine and Davis [77] have suggested the inclusion of personnel

with substantial education, training, and experience to meet the demands of modern

development process requiring various specialties. Researchers [68] and [84] have

advocated the inclusion of customers and end-users to understand their needs and

context consequently, increasing the probability of their satisfaction. In the light of

 20

this, I. Sommerville [55] has underlined the issue that stakeholders and end-users are

reluctant to adopt new notations imposed on them but want to use their own notations

and terminology to describe their requirements. Though they have their own ideas,

they are not always competent in representing them.

2.3 Security Parameters

Various researchers judge the security of the system on some parameters. The

parameters are more or less the same with very minute difference in perception.

Talukder and Prahalad [51] take confidentiality, integrity, authentication,

authorization to be important parameters and performs ranking of assets over them by

giving values 1, 2 and 3. Breu et al. [16] also considers the same parameters.

Authenticity of each actor in an activity is a critical requirement. Authentication

should be handled using standard protocols and components, if available.

Authentication involves verifying that people are who they claim to be, by using

username-password scheme, biometric authentication based or voice recognition,

fingerprint scans or retinal scans. Non-repudiation means that for each important

activity the actor cannot deny that he/she executed the activity. Integrity is about

preventing unauthorized alteration. Authorization is about determining what resources

an authenticated person has access to. Redwine and Davis [77] take session

management separately as a security measure and availability as parameter for

preventing unauthorized destruction or denial of access or service. D. Shreyas [44]

thinks security of a software system depends on Authentication, Confidentiality,

Integrity and Non-repudiation and treats Access Control as separate from

authorization. Goertzel et al. [37] considers only authentication, access control and

authorization as parameters. Federal Information Security Management Act (FISMA)

[85] defines three security objectives for information and information systems

namely, Confidentiality, Integrity and Availability. Their impact is rated as low,

moderate and high. D’Souza and Wills [34] lay stress on better team management and

flexibility to cater to different domains along with integrity. Department of Homeland

Security [85] has elaborated security parameters. One of them is availability of

software to its authorized users whenever needed. Further they take Integrity,

Confidentiality, Non-repudiation and Accountability as other parameters. They

specify elaborately integrity to keep safe from unauthorized modifications like

 21

corruption, overwriting, tampering, insertion of unintended logic, deletion or

destruction. Accountability is somewhat like authorization where responsibilities of

stakeholders are set for their actions. B.A. Forouzan [86] considers Authentication,

Integrity, Non-repudiation and Confidentiality as important elements of security.

When security is referred to, it may imply to one or more of the above dimensions.

For example in e-mail communication, security might involve integrity, non-

repudiation and confidentiality while in online shopping it may involve integrity, non-

repudiation, confidentiality as well as authentication. Ranking is performed within the

context of software domain and interest of client organization. Pohl and Rupp [87]

have found ranking process suitable but according to them it should involve the

stakeholders of the software. S. Hatton [88] has advised simplicity in ranking process

for the stakeholders. Goertzel et al. [37] suggests assessment of security throughout

the development process by experts, internal or external. This idea of experts is

seconded by Saripalli and Walters [89]. Ranking in some way or the other is

conducted in diffrerent methodologies for secure software development like SecSDM

[63], Threat Modeling [77] and SaSDLC [90]. All of these are described in Section

2.5.

2.4 Empiricalness in Software Engineering

In software engineering research, unlike other fields of study, there is lack of

empirical analysis [91]. Redwine and Davis [77] have raised concerns about the

effectiveness of existing empirical practices for producing secure software. Further,

they have summarized the strengths and weaknesses of empirical study. Their

structural approach contains certain steps i.e. designing better studies, collecting data

in a more effective manner, and involving other stakeholders. Fenton and Pfleeger

[92] have pointed out that several empirical studies are not fit for large systems and

do not have proper statistical designs. As far as qualitative analysis is concerned it

uses data that is less readily quantified through the techniques like interviews,

observations etc. which help in understanding the people's perspectives. At the end,

the researchers must carefully analyze how their biases affect the data.

 22

2.5 Related Works: Existing Secure Lifecycle Models &

Methodologies

To address the issues elucidated in the previous sections, various researchers have

proposed some models and methodologies. These are described and critically

analyzed in this section.

2.5.1 Agile Software Development Methodology

These processes are named so because of their adaptability unlike traditional

processes. Agile Processes focus on early development of code and people

interactions rather than documentation and planning [61]. The manifesto of the "Agile

Alliance" [93] has outlined certain principles for this kind of development. These

include, giving the highest priority to the satisfaction of customers and developers

working together, which is in line with the views of various researchers already

highlighted. It is suitable for frequent alterations, catering to the changing

requirements and minimizing risk by developing software in short time boxes or

iterations. Adhering to Agile methodology, critical issues are stated early and

addressed as also continual feedback is provided to the development team. The steps

for development are project initialization, setting the project time-box, determining

the right number of cycles and the time-box for each, setting an objective for each

cycle, assigning basic components to each cycle, developing a list of tasks, reviewing

the success of a cycle and planning of next cycle. To enhance security, the

development team includes security experts in this methodology.

However, Agile processes link requirements to the code but lack documentation.

Therefore, if the customer does not possess enough clarity, the development process

can go off the track [61]. Over-dependence on tacit knowledge makes the transfer of

software to other organizations difficult [94]. Lindvall et al. [48] and Turk et al. [93]

do not consider it to be a good choice for the development involving subcontracting,

distributed environments, large teams, reusable artefacts, and development of large,

complex, safety-critical or reliable software. The practice of pushing code quickly and

object re-use can compromise security.

 23

Agile is applicable to the software that can be built quickly, especially that are

maintenance-intensive, time-critical applications and in the organizations which have

disciplined methods [48]. An important Agile method is Extreme Programming (XP),

detailed in the next section.

2.5.2 Extreme Programming (XP)

XP development methodology [6] is based on developing and delivering functionality

in very small increments. The practices of simple designing, testing, reviewing and

short iterations are taken to extreme levels. It is simple and implements what is

actually needed according to the situation. It emphasizes rapid feedback from the

customer through frequent deliveries. It expedites development, increases customer

satisfaction, lowers the chances of defects rates and handles frequently changing

requirements. It is applicable to small-to-medium-sized software with rapidly

changing or vague requirements.

XP involves the following practices:

• ‘Pair-programming’ means that code is written by two programmers on one

machine

• Metaphor or a story about the working of the system

• Simple design

• Testing by programmers and customers

• Refactoring or continuously restructuring the system

• Collective Ownership of the code i.e. anyone can change any code anywhere in

the system at any time

• Continuous integration of the system every time a task is completed

• Small Releases of new versions in a very short time

• Planning Game or determining the scope of the next release

• Working 40 hours a week

• Following the coding standards – programmers write all code in accordance with

rules emphasizing communication through the code

• Customer On-site, always to answer the questions

 24

XP has certain limitations as well. Frequent meetings with customers amount to

enormous expenses. An exact estimation of work cannot be made initially since scope

and requirements of the project are not known. Usually the cost of changing the

requirements at a later stage in the project can be very high. K. Beznosov [8] doubts

the successful application of XP to security engineering projects. Lack of

documentation renders it unsuitable for secure development. Viega and McGraw [82]

go as far as saying that XP has a negative impact on software security. XP lacks a

comprehensive consultation team to aid and advise the developers thus, specialized

inputs may not be obtained.

Wäyrynen et al. [50] has proposed some modifications to XP to make it suitable for

developing projects securely. Firstly, a security engineer should be included in the

team. Secondly, the security architecture must be documented before the security

review. Thirdly, complement pair programming with verification.

2.5.3 Comprehensive, Lightweight Application Security Process (CLASP)

CLASP introduces security in the software development in the early stages. It

includes the usage of instructions, guidance, and checklists. Thirty specific activities

are expressed in CLASP to make the development team security-aware. The activities

are assigned to eight roles viz. requirements specifiers, project managers, security

auditors, software architects, implementers, designers, testers, test analysts, and

integrators and assemblers. For each activity its implementation, associated risk on its

omission and estimation of risk is defined. CLASP claims that it can be adapted for

any development process. [37]

2.5.4 Security Development Lifecycle (SDL)

Microsoft [53] introduced SDL to create a more secure software. Security is

considered throughout the cycle. It is claimed that while using the SDL, the

vulnerabilities can be reduced by 50%. The model is depicted in Figure 2.1. The

model has some unique features. Developers are imparted security training at the

very inception and there are separate phases for verification (pre-release) and response

(post-release).

 25

This model is applicable to software that involve large development teams, long

development cycles and extensive resources [78] like such as Windows and Microsoft

Office [41]. Figure 2.1 given by R. Labbe [95] shows how SDL aligns with the

traditional DLC.

SDLC Envision Design
Develop/

Purchase
Test

Release/

Sustainment

SDL
Application Entry/

Risk Asessment

Threat Model/

Design

Internal

Review

Pre-

production

Assessment

Post-

production

Assessment

Figure 2.1: Alignment of SDL with tradition SDLC

2.5.5 Secure Software Development Methodology (SecSDM)

SecSDM [63] is a risk-based methodology that advocates integration of security

throughout the SDLC. It performs identification of assets and their prioritization

based on the threats based on a ranking mechanism assessing the likelihood,

frequency and impact of threats. Security concerns implemented are associated with

possible risks that are identified and traceable. It emphasizes on security training.

SecSDM is claimed to be developed keeping in mind that it adds no additional time,

cost and skill overheads. It has 10 steps grouped under six phases. Its first phase is

the investigation phase in which the possible risks or threats are investigated. The

later phases are analysis, design, implementation and maintenance. Risks are

identified and correspondingly security services are provided which include

identification, integrity, confidentiality, authorization, authentication, access control

and non-repudiation, but there is no provision of eliciting stakeholders’ views.

However, assets are identified and ranked. Data items are considered as assets. Their

study shows that security concerns attributed to the two phases of requirements and

design are more than that for other phases.

2.5.6 Security-aware Software Development Life Cycle (SaSDLC)

Talukder and Prahlad [51] believe that in future security ought to be considered as a

significant functional requirement during development owing to inter-linking of

applications accessible by varied users. Applications, running on variety of devices

 26

and platforms, need to be security-aware. In SaSDLC first the assets are identified. In

later steps functional requirements are captured and analyzed followed by

identification of security requirements. Later each risk is rated on a scale of 0 to 10

using DREAD [23] which uses the formula depicted in Eq. (2.1). Each threat is

ranked at three levels. These rankings are compared with value of assets as measured

in the first step. Here, assets mean data items.

DREAD = (D+ R + E +A + D) / 5 (2.1)

where, D = Damage Potential, R = Reproducibility, E = Exploitability,

A = Affected Users and D = Discoverability

The method, however, does not produce a comprehensive list of stakeholders for each

different project but brings all stakeholders under one single umbrella of ‘user’ along

with an ‘administrator’. It also considers an ‘attacker’ and solicits ranking from it as

well. Furthermore, the ranking is not governed by any set of rules and is done

regardless of domain. [90]

2.6 Security Techniques/Models for Requirements Engineering

This section describes some of the existing techniques and models for secure

requirements engineering.

2.6.1 Iterative Requirement Elicitation (IRE) for Global Software

Development

Sabahat et al. [73] has proposed the IRE approach for effective requirement

elicitation of Global Software Development (GSD) projects i.e. software development

at geographically separate locations. For such type of development, efficient

coordination and synchronous interaction between distributed groups is desired

which makes the task more complex. Due to lack of personal meetings with the

client, developers may assume the requirements. There are cultural, language, legal

and social barriers in requirement elicitation of such systems along with the issues of

distance and time-difference. In the existing approaches of requirement elicitation the

requirements engineers may assume requirements in later phases when they

encounter any ambiguity leading to poor customer satisfaction. To avoid this,

 27

requirements are elicited from customers in an iterative manner. The techniques of

interviews, prototyping, questionnaires and scenarios are used to elicit requirements.

The results show that IRE approach is quite effective in satisfying the customer

requirements. But, only the customers are involved in the elicitation process, leaving

out other stakeholders.

2.6.2 Risk-based security Requirements Elicitation and Prioritization

(RiskREP)

RiskREP [35] is an extension of misuse case-based methods. Risks are assessed

countermeasure are defined and prioritized according to business goals, cost and their

effectiveness. The model contains technical, user and business perspectives. User

perspective specifies quality attributes of the system to be protected e.g.

confidentiality. Business perspective specifies business goals, expressed as quality

requirements like “confidentiality of password”. Assets include information, software

and hardware which are to be protected to achieve business goals. Steps of the method

are Quality goal analysis, Risk analysis, Countermeasure definition and

Countermeasure prioritization. The information is elicited from IT manager, security

officer and business owner who represent the IT, user and business perspectives

respectively. A risk expert and an RE expert elicit the information from other

stakeholders.

2.6.3 Common Criteria

The Common Criteria (CC) [96] describes security related functionality to be

included into the development process, like assurance, secrecy and authentication.

After successful evaluation of the CC, a certificate is issued depicting its

trustworthiness. The CC improves the quality of the system and reduces the cost and

effort of instilling security. The methodology is iterative. An iteration consists of

planning, analysis, design, implementation, operation and delivery phases. After every

iteration, a fully functional product is obtained that satisfies a set of requirements and

is ready for evaluation. During the entire process, security measures are carried out as

early as possible ensuring that discovery and mitigation of security problems early

resulting in cost reduction. However, the requirements have highly complex

dependencies and no guidance is provided to deal with them. All in all, CC is highly

 28

sophisticated for a security critical system with seven Evaluation Assurance Levels

(EALs) [50].

2.6.4 The Security Analysis Process

Breu et al. [16] has proposed Security Analysis Process to explore requirements and

measures at the proper level of detail. It consists of steps namely Security

Requirements Elicitation, Threat Modeling, Risk Analysis, Measures Design and

Correctness Check. Apart from these an elaborate access policy is formed during the

requirements specification with the help of customers and/or end-users. Systematic

checks are conducted with respect to Authentication, Confidentiality, Integrity,

Availability and Non-Repudiation.

2.6.5 PREview

I. Somerville et al. [55] has introduced a multi-perspective requirements engineering

approach (PREview) for industrial use. PREview allows incremental requirements

elicitation in spiral fashion. It is a flexible model of viewpoints with no particular

notation to organize requirements acquired from different sources. Viewpoints are

used in the early stages as a structuring mechanism for requirements elicitation and

analysis. Identifying viewpoints and organizing information around them reduces the

possibility of missing any critical information and it provides a mechanism for linking

requirements with their sources. A viewpoint has a meaningful name, a focus i.e. a

definition of its perspective, the requirement sources, the history of the changes over

time and a list of the applicable concerns that are used to elicit requirements and

formed into questions to be answered by the stakeholders. In summary, PREview

helps improve the quality of requirements specification. However, there are certain

drawbacks like managing the customer information due to gathering of requirements

from a number of viewpoints. It is not clear when the process of elicitation should

cease.

2.6.6 CORAS

CORAS [97] [98] is a model-based method for analyzing security risks. It provides a

customized language to model risks and threats. For security all aspects of integrity,

confidentiality, non-repudiation, availability, reliability, authenticity and

 29

accountability of IT systems are considered. The activities involved are identification

of assets, identification of important security requirements that are discussed with the

experts, identification of the risks to assets and analyze them. Lastly, evaluate risks

level as low, moderate and high over the parameters namely, rare, unlikely, possible,

likely and almost certain. The steps of CORAS are a meeting with the client followed

by another meeting with the client where the analysts will present their understanding

of the system by studying the documents. In the third step a more refined description

of the system is made. This step is terminated once all this documentation is approved

by the client. The client then defines the criteria of evaluating risks. In step 4 a

workshop is organized with the experts aimed at identifying unwanted incidents. A

workshop is again organized in the fifth step focusing on evaluating risks that is

presented in the treatment workshop in the last step.

2.6.7 Controlled Requirement (CORE)

CORE Specification Method [39] is also a viewpoint based approach. It considers

views of all stakeholders, supported by diagrammatic notation that can be applied to

the description of both requirement and design. The diagrams can be separated into

dynamic diagrams and static diagrams. Dynamic diagrams represent flow of time and

connections between temporally ordered items while Static diagrams present the

hierarchic structure connecting dynamic diagrams. However, CORE does not lay

emphasis on non-functional requirements, rather it focuses on information flow.

Analysts have a passive role which makes proper elicitation of requirements difficult.

2.6.8 Use Processes

Use Processes [68] is a methodology for requirements elicitation. A Use Process

Diagram is used that is based on Use Case and the OMG Business Process Modeling

Notation. According to them, Use Cases (UC) [6] do not present a business process

(BP) oriented approach for eliciting requirements. The main customers of the software

are business people who generally prefer flow charts to visualize business processes.

So Use Processes allow participation of users and customers in the requirement

elicitation process and results in their better satisfaction. The steps of the

methodology are: Defining a problem statement, Modeling the Business Process,

 30

Defining the System Boundary, Describing the Activities and Involved Roles, and

Identifying and Describing the System Functionalities.

2.6.9 Quality Function Deployment (QFD)

QFD [99] is a technique for quality management that converts the customer needs into

technical requirements for software. QFD spans the entire development process. It

aims at maximizing customer satisfaction. For this, QFD lays stress on what is

valuable to the client and then deploys these values throughout the software

development process. QFD classifies requirements into three kinds i.e. Expected,

Normal and Exciting. For elicitation of requirements QFD uses the techniques of

observation, interviews, surveys and examination of historical data. To extract

expected requirements, matrices and diagrams are used. Its steps are to identify

customers and requirements, identify technical features and then relate the previous

two steps to develop different kinds of architectures. The best out of these is selected.

 The major disadvantage is the heavy initial investment. The usage of QFD may slow-

down the development process. If direction changes mid-way a lot of re-work will be

done. Moreover, management commitment is essential. [62]

2.6.10 Miscellaneous Methodologies

Core Set of Factors has been proposed by J. Steven [24] which can be addressed

independently of the development methodology. These factors are in the form of

questions, answers of which can aid in secure development. Broadly the questions are

related to the identification of stakeholders and their concerns, how is design verified

to cater to security requirements, how adherence of code to design is proven, how are

threats weighed against risks and how attacks are handled.

Feature Oriented Domain Analysis (FODA) [100] is a process where relevant

information is elicited about the system’s domain iteratively. To achieve this,

analysts, domain experts and users work together to suggest the required features and

according to them the designers develop the architecture. The method is iterative in

nature. Users are interviewed to gather requirements. However, this method is suitable

for well-understood domains only that don’t change rapidly. Issue-based Information

System (IBIS) [101] is a formal method of requirement elicitation with underlying

 31

features of Question, Idea and Argument. However, it lacks in graphics and iteration.

Joint Application Design (JAD) [62] is another elicitation method which involves

users throughout the SDLC but it works well with committed top management only.

2.7 Secure Design Techniques/Models

This section describes some of the existing techniques or models for secure software

design.

2.7.1 Requirements Visualization of UML (REVU)

Using the REVU [28] process, the functional requirements can be visualized through

a UML model. In the first step the developer specifies the properties of a witness

scenario in natural language. It is a sequence of steps to fulfill a functional

requirement. This declarative specification facilitates a developer to discover

scenarios. In the second step, a model checker generates witness scenarios that adhere

to the previously specified properties. Finally, each witness scenario is viewed by the

developer as per the original UML model.

2.7.2 Security Design Patterns

In this methodology various security design patterns [38] may be applied to develop a

software. These are listed as follows:

• ‘Check Point’ to authorize and authenticate users

• ‘Single Access Point’ to validate users and collect information about them

• ‘Roles’ to club users that possess same privileges

• ‘Limited View’ that allows users to view only what they have access to

• ‘Full View with Errors’ that gives users a complete view with exceptions

• ‘Secure Access Layer’ that allows secure communication with external systems

• ‘Session’ in an environment with many users to maintain information

2.7.3 Focus Group Discussion for Requirements Elicitation (FGDRE)

Kasirun and Salim [54] have proposed FGDRE for eliciting requirements iteratively,

which is suitable when there are many stakeholders who keep changing their

requirements. The requirements are represented in both graphical and text forms for

 32

better understanding. A consultation is held among all stakeholders. The session is

guided by a facilitator who ensures that the discussion is within the context.

Feedbacks and responses from the discussion are taken into consideration in the next

activity. The session starts with identification, followed by elaboration and

refinement. In the final step of integration all the agreed concerns and viewpoints are

integrated.

2.7.4 Misuse Cases

One of the techniques for introducing security in requirements elicitation is proposed

by Sindre and Opdahl [102]. It is a slight modification in the Use Cases to overcome

their limitations, already mentioned in Section 1.2. Misuse case actually means a

negative use case that specifies behavior not required in the proposed system. These

can help in eliciting security requirements properly. Corresponding to every actor in a

use case there is a misuse and a mis-user. The Misuse Cases are denoted by black

ovals against every use case, denoted by white ovals. Similarly, a crook is denoted as

an actor but with a black head. For example ‘Register Customer’ is a use case

involving customer as a user. Correspondingly, ‘Flood System’ may be a misuse case

initiated by a mis-user namely crook.

For textual description different templates are given by A. Cockburn [24], and Kulak

and Guiney [103]. They contain fields like Use Case Name, Name of Author, Basic

course of events, Preconditions, Post-conditions, Iteration, Exception paths,

Alternative paths, Extension points, Triggers, Assumptions, Business rules, Summary

and Date of writing. Sindre and Opdahl [102] has proposed some modifications to

cater to security requirements more effectively like identifying important assets,

define security goals for every asset, identifying threats to each security goal,

identifying risks for the threats and specifying security requirements to mitigate risks.

Misuse cases are beneficial due to early focus on security. They can be understood

by the non-technical stakeholders. They help in linking the functional and non-

functional requirements [102]. But, the misuse may not be identifiable and it may not

be a result of an identifiable sequence of actions [33].

 33

Decompose Application Identify Vulnerabilities

Identify threats

Identify Security Objectives

Application Overview

2.7.5 Threat Modeling

As per N. Sportsman [59] threat modeling is a security control activity performed

during the design phase. Here, a meeting is organized among the security and

development teams. Threat modeling [77] is used to identify risks and consequently

support the decisions of design, coding, and testing. It identifies the key assets of an

application, identifies and categorizes the threats to each asset, ranks the threats and

then develops strategies for mitigating threats that are then implemented. Microsoft

[104] has developed a robust technique of threat modeling that is implemented during

design to identify potential vulnerabilities. Since it is applied in the early phases, it

reduces the cost by identifying mistakes early on. It has several benefits for

improving security by finding vulnerabilities, threat analysis and reducing or

minimizing the impact of risk. Apart from this it also aids in testing and reducing

cost. Threat Modeling Process (shown in Figure 2.2) is iterative and comprises of

five steps namely Identify Security Objectives, Application Overview, Decompose

Application, Identify Threats (and countermeasures) and Identify Vulnerabilities.

Figure 2.2: Threat Modeling Process

Threat Modeling is asset-centric and iterative that evolves over time, adapting to

changing business requirements and new threats. Scenarios are used to identify

threats. Use cases stemming from security requirements and abuse cases are

understood. If cases are not available, new are created and analyzed with developers.

S.F. Burns [60] believes that threat modeling helps in managing, acknowledging and

communicating security risks throughout the application. Creating a threat model

 34

consists of three steps. The first step is to view the system as an adversary and

identify assets and entry/exit points. Secondly, characterizing the system based on

the background information. Thirdly, a threat profile is created that includes

identifying the threats, investigating and analyzing them, and mitigating the

vulnerabilities caused by the threats. However, it is costly rendering it suitable for

only the most critical applications. It usually needs outside security expertise [59]. It

cannot predict novel threats and attack patterns causing failure of software to

operate correctly throughout its lifetime [37].

2.7.6 STRIDE

STRIDE [105] model is used to classify the identified threats which makes them

easier to understand and helps in determining their priority. STRIDE is an acronym

for five categories in which the threats are classified namely Spoofing, Tampering,

Repudiation, Information Disclosure, Denial of Service and Elevation of Privilige.

2.7.7 UMLsec

Jan Jürjens developed UMLsec [75], an extension of UML. It is motivated from the

understanding that high quality development of security critical systems is not easy.

Many flaws are found in design and implementation of such systems. UMLsec

endorses the fact that security mechanisms cannot be inserted “blindly” into security-

critical software, but security should be imbibed in the overall development process.

Notions of tags, stereotypes and constraints have been used to extend UML [27].

UMLsec facilitates static security modeling. Information related to security is added

to class diagrams [43]. However, UMLsec has no elicitation and assessment

procedure. It considers less parameters and deals with physical aspects also [68].

2.7.8 Miscellaneous Methodologies

SysML or Systems Modeling Language [106] has been developed to extend and

customize UML in order to support the specification, analysis, design, validation and

verification of systems that include both software and hardware. Analysis and

Description of Requirement and Architecture (ADORA) [30] language is based on the

hierarchy of abstract objects which integrate the behavior, structure, functionality and

user interaction. ADORA removes some of the problems pertaining to UML structure

 35

like decomposition and aspect interaction. Formalization of UML by Chanda et al.

[107] considers that UML is an informal model which may lead to ambiguity in

designs pertaining to different aspects of the same system. They have proposed a

formal model for Use Case, activity & class diagrams, the three widely used models

which represent static and behavioral aspects. A context free grammar is proposed for

the UML 2.0 standard. A set of verification criteria composed of correctness rules,

consistency rules and traceability rules are defined and verified. The Context View

[21] describes the relationships, interactions and dependencies between the system

and the environment it interacts with. UML has its limitations in representing such

element types. For this, the Context View is proposed. It is equipped to render

representations to the connected external entities and a set of relationship types

indicating a connection’s characteristics. Although it represents more detail but not

the non-functional requirements like security.

2.8 Security oriented Improvements in development team

Lindvall et al. [48] has concluded that for the success of any project experienced

people ought to be involved in the development process. Such a team comprises of

those who have some experience in the concerned domain, have been involved in

building similar kinds of systems and have considerable communication skill. It was

understood that their percentage must be 25%-33% of the total number of

development team members.

2.8.1 Team Software Process (TSP)

TSP [77] is an operational process for development teams. The process is very

effective for producing almost defect-free software within the budget and on schedule.

The software developers and managers are trained to introduce the methods into an

organization at all levels. The TSP for Secure Software Development (TSP-Secure)

imbibes the security practices of TSP throughout the development life cycle. Software

developers receive additional training in security issues. Using TSP is difficult owing

to large initial investment and the requirement of management support for the

technical work and also for empowering, coaching, and motivating teams.

 36

2.8.2 SDLC with Developers Working with Security

D. Shackleford [53] has proposed an SDLC in which the development teams and

security groups work together. Security is dealt with in all phases by adding a toll-

gate or review at the en;d of each phase. Moreover, security is prioritized during the

requirements specification phase. This process aids in secure application development

and maintaining a reasonable development schedule. All of the programmers, security

personnel and the upper management share responsibility for the security issues

occuring during the development.

2.9 Inferences drawn from the literature survey

This section summarizes the literature survey and lists the present state of security in

SDLC and the good practices which need to be followed to achieve it effectively. The

proposed SecREAD methodology attempts to assimilate all these and introduces more

novel concepts for further improvement.

• Imbibing security in SDLC is the need of the hour.

• For ensuring security in the development life cycle the traditional models are no

longer adequate.

• Security is best if introduced early i.e. requirements and design phases.

• Requirements engineering is the most crucial activity for any kind of software.

• Iteration is a good approach for the Requirements Engineering process.

• Aspirations of all types of stakeholders ought to be elicited and analyzed.

• The software and its assets must be ranked on security parameters.

• The client and experts should be involved and remain in close touch with the

developers

• The ranking process should be simple for all kinds of stakeholders.

• Empirical analysis of the security ranking should be conducted.

• The present design languages do not suffice the modeling of security

requirements, hence a new design language is required

37

Chapter 3

SecREAD Methodology

In modern software systems security is a major concern and as discussed in the

previous chapter, various researchers and organizations advocate that imbibing

security in the software development life cycle is necessary to plug the security

vulnerabilities and to produce secure software. Moreover, researchers [37][49] have

found it more economical. As already discussed, in Section 2.2 several researchers

have believed early phases of development to be more suitable i.e. either requirements

or design or both. The need of security within software development life cycle has

also been established through the discussion provided in Section 2.1. After discussing

and critically analyzing several methodologies that concern with imbibitions of

security in the software development process in some way or the other, it has been

concluded that there is an ample space to improve or develop new methodologies to

address the gap or limitations. All this motivated us to propose a new methodology

named Security-aware Requirements Elicitation, Assessment and Design

Methodology (SecREAD). The methodology is an attempt to enhance the

methodologies and overcome some of their limitations by incorporating the best

practices, drawn from the literature and listed in Section 2.9.

The proposed methodology is an ‘Asset-Functionality-Stakeholder’ based that

envisages a well-structured process to gather requirements, extract entities, find the

associations among them, represent them graphically, rank them on pertinent

parameters and then reflect these rankings graphically in a meaningful way with

clarity for later phases in development life cycle.

In any methodology correct and complete identification of stakeholders, assets and

functionalities is very important to ensure correctness, quality and other non-

functional requirements of the software. Assets, stakeholders and functionalities have

already been described in Section 1.3. Within this research work, data items have

been considered as assets similar to SaSDLC [90] methodology described in Section

2.5.6. The potential stakeholders of any software are the members of the development

team, client organization and the users. The client organization may consist of the

38

senior management and members of different departments which will be catered to by

the different functionalities of the system. There will be a chief administrator

designated, who will be responsible for the working of the system at the client side.

The users may be many, belonging to different groups. Some may be technically

conversant while others not. Within the user community there may be several groups

that will use different functionalities of the system with varied authorization rights to

the assets.

A notion of core group is proposed which consists of the client representative(s),

developers, the ethical hackers to find vulnerabilities and the experts. The experts may

be appointed from the client side and technical experts or experienced people from the

developer organization. Experts belonging to a third party can also be included. This

group advises the developers all through the development process, aids in clarification

& conflict resolution, analyzes each phase of the methodology and finds pitfalls and

best possible solutions through mutual discussions.

In this work five security parameters- authorization, authentication, integrity,

confidentiality and non-repudiation are considered. These have already been

discussed in detail in Section 2.3. The above five parameters are considered because

these are general and belong to almost all software development domains. However,

the methodology can easily be extended to include other parameters.

SecREAD Methodology integrates security in both requirements and design phases of

software development. This methodology is unique as requirements elicitation can be

conducted in natural language effectively. SecREAD Methodology involves all kinds

of stakeholders of a system and at the same time consults a very competent core

group. Like some prior works, it performs ranking process but unlike any of them it is

formalized by a thoughtful mapping mechanism that brings in the idea of relevance.

Various entities of the software are ranked over these parameters. After empirical

analysis of ranks, different kinds of diagrams are drawn to give a clear and

unambiguous picture of security concerns in the software that can easily be

understood by all stakeholders.

39

3.1 Proposed Methodology: SecREAD
The proposed methodology consists of phases namely, Identification & Refinement,

Mapping, Ranking, Analysis and Design. The assets and functionalities of the

software are ranked by the stakeholders over parameters namely, authentication,

confidentiality, authorization, integrity and non-repudiation. As it is difficult to gather

the requirements for any big system in one go, the iterative approach is more practical

and desirable to produce good software. Therefore, this method is used for both

Identification and Refinement phases and thus, spiral method is adopted. Figure 3.1

illustrates the phases of the methodology which are discussed subsequently.

Figure 3.1: SecREAD Methodology Process Flow

Ranking

Computation

Analysis

Design

Assets and
Functionalities

Elicit Stories

Refine entity sets,
 SCDs and stories

Identify Entities,
Make Entity Sets

Identify Associations,
Draw SCDs

Assets and Stakeholders

Mapping Matrices

Functionalities and
Stakeholder

Stakeholders and
Parameters

Rank Matrix

40

3.2 Identification

The identification and refinement phases are probably the most important as in this

phase each and every element required to build software is to be identified. This phase

is divided in four quadrants to facilitate the development process as shown in Figure

3.1. Various methods can be adopted to ensure identification or gathering of complete

requirements. The two most intuitive methods are directly identifying all three entities

– assets, stakeholders and functionalities, or use story-telling approach. The latter

looks more practical and effective approach in designing of large software systems, as

narrating stories is easier than directly recognizing the entities. Since, the system has

both kinds of stakeholders i.e. conversant with the domain & technology and non-

conversant. Further, it is mentioned that it is not possible to gather all the system

requirements in one go and therefore the process moves in a spiral fashion.

As depicted in Figure 3.1 each spiral is divided into four quadrants. In the first

quadrant stories are elicited from the client side and recorded by the development

team. In the second quadrant the stories are analyzed and three entities- assets,

stakeholders and functionalities are identified and corresponding entity sets are

constructed. In the third quadrant of the spiral, the associations among the entities are

identified and based on those, Story Conversion Diagrams (SCDs) are developed.

Lastly, in the fourth quadrant the entity sets, the stories and the SCDs are refined.

After each spiral more stakeholders, assets and functionalities are identified and added

to the corresponding sets.

The Identification phase encompasses the first three quadrants. This phase is

explained in the following sub-sections while the fourth quadrant deals with the

refinement process which is explained in Section 3.3. The identification activities are

initiated by the development team in close interaction with the client side.

3.2.1 Story and Story Conversion Diagram (SCD)

A story is a natural language narration of requirements/process by the stakeholders.

Now, it is the responsibility of the development team and the core group to correctly

identify the assets, functionalities and stakeholders from these stories. To formalize

the design process, a notion of sets of these important entities is also introduced. The

41

stakeholder set is denoted by S, asset set by A and functionality set by F and are

defined by Eq. (3.1), Eq. (3.2) and Eq. (3.3) respectively.

S = {S1, S2,…….Si } where, 1 ≤ i ≤ m (3.1)

A = {A1, A2,……Aj} where, 1 ≤ j ≤ n (3.2)

F = {F1, F2,……..Fk} where, 1 ≤ k ≤ g (3.3)

i, j, k, m, n, g ∈ I where, I is the set of integers

m, n and q denote the cardinality of the corresponding sets.

A new kind of diagrammatic representation, namely Story Conversion Diagram

(SCD) is introduced in SecREAD methodology to facilitate the design process. These

diagrams provide a pictorial representation of stories created to define the identified

entities and associations among them. These diagrams are the first of their kind owing

to their evolutionary and highly orthogonal nature, ease of drawing & understanding

and the amount of non-functional requirements they deliver. Their conception is

inspired from the famous English idiom, “A picture is worth a thousand words.” In an

SCD a stakeholder is represented by a human stick diagram, functionality by an oval,

asset through a rectangle and association by a line. It is established that a diagram is

better than text for communication. Diagrams are highly useful in understanding the

system and help in effective design process. As a story is elicited, it is analyzed to

find the entities as mentioned above and associations among them. Based on the

stories narrated to the developers, there can be many types of SCDs. Efforts are made

to classify the stories for the ease of understanding and preparing SCDs to facilitate

complete secure design of a software. Different types of stories and their SCDs are

discussed next.

3.2.1.1 Single-Entity Story

This is a type of story containing any one entity. Examples are: For internet-banking

system,

“The system will have a branch manager” (branch manager is a stakeholder)

42

For smart-home system,

“Temperature should be detected” (temperature is an asset)

For internet-banking system,

“The system should provide money transfer facility” (money transfer is a

functionality)

The generalized SCDs for these examples/cases are shown in Figures 3.2(a), 3.2(b)

and 3.2(c) respectively where, Si ∈ S, Aj ∈ A and Fk ∈ F.

Figure 3.2 Generalized SCDs for single-entity stories

3.2.1.2 Two-Entity Story

Such stories define association among any two of the three entity types. Depending on

the stories there can be three possible cases:

• stakeholder associated with asset (or vice versa),

• asset associated with functionality (or vice versa) or

• stakeholder associated with functionality (or vice versa).

The corresponding SCDs are illustrated in Figure 3.3, Figure 3.4 and Figure 3.5 along

with the examples. Again in these figures, Si ∈ S, Aj ∈ A and Fk ∈ F.

Figure 3.3: SCD for Association between Stakeholder and Asset

Aj

(b) Asset (a) Stakeholder

Si
(c) Functionality

Fk

(b) Example (a) Generalized
Si

Aj

Customer

Password

43

(a) Generalized (b) Example

Aj

Fk

Temperature

Air-conditioning

Figure 3.3(a) denotes association between stakeholder and asset. An example story is

“Customer will have password”. Here, customer is a stakeholder, password is an asset

and corresponding SCD is shown in Figure 3.3(b).

Figure 3.4: SCD for Association between Asset and Functionality

Figure 3.4(a) denotes association between asset and functionality. An example story is

“Temperature will be maintained by the air-conditioning system”. Where, temperature

is an asset while air-conditioning is functionality. An SCD for the story is shown in

figure 3.4(b).

Figure 3.5: SCD for association between Stakeholder and Functionality

Figure 3.5(a) depicts association between stakeholder and functionality. An example

story is “Customer will login.” Where, customer is a stakeholder and login is

functionality. An SCD for the example is shown in Figure 3.5(b).

3.2.1.3 Three-Entity Story

A story may contain all the three entities- stakeholders, assets and functionalities. This
kind of story generally depicts:

(b) Example
Customer

(a) Generalized
Si

Fk Login

44

 (a) Generalized

(c) Example 2 (b) Example 1

Travel
Date

Search
Flights

Passenger

Credit
Card

Payment

Passenger

Si

Aj

Fk

Stakeholder can [do/perform] functionality [on/through] Asset

Figure 3.6(a) depicts association between functionality Fk, asset Aj and stakeholder Si.

Example stories for a three-entity story from Airline System are, “Passenger can

search flights selecting the travel date” and “Passenger can make payment through

credit card”. SCDs for these two stories are given by Figures 3.6(b) and 3.6(c)

respectively.

3.2.1.4 Multi-instance Story

In a system there can be stories which contain more than one instance of an entity

type associated with other entity. SCDs need to be created for such stories. There are

two possible ways for creating SCDs for such stories. One is to create a complete

SCD from a multi-instance story itself. Second, is to identify the related basic SCDs

already created during the development process or create new and integrate them to

obtain the aggregate SCD for the multi-instance story. This method may be easier as a

Figure 3.6: SCD for Association between Stakeholder Functionality and

45

diagrammatic representation makes it easier to visualize the multiple instances than a

story.

There can be ten possible cases of associations, illustrated in Table 3.1 along with the

examples. The corresponding SCDs are presented in Figure 3.7 to Figure 3.16

respectively. For simplicity in representation, the maximum number of assets,

stakeholders and functionalities is restricted to two.

Here, Sa, Sb ∈ S; Ac, Ad ∈ A and Fe, Fg ∈ F. The examples are drawn from the Internet

Banking System where, INB officer stands for Internet Banking officer or the

administrator of the system.

Table 3.1: Multi-instance Stories

Case Associations in Stories Example

1 Many stakeholders associated with
one functionality

Customer and INB Officer associated
with Login

2 Many assets associated with one
functionality

Username and Password associated with
Login

3 Many stakeholders, one asset
associated with one functionality

Customer, INB Officer, Username
associated with Login

4 One Stakeholder, many assets
associated with one functionality

Customer, Username, Password
associated with Login

5 Many stakeholders and many assets
are associated with one functionality

Customer, INB Officer, Username,
Password associated with Login

6 One asset associated with many
functionalities

Password associated with Login and
Money Transfer

7 Many assets associated with many
functionalities

Password, Username associated with
Login and Money Transfer

8 One stakeholder associated with many
functionalities

Customer associated with Login and
Money Transfer

9 Many stakeholders associated with
many functionalities

Customer and INB Officer associated
with Login and Money Transfer

10 Many assets, many stakeholders
associated with many functionalities

Customer, INB Officer, Username,
Password associated with Login and
Money Transfer

46

Ac

Sa
Fe

Sb

Figure 3.7: SCD for many stakeholders associated with one functionality (case 1)

Figure 3.8: SCD for many assets associated with one functionality (case 2)

Figure 3.9: SCD for many stakeholders, one asset associated with one functionality

(case 3)

Sa
Fe

Sb

Ac

Ad

Fe

47

Figure 3.10: SCD for one stakeholder, many assets associated with one functionality
(case 4)

Figure 3.11: SCD for many stakeholders, many assets associated with one

functionality (case 5)

Figure 3.12: SCD for one asset associated with many functionalities (case 6)

Ac

Ad

 Fe

Sa

Sb

Fg Fe Ac

Sa

Ac

Ad

Fe

48

 Sa

Fe

 Sb

Fg

 Sa

 Sb

Ac

Ad

Fe

Fg

Figure 3.13: SCD for many assets associated with many functionalities (case 7)

Figure 3.14: SCD for one stakeholder associated with many functionalities (case 8)

Figure 3.15: SCD for many stakeholders associated with many functionalities (case 9)

Figure 3.16: SCD for many assets, many stakeholders associated with many

functionalities (case 10)

Ac

Ad

Fe

Fg

Fg

Sa

Fe

49

In the next section the Refinement process is discussed. Refinement is necessary to

check redundancy and perform aggregation and decomposition, followed by updation

of sets and SCDs, if necessary. The Identification with Refinement completes one

cycle of spiral.

3.3 Refinement

In the proposed methodology as depicted in Figure 3.1, the refinement is performed in

the last quadrant of each spiral. The refinement phase consists of the removal of

redundancy from the entity-sets, aggregation of entities and SCDs, decomposition of

entities or SCDs or both aggregation and decomposition. The refinement is performed

at two levels i.e. at the level of the development team and the level of the core group.

It has already been mentioned that identification and refinement are iterative and

continue till all the information is exhaustively compiled to ensure quality of software

developed. In the identification phase, requirements are elicited from the stakeholders.

As soon as a story is obtained, the entities and their relationship are extracted from it

and the corresponding SCD is developed. The identified entities are added to the

respective sets. The refinement phase follows the identification phase where the

information gathered in the identification is cleansed and refined to check the flow of

any ambiguity and redundancy to later phases. For refinement SCDs play a vital role

as they exhibit the associations lucidly. Each time the refinement action is taken, the

respective entity sets and the affected SCDs are revised. After refinement, final asset

set A, stakeholder set S and functionality set F are obtained.

For refinement, all the entity sets and SCDs are checked and if any inconsistency is

found, it is solved. First, the development team tries to solve the solution and if

required they may consult the core group. The objective is to simplify the design as

much as possible.

The refinement process needs refinement- redundancy removal, aggregation and

decomposition which are detailed in the following sub-sections.

50

3.3.1 Redundancy Removal

During the identification phase, redundancy of entities may creep in. The elicited

stories are the major cause of redundancy which can be large in number, collected

from many stakeholders. These stakeholders have different levels of technical

understanding and may perceive the system quite differently. Further, each

stakeholder may be related to some and not all entities.

This difference in perception and relations can lead to the usage of more than one

name for a single entity at the level of system as a whole. For example, assets like

‘Phone No.’ and ‘Mobile No.’ can create ambiguity. Likewise, for a single

stakeholder two terms may be used. For example, in smart building system,

‘Administrator’ and ‘Building Manager’. Any one name ought to be decided upon and

used throughout the system. If ‘Building Manager’ is selected then ‘Administrator’

should be deleted from the stakeholder set and consequently, all SCDs that contain

‘Administrator’ need to be modified. Similarly, for functionalities, two names may be

elicited as ‘Fire Safety System’ and ‘Fire Alarm System’.

__
Algorithm 3.1: Redundancy_Removal

A = φ, S = φ, F = φ; a: cardinality of A, b: cardinality of S, c:cardinality of F

__

1. while: final A, S, F not obtained

2. {

3. scan A

4. {

5. ∀ Ai ∈ A where, 1 ≤ i ≤ a

6. if ∃ Aj similar to Ai and j = i // similar means denoting same entity

7. discard either Aj or Ai // decision taken by the core group

8. update A

9. }

10. scan S

11. {

12. ∀ Si ∈ S where, 1 ≤ i ≤ b

51

13. if ∃ Sj similar to Si and j = i // similar means denoting same entity

14. discard either Sj or Si // decision taken by the core group

15. update S

16. }

17. Scan F

18. {

19. ∀ Fi ∈ F where, 1 ≤ i ≤ c

20. if ∃ Fj similar to Fi and j = i // similar means denoting same entity

21. discard either Fj or Fi // decision taken by the core group

22. update F

23. }

24. }

3.3.2 Decomposition and Aggregation

This sub-section, deals with the application of decomposition and aggregation

techniques of refinement on stories and entities.

3.3.2.1 Aggregation

When two or more stories convey similar information these are aggregated into one

and so do their SCDs. For a single functionality Fk, all such cases are enlisted in Table

3.2. Here, for simplicity in representation, the maximum number of assets and

stakeholders in a story is restricted to two. The aggregated stories render the same

meaning as the multi-instance stories in Sub-section 3.2.1.4. The five cases

correspond to the first five cases of the multi-instance stories and their respective

SCDs i.e. Figure 7 to Figure 11. Same examples are applicable here. Sa, Sb∈ S and Ac,

Ad ∈ A.

52

Table 3.2 : Aggregated Stories

Case Multiple Stories Aggregate
Story Example

1 “Sa is associated with Fk” and
“Sb is associated with Fk”

“Sa, Sb are
associated with
Fk”

Customer and INB
Officer associated with
Login

2 “Ac is associated with Fk” and
“Ad is associated with Fk”

“Ac, Ad are
associated with
Fk”

Username and Password
associated with Login

3 “Sa and Ac are associated with
Fk” and
“Sb and Ac” are associated with
Fk

“Sa, Sb, Ac are
associated with
Fk”

Customer, INB officer,
Username associated
with Login

4 “Sa and Ac are associated with
Fk” and
“Sa and Ad are associated with
Fk ”

“Sa, Ac, Ad are
associated with
Fk”

Customer, Username,
Password associated
with Login

5 “Sa and Ac are associated with
Fk” and “Sb and Ad are
associated with Fk”

“Sa, Sb, Ac, Ad
are associated
with Fk”

Customer, INB Officer,
Username, Password
associated with Login

3.3.2.2 Decomposition

To facilitate understanding and cater to the specific requirements of software, it may

be required to deal with entities differently. Sometimes an asset, functionality or

stakeholder needs to be decomposed into its constituents. If decomposition takes

place, the entity is replaced by its constituents. For example, entity ‘Customer Details’

may be decomposed into Customer Name, Customer ID, Customer Address and

Customer Phone No. Conversely, the latter four may be aggregated into the former.

Functionalities may also be required to be decomposed or aggregated. For example in

an airline booking system, ‘Payment for baggage’ and ‘Payment for food and

beverages’ can be aggregated as ‘Payment for services’.

3.3.2.3 Addition of entities

There is also a provision for addition of entities for operational, technical or security

reasons. Usually it is done on the advice of the client. However, inputs may be

provided by the developers and experts out of their experience. For example, in

internet banking system, ‘User Profile Password’ is added for further securing money

transfer to a third party for the first time.

53

3.3.3 Culmination of Spiral

The entire spiral moves once for each story elicited. In the next cycle, the newly

identified stakeholders sit together with the previous stakeholders to identify more

stakeholders, functionalities and assets. In this manner, the participants in the

meetings increase incrementally and more entities are found. At the culmination of

this phase asset, stakeholder and functionality sets are obtained exhaustively.

3.4 Mapping
In the previous phase, we have determined three entities i.e. stakeholders, assets and

functionalities. These entities are associated with each other as depicted by the SCDs.

In this phase, an effort is made to formalize these associations or in other words,

determine the relevance of entities with each other. The mapping is a process in which

such relevance is presented explicitly. For this, relevance matrices are developed.

Four such matrices are proposed namely, Asset-Functionality (X), Functionality-

Stakeholder (Y), Asset-Stakeholder (Z) and Stakeholder-Parameter (W). These

matrices are developed by the core group. All of these matrices are described in the

following sub-sections. In every matrix, the shaded cells denote relevance and un-

shaded cells denote irrelevance. For the sake of explanation four stakeholders, five

functionalities and six assets are taken as follows:

S1, S2, S3, S4 ∈ S

F1, F2, F3, F4, F5 ∈ F

A1, A2, A3, A4, A5, A6 ∈ A

3.4.1 Asset-Functionality and Stakeholder-Functionality Relevance Matrices

Asset-Functionality and Stakeholder-Functionality relevance matrices are created by

the analysis of the requirements gathered or the SCDs developed in the identification

phase. The relevance matrices map the related entities.

In Asset-Functionality relevance matrix X Assets and Functionalities are mapped to

each other where each row represents assets and columns represent functionalities. It

is found that all assets are not related to all functionalities (or vice versa). Therefore, it

is necessary to distinguish the cells that denote with the ones that do not show any

54

relationship. The cells that show relationship are shaded. Similarly, matrix Y is

developed where, rows contain functionalities and columns contain stakeholders.

 X = (xjk) (3.4)

where, j represents assets and k represents functionalities;

1 ≤ 𝑗𝑗 ≤ 𝑛𝑛; 1 ≤ 𝑘𝑘 ≤ 𝑔𝑔;

 Y = (yki) (3.5)

where, k represents functionalities and i represents stakeholders;

1 ≤ 𝑖𝑖 ≤ 𝑚𝑚;

n is cardinality of A; g is cardinality of F; m is cardinality of S

X and Y are given by Tables 3.3 and 3.4 respectively

Table 3.3: Asset – Functionality Relevance Matrix X

Assets Functionalities

F1 F2 F3 F4 F5
A1
A2
A3
A4
A5
A6

Table 3.4: Functionality – Stakeholder Relevance Matrix Y

Functionality Stakeholders
S1 S2 S3 S4

F1
F2
F3
F4
F5

3.4.2 Asset – Stakeholder Relevance Matrix

It is required to find relation between assets and stakeholders in order to get the assets

ranked by the relevant stakeholders. Asset – Stakeholder Relevance Matrix Z is

determined by the cross product of matrix X and matrix Y, given by Eq. (3.6). Z is

55

described by Eq. (3.7). It is developed to ensure that the assets are ranked by the

relevant stakeholders only.

 Z = X * Y (3.6)

 Z = (zji) (3.7)

where, j represents assets and i represents stakeholders;

1 ≤ 𝑗𝑗 ≤ 𝑛𝑛; 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚;

To obtain the cross product of X and Y it is necessary to fill their cells by some

integer value. To facilitate the product, ‘one’ is used to denote the filled cell and

‘zero’ for empty cells. Table 3.5 and Table 3.6 are X and Y respectively. Table 3.7 is

their cross product Matrix Z.

Table 3.5: Asset – Functionality Relevance Matrix X with Integral Values

Assets Functionalities

F1 F2 F3 F4 F5
A1 1 0 0 0 0
A2 1 0 1 1 1
A3 1 0 0 0 0
A4 1 0 0 0 0
A5 1 0 0 0 0
A6 0 0 0 0 0

Table 3.6: Functionality – Stakeholder Relevance Matrix Y with Integral Values

Functionality Stakeholders

S1 S2 S3 S4
F1 1 1 1 0
F2 0 0 0 1
F3 0 0 0 1
F4 0 0 0 1
F5 0 1 1 1

56

Table 3.7: Matrix Z or Cross product of X and Y

Assets Stakeholders

S1 S2 S3 S4
A1 1 1 1 0
A2 1 2 2 3
A3 1 1 1 0
A4 1 1 1 0
A5 1 1 1 0
A6 0 0 0 0

Any non-zero value denotes relevance between the particular stakeholder and asset,

while zero denotes irrelevance. Matrix Z is a very important matrix on which the final

rank matrix, to be filled by stakeholders, is constructed. Through the cross product it

is ensured that the relatively complex transitive relationship between assets and

stakeholders is represented easily and correctly. Z actually signifies that the

stakeholders related to a particular functionality ultimately relate to the assets of the

functionality. How Z represents the said association can be understood through the

following example.

In matrix X (Table 3.5), x[A1, F1] = 1 or asset A1 is related to functionality F1;

In matrix Y (Table 3.6), y[F1, S1] =1 or functionality F1 is related to stakeholder S1;

Consequently, in matrix Z (Table 3.7), z[A1, S1] = (some non-zero value)

or asset A1 is related to stakeholder S1

For the sake of generalization, the cells containing non-zero values are shaded to

show the relevance. Table 3.8 denotes Z with shaded cells.

Table 3.8: Asset – Stakeholder Relevance Matrix Z with Shaded Cells

Assets Stakeholders

S1 S2 S3 S4
A1
A2
A3
A4
A5
A6

57

3.4.3 Consolidated Story Conversion Diagram (CSCD)

It is seen in the previous sub-sections that matrix X relates to assets and

functionalities while matrix Y relates to functionalities and stakeholders. The

combination of the information in these two matrices results in the presentation of

associations among assets, stakeholders and functionalities. From these associations

one functionality is selected at a time and its associated assets and stakeholders are

found. CSCD is a pictorial representation of this relation. This diagram evolves from

the SCDs. In other words, it is a consolidation of the information presented by all the

SCDs for certain functionality. A CSCD is obtained through the information

presented by matrices X and Y, using Algorithm 3.2. All the relevant assets and

stakeholders are attached to the functionality. It provides a holistic view of a

functionality lucidly. Figure 3.17 shows a CSCD for functionality F1.

Figure 3.17: CSCD for Functionality F1

__
Algorithm 3.2: Obtain_CSCD

S = φ, A = φ, F = φ; q:cardinality of F

__

25. while: final S, F, A not obtained

26. {

27. elicit Story

A1

A2

 F1

S1

A3

S2

S3 A4

A5

58

28. identify asset(s), functionality(s) and/or stakeholder(s) from the story

29. if found functionality Fk and Fk ∉ F

30. insert Fk in F

31. endif

32. if found stakeholder Si and Si ∉ S

33. insert Si in S

34. endif

35. if found asset Aj and Aj ∉ A

36. insert Aj in A

37. endif

38. identify the association among entities

39. draw preliminary SCDs

40. if ambiguities, inconsistencies and/or redundancy exist in S, F and/or A

41. {

42. Conduct Refinement: decomposition, aggregation and/or redundancy

removal

43. update S, F, A

44. update SCDs

45. }

46. }

47. Mapping (final S, F, A)

48. {

49. obtain X i.e. map assets and functionalities

50. obtain Y i.e. map functionalities and stakeholders

51. cross product X and Y and obtain Z //map assets and stakeholders

52. }

53. Draw_CSCD (F)

54. {

55. use X and Z

56. ∀ Fi ∈ F, attach all relevant stakeholders and assets where 1 ≤ i ≤ q

57. }

59

3.4.4 Stakeholder-Parameter Relevance Matrix

It has already been stated that our aim is to develop a methodology to create secure

software. To achieve this goal we need to rank the assets on the relevant parameters

and a Stakeholder-Parameter Relevance Matrix W is defined which explicitly relates

the stakeholders to their relevant parameters. W is described by Eq. (3.8).

 W = (wih) (3.8)

where, i represents stockholders and h represents parameters;

1 ≤ 𝑖𝑖 ≤ 𝑚𝑚; m is cardinality of set S

1 ≤ ℎ ≤ 𝑝𝑝; p is cardinality of parameter set P

P = {Authentication, Integrity, Confidentiality, Non-repudiation, Authorization}

For ease of representation, each parameter is assigned an ID as shown in Table 3.9.

Table 3.10 represents matrix W with S1, S2, S3 and S4 as stakeholders.

Table 3.9: Parameter IDs

Parameter ID Parameter
Pr1 Authentication
Pr2 Integrity
Pr3 Confidentiality
Pr4 Non-repudiation
Pr5 Authorization

Table 3.10: Stakeholder-Parameter Relevance Matrix W

Stakeholders Parameters

Pr1 Pr2 Pr3 Pr4 Pr5
 S1

S2

S3

S4

3.4.5 Rank Matrix: A practical approach to ranking

Ranking is an important task that not only defines the security level of the software

but also the development cost. It requires sincere efforts at the level of stakeholders.

60

At the same time ranking should be easier for all kinds of stakeholders, then only it

can reap significant benefits. Keeping this tradeoff in mind rank matrix R is proposed.

It is unique in the sense that it allows the ranking process to be performed, for the

entire system, through a single customized sheet for a particular stakeholder.

R is developed by the combination of matrices Z and W. Z maps assets and

stakeholders while W maps stakeholders and parameters. Consequently, R relates

assets, parameters and stakeholders. It is three-dimensional. The matrix is defined by

Eq. (3.9). Figure 3.18 denotes its structure.

 R = (rjhi) (3.9)

where, j represents assets, i represents stakeholders, h represents parameters;

1 ≤ 𝑗𝑗 ≤ 𝑛𝑛; where, n is cardinality of set A;

1 ≤ ℎ ≤ 𝑝𝑝; where, p is cardinality of set P;

1 ≤ 𝑖𝑖 ≤ 𝑚𝑚; where, m is cardinality of set S;

Figure 3.18: Structure of the rank matrix R

61

3.5 Ranking

Ranking of assets is performed over five parameters viz. authorization,

confidentiality, non-repudiation and integrity through the rank matrix R. Ranking

helps in determining the level of security of each asset and accordingly takes

measures. In this work, three levels of High, Medium and Low are taken for ranking.

Each level is assigned a numeric value i.e. 3, 2 and 1 respectively. This is presented in

Table 3.11

Table 3.11: Ranks and Numeric Values

Rank Numeric Value
High 3
Medium 2
Low 1

Through matrix R, the effort in ranking is minimized. Functionalities are not

considered directly. However, it relates to the stakeholders indirectly through their

relevant assets. This removal of functionalities aids in obtaining a single sheet for one

kind of stakeholder. In this way, the stakeholder can perform ranking for the entire

software through one personalized sheet only. Table 3.12 is one sheet of the rank

matrix meant for one stakeholder S1. This is formed as per the matrices Z and W

given by Table 3.8 and Table 3.10 respectively.

Table 3.12: Rank sheet for stakeholder S1

Assets Parameters
 Pr1 Pr2 Pr3 Pr4 Pr5
A1
A2
A3
A4
A5
A6

Stakeholder ranks the assets relevant to him/her over the parameters relevant to

him/her. The matrix given by Table 3.12 is specifically for the stakeholder S1 where

the cells valid to him/her are shaded that can be ranked as 3, 2 or 1. The un-shaded

cells denote irrelevance and contain null values. The ranks sheet may differ for

different stakeholders due to which they may furnish ranks in some other cells and

62

some other cells may contain null values. As it will obviously be incongruous for

stakeholders to decide their authorization rights own-self, the Authorization ranks for

every stakeholder are ranked by the client in consultation with the domain expert.

Sub-section 3.5.5 throws more light on how this parameter is dealt with.

The core group can assign fixed rank to a parameter or an asset considering the

domain of the software like ‘High’ for ‘Integrity’ parameter in the Railway

Reservation System or ‘High’ for ‘User profile Password’ under Confidentiality

parameter.

After completing the ranking process, the ranks furnished by all stakeholders need to

be consolidated to obtain individual ranks for assets, parameters, functionality and

authorizations in the software. Based on these final values, design will be conducted

as will be seen later in Section 3.7. Priority lists can be obtained which aid the

development team in prioritizing effort, time and cost. For this, firstly, the 3-d R is

reduced to a 2-d matrix T with assets as rows and parameters as columns. The cells in

T contain the consolidated values of ranks given by all stakeholders. Hence, the third

dimension or z-axis of Stakeholders is removed. T is given by Eq. (3.10). The

consolidation is done through the Cell Computation and the ranks are determined

using four other kinds of computations, all of these are described in next sub-sections.

 T = (tjh) (3.10)

where, j represents assets and h represents parameters;

1 ≤ 𝑗𝑗 ≤ 𝑛𝑛; 𝑛𝑛 is cardinality of set A

1 ≤ ℎ ≤ 𝑝𝑝; p is cardinality of set P

3.5.1 Cell Computation

To obtain the rank-value of an asset under a parameter, the mode of all values

contained in the same cell position in all the sheets of R is computed. It is noteworthy

that values in some cells will be null due to irrelevance. Since the data stored in the

matrices is ordinal i.e. rank-based, mean and methods of central tendency are not

applicable [108]. So, mode has been used for ranking. This will also produce exactly

one of the three integral values i.e. 1, 2 and 3 providing clear demarcation of the

ranks. This mode is stored in the same cell position in the consolidated matrix T. This

value of mode is taken as the rank of jth asset under hth parameter. In case of multiple

63

modes, that with the highest value is allotted. It is done reckoning the spirit of

methodology which is security that can not be compromised. Same is followed for all

other computations. Algorithm 3.2 illustrates the cell computation. Here, number of

assets is denoted by n, number of stakeholders by m and number of parameters by p.

Null values in the cells denoting irrelevance are excluded in the calculation of mode

in all the computations.

Algorithm 3.2: computation_cell

n is cardinality of A; p is cardinality of P; m is cardinality of S

j=1; h=1; i=1

r is an element of R, t is an element of T
__

1. while j ≤ n

2. {

3. while h ≤ p

4. {

5. tjh = mode (rjhi, rjhi+1, rjhi+2, ……,rjhm)
// z-axis or the stakeholders are incremented by keeping rows i.e. asets and columns i.e.

parameters constant; null values are excluded

6. h=h+1 // incrementing parameters

7. }

8. j=j+1 //incrementing assets

9. }
__

3.5.2 Calculating Asset Rank

As already mentioned, after obtaining matrix T, the rank of every asset is calculated.

For this, row computation is performed. The mode of all values of an asset under all

relevant parameters (row of T) is calculated which serves as the rank of that asset. The

rank of the jth asset under p number of parameters is calculated using asset_rank

algorithm given by Algorithm 3.3. These ranks are stored in a single-column matrix

U. Matrix U is defined by Eq. (3.11).

 U = (uj) (3.11)

64

where, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛; n is cardinality of A

__
Algorithm 3.3: asset_rank

n is cardinality of A; p is cardinality of P;

j=1, h=1,

t is an element of T; u is an element of U

1. while j ≤ n
2. {
3. uj = mode (tjh, tjh+1, …..tjp)

// columns (parameters) are incremented keeping rows i.e. assets constant; null values are
excluded

4. j=j+1 //incrementing assets
5. }
3.5.3 Calculating Parameter Rank

To calculate the rank of a parameter in the whole system, column computation is

performed. For this, mode of all relevant asset ranks under each parameter (column of

T) is obtained and stored in a single row matrix V. The rank of the hth parameter with

n number of assets is calculated using algorithm 3.4. Matrix V is defined by Eq.

(3.12).

 V = (vh) (3.12)

where, h represents parameters, 1 ≤ ℎ ≤ 𝑝𝑝; p is cardinality of set P
__

Algorithm 3.4: parameter_rank

n is cardinality of A; p is cardinality of P;

j=1, h=1,
t is an element of T; v is an element of V
__

1. while h ≤ p
2. {
3. Vh = mode (tjh, tj+1h, tj+2h, ……tnh)

 // rows (assets) are incremented keeping columns (parameters) constant; null values are

excluded
4. h=h+1 //incrementing assets
5. }

Figure 3.19 illustrates the structure of the matrix T and how matrices U and V are derived from it.

65

Figure 3.19: Structure of T, U and V matrices

3.5.4 Calculating Functionality Rank

The mode of the ranks of a functionality’s relevant assets is taken as its rank. For this,

matrix X, that maps assets and functionalities, is used along with asset rank matrix U.

The rank of the functionalities are stored in single column matrix Q. Matrix Q is

defined by Eq. (3.13). Algorithm 3.5 computes the functionality rank.

 Q = (qk) (3.13)

where, k represents parameters, 1 ≤ k ≤ g is cardinality of set F or the number of

functionalities in the software.

Algorithm 3.5: functionality_rank

n is cardinality of A; g is cardinality of F

j=1, k=1

j denotes assets; k denotes functionalities

x is an element of X; q is an element of Q
__

1. while k ≤ g
2. {

T

 Parameters

Assets Pr1 Pr2 Pr3 Pr4 Pr5 U Modes of each row of T

 V

Mode of each Column of T

66

3. for every functionality Fk ∈ F
4. {
5. qk= mode of all assets Aj ∈ A, if x[Aj, Fk] = 1
6. if j ≤ n
7. {
8. j=j+1
9. }

10. k=k+1
11. }
12. }

__
3.5.5 Authorization Computation

The authorization parameter needs a different treatment since authorization rights are

determined for a stakeholder with his/her relevant assets individually. Calculating its

mode in cell computation will result in same authorization right of all stakeholders

over an asset, which is obviously not feasible. The ranks of this parameter are

furnished by the client in consultation with core group, if required. For this, the rank

matrix of each stakeholder has to be considered individually. Here, the consolidated

matrix T will not work but 3-dimensional matrix R will be used, as through that the

value for each stakeholder can be obtained individually. It means the particular sheet

of a particular stakeholder will be used. The rank of authorization parameter (5th

column in R) for jth asset with respect to ith stakeholder is given by Eq. (3.14).

Authorization rank of Aj w.r.t. to Si = rj5i (3.14)

where, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛; n is cardinality of set A; 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚; m is cardinality of set S;

5 is fifth column or Authorization parameter in R; r is element of R;

3.6 Analysis

To find the rank of any functionality, the final rank of only its relevant assets is

considered from matrix U. These relevant assets with respect to the functionality can

be found through the matrix X (Table 3.3).

A Functionality Template is prepared for each functionality. The templates used in

SecREAD are inspired from those used in Misuse Cases [33][102] described in Sub-

section 2.7.4. A template is a textual representation of the diagram. It helps in

67

avoiding any ambiguity or inconsistency. From the template, diagram can be drawn

and vice versa. The template includes the names of assets with an optional brief

description along with their ranks and the rank of the functionality with the suggested

security measure.

Table 3.13 is a template for functionality F1 which is made with associations as per

the CSCD in Figure 3.17. Table 3.14 gives the functionality rank matrix Q that shows

the ranks of all the functionalities of the system. The description and ranks have been

assumed for explanation.

Table 3.13: Functionality Template for F1

Functionality: F1
Stakeholders

Name Description/Role
S1 Administrator
Assets
Asset name Description Rank

A1
A2
A3
A3

A4
A5

(Description of A1)
(Description of A2)
(Description of A3)
(Description of A4)
(Description of A5)

Low
Medium
High
Medium
Medium

Security Rank: Medium
Security Measure: (as suggested)

Table 3.14: Functionality Rank Matrix Q

Functionality Security Rank

F1 Medium
F2 Medium
F3 Low
F4 High
F5 High

3.7 Design

In the design phase of SecREAD, ranks of every functionality with its relevant assets

and stakeholders is represented diagrammatically. Also, diagrams are drawn to

represent authorization rights. These are described in the following sub-sections.

68

S1

A1

F1

S2

Aj

A3 Aj

A2

S3

Aj

A5

Aj

A4

3.7.1 Functionality Rank Diagram (FRD)

An FRD, for a functionality, is an extension of its CSCD. It has evolved when rank

information is added to a CSCD. The rank of a functionality is denoted through the

number of concentric elongated ovals around it i.e. a single oval for low rank, double

for medium rank and triple for high rank. The relevant assets are connected with their

ranks, depicted by concentric rectangles i.e. one rectangle for low, two for medium

and three for high. Figure 3.20 is the FRD for the F1 functionality. It can be seen in the

figure that functionality F1 has medium rank, it is associated with stakeholder S1 , S2

and S3 along with five assets A1, A2, A3, A4 and A5. Asset A1 has low security rank

while A3 has high security rank. A2, A4 and A5 are of medium security rank. Assets

with the same ranks can be clubbed together as seen in Figure 3.21 to avoid cluttering.

Similar to the above diagrams, diagrams of other functionalities of the system are

developed.

Figure 3.20: FRD for functionality F1

69

Aj

A3

A1

S1

S2

S3

F1

Aj

A2, A4, A5

Figure 3.21: FRD for functionality F1 with clubbed assets

70

3.7.2 Comprehensive Rank Diagram (CRD)

Figure 3.22 is an example CRD that summarizes the complete system and depicts all

functionalities of the system with their ranks and stakeholders.

Figure 3.22: CRD for an example system

F1

F4

F5

F3

F2

S1

S2

S3

S4

Example System

71

A CRD is formed through a combination of all FRDs. However, the assets are

dropped to avoid cluttering. It presents an overview of the system at a glance. It

evolves when all FRDs are obtained. Table 3.15 is the template for this CRD.

 Table 3.15: Template for CRD

Name of System: Example
Functionality Rank Relevant Stakeholders
F1 Medium S1, S2,S3
F2 Medium S4
F3 Low S4
F4 High S4
F5 High S2, S3,S4

3.7.3 Authorization Rank Diagram (ARD)

Apart from showing associations, an Authorization Rank Diagrams (ARD) denotes

the authorization or access rights of a stakeholder with respect to his/her relevant

assets. Three ranks, high medium and low of authorization transform into ‘Write’

(W), ‘Write with Permission’ (WP) and ‘Read’ rights. There are two flavors of

authorization rank diagram namely, asset-centric and stakeholder-centric [109].

Figure 3.23 is a stakeholder-oriented ARD. Assets are shown with their rankings. The

authorization right of the stakeholder to a particular asset is written on the connector.

In this diagram, it is seen that the Stakeholder S1 has a right to ‘Write with

Permission’ on asset A4. The permission will be granted by S2. S1 can read A1 and A2,

and write on A3. Table 3.16 is the template for the diagram.

72

A2

Aj

A4

WP R

S1

Aj

A3

A1

W

R

S2

Figure 3.23: Stakeholder-oriented ARD

Table 3.16: Stakeholder-oriented ARD Template

Stakeholder: S1
Assets Security

Rank
Authorization

Rights
Permitting

Stakeholders
A1 Low R
A2 Low R
A3 High W
A4 Medium WP S2

To avoid cluttering, assets with same authorization rights and same security rating can

be clubbed. Figure 3.24 is equivalent to Figure 3.23 but clubs similar assets.

73

A1

S1

S3 S2
W WP

R

A1, A2

Aj

A4

WP R

S2

S1

Aj

A3

W

Figure 3.24: Stakeholder-oriented ARD with clubbed assets

Figure 3.25 is an Asset-oriented Authorization-Security Diagram where an asset is

taken at the centre with its security rating and connected to all of its related

stakeholders. The authorization right possessed by a particular stakeholder on the

asset is written on the respective connector. In this diagram, it is seen that

stakeholders S1, S2 and S3 have Read, Write and Write with Permission rights on asset

A1 respectively. Table 3.17 is the template for this ARD.

Figure 3.25: Asset-oriented ARD

Table 3.17: Template For Asset-oriented ARD Template

Asset A1
Stakeholder Authorization Rights
S1 R
S2 W
S3 WP

74

3.8 Development of the Tool

As a part of this research work a tool was developed to facilitate the elicitation,

mapping, ranking and design processes of SecREAD methodology. The tool has been

developed using PHP as front-end and MySQL as the back-end. The entities of the

software to be developed, as identified from the stories, are entered through the

interface and stored in three tables, one each for asset, functionality and stakeholder

by the core group. The assets and functionalities are mapped by check boxes to obtain

relevance matrix X. In the database, the checked values are stored as ‘1’ and

unchecked as ‘0’ (zero). These denote relevance and irrelevance respectively. Same is

followed while mapping functionalities and stakeholders in developing matrix Y. The

tool then performs the cross-product of X and Y to produce matrix Z. Matrix W is

formed by mapping stakeholders and parameters. The stakeholders can now login the

system and furnish the ranks. The personalized rank sheets for every stakeholder are

produced by the tool. Consolidating all these sheets, the three-dimensional matrix R is

developed. The tool then performs all the computations, as described in Section 3.5 to

produce matrices T, U, V and Q are developed. The information is passed on to the

drawing module where the diagrams are generated.

3.9 Summary

SecREAD methodology takes into account the views of all the stakeholders with

varied understandings. Moreover, the requirements and design phases are coupled

tightly. In this methodology, both the assets and the functionalities are ranked. The

concept of ranking is used to some extent in prior methodologies. However, in these

methodologies ranking process does not involve all stakeholder types explicitly. The

notion of relevance is unique to all prior methodologies. The proposed methodology

is diagram-oriented as diagrammatic expression is more suitable than the text. It is

easier to comprehend and has less chances of ambiguity. While developing these

diagrams, the mindset had been to tinker as less as possible with the conventional

modeling design (UML). The diagrams proposed in this methodology are evolving in

nature that stem from initial narration of simple stories to SCDs, then to CSCDs,

FRDs and finally CRDs as information keeps on adding. Use of very less but

orthogonal structures renders these diagrams simplicity in drawing and understanding

without affecting lucidity. FRD happens to be the only diagram of its kind that

75

illustrates single-handedly, for functionality, such a large number of aspects including

security level, stakeholders involved and assets involved along with their criticalness.

CRD summarizes the complete system. All the diagrams are coupled with templates

to provide an unambiguous view. SecREAD combines all the best practices

considered by prior researchers to achieve a better software product like iteration in

requirement elicitation, involvement of client and stakeholders in the development of

software which increases the probability of their satisfaction. The methodology can be

extended by adding more parameters. All in all, the hallmark of the methodology lies

in active involvement of stakeholders, ranking by only relevant stakeholders and

empirical analysis, which is rare in this domain of research. SecREAD can cater to

software of varied domains, as will be demonstrated through its application on two

case studies in next two chapters.

76

Chapter 4

Case Study: Internet Banking

In the previous chapter SecREAD methodology is proposed to address the security

aspects in the development process of the software. This chapter illustrates the

application of the SecREAD methodology and its validation. The most commonly

used Internet Banking (INB) application is chosen as a case study because it is highly

security intensive and involves financial transactions.

It is evident that in the modern era, cyber space contains a large number of

applications where security is a major concern and security breach in these software

systems can lead to catastrophic situations. Security requirements have been

augmented as these systems ought to be safeguarded from cyber attacks. Earlier, these

attacks were not so severe but since more and more services are becoming online and

ubiquitous, present systems have become more vulnerable, forcing research

community to consider security imbibitions in the developed software systems right at

the beginning of the development process.

An INB system provides customers complete control over almost all banking

demands online. It also caters to corporate customers or non-personal accounts. An

INB system offers convenience in accessing banking services anytime at any place.

INB system is accessible through computer, mobile phones or other hand-held

computing devices. The INB service can also be called Online banking, e-banking or

Virtual banking. Online banking was introduced in various parts of the world in early

1980s. In New York, USA the four banks, Citibank, Chase Bank, Chemical Bank and

Manufacturers Hanover were the forerunners. In the United Kingdom, Bank of

Scotland started this service in 1983. In 1984, online banking was introduced in

France using terminals called Minitels. In 1995, Wells Fargo Bank of the USA added

account services to its website. Presidential Bank opened accounts over the internet.

In earlier days the access to INB systems was limited and cyber attacks were also not

wide spread. However, due to tremendous development in the computer industry as a

whole the cyber attacks have also increased in variety, severity and volume. It has

https://en.wikipedia.org/wiki/Citibank
https://en.wikipedia.org/wiki/Chase_Bank
https://en.wikipedia.org/wiki/Chemical_Bank
https://en.wikipedia.org/wiki/Manufacturers_Hanover

77

forced the banking industry to relook the security aspects and the research community

to rethink the software development process to satisfy not only the banking domain

but the end user customer as well.

Pervasiveness of the modern INB systems is the paramount need of the day. This

property adds to quality of service and convenience of the varied users at the same

time poses various security threats. Vulnerabilities present in the software can lead to

huge financial loss to the customers as well as to the banks. There are numerous

examples where security vulnerabilities in the systems have been exploited and have

led to huge financial losses - attacks on South Korean Banks using malware

‘DarkSeoul’ in 2013, data breach in J P Morgan bank in 2014 and the SWIFT Hack

affected several countries in 2016. This was another motivation to choose the INB

application as a case study.

INB has several functionalities like transfer of money within the country as well as

foreign countries, payment of bills, cheque clearance, issuing demand drafts, printing

account statements, creating and breaking fixed deposits (FDs), and various levels of

Login and authentication mechanisms for users as per their authorization rights and

functionalities they wish to access etc. All of these need security at some level or the

other. Authentication of users is of utmost importance and their authorization rights

ought to be defined explicitly. Since a bank is answerable to its customers as a

custodian of their finances, any leniency in security is unacceptable. This motivated

us to take the INB as a case study to demonstrate the application and effectiveness of

the methodology. In the subsequent subsections phase-wise application of the

methodology on the case study is considered.

4.1 Identification

As discussed in Chapter 3, the stakeholders for any software system to be developed

are categorized as members of the development team, client, users and the domain

experts. In case of the INB system, stakeholders from the client side or the bank are

the INB officer or the administrator, an important functionary i.e. Rule Authorizer and

Branch staff that caters to the customers. Users are the customers of the bank who

may be both in-house customers and drop-in customers. The in-house customers have

their accounts in the bank while the drop-in customers do not hold account in the bank

78

but use the services of the bank like creating DD. The stakeholders also include those

to whom payment of bills is made or to whom money is transferred. The stakeholders

falling in the above broad categories will be identified after Identification and

Refinement phases.

Identification and Refinement phases run in spiral. To gather information during

identification phase the notions of ‘Story’ and Story Conversion Diagrams (SCDs)

have been introduced in the previous chapter as it is an easier method to collect

requisite information more correctly and accurately. The same approach is used in this

case study. As it is not possible to list all the stories in the thesis for INB system,

some of the stories are listed to demonstrate this phase and the sets S, F, and A for

stakeholders, functionality and asset respectively, are generated.

This phase consists of four quadrants as shown in Figure 3.1 and on each story the

activity mentioned in each quadrant is to be performed strictly. In the first quadrant,

requirements are elicited from the core group either directly or in the form of stories.

As per the second quadrant, the stakeholders, functionalities and assets are identified

and put into stakeholder set S, functionality set F and asset set A respectively. In the

third quadrant, associations among the entities are identified and corresponding SCD

is developed. Lastly, in the fourth quadrant, the refinement process is performed that

has already been discussed at length in Section 3.3. The spiral continues till the phase

is over or entities are identified exhaustively.

Table 4.1 contains some of the stories obtained from various stakeholders. With every

story its type and identified entities are mentioned. The sets S, F and A are created

and updated incrementally whenever a new entity is encountered in a newly elicited

story.

79

Table 4.1: Identification Phase

S.
No
.

Stories Type of
Story

Entities Identified from the Story Set of Entities
obtained

from the story

Incremented Set
Stake-
Holders

Functionalities Assets

1 Account Holder
can print
statement of
his/her account.

Multi-
Instance
Story

Account
Holder

Print
Statement

Statement,
Account

S = {Account
Holder}

F = {Print
Statement}

A = {Statement,
Account}

S = {Account Holder}
F = {Print Statement}
A = {Statement, Account}

2 Generate
statement for
any specified
period

Two-
Entity
Story

(none) Print
Statement

Period

S = {φ}
F = {Print

Statement}
A = {Period,

statement}

S = {Account Holder}
F = {Print Statement}
A = {Statement, Account, Period}

3 Account holder
can login using
username and
password

Multi-
Instance
Story

Account
Holder

Login Username,
Password

S = {Account
Holder}

F = {Login}
A = {Username,

Password}

S = {Account Holder}
F = {Print Statement, Login}
A = {Statement, Account, Period, Username,

Password}

80

4 SWIFT code
and destination
address are
required for
funds transfer

Multi-
Instance
Story

(none) Funds Transfer SWIFT
code,
Destination
Address

S = {φ}
F = {Funds

Transfer}
A = {SWIFT code,

Destination
Address}

S = {Account Holder}
F = {Print Statement, Login, Funds Transfer}
A = {Statement, Account, Period, Username,

Password, Swift Code, Destination
Address}

5 Branch staff can
also transfer
amount on
behalf of the
customer

Multi-
Instance
Story

Branch
Staff,
Customer

Money
Transfer

Amount S = {Branch Staff,
Customer}

F = {Money
Transfer}

A = {Amount}

S = {Account Holder, Branch Staff, Customer}
F = {Print Statement, Login, Funds Transfer,

Money Transfer}
A = {Statement, Account, Period, Username,

Password, Swift Code, Destination
Address, Amount}

6 Customer may
choose one
account to print
statement

Multi-
Instance
Story

Customer Print
Statement

Statement,
Account

S = {Customer}
F = {Print

Statement}
A = {Statement,

Account No.}

S = {Account Holder, Branch Staff, Customer}
F = {Print Statement, Login, Funds Transfer,

Money Transfer}
A = {Statement, Account, Period, Username,

Password, Swift Code, Destination
Address, Amount}

7 Demand Draft
(DD) Issue
facility may be
provided online

One-
Entity
Story

 DD
Issue

 S = {φ}
F = {DD Issue}
A = {φ}

S = {Account Holder, Branch Staff, Customer}
F = {Print Statement, Login, Funds Transfer,

Money Transfer, DD Issue}
A = {Statement, Account, Period, Username,

Password, SWIFT Code, Destination
Address, Amount}

81

8 An account
should always
contain required
amount for bill
payment

Multi-
Instance
Story

 Bill
Payment

Account,
Amount

S = {φ}
F = {Bill Payment}
A = {Account,

Amount}

S = {Account Holder, Branch Staff, Customer}
F = {Print Statement, Login, Funds Transfer,

Money Transfer, DD Issue, Bill Payment}
A = {Statement, Account, Period, Username,

Password, SWIFT Code, Destination
Address, Amount}

9 Money can be
transferred only
by the account
holder

Three-
Entity
Story

Account
Holder

Money
Transfer

Money S ={Account
Holder}

F = {Money
transfer}

A = {Money}

S = {Account Holder, Branch Staff, Customer}
F = {Print Statement, Login, Funds Transfer,

Money Transfer, DD Issue}
A = {Statement, Period, Account, Money,

Username, Password, SWIFT Code,
Destination Address, Amount}

10 Confirm
transfer of
funds to Payee

Two-
Entity
Story

Payee Funds
Transfer

 S = {Payee }
F = {Funds

Transfer}
A = {φ}

S = {Account Holder, Branch Staff, Customer,
Payee}

F = {Print Statement, Login, Funds Transfer,
Money Transfer, DD Issue}

A = {Statement, Period, Account, Money,
Username, Password, SWIFT Code,
Destination Address, Amount}

82

Account Holder

Login

Username Password

Account Holder

Print Statement

Account Statement

Figures 4.1 to 4.10 denote the SCDs for the stories 1 to 10 in Table 4.1 respectively.

Figure 4.1: SCD for Story 1

Figure 4.2: SCD for Story 2

Figure 4.3: SCD for Story 3

Print Statement

Period

83

DD Issue

Customer

Print Statement

Account

Figure 4.4: SCD for Story 4

Figure 4.5: SCD for Story 5

Figure 4.6: SCD for Story 6

Figure 4.7: SCD for Story 7

Funds Transfer

SWIFT
Code

Destination
Address

Customer

Money Transfer

Account

Branch Staff

84

Account Holder

Money Transfer

Money

Bill Payment

Account Amount

Figure 4.8: SCD for Story 8

Figure 4.9: SCD for Story 9

Figure 4.10: SCD for Story 10

4.2 Refinement

Once the stories are elicited and entities are identified, refinement procedure is

conducted. Refinement is performed in the last quadrant of each spiral of this phase.

The refinement process consists of redundancy removal, aggregation and

decomposition activities. In this phase, the information gathered in the identification

phase is refined to ensure correctness, non-ambiguity, efficiency, quality etc. in a

software system being developed. Refinement is explained at length in Section 3.3. It

makes use of SCDs for redundancy removal, aggregation and decomposition as per

need.

Payee

Funds Transfer

85

Sets S, F and A are obtained based on the primary stories in Table 4.1 and are given

here as Eq. (4.1), Eq. (4.2) and Eq. (4.3) respectively.

S = {Account Holder, Branch Staff, Customer, Payee} (4.1)

F = {Print Statement, Login, Funds Transfer, Money Transfer, DD Issue} (4.2)

A= {Statement, Period, Account, Money, Username, Password,

SWIFT Code, Destination Address, Amount} (4.3)

4.2.1 Redundancy Removal

In set S given by Eq. (4.1) two entities ‘Customer’ and ‘Account Holder’ represent

same entity so a common term is selected to avoid ambiguity in developing the

software system. Here, customer is a more general and appropriate term as already

stated in Section 4.1, it is not necessary that every person who uses bank services is an

account holder. Similarly, in functionality set F, given by Eq. (4.2), ‘Money Transfer’

and ‘Funds Transfer’ are found to be synonymous and hence decision is to be made to

keep only one. Money Transfer is discarded while Funds Transfer is accepted.

It is the responsibility of the development team to carefully scan all the entity sets to

remove the redundancy that may be repetitive. Algorithm 3.1 Redundancy_removal

has been followed to scan the different entity sets. For instance the elements of

stakeholder set S are scanned and when two similar stakeholders ‘Payee’ and

‘Beneficiary’ are encountered then the decision is made to discard ‘Payee’ and keep

‘Beneficiary’ that encompasses all parties to whom any kind of funds transfer is

made. Then the sets are updated. In set A given by Eq. (4.3) it is found that two terms

‘Money’ and ‘Amount’ convey same meaning. Here also, the development team has

to decide which term is more logical. The term ‘Amount’ is accepted. Another

instance from the asset set is the term ‘Account’ that seems to be correct but it is

ambiguous from the point of view of software system as it carries no meaning. The

system identifies an account uniquely by its number. Therefore, it is replaced by the

term ‘Account No.’ After ever redundancy removal the particular set is updated

Figures 4.11 to 4.17 are the SCDs developed after removing redundancies. These

SCDs have been derived easily and quickly by scanning the previously developed

SCDs i.e. Figures 4.1 to 4.10.

86

Amount

Branch Staff

Funds Transfer

Customer

Customer

Print Statement

Account No.

Print Statement

Account No. Statement

Customer

Figure 4.11: SCD for story 1 after refinement

Figure 4.12: SCD for story 3 after refinement

Figure 4.13: SCD for story 5 after refinement

Figure 4.14: SCD for story 6 after redundancy removal

Login

Username Password

Customer

87

Bill Payment

Account No. Amount

Beneficiary

Funds Transfer

Figure 4.15: SCD for story 8 after refinement

Figure 4.16: SCD for story 9 after redundancy removal

 Figure 4.17: SCD for story 10 after refinement

After the redundancy removal process, the sets obtained are as follows:

S = {Customer, Branch Staff, Beneficiary} (4.4)

F = {Print Statement, Login, Funds Transfer, DD Issue} (4.5)

A = {Statement, Period, Account No., Username, Password, SWIFT Code,

Destination Address, Amount} (4.6)

Customer

Funds Transfer

Amount

88

Funds Transfer
Customer

Beneficiary

Amount Swift Code

Funds Transfer

Destination
Address

Branch Staff

4.2.2 Aggregation

Aggregation is an activity to combine stories conveying similar information or

containing commonalities (like related to same functionality). This similarity or

commonality can easily be consolidated and represented through an aggregation of

such SCDs and generating an ‘Aggregated SCD’. It is developed by combining the

knowledge obtained through preliminary SCDs and redundancy-removed SCDs. If we

look carefully it is found that functionality ‘Funds Transfer’ is common in Figures

4.4, 4.10, 4.13, 4.16 and 4.17. An aggregated SCD (Figure 4.18) is developed that

summarizes associations pertaining to ‘Funds Transfer’ functionality.

Figure 4.18: Aggregated SCD for Funds Transfer

Similarly, it is seen that the SCDs for stories 1, 2 and 6 contain the same functionality

‘Print Statement’. Story 1 is refined in Figure 4.11 and story 6 in Figure 4.16 (after

redundancy removal). So by combining the Figures 4.2, 411 and 4.16 an aggregated

SCD is obtained as shown in Figure 4.19.

89

Customer

Account No. Period Statement

Figure 4.19: Aggregated SCD for Print Statement

4.2.3 Decomposition

Decomposition is an important phase to obtain more precision in requirements. It

provides more granularities in entities by decomposing them into constituents or sub-

parts. For example, destination address in set A shown by Eq. (4.6), is to be

decomposed into Destination Country, Destination Bank Name and Destination Bank

Address. These details are required explicitly for funds transfer in different cases.

Figure 4.20 is the new SCD for ‘Funds Transfer’ functionality with decomposed

assets. It is derived from Figure 4.18. Similarly, Funds Transfer functionality can also

be broken into three types i.e. intra-bank, inter-bank and international. SCDs for these

cases will be developed and presented subsequently.

Figure 4.20: Decomposed SCD for Funds Transfer

Account No

Period Destination Address

Branch Staff

Customer

Amount Swift Code

Funds Transfer

Beneficiary

Print Statement

90

Evidently, the notion of SCD plays a pivotal role in the refinement because these

provide a graphical view of stories and it is always easier to identify redundancy. This

notion also helps in developing new refined SCDs quickly.

4.2.4 Culmination of Spiral

When the identification and refinement activities were applied on the complete INB

system, more entities were obtained incrementally. Final entity sets are obtained after

the spiral ends. Based on our survey the functionality, stakeholder and asset sets were

obtained. These have been enlisted below along with their brief description or role in

the system. Detailed description of some significant entities along with the rationale

of their inclusion in the system follows the sets. Sincere efforts have been made to

identify the entities exhaustively. However, some may have still left out

unintentionally.

It has been underlined in the previous chapter that the comprehensive listing of

stakeholders is crucial for the success of the proposed SecREAD methodology. The

basic stakeholders are the developers, the domain experts, the client and the users. A

client representative is made a part of the development team who advises and

provides clarifications to the developers whenever required. Most importantly he/she

conveys the client’s intensions and aspirations with the system to the developers.

There can be several sub-groups within the client and the user community. The

iterative nature of the identification and refinement phase ensures that all such sub-

groups are discovered. There are a large number of stakeholders in the banking

industry. Apart from developers and domain experts, the stakeholders within the

client side are enlisted in Table 4.2. The different user groups are enlisted in Table

4.3.

Table 4.2: Cilent-side Stakeholders
Stakeholders Brief Description/Role

INB officer Issue kit, re-issue username and password
Rule Authorizer Activate kit, approve the request for username

and password
Branch Staff The front-end staff members of the bank that

cater to the needs of the customers
Client Representative A person that advices the development team

91

Table 4.3: User-Group Stakeholders
Stakeholders Brief Description/Role

Customer Customer of the bank
Biller Person or organization that receives the payment of the

bill like a telecom company or electricity department
Beneficiary Person or organization to whom money is transferred

INB system performs several functions. The different functionalities that the system

offers are enlisted in Table 4.4.

Table 4.4: Functionality Set F
Functionality Brief Description/Role

Issue INB Kit A kit containing user name and password is issued by Bank to the
customer to use INB facility

Login Customer has to login by giving the user name and password
provided in kit to use INB facility. Later these credentials can be
changed.

View Account After logging-in Customer can view all details of his all accounts
of the Bank linked in INB

Print Statement Customer can take printout of the statement of his/her account(s)
Intra-Bank Funds Transfer Customer can transfer funds between accounts of the same bank
Inter-Bank Funds Transfer Customer can transfer funds between accounts of different banks.
International Funds
Transfer

Customer can transfer funds between accounts internationally.

DD Issue Customer can make a request to issue a DD and may collect the
DD from branch or through post.

Bill Payment Customer pay the bill to billers listed in the INB system on a
scheduled date

FD/RD Creation Customer can make FD or RD online and break the same
prematurely.

Cheque book issue Customer can ask to issue a new cheque book. Cheque book is
delivered to his/her address

Cheque Payment Stop Stop cheque payment by the customer

Similarly, there are different groups of assets used by different functionalities and

stakeholders though they may cut across the boundaries. Assets can roughly be

grouped into customer details, security credentials & other assets for security, account

related assets, functionality-specific and miscellaneous assets enlisted in Tables 4.5,

4.6, 4.7 and 4.8 respectively.

92

Table 4.5: Assets Pertaining to Customer
Asset Brief Description

Customer
Name

Name of the customer

Address Address of the customer
Mobile No. Mobile number of the customer
e-mail e-mail address of the customer
PAN Permanent Account Number of the customer
Aadhar No. It is a 12-digit unique identification number for Indian

citizens issued by government of India that is mandatory to
be linked with the bank account.

Kit no. No. of the kit issued to the customer
CIF no. It stands for Customer Information No. which is unique for

every customer with respect to one bank. It is used in
identifying how many accounts he/she holds, in which
branches, the type of accounts, the balance in the accounts,
his/her deposits like FDs and RDs. These details are useful
in providing information to government, income tax
department or other investigation agencies, if required for.

Table 4.6: Assets for Security and as Credentials

Asset Brief Description
Username Username of the customer to login into INB
Password Password of the customer to login into INB
User Profile
Password

A password provided to customer for enhancing
security in money transfer – to add a payee/biller

OTP One Time Password for authentication during
online transaction, it is sent on the customer’s
mobile phone

INB Officer Username Username of INB officer
INB Officer Password Password of the INB Officer
Rule Authorizer Username Username of Rule Authorizer
Rule Authorizer Password Password of the Rule Authorizer
Fingerprint Pattern Fingerprint Pattern of the customer/staff member
Voice Sample Voice Sample of the customer

Table 4.7: Account Related Assets

Asset Brief Description
Account No. Account no. of the customer
Account Type Type of account like current or savings
Account Balance Balance amount in the account
Statement Statement of account
Dates- from and to Specifies the period following between these dates,

for which the statement is to be printed

Month Month of which statement is to be printed

93

Table 4.8: Functionality-specific and Miscellaneous Assets

Asset Brief Description
Branch Name Name of the branch, usually its address and/or area
IFSC It stands for Indian Financial System Code that is a

alphanumeric code of 11 characters that uniquely
identifies each bank branch

SWIFT Code It stands for Society for Worldwide Inter-bank
Financial Telecommunication used when the transfer
between two banks happens internationally.

DD No. Number of the DD issued
DD Amount Amount of DD
DD payable at Place where DD is payable at
DD issued at Place where DD is issued at
Delivery mode Mode of delivery of DD i.e. by post or collected in

person
Biller Name Name of the party to which the bill is to be paid
Biller ID ID of the party to which the bill is to be paid
Scheduled Date A later date specified at which the money is to be

paid to the biller or transferred to the payee
FD/RD No. No. of FD or RD
FD/RD Amount Amount of FD or RD
Maturity Date Maturity date of FD
Nominee Details Name of the nominee of the FD and account

including his/her relationship with the customer
Transfer amount Amount to be transferred
Max. Limit Maximum limit of money that can be transferred to a

payee at a time
Destination
Bank Details

Name and address of the of the beneficiary bank

Beneficiary
Name

Name of the beneficiary

Cheque no. The no. of the cheque. It is also used to specify the
start and end number of cheques for stopping
payments

Standing
Instructions

Standing instructions given to the bank by the
customer to perform a task automatically at future
date(s)

As more global financial activity becomes digitally-based, many banks are utilizing

new technologies to develop next-generation identification controls to combat fraud,

make transactions more secure, and enhance the customer experience. Several

security measures are used like username-password based (something you know),

smart card based (something you have) and biometric based (something you are).

Additional security layer is provided by One Time Password (OTP) and user profile

password. The schemes can be categorized as low, medium and high level of security

measures. Their usage varies with functionalities, domains and client’s aspirations.

94

The biometric mechanisms considered in the case study are fingerprints and voice

control used for authentication of users. The SecREAD methodology adjudges the

level of security for entities and based on those rankings appropriate security

measures are suggested to the developers and client to select.

Funds Transfer is an important feature of INB system. It is of three types:

• Intra-bank money transfer allows transfer of money between accounts of the same

bank.

• Inter-bank money transfer allows transfer of money between accounts of different

banks but within the country.

• International money transfer allows transfer of money between accounts of the

different banks/branches but internationally.

For the inter-bank money transfer in India, two applications viz. National Electronic

Funds Transfer (NEFT) and Real Time Gross Settlement (RTGS) are used. NEFT has

a limit of Rs. 2,00,000 while RTGS is boundless. The amount desired to be

transferred is represented by the asset ‘Money to be transferred’. The ‘Payee’ to

which money is to be transferred ought to be added first. A limit of maximum amount

to be paid, at a time, is set for each payee. The asset ‘Max Limit’ signifies this limit.

The ‘IFSC’ is used to identify any bank branch in India. It contains 11 alphanumeric

characters where, first four characters represent bank code, the 5th character is 0

reserved for future use and last six characters are branch code. All the bank branches

within the country are assigned an IFSC by the Reserve Bank of India. For example,

IFSC for State Bank of India, Jaipur City, Sanganeri Gate branch is SBIN0000656.

‘SWIFT Code’ is required for International Money Transfer. It is a unique

identification code assigned to a specific bank to perform money transfer between

banks internationally. The code is a combination of 8 or 11 alphanumeric characters

where, the first four characters represent bank code. (Letters only, i.e. AAAA), next

two characters represent country code. (Letters only, i.e. BB), next, two characters

represent location code (letters and digits, i.e. 1C). Last three characters are optional

that represents branch code (letters and digits (DDD). For example, SWIFT code for

the above mentioned branch is SBININBB154.

https://www.ifscswiftcodes.com/SWIFT-Codes/SBININBB154.htm

95

As we are aware that due to modern cyber attacks only username and password

scheme does not suffice alone so an asset like One Time password (OTP) is used

especially, for all kinds of money transfer. One Time Password (OTP) is a password

that is valid for only one login session or transaction. It is generated randomly and it

further enhances security associated with static password scheme as it is not

susceptible to replay attack [86] which is the resending of a message that has been

intercepted by an intruder. While using critical functionalities like funds transfer, OTP

is sent on the registered mobile number of the customer and has to be keyed in as an

additional security feature. ‘User Profile Password’ is another security feature

provided to the customer which is required at the time of updation of personal details

and addition of payee or biller. Cheque book is issued to the customer on his/her

request usually, using ‘Cheque Book Issue’ functionality when all the leaves are over.

It has the ‘Customer Name’ and ‘Account no.’ written over it. If a customer wishes to

stop the payment of a cheque, it can be done through ‘Cheque Payment Stop’

functionality. In case of multiple cheques, the start and end nos. of the cheques are

entered.

The ‘Issue Kit’ functionality is invoked once a customer opens an account with the

bank. The INB kit is issued by the INB officer for the customer at the time of account-

opening. It is collected by the customer through the branch in which he/she has the

account. At the time of account opening, the customer’s Aadhar Number and PAN are

linked with the account. The kit contains the initial Username and Password of the

customer which can be changed. In ‘Intra-bank Funds Transfer’ functionality the

‘account no.’ denotes the account of the customer from which the money is to be

transferred while the ‘Beneficiary Account No.’ is the account no. in which the

money is to be transferred. In inter-bank funds transfer functionality, IFSC is used to

transfer funds within India while SWIFT code is used for funds transfer in a foreign

country. Similarly, in foreign funds transfer, ‘Destination Bank Details’ are required

which include the name of the bank and its country. The ‘DD Issue’ functionality

requires the name and IFSC of the issuing branch and the branch where DD is payable

at. The DD can be collected in person or via courier.

96

As per the SecREAD methodology flow chart shown in Figure 3.1, when the

complete entity sets are obtained, they are mapped to each other in the mapping phase

which is explained in the next section.

4.3 Mapping

The entities are mapped to each other for which three relevance matrices are

developed for this, as already explained in Section 3.4. Asset-Functionality Matrix

(X) maps assets to functionalities, Functionality-Stakeholder Matrix (Y) maps

functionalities to stakeholders and Asset-Stakeholder Matrix (Z) maps assets to

stakeholders. In X and Y, a cell-value ‘1’ indicates that corresponding row and

column entities are relevant to each other. This mapping is performed by the core

group. The zero value indicates irrelevance. Z is obtained through the cross-product of

X and Y. As already mentioned in Sub-section 3.4.2, the product values in the cells of

Z are significant only to show relevance or association among assets and stakeholders,

so these cells are shaded. Another matrix W is produced by the core group that maps

stakeholders to parameters. It has been described in Sub-section 3.4.4. A tool has been

developed in this research work, as described in Section 3.8, to facilitate the

processes.

For the case study in question, the X, Y and Z matrices are shown by tables 4.9, 4.10

and 4.11 respectively. It can be seen in matrix X that the asset ‘Kit No.’ is mapped to

‘Issue Kit’ functionality and in Y matrix the same functionality ‘Issue Kit’ is mapped

to stakeholder ‘INB Officer’. Consequently, in matrix Z which is the cross product of

X and Y it is seen that ‘Kit No.’ is relevant to INB Officer. This verifies the

development of Z.

Only parts of matrices X and Z are shown here. Complete matrix X is given by Table

A.2 and matrix Z is given by Table A.1, as generated by the tool. It is noteworthy, that

since the tool is based on arithmetic calculations, the matrix Z (as presented in Table

A.1) produced by it contains actual numeric values of the cross product that may be

treated merely for denoting relevance.

97

Table 4.9: Asset-Functionality Relevance Matrix X

Assets

Functionality

Issue
Kit

Login View
Account

Print
State-
ment

Intra-
Bank
Funds

Transfer

Inter-
Bank
Funds

transfer

Inter-
national
Funds

Transfer

DD
Issue

Bill
Payment

FD /
RD

Creation

Cheque
Book
Issue

Cheque
Payment

Stop

Customer
Name 1 0 0 0 0 0 0 0 0 0 1 0

Address 1 0 0 0 0 0 0 0 0 0 1 0
PAN 1 0 0 0 0 0 0 0 0 1 0 0
Aadhar
No. 1 0 0 0 0 0 0 0 0 1 0 0

Mobile
No. 1 1 0 0 1 1 1 1 1 1 0 1

e-mail 1 1 0 1 0 0 0 0 1 1 1 1

CIF no. 1 0 0 0 0 0 0 0 0 0 0 0

Kit No. 1 1 0 0 0 0 0 0 0 0 0 0

Username 1 1 1 1 1 1 0 1 1 1 1 0

Password 1 1 1 1 1 1 0 1 1 1 1 0

98

Table 4.10: Functionality-Stakeholder Relevance Matrix Y

Functionality

Stakeholder
INB
Officer

Rule
Authorizer

Branch
Staff

Customer

Biller

Beneficiary
 Client Developer Expert

Issue Kit 1 1 1 0 0 0 1 1 1
Login 0 0 0 1 0 0 1 1 1
View Account 0 0 0 1 0 0 1 1 1
Print Statement 0 0 0 1 0 0 1 1 1
Intra-Bank Funds
Transfer 0 0 0 1 0 1 1 1 1

Inter-Bank Funds
Transfer 0 0 0 1 0 1 1 1 1

International Funds
Transfer 0 0 1 1 0 1 1 1 1

DD Issue 0 0 1 1 0 1 1 1 1
Bill Payments 0 0 0 1 1 0 1 1 1
FD/RD creation 0 0 1 1 0 0 1 1 1
Cheque Book Issue 1 1 1 1 0 0 1 1 1

Cheque Payment Stop 0 0 0 1 0 0 1 1 1

99

Table 4.11: Asset-Stakeholder Relevance Matrix Z

Assets

Stakeholders

INB
Officer

Rule
Authorizer

Branch
Staff Customer Biller Beneficiary Client Developer Expert

Kit No.

Customer
Name

Address

PAN

Aadhar
No.

Mobile
No.

e-mail

CIF no.

Username

Password

100

Table 4.12: Stakeholder-Parameter Relevance Matrix W

Stakeholder

Parameters
Authentication Confidentiality Integrity Non-

repudiation
Autho-
rization

INB Officer 1 1 1 1 1
Rule

1 1 1 1 0

Branch Staff 1 1 1 1 0
Customer 1 1 1 1 0
Beneficiary 0 0 1 1 0
Biller 0 0 1 1 0
Client 1 1 1 1 1
Developer 1 1 1 1 1
Domain Expert 1 1 1 1 1

The X and Y relevance matrices, both depict the association of assets and

stakeholders with a functionality. CSCDs can be developed using these two matrices.

CSCDs are described in Sub-section 3.4.3 and are developed using Algorithm 3.2.

CSCD for ‘Issue Kit’ is given by Figure 4.21.

Figure 4.21: CSCD for Issue Kit functionality

101

4.4 Ranking and Analysis

Based on the relevance matrices, the rank matrix R is developed. Through this matrix

ranks for assets are collected by different stakeholders as already explained in the

previous chapter.

4.4.1 Rank Matrix

The process of ranking is conducted by stakeholders. A 3-d Rank matrix R is

developed by combining the information contained in relevance matrices W and Z, as

defined in Sub-section 3.4.5. The z-dimension of R is made of rank sheets for every

stakeholder. A 3-d view for the INB case study is given by Figure 4.22. It shows the

rank-sheet of the stakeholder ‘Customer’, and the ranks furnished by him for his/her

relevant assets. Some of the assets shown here are Mobile No., E-mail, Username and

Password. The assets are ranked over his/her relevant parameters, which as per matrix

W (Table 4.12), are Confidentiality, Integrity and Non-Repudiation (denoted by Pr2,

Pr3 and Pr4 respectively) as described in Chapter 3. Also, in this figure, the rank sheets

of other stakeholders can be seen behind each other or on the z-axis of R.

Figure 4.22: 3-d View of Rank Matrix R for INB System with Rank Sheet for

Customer

102

4.4.2 Results and Discussion

The input data of all stakeholders i.e. the compilation of all rank sheets is contained in

a 3-d matrix R, already defined in Section 3.6. Computations are performed on R once

all the stakeholders have performed ranking of their relevant assets under their

relevant parameters. Table 4.13 shows a portion of matrix R obtained by the tool

which shows the ranking (in the form of 1, 2, 3 for low, medium and high

respectively) given by all the stakeholders over their relevant assets under their

relevant parameters. In this way matrix R represents three dimensions of assets,

stakeholders and parameters. In the portion of R provided in Table 4.13 only a partial

view pertaining to stakeholder ‘Customer’ is provided. The ranks of Password and

Account No.(s) in R match with that of rank sheet of beneficiary (Figure 4.22). The

complete matrix R contains the entries of all the stakeholders i.e. over 800 rows. A

larger view of this matrix, in SQL table form, is given by Table A.3.

After performing cell computation on matrix R, matrix T is obtained. It is derived

from matrix R, removing its third dimension of stakeholder. Thus it is a 2-

dimensional matrix with first dimension as asset and second as parameter. In other

words, it gives a consolidated rank of each asset over different parameters. A part of

the matrix is given by Table 4.13 where the first column contains assets repeated five

times for all five parameters listed in the second column. Assets Account Balance and

Address are shown here. The third column contains the mode of all the rank values

given by all relevant stakeholders for that asset. In this way matrix T provides a 2-

dimensional view of assets and parameters. The larger view of this matrix is given by

Table A.4.

Table 4.13: 2-d Matrix T

Asset Parameter Mode
Account Balance Authentication 3
Account Balance Authorization 3
Account Balance Confidentiality 2
Account Balance Integrity 3
Account Balance Non-repudiation 3
Address Authentication 2
Address Authorization 2
Address Confidentiality 1
Address Integrity 3
Address Non-repudiation 2

103

Matrices U and V are derived from computations on matrix T, as discussed in Section

3.5, which aid in determining the ranks of assets and parameters respectively. Using

Algorithm 3.3, matrix U is obtained that depicts the ranks of assets. It is obtained by

taking the mode of all the mode values under the different parameters for each asset in

matrix T. In matrix T for INB system, given by Table 4.13, the asset Account Balance

is ranked under five parameters as 3, 3, 2, 3 and 3. In matrix U, given by Table 4.14,

the mode of these values is considered and the asset is given the value 3 or high rank.

This verifies the creation of matrix U by the tool. Complete matrix U is given by

Table A.5.

Table 4.14: Matrix U or Asset Rank

Asset Mode Rank
Account Balance 3 High
Address 2 Medium
CIF 3 High
Customer Name 2 Medium
Biller Name 1 Low

Matrix V is obtained from matrix T by using Algorithm 3.4 and depicts the ranks of

every parameter in the system. In order to verify this matrix obtained from the tool,

the complete matrix ought to be considered. Mode of all the modes values of one

particular parameter in the matrix T is obtained to find the rank of that parameter in

the software. Table 4.15 gives matrix V.

Table 4.15: Matrix V or Parameter Rank

Parameter Mode Rank
Authentication 3 High
Confidentiality 3 High
Integrity 3 High
Non-repudiation 2 Medium
Authorization 3 High

The security ranks of individual functionalities in the INB system are given by the

matrix Q (Table 4.16).

104

Table 4.16: Matrix Q or Functionality Rank

Functionality Mode Rank
Issue Kit 3 High
Login 3 High
View Account 1 Low
Print Statement 1 Low
Intra-Bank Funds Transfer 2 Medium
Inter-Bank Funds Transfer 3 High
International Funds Transfer 3 High
Bill Payment 3 High
Cheque Payment Stop 1 Low
Cheque Book Issue 1 Low
DD Issue 2 Medium
FD/RD creation 3 High

4.5 Design

As per the ranks obtained in the analysis phase, designing is conducted here.

Functionality Rank Diagram (FRD), Comprehensive Rank Diagram (CRD) and

Authorization Rank Diagrams (ARD) are developed. These diagrams have already

been discussed in Section 3.7. Each of these three diagrams for the Internet Banking

are elaborated in the following sub-sections.

4.5.1 FRD and CRD

An FRD for the ‘Issue Kit’ functionality is depicted by Figure 4.23. It is an extension

of the CSCD for the same functionality given by Figure 4.21 with the rank

information embedded. However, the assets with the same security rank are clubbed

together. Assets in three rectangles like Kit No. and Password have high rank while

those within two rectangles like Address and e-mail have medium security rank.

FRDs for other functionalities are given in Appendix A.

105

Figure 4.23: FRD for Issue Kit

Developer

Expert

Client

Branch Staff

Rule
Authorizer

INB
Officer

Issue Ki

Kit No., Password, CIF, PAN, Aadhar No.,
Username, INB Officer Username, INB

Officer Password, Rule Authorizer Username,
Rule Authorizer Password

Customer Name, Address, E-mail, Mobile

Issue Kit

106

Table 4.17: Template of FRD for Issue Kit

Functionality: Issue Kit

Stakeholders

INB Officer

Branch Staff

Rule Authorizer

Client

Developer

Expert

Assets

Name Rank

Kit No. High

Customer Name Medium

Address Medium

PAN High

Aadhar No. High

E-mail Medium

Mobile No. Medium

Username High

Password High

INB Officer Username High

INB Officer Password High

Rule Authorizer Username High

Rule Authorizer Password High

CIF High

Functionality Rank: High

Measure: Username, Password

107

Figure 4.24 is a CRD that summarizes the complete software and Table 4.18 is its

template.

Figure 4.24: CRD for the complete INB Software

Issue Kit

Login

Print Statement

International Funds
Transfer

Inter-Bank Funds
Transfer

View Account

Intra-Bank Money
Transfer

Bill Payment

FD/RD
Creation

Cheque Book Issue

Cheque Payment Stop

DD Issue

Biller

Beneficiary

Branch
Staff

INB
Officer

Rule
Authorizer

Customer

INB System

108

Table 4.18: Template for CRD

Name of Software: Internet Banking (INB)
Function-List Rank Stakeholders Associated

Issue INB Kit High INB Officer, Rule Authorizer, Branch Staff,
Customer, Client, Developer, Expert

Login High Rule Authorizer, Customer, Client,
Developer, Expert

View Account Low Customer, Client, Developer, Expert
Print Statement Low Customer, Client, Developer, Expert
Intra-Bank
Funds Transfer

Medium Beneficiary, Customer, Client, Developer,
Expert

Inter-Bank Funds
Transfer

High Beneficiary, Customer, Client, Developer,
Expert

International
Funds Transfer

High Beneficiary, Customer, Client, Developer,
Expert

Bill Payment High Beneficiary, Customer, Client, Developer,
Expert

Cheque Payment
Stop

Low Branch Staff, Customer, Client, Developer,
Expert

Cheque Book
Issue

Low Branch Staff, Customer, Client, Developer,
Expert

DD Issue Medium Branch Staff, Beneficiary, Customer, Client,
Developer, Expert

FD/RD Creation High Branch Staff, Beneficiary, Customer, Client,
Developer, Expert

4.5.2 Authorization Rank Diagram (ARD)

Authorization Rank Diagrams (ARDs) have been developed which show the

authorization right a stakeholder possesses over his/her relevant assets. The ARDs

have been explained in Sub-section 3.7.3. Figure 4.25 represents a stakeholder-

oriented ARD for INB officer. It can be seen that the INB officer has Low rank or

‘Read’ right on assets Customer Name and PAN, high rank or ‘Write’ right on CIF

no., INB Officer Username, INB Officer Password and Kit No. Furthermore, he/she

has medium rank on ‘Write with Permission (WP)’ right provided by customer on

username, password and user profile password assets [109]. Table 4.19 is the template

for the diagram.

109

Figure 4.25: Authorization rights of a stakeholder INB officer

Table 4.19: ARD Template for INB Officer

Stakeholder: INB Officer
Assets Security Rank Authorization

Rights
Permitting

Stakeholders
Customer Name Low R
PAN Low R
CIF No. High W
INB Officer Username High W
INB Officer Password High W
Kit No. High W
Username Medium WP Customer
Password Medium WP Customer
User Profile Password Medium WP Customer

Figure 4.26 shows an Asset-oriented ARD for asset DD no. It can be seen that the

stakeholders associated with it include Customer and Beneficiary with ‘Read’ right,

and Branch Staff with ‘Write’ right. Table 4.20 is the template for this diagram. More

ARDs are presented in Section A.4

WPWP

WW

WW

WW

WPWP

RR

RR

WPWP

WW

INB Officer

Customer
name

PAN

Username

Password

INB Officer
Username

User
Profile

Password

CIF no.

Kit no.

INB Officer
Password

Customer

110

Figure 4.26: Asset-Oriented ARD for DD no.

Table 4.20: Template for Asset-oriented ARD for DD no.

Asset: DD No.
Stakeholder Authorization Rights
Customer R
Beneficiary R
Branch Staff W

4.6 Summary

This chapter successfully demonstrates the application of the proposed methodology

in Internet Banking. Banking is a very security-intensive and challenging domain

because it performs several functions, involves financial transactions and has several

stakeholders. The application of SecREAD in this industry has been successful in

capturing the aspirations of these stakeholders through the system. This has been

achieved by providing a better model for eliciting security requirements from

stakeholders of different backgrounds through stories. This facilitates induction of

security in the development process leaving least chance of any security issue arising

at a later stage which can be disastrous in this domain. As well as the methodology

aids in making better sense of those requirements to the developers through the notion

of SCDs. The usefulness of the SCDs is proved in Identification and Refinement

phases. To our idea, for INB system, graphical representation has come out to be

better than textual representation. Furthermore, the methodology well-defines the

two-way authorization rights between stakeholders and assets that are of paramount

importance in the application of this domain. The application of SecREAD to INB is

quite close to the actual implementations available. The coupling of empirical analysis

with the designing of the system to this level has made SecREAD more realistic. The

RR WW

RR

DD No.

Customer Branch Staff

Beneficiary

111

tool developed for this research work provided flawless computations and automated

generation of diagrams.

The proposed SCDs have come out to be very useful since textual representation of

requirement is not free of ambiguities. Through these diagrams stories were visualized

and redundancy was removed easily. The FRDs present very clearly security levels of

individual functionalities in the internet banking. The ARDs represent the access

rights of every stakeholder over different assets involved in the system. The

computations given by Eq. (3.1), Eq. (3.2) and Eq. (3.3), and Algorithm 3.2, are

implemented to develop the diagrams. The aim is to illustrate the development of

systems by adding security in the development lifecycle early.

112

Chapter 5

Case Study: IoT-Enabled Smart Building

This is an era of Internet of Things (IoT) which encompasses smart applications like

smart buildings, transportation systems, healthcare, industrial automation, smart city,

smart home and various smart electronic devices like watches, goggles etc. In this

research work, smart building has been chosen as a case study because it contains

safety and security critical tasks to be taken care of. Security requirements are

paramount in design and development of control software for such buildings. The

security levels of Smart Buildings vary with their types. A residential building will

have less security threat than a military or industrial building. Also, every kind of

building is prone to some mishap or the other like earthquake, flood, fire, burglary etc.

Any damage to a building can lead to severe loss of life and property. These situations

demand installation of safety and security measures of the highest order. At the same

time, the comfort of the residents is also one of the priorities. Keeping all this in mind

SecREAD has been developed in Chapter 3.

In this chapter, Section 5.1 includes a brief description of IoT. Section 5.2 introduces

smart buildings while Section 5.3 elaborates their major functionalities. Each of the

Sections, from 5.4 to 5.8, deal with one phase of the SecREAD applied on the case

study. Finally conclusion is drawn in Section 5.9. Appendix B contains tables and

figures pertaining to this chapter, providing more detail and clarity.

5.1 Internet of Things

In the year 1999, Kevin Ashton of Procter & Gamble, coined the term "Internet of

Things". It is the interconnection of various computing devices, used in everyday life,

through internet facilitating them to exchange data. It is the inter-networking of

physical devices embedded with electronics, software, sensors, actuators, and network

connectivity that enable these objects to collect and exchange data. According to Laya

and Bratu [110] IoT is "the infrastructure of the information society." Using IoT, the

objects can be controlled and/or sensed remotely causing more direct integration of

the computer-based systems with the physical world. This leads to improved

https://en.wikipedia.org/wiki/Internetworking
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Internet_access
https://en.wikipedia.org/wiki/Internet_access

113

efficiency, accuracy and economic benefit along with reduction in human

intervention. According to Al-Fuqaha et al. [111], IoT is expected to bridge diverse

technologies to enable new applications by connecting physical objects together in

support of intelligent decision making. The IoT enables physical objects to see, hear,

think and perform jobs by letting them share information and coordinate decisions.

IoT talks about remote control of applications or functions of any Cyber-Physical

system. Thus, IoT can be applied in various facets of life like industries, health,

transportation, home, buildings and cities altogether. Designing software for cyber

physical systems is difficult as they cut across varied aforesaid domains.

The rate at which physical objects are being developed and connected to the internet,

IoT has surfaced as an attractive field for research equally lucrative for business. The

annual business of IoT will be around $6.2 trillion by 2015 [111]. Exhaustive

literature survey reveals that no comprehensive method is proposed or developed for

such kind of systems. IoT based physical systems consist of a large number of safety

critical tasks and failure due to one or the other software error in the system will lead

to catastrophic consequences. The demand of increased automation and need of

security requirements in the development of such systems motivated us to think for

the development of secure software development methods. The methodology

presented in Chapter 3 is based on the concept of integration of security aspects in

standard software development life cycle from the first phase. As already mentioned,

the applications of IoT are far and wide, one very significant application of Smart

Building has been chosen as a case study.

5.2 Smart Buildings
A Smart Building is a physical domain comprising both hardware and software

devices owned by one or more individuals that can be monitored and controlled via

the Internet [112]. Robles and Kim [113] define a smart building to be a building that

is equipped with special structured wiring to enable occupants to remotely control or

program an array of automated home electronic devices by entering a single

command.

Building is a complex system and contains large number of ongoing activities. The

input acquired from sensors of such systems for even small sized buildings is

114

tremendous. A distinct feature of intelligent buildings is that their behavior constantly

changes over time as they are supposed to continually adapt to the changing

preferences and requirements of the inhabitants. Such an adaptation should be

completely autonomous so that the inhabitants of the building are not required to

configure it, repeatedly.

Security requirements in Smart Buildings have augmented in present times as more

and more services are becoming online and people want to access them remotely. A

smart building can lower energy and maintenance costs by fine-tuning its processes.

This has necessitated their development in present times owing to increasing urban

population which is expected to increase from 2.9 billion in 2015 to 4.3 billion by

2025. This population is responsible for the consumption of three-fourth of world's

energy production and 80% of carbon dioxide emissions. The smarter the building is

the more efficient is its operation and maintenance.

The Middle-East region is a forerunner in adopting smart buildings. The headquarters

of Private Equity Bank in Bahrain and the building of Ministry of Higher Education in

Riyadh are some good examples that render the building management and the

residents the ability to control remotely a variety of subsystems like security, lighting,

temperature control, fire alarm system, and elevator control system. However, in the

literature survey, so far, no comprehensive methodology has been found that, from the

very inception, takes into account the security concerns of all kinds of stakeholders

involved and models them effectively in order to design a secure system. This may

lead to vulnerabilities in these highly critical systems where a great volume of life and

property is at stake. SecREAD methodology is an attempt to fill this void.

Some major components of smart buildings are Surveillance, Maintenance, Heating

and Ventilation, Energy Conservation, Security, Disaster Management etc. It is not

possible to address all tasks, so the scope of the discussion has been limited to those

important tasks that are safety and security intensive. These are discussed in the next

section.

5.3 Major functionalities of Smart Buildings

Some major functionalities of the Smart Building System are discussed in the next

sub-sections.

115

5.3.1 Security System

This functionality includes authentication, access control, granting authorization

rights, surveillance and intruder detection. Authentication is the first line of defense.

This can only be achieved by using adequate technologies to ensure that safety and

security of the inhabitants of the building. In order to detect and authenticate any

entrant in the building premises, numerous technical solutions are available [42].

Various access control systems are used in the system such as smart cards and

biometrical identification systems along with conventional username-password

scheme. Video cameras are commonly applied in security surveillance systems.

Retina scanners are also used for the purpose, which use a low-intensity light source

and a delicate sensor to scan the unique pattern of blood vessels at the back of the

retina. The intruder detection is necessary for any security system prevailing in the

building. Again, as stated in previous case study, SecREAD methodology is restricted

to only suggest a security measure while its implementation is a prerogative of client

based on his/her constraints and the type of building in question.

5.3.2 Fire Safety System

Fire is undoubtedly one of the most disastrous calamity and its aversion and

subversion both should be a prime objective in any building. The smart fire safety

system is an answer to this menace. The extreme criticalness of this application has

made it a part of our case study.

Generally when a fire breaks out the available information is either less or not

systematic. Fire fighters independently observe the fire-ground and analyze the

immediate situation and build a mental model. If the model is incorrect, problems

could escalate and lead to severe loss of life and property. IoT can be used to create a

fire safety system that may provide actionable information.

The fire is detected by the carbon monoxide (CO) levels, temperature and smoke level

in the building. The mitigation action may be any one or combination of starting the

sprinklers, turning off the electricity, shutting down elevators and escalators and

sending messages to the fire department, the nearest hospital and the ambulance

service. Inside the building the announcement system must be activated to alert the

residents and they should be guided to the nearest exit. With the fire department, the

116

information of the presence of residents through the close circuit television (CCTV)

images and body motion, and detailed building plans (stairs, exits, utilities,

standpipes, construction) should be shared.

5.3.3 Heating, Ventilation, and Air Conditioning (HVAC)

Buildings are among the largest consumers of electricity in the world. These account

for 70% of total electricity and also are responsible for huge amounts of greenhouse

gas emissions. This need for energy conservation has attracted the attention of

researchers. It has lead to the development of HVAC system.

HVAC is an energy saving functionality. It is the technology of indoor and vehicular

environmental comfort. Its goal is to provide thermal comfort and acceptable indoor

air quality. HVAC constitutes of Heating, Ventilation, and Air Conditioning. Heating

should be performed when the temperature fluctuates from the comfortable range and

also on the basis of occupancy control. Ventilation is the process of exchanging or

replacing air in any space to provide high indoor air quality which involves

temperature control, oxygen replenishment, humidity control, removal of carbon

dioxide etc. Air conditioning system provides cooling and humidity control for the

building.

HVAC is now an important part of any building, like residential structures such as

single family homes, apartment buildings, hotels and senior living facilities, medium

to large industrial and office buildings such as skyscrapers and hospitals. Due to its

wide range of applications it has been an obvious choice for our study.

Through the HVAC system installed, a resident may control the temperature of

his/her home/building from a GUI system or even remotely from his car through a

smart phone before he reaches. The HVAC system also adjusts itself to the resident’s

preferences in past-history, the time of day and room temperature providing better

comfort. Also, a device like an AC can be shut down remotely if it has been left on

mistakenly before leaving the home.

https://en.wikipedia.org/wiki/Thermal_comfort
https://en.wikipedia.org/wiki/Indoor_air_quality
https://en.wikipedia.org/wiki/Indoor_air_quality
https://en.wikipedia.org/wiki/Indoor_air_quality
https://en.wikipedia.org/wiki/Indoor_air_quality
https://en.wikipedia.org/wiki/Air_conditioning#Humidity_control
https://en.wikipedia.org/wiki/Skyscraper

117

5.3.4 Lighting

IoT enabled Lighting system is designed for energy efficiency. 19% of energy

consumption and 6% of greenhouse emissions in the world are attributed to lighting.

Optimizing this energy consumption is the need of the hour and smart lighting is

instrumental in this. It allows the householder to control remotely the lighting. It also

involves utilizing sunlight to reduce the use of man-made lighting which means that

the lights can be switched on and off as per the outside sunlight luminance. This

system also uses the technique of occupancy sensing or motion detection i.e. turn on

light only when a person is within a particular space.

Apart from these four main sub-systems there are a large number of smaller sub-

systems where safety is important. Some of them are burglar alarm system, access

control system, authentication system, fire fighting system, temperature control

system etc. These have been aggregated to form a Security System. From the next

section essential phases of the proposed methodology in IoT based smart building

system are discussed.

5.4 Identification and Refinement

In this phase the task is to critically identify all requirements of the system to be

designed for smart building. The goal of the proposed methodology is different from

the standard SDLC model as the task of the proposed methodology is to critically

analyze the security concerns and provide a way to imbibe the same in the

development of secure software. As stated above, the identification phase is restricted

to list some of the important functionalities of the smart building to demonstrate the

application of the proposed methodology in achieving the goal of the secure software

development. Some of the important sub-systems of the smart building are Heating,

Ventilation, and Air Conditioning (HVAC) system, Fire Safety System, Lighting

System, Water Distribution System, Electricity Supply System, Drainage System etc.

Each of these sub-systems is studied and functionalities, stakeholders and assets

associated with them are identified.

https://en.wikipedia.org/wiki/Efficient_energy_use
https://en.wikipedia.org/wiki/Greenhouse_emissions

118

During the development of the process of requirement gathering, it is observed that

the proposed notion of story-telling and SCDs has proved its effectiveness as it is

easier for stakeholders to narrate requirements in the form of stories.

Further, the requirements of the IoT enabled building are different as automation

concept is little different. Here, it is desired that all applications/tasks should be

controlled remotely through any form of internet connectivity. Another major

difference is the use of smart sensors and smart actuators to fulfill the need of the

system’s intelligence. It raises many questions in every phase of the system design. In

this phase one has to take decision about the control data security and device access

security, making secure software design methodologies more relevant. As discussed

earlier these systems are more vulnerable to attack and therefore integrating security

right from the inception is utmost essential. In this way the proposed methodology,

SecREAD, becomes more important and the contribution is novel in the sense that it

is the first methodology which is addressing IoT requirements of a system and

formalizing the design and development process.

The IoT compliance of any software developed for big applications like smart

building demands more attention towards security as it includes a number of critical

tasks along with their priority of execution, to be accomplished by various devices to

ensure correct functioning of the systems. As a smart building is to comply with the

IoT requirements, the IoT related functionalities need to be identified. Several

stakeholders or people are associated with the building like residents, workers, guests

etc. Further, in an IoT based application, sub-systems or devices ought to

communicate with each other and with the external world, bringing in a variety of

data. The stories narrated by stakeholders consist of IoT features of various sub-

systems. Therefore, it can be said that coupling the IoT technology with buildings

adds a number of unique features to them making the requirement gathering, design as

well as the development of the system quite complex. SecREAD methodology is

perfectly aligned to address these intricacies of the Smart Building System as its

foundation is the identification of functionalities, stakeholders and data assets. For

every story, as soon as it is elicited, the entities are extracted and put into sets

segregating the functionalities, stakeholders and assets. The sets are incremented

whenever a new entity is encountered. Furthermore, the highly intertwined

119

associations between the entities of the Smart Building System, derived from the

stories, can be expressed very clearly through the SCDs.

To identify the entities comprehensively the spiral phase of Identification comes in

very handy. It is initiated by the core group members constituting experienced

developer(s), client representative(s) and domain expert(s). In this case, the Owner of

the building is the client and experts include, among others, urban planner(s) and

representative(s) from local government who will ensure the compliance with

standards, adherence to policies and obtaining licensing approvals. The refinement

process follows each identification phase. The spiral activity continues till all the

stakeholders, assets and functionalities are identified.

As seen in Figure 3.1 this phase runs in spiral with the elicitation of story in the first

quadrant followed by identification of entities, drawing of SCDs, refinement and

updation of entity-sets in the second, third and fourth quadrants respectively. Some

example stories are listed in Table 5.1 to demonstrate the way the stakeholder set S,

asset set A and functionality set F are obtained.

120

Table 5.1: Stories Elicited and Entities Identified for Smart Building
S.No. Stories Type of

Story
Entities Identified from the Story Set Incremented Sets

Stakeholders Functionalities Assets

1 The Password of the
inhabitants must be
kept confidential

Three-
Entity
Story

Inhabitant Authentication
System

Password S = {Inhabitant}
F = {Authenti-

cation
System}

A = {Password}

S = {Inhabitant}
F = {Authentication System}
A = {Password}

2 If a burglar tries to
enter the building
message police

Multi-
Instance
Story

Burglar,
Police

Burglar
Alarm
System

Message S = {Burglar,
Police}

F = {Burglar
 Alarm

System}
A = {Message}

S = {Inhabitant, Burglar, Police}
F = {Authentication System, Burglar Alarm

System}
A = {Password, Message}

3 Only the Building
Manager can assign
username, password to
every resident

Multi-
Instance
Story

Building
Manager,
Resident

Access
Control
System

Username,
Password

S = {Building
Manager,

 Resident}
F = {Access

Control
System}

A = {Username,
 Password}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident}

F = {Authentication System, Burglar Alarm
System, Access Control System}

A = {Password, Message, Username}

4 Every entrant must be
authenticated

Two-Entity
Story

Entrant Authentication
System

 S = {Entrant}
F = {Authenti-

cation
System}

A = {φ}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

F = {Authentication System, Burglar Alarm
System, Access Control System}

A = {Password, Message, Username}
5 Lights should be

switched off when
inhabitants are not
present

Three-
Entity
Story

Inhabitant Lighting
System

Body
Motion

S = {Inhabitant}
F = {Lighting
 System}
A = {Body

Motion}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

F = {Authentication System, Burglar Alarm
System, Access Control System, Lighting
System}

A = {Password, Message, Username, Body
Motion}

6 Ring alarm when some
indication of smoke is

Two-Entity
Story

 Fire
Safety

Smoke
Level

S = {φ}
F = {Fire Safety

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

121

found. System System}
A = {Smoke

Level}

F = {Authentication System, Burglar Alarm
System, Access Control System, Lighting
System, Fire Safety System}

A = {Password, Message, Username, Body
Motion, Smoke Level}

7 Adjust the room
temperature
automatically for the
resident

Three-
Entity
Story

Resident HVAC Room
Temper-
ature

S = {Resident}
F = {HVAC}
A = {Room
 Temperature}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

F = {Authentication System, Burglar Alarm
System, Access Control System, Lighting
System, Fire Safety System, HVAC}

A = {Password, Message, Username, Body
Motion, Smoke Level, Room Temperature}

8 Maintain appropriate
level of moisture

Two-Entity
Story

 HVAC Moisture
Level

S = {φ}
F = {HVAC}
A = {Moisture

Level}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

F = {Authentication System, Burglar Alarm
System, Access Control System, Lighting
System, Fire Safety System, HVAC}

A = {Password, Message, Username, Body
Motion, Smoke Level, Room Temperature,
Moisture Level}

9 The Humidity Level
should be comfortable.

Two-Entity
Story

 HVAC Humidity
Level

S = {φ}
F = {HVAC}
A = {Humidity
 Level}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

F = {Authentication System, Burglar Alarm
System, Access Control System, Lighting
System, Fire Safety System, HVAC}

A = {Password, Message, Username, Body
Motion, Smoke Level, Room Temperature,
Moisture Level, Humidity Level}

10 Building Manager is
the chief administrator
of the system

One-Entity
Story

Building
Manager

 S = {Building
Manager}

F = {φ}
A = {φ}

S = {Inhabitant, Burglar, Police, Building
Manager, Resident, Entrant}

F = {Authentication System, Burglar Alarm
System, Access Control System, Lighting
System, Fire Safety System, HVAC}

A = {Password, Message, Username, Body
Motion, Smoke Level, Room Temperature,
Moisture Level, Humidity Level}

122

Inhabitant

Authentication
System

Password

Burglar Alarm
System

Message

Police Burglar

Figures 5.1 to 5.10 depict the SCDs for the stories 1 to 10.

Figure 5.1: SCD for story 1

Figure 5.2: SCD for story 2

Figure 5.3: SCD for story 3

Building Manager

Access Control
System

Resident

Username Password

123

Fire Alarm
System

Smoke

Inhabitant
Lighting

Body
Motion

Figure 5.4: SCD for story 4

Figure 5.5: SCD for story 5

Figure 5.6: SCD for story 6

Entrant

Authentication
System

124

HVAC

Humidity
Level

HVAC

Moisture

Figure 5.7: SCD for story 7

Figure 5.8: SCD for story 8

Figure 5.9: SCD for story 9

Figure 5.10: SCD for story 10

Resident

HVAC

Room
Temperature

Building Manager

125

Every time, after eliciting a story and identifying its entities the refinement phase is

conducted. As described in Section 3.3 it includes the activities of redundancy

removal, decomposition, aggregation and addition of entities, as required. All these

activities are discussed below with examples related to this case study as per the

example stories taken in Table 5.1. Since there are varied stakeholders of the system

from whom requirement stories are elicited from which the entities are to be

identified, it is of utmost importance that information entities are unambiguous and

remain consistent throughout the system. To fulfill this necessity, the Refinement

phase of SecREAD with the use of SCDs is very apt and can serve the purpose quite

effectively, as will be seen next.

Sets S, F and A are obtained based on the primary stories in Table 5.1 and are given

here as Eq. (5.1), Eq. (5.2) and Eq. (5.3) respectively.

S = {Inhabitant, Burglar, Police, Building Manager, Resident, Entrant} (5.1)

F = {Smart Authentication System, Smart Burglar Alarm System, Smart Access

Control System, Smart Lighting System, Smart Fire Safety System, HVAC}(5.2)

A = {Password, Message, Username, Body Motion, Smoke Level, Room

Temperature, Moisture Level, Humidity Level} (5.3)

5.4.1 Redundancy Removal

Redundancy in entity sets is removed by using the algorithm. As explained in section

4.2.1 for INB here also in set S given by Eq. (5.1), two entities ‘Inhabitants’ and

‘Residents’ are redundant so a common term is selected to avoid ambiguity in

developing the software system. Here, ‘Resident’ is a more appropriate term as,

according to Oxford dictionary, it specifically applies to human beings (not including

animals as in ‘Inhabitant’). So, the term ‘Inhabitant’ is discarded. ‘Inhabitant’ is found

in Figure 5.1 and Figure 5.4. The figures are modified as Figure 5.11 and Figure 5.12

respectively. It is seen in Eq. (5.2) that set A contains two assets namely ‘Moisture

Level’ and ‘Humidity Level’ that convey the same meaning. Therefore, only

‘Moisture Level’ is accepted of the two. In this light, it is deduced that Figures 5.7

and 5.9 are redundant. Accordingly, Figure 5.9 is discarded.

126

Resident

Lighting System

Body
Motion

Authentication
System

Password

Resident

Figure 5.11: SCD for story 1 after redundancy removal

Figure 5.12: SCD for story 5 after redundancy removal

5.4.2 Decomposition

Decomposition is an activity to break an entity into its constituent entities if they

possess different properties. For example, the stakeholder ‘Entrant’ is a very

generalized term. Actually, it signifies three kinds of persons namely ‘Residents’ who

live in the building, ‘Guest’ who visit or are temporary residents or workers and

‘Intruders’ who are illegitimate entrants. Any person that enters without

authentication with malicious intentions is named as intruder. The decomposition is

performed in the SCD that contains ‘Entrant’ as stakeholder i.e. SCD given by Figure

5.4. Figure 5.13 shows the SCD obtained after the decomposition. Similarly, other

entities can be identified and decomposed as per need.

127

Figure 5.13: Decomposition of Figure 5.8

5.4.3 Aggregation

Through Aggregation similar information is combined. For this, the previous SCDs

are scanned and aggregated based on the common functionality they represent. It is

found that the functionality ‘HVAC’ is common in Figures 5.7 and 5.8 (Figure 5.9 has

already been discarded in Redundancy Removal). An aggregated SCD (Figure 5.14)

is developed that summarizes associations pertaining to this functionality.

Figure 5.14: Aggregated SCD for HVAC System

In Figures 5.2, 5.3, 5.11 and 5.13 we encounter the functionalities of ‘Smart Burglar

Alarm System’, ‘Smart Access Control System’ and ‘Smart Authentication System’.

These three functionalities are inseparable constituents of ‘Security’ and hence, these

are aggregated into one ‘Security System’ by consolidating the said SCDs. It is

noteworthy that Figures 5.1 and 5.4 are not considered since they have already been

modified to Figures 5.11 and 5.13 respectively. Again SCDs come in handy to attach

Resident

Authentication
System

Guest

Intruder

Resident

HVAC

Room
Temperature

Moisture
Level

128

Message

Password

Username

Security
System

Resident

Guest

Intruder

Police

Building
Manager

all entities associated with different functionalities to one functionality. The ‘Burglar’

is dropped as the ‘Intruder’ term is inclusive of Burglar or any other person with

malicious intentions like terrorists. The aggregated SCD is given by Figure 5.15. In

similar fashion aggregated SCDs can be obtained for every functionality from the

preliminary SCDs.

Figure 5.15: Aggregated SCD for Security System

5.4.4 Culmination of Spiral

When the identification and refinement activities were applied on the complete

system, more entities were obtained incrementally. Final entity sets were obtained

after the spiral ends. Based on our survey the functionality, stakeholder and asset sets

were obtained. These have been enlisted below. Sincere efforts have been made to

identify the entities exhaustively. However, some might have been still left out

unintentionally.

It has been underlined in the third chapter that the comprehensive listing of

stakeholders is crucial for the success of the proposed SecREAD methodology. The

basic stakeholders are the developers, the domain experts, the owner and the users.

The Fire Department and the Police are the outside agencies that act in emergency

situations. Building Manager is the most important functionary of a smart building

system that monitors every function and is primarily responsible for the maintenance

and smooth functioning of the building. The iterative nature of the identification and

refinement phase helps in discovering all the stakeholders. They are enlisted in Table

5.2.

129

Table 5.2: Stakeholder Set S for Smart Building

Building Manager
Resident
Guest
Intruder
Fire Department
Police
Owner
Developer
Expert

A smart building has a number of sub-systems. Each of these functionalities have a

number of sub-functionalities which also need to be identified and analyzed. For

example, in a smart building. the lighting system consists of lights switch on/off,

controlling intensity of light, reporting faulty equipments etc. Similarly, Fire safety

system may consist of detecting smoke level, raising an alarm, informing concerned

agencies etc. The HVAC system consists of heating, cooling, controlling moisture in

air etc. Security System may consist of ringing burglar alarm, informing police,

informing owner etc. However, only broad functionalities are considered in which the

related sub-functionalities are aggregated. These broad functionalities are listed in

Table 5.3.

Table 5.3: Functionality Set F for Smart Building

Lighting System
Fire Safety System
Security System
HVAC

Similarly, the finally obtained asset set A is presented in Table 5.4. The set includes

credentials falling under different security schemes i.e. ‘Something-you-know’

(Username and Password), ‘Something-you-have’ (Smart-card) ‘Something-you-are’

(Fingerprint and Iris Image), and CCTV Footage. These credentials facilitate

authentication, access control and defining authorization rights of stakeholders. Their

usage varies with functionalities, domains, owner’s aspirations and economic

constraints. The SecREAD methodology adjudges the level of security for entities as

low, medium and high and based on the rankings assists the developers and owner to

select appropriate security measures.

130

Day-light Luminance is measured in candela per square meter (cd/m2) and according

to this the light inside the building is maintained by the Lighting System. As per

normal Human requirement, the HVAC system maintains the Humidity Level in the

air in the range of 30% to 50%. Also, the HVAC and the Smart Lighting Systems aim

at minimizing the Electricity Consumption. The SMS and e-mail are the preferred

means of communication and notifications to and fro residents and the system, with

the outside agencies like Police and Fire Department. The smoke, CO and room

temperature, beyond the preset levels, raise an alarm of fire. Residents’ preferences to

various attributes of internal climate, at different times of the day, are recorded for

servicing the residents better. Body Motion of residents is sensed to on-off lights.

Table 5.4: Asset Set A for Smart Building

Body Motion
Day-light Luminance
Room Temperature
Humidity Level
A/C Fan Speed
Electricity Consumption
Time of Day
CO Level
Smoke Level
SMS
E-mail
Username
Password
Fingerprint image
Iris image
CCTV Footage
Smart Card

As per the SecREAD methodology described in Chapter 3, when the complete entity

sets are obtained, the entities are mapped to each other in the Mapping phase,

explained in the next section.

5.5 Mapping

As propounded in Chapter 3, in this phase the entities are mapped to each other using

Relevance Matrices. All these matrices have already been defined in Section 3.4.

Matrix X maps Assets to Functionalities and matrix Y maps Functionalities to

Stakeholders. For Smart Building, X is shown in Table 5.5 and Y is shown in Table

https://en.wikipedia.org/wiki/Candela_per_square_metre

131

5.6. In these matrices the relevance or association is shown by ‘1’ and irrelevance by

‘0’. Only a portion of matrix X is presented here. The complete matrix is presented in

Table B.1.

Through the cross product of X and Y, matrix Z is obtained that associates assets with

stakeholders. A portion of Z is given by Table 5.7. Since, product values are

insignificant, associations in Z are shown by shaded cells. Table B.2 gives the detailed

view of the Z matrix for the Smart Building System, generated through the tool

developed for this purpose that has been described in Section 3.8. It is noteworthy that

since the tool performs arithmetic calculations, that table contains numeric values.

‘Intruder’ is not considered in the mapping process since he is not supposed to

participate in the ranking process.

Table 5.5: Asset-Functionality Relevance Matrix X for Smart Building

Assets

Functionality

Lighting
Fire

Safety
System

Security
System HVAC

Fingerprint Pattern 0 0 1 0
Password 0 0 1 0
Electricity
Consumption

1 0 0 1

Smoke Level 0 1 0 1

Table 5.6: Functionality-Stakeholder Relevance Matrix Y for Smart Building

Functionality

Stakeholders

Resident Guest Fire
Department Police Client Developer Expert Building

Manager
Lighting 1 1 1 0 0 1 1 1

Fire Safety System 1 1 0 1 0 1 1 1

Security System 1 1 1 0 1 1 1 1

HVAC 1 1 1 0 0 1 1 1

Table 5.7: Asset-Stakeholder Matrix Z for Smart Building

Assets

Stakeholders

Building
Manager Resident Guest

Fire
Depart-
ment

Police Client Developer Expert

Fingerprint Pattern
Password
Electricity Consumption
Smoke Level

132

In matrix X it is seen that asset ‘Fingerprint Pattern’ is mapped to functionality ‘Smart

Security System’ and in Y matrix ‘Smart Security System’ is mapped to stakeholder

‘Police’. Consequently, in matrix Z which is the cross product of X and Y it is seen

that ‘Fingerprint Pattern’ is relevant to Police. In this manner the concept of

developing Z is verified.

The relevance matrices, particularly X and Y, together are instrumental in showing

the association of assets and stakeholders with a functionality. Therefore, through

these matrices the CSCDs are developed. These are made through the Algorithm 3.2.

CSCDs are elaborated in Sub-section 3.4.3. The CSCD for Security System can be

seen in Figure 5.16. The associations shown in the figure can be verified by the

matrices given by Table B.1 and Table 5.6.

Figure 5.16: CSCD for Smart Security System

Another relevance matrix is W presented by Table 5.8 that maps stakeholders to their

relevant parameters. It is developed by the core group. This matrix is utilized later in

the ranking phase given in the next section.

E-mail SMS CCTV
Footage

Smart
Card

Username Password
Fingerprint

Pattern
Iris

Image

Expert

Owner

Developer

Security
System

Resident

Guest

Police

Building
Manager

133

Table 5.8: Stakeholder- Parameter Matrix W for Smart Building
Stakeholders Parameters

Authentication Confidentiality Integrity Non-repudiation Authorization
Building
Manager

Resident
Guest
Fire Department
Police
Owner
Developer
Expert

5.6 Ranking and Analysis

According to the matrices obtained out of the mapping phase a rank matrix R is

created for the complete system in which the ranks are elicited by the stakeholders

and later analyzed to find final ranks of assets and functionalities.

5.6.1 Rank Matrix

The process of ranking is conducted by stakeholders. A three dimensional Rank

matrix R is developed by the combination of matrices Z and W. This matrix is defined

in Sub-section 3.4.5. Every z-dimension of R denotes a rank sheet for one

stakeholder. It contains the ranks furnished by the said stakeholder for his/her relevant

assets some of which shown here are Fingerprint Pattern, Smart Card, Electricity

Consumption, Humidity Level and Room Temperature furnished by the Resident. The

assets are ranked over his/her relevant parameters which, as per matrix W (Table 5.8),

are Confidentiality and Integrity. The complete R matrix has over 1000 rows where

every asset is listed with values under all parameters supplied by all stakeholders. The

irrelevant cells are marked by zeros. Figure 5.18 shows a portion of R for this case

study in the 3-d format. In this figure the rank-sheet for the stakeholder ‘Building

Manager’ is shown that contains the rank furnished by him/her for the assets

Fingerprint Pattern, Body-Motion, Username and Password. The ranks are given

under the five security parameters that are denoted, due to space constraints, as Pr1,

Pr2, Pr3, Pr4 and Pr5 for Authentication, Confidentiality, Integrity, Non-repudiation

and Authorization respectively. Behind this rank sheet are the rank sheets for

Resident, guest and so on for all other stakeholders. A larger portion of R, showing

134

the rank values given by Building Manager and Resident is given in Table B.3. The

structure of matrix R as obtained by the tool is already explained in Section 3.8.

Figure 5.17: 3-d View of R for Smart Building

It is seen that the ranks are provided under the parameters of Confidentiality and

Integrity only as only these two are defined as relevant for the said stakeholder in the

matrix W, given by Table 5.8. The ranks of ‘Fingerprint Pattern’ and ‘Iris Image’, for

the two parameters, are high which match with that of rank sheet of Resident, given

by Figure 5.17. The complete matrix R contains the entries of all the stakeholders.

The detailed view of R is presented by Table B.3.

5.6.2 Results and Discussion

Computations are performed on R once all the stakeholders have performed ranking

of their relevant assets under their relevant parameters. After performing cell

computation (Algorithm 3.2) on matrix R, matrix T is obtained. It is derived from

matrix R and defined in Section 3.5. It has rows as assets and columns as parameters.

A part of the matrix T is given by Table 5.9 that shows mode values for all the five

parameters for the asset ‘Room Temperature’. Complete matrix T is given by Table

B.4. Table 5.9: Matrix T for Smart Building

Assets Parameters Modes
Room Temperature Authorization 1
Room Temperature Authentication 2
Room Temperature Confidentiality 1
Room Temperature Integrity 2
Room Temperature Non-repudiation 2

135

Matrices U and V are defined in Section 3.5. These are derived by performing row

computation (Algorithm 3.3) and column computation (Algorithm 3.4) respectively

on matrix T. Table 5.10 is a partial view of matrix U for the Smart Building System

that gives the ranks of assets. It can be seen in T (Table 5.9) that the asset Body

Motion is ranked under five parameters as 1, 2, 1, 2 and 2. The mode of all these

values is 2 and consequently rank is medium. This is visible in matrix U. In this way

the creation of matrix U by the tool is verified. The complete matrix U is given by

Table B.5.

Table 5.10: Asset Rank or Matrix U for Smart Building

Asset Mode Rank
Room Temperature 2 Medium
Fingerprint Pattern 3 High
Password 3 High
Electricity Consumption 1 Low
Humidity Level 1 Low

Matrix V presents the ranks of parameters. Mode of all the modes of one particular

parameter in the whole matrix T obtained to find the rank of that parameter in the

software. Matrix V for this case study is given by Table 5.11.

 Table 5.11: Parameter Rank or Matrix V for Smart Building

Parameter Mode Rank
Authentication 3 High
Confidentiality 2 Medium
Integrity 3 High
Non-repudiation 2 Medium
Authorization 3 High

The security ranks of functionalities of the system are given by matrix Q (Table 5.12).

Table 5.12: Functionality Rank or Matrix Q for Smart Building

Functionality Mode Rank
Security System 3 High
Fire Safety System 3 High
Lighting System 2 Medium
HVAC 2 Medium

136

Resident

Guest

Police

Developer

Owner

Expert

Security System

Fingerprint Pattern, Iris Image, Username,
Password, Smart Card, CCTV Footage

E-mail, SMS

Building
Manager

5.7 Design

As per the ranks obtained in the analysis phase designing is conducted here. Rank

diagrams Functionality Rank Diagrams (FRD), Comprehensive Rank Diagram (CRD)

and Authorization Rank Diagrams (ARD) are developed. These diagrams have

already been discussed in Section 3.7. Each of these diagrams, for the Smart Building

System, is elaborated in the following sub-sections.

5.7.1 FRD and CRD

An FRD for the ‘Smart Security System’ functionality is depicted by Figure 5.18. It is

an extension of the CSCD for the same functionality given by Figure 5.16. The assets

and stakeholders associated are the same. However, three concentric ovals show that

the functionality has high security rank. Similarly, assets in three rectangles like

Username and Password have high rank. Table 5.13 is the template for this FRD. The

FRDs for all other functionalities are presented by Figures B.1, B.2 and B.3 along

with their templates given by Tables B.6, B.7 and B.8 respectively.

Figure 5.18: FRD for Security System

137

Table 5.13: Template of FRD for Security System

Figure 5.19 is a CRD that summarizes the complete software and Table 5.14 is its

template.

Functionality: Security System
Stakeholders

Name Description
Building Manager Administrator of the building
Resident
Guest Entrant with malicious interests
Police
Owner Owner of the building
Developer
Expert

Assets
Name Rank

Fingerprint Pattern High
Iris Image High
CCTV Footage High
Smart Card High
Username High
Password High
SMS Medium
e-mail Medium
Functionality Rank: High
Measure: Fingerprint or Iris Recognition, CCTV
Footage, Smart Card for Residents and guests,
Username and Password for Guest, block intruders

138

Figure 5.19 : CRD for Smart Building System

139

Table 5.14: Template for CRD

Smart Building System
Function List Rank Stakeholders Associated
Security
System

High Building Manager, Resident, Guest, Intruder,
Police, Owner, Developer, Expert

Fire Safety
System

High Building Manager, Resident, Fire Department,
Owner, Developer, Expert

Lighting
System

Medium Building Manager, Resident, Owner, Guest,
Developer, Expert

HVAC System Medium Building Manager, Resident, Guest, Owner,
Developer, Expert

5.7.2 Authorization Rank Diagram (ARD)

Authorization rank diagrams (ARDs) have been developed which show the

authorization right a stakeholder possesses over his/her relevant assets. The ARDs

have been explained in Sub-section 3.7.3. Figure 5.20 represents a stakeholder-

oriented ARD for Resident. It can be seen in the figure that the Resident has Low rank

or ‘Read’ right on asset Room temperature, high rank or ‘Write’ on Password and

medium rank or ‘Write with Permission (WP)’ right on Username provided by the

Building Manager. Table 5.15 is the template for the diagram.

Figure 5.20 : Authorization rights of a stakeholder Resident

Resident

Password

Building
Manager

Room
Temperature Username WP R

W

140

Table 5.15: ARD Template for Resident

Stakeholder: INB Officer
Assets Security

Rank
Authorization

Rights
Permitting

Stakeholders
Room
Temperature

Low R

Username Medium WP Building
Manager

Password High W

Figure 5.21 shows an asset-oriented ARD for Username. It can be seen that over this

asset the stakeholder Building Manager has ‘Write’ right, Resident has ‘Write with

Permission (WP)’ right provided by Building Manager and Owner has ‘Read’ right.

Table 5.16 is the template for this diagram. More ARDs are presented in Section B.4.

Figure 5.21: Asset-Oriented ARD for Username

Table 5.16: Template for Asset-oriented ARD Template for Username

Asset: Username
Stakeholder Authorization

Rights
Permitting

Stakeholders
Building Manager W
Owner R
Resident WP Building Manager

Username

Building
Manager

Owner

Resident

R W

WP

141

5.8 Summary

This chapter successfully demonstrates the application of the proposed methodology

in Smart Building System. It is relatively new domain and unique in the sense that the

nature of the building and its functionalities are quite diverse. Therefore, putting the

security challenges in perspective is a challenge. The residents or the main

stakeholders of the building have variety of aspirations from the owner or the

manufacturer. The SecREAD methodology is a successful attempt to address these

issues through segregation of entities and then dealing with them. At the very

beginning of the development process, it identifies all possible stakeholders and then

precisely captures and also makes sense of their raw requirements using the concepts

of stories and their graphical representations or the SCDs. SecREAD is a systematic

way of offering a secure model of Smart Building by considering all facets of

security. It provides a robust first line of defense of a smart building i.e.

authentication of entrants and other stakeholders, and then allotting the minimum

authorization rights to the valid entrants on various assets of their use. The

confidentiality and integrity level of every asset in the system is established. Also, the

level of non-repudiation required for assets in transition is also defined. Rigorous

mathematical analysis delivers the overall ranks of the assets and based on that the

ranks of different functionalities. The notion of mapping makes the furnishing of

ranks by the stakeholders very realistic. At every step, elaborate matrices and

diagrams are produced which aid in proper understanding of the flow of the

methodology and the final diagrams lucidly put forward the picture of all the

intricacies of the Smart Building System. The tool was developed for this research

work that automates the process of computations and diagram formation.

142

Chapter 6

Conclusion

In this modern era, software is an indispensable and inseparable part of our lives. The

modern society relies on software. Therefore, it is utmost necessary that software is

secure. In this regard requirements elicitation, specification and modeling are the most

important elements. Many solutions have been developed to address these issues but

have not sufficed. Hence, it is necessary to devise an improved and wholesome

methodology for developing secure software that collects the positive aspects of all

the prior works and enhances them.

This thesis provides a detailed account of SecREAD, a novel methodology which

integrates security in the requirements and design phases. The proposed methodology

allows gathering of requirements in natural language or stories that facilitates

participation of even the least technical conversant stakeholder in the requirement

elicitation process. From these stories different entities are extracted and then mapped

to each other to clearly identify the associations between them. To perform this, a

concept of Story Conversion Diagrams (SCD) has been envisaged. The methodology

is founded on the premise that diagrammatic expression is more suitable than the text

for easy understanding by both users and the developers and reduces the chances of

ambiguity. Ranking is conducted only by relevant stakeholders. The concepts of

mapping and relevance are unique. The diagrams are drawn to model the security

requirements based on empirical analysis of ranks. Many useful diagrams have been

proposed in this methodology that are evolving in nature that stem from basic SCDs.

Use of very less but orthogonal structures render these diagrams simplicity in drawing

and understanding without affecting lucidity. While developing these diagrams, the

mindset had been to tinker as less as possible with the popular Unified Modeling

Language (UML) to make them easy to understand by all.

In the beginning the tone of the research is set and the present state of security in

software is underscored. Some basic but important concepts and terms, that are the

foundation blocks of the methodology, are introduced. Also, some major conventional

or popular development models and methodologies are described in general and

143

critically analyzed to make it easier for the reader to understand the security-oriented

models that follow in the next chapter.

As part of research work an intensive and extensive literature survey was carried out.

This justifies the need of security in software and how important and useful it is to

integrate security in the development process. Then we move on to find the

appropriate phases for such an integration and for this the authors deliberate on the

views and ideas of many researchers. It is observed that more or less they are in

harmony that security should be imbibed in the early phases of development process.

However, as discussed in Chapter 2, some advocate such an inclusion in the

requirement phase and others in the design phase. In this light, the authors have

followed a pacified approach and included security in both the requirements and

design phases. Further, many prior methodologies and models pertaining to security

in software development are studied and critically analyzed, defining their advantages

and limitations. Finally, the inferences are drawn from the literature survey to find the

good practices that should be adhered to develop a better methodology.

The Security-aware Requirements Elicitation, Assessment and Design Methodology

(SecREAD) is unfolded in the third chapter. The different phases of the methodology

are elaborate. In this methodology we have proposed the concept of stories which are

the requirements stated in natural language by the stakeholders. This facilitates and

ensures that the requirements are elicited easily by all kinds of stakeholders who may

or may not be technically conversant. To formalize the requirements process, a

concept of entity-sets is introduced. All entities of the software i.e. functionalities,

assets and stakeholders are identified and refined to remove inconsistencies iteratively

and incrementally using a spiral model. To model these requirements effectively a

unique diagram is proposed, known as Story Conversion Diagram (SCD). It presents

the entities extracted from the stories and the associations among them graphically,

which is easily understood by all. Each time any inconsistency or ambiguity in entities

is found, it can easily be corrected through these diagrams.

The mapping activity is another unique feature of this methodology. The entities are

mapped to each other in order to find the relevance among them. For this, Relevance

Matrices are developed. First matrix maps the assets with functionalities and the

second maps functionalities with stakeholders. However, the third matrix is produced

144

mathematically by the cross product of first two matrices, resulting in the mapping of

assets with stakeholders. In this way, the chances of error are nullified. A fourth

relevance matrix maps stakeholders with their relevant parameters. The SCDs are then

consolidated, with respect to functionality, to form Comprehensive Story Conversion

Diagram (CSCD). The mapping paves the way for a novel ranking method. This

ranking method contemplates that the stakeholders rank only their relevant assets on

the parameters they are competent for. For example a guest in the smart building is

deprived of ranking on the Authorization parameter. These parameters are the

outcome of the survey presented in Chapter two. In the ranking process, the

stakeholders supply ranks in three levels i.e. low, medium and high represented by

value 1, 2 and 3 respectively. For this the information in the relevance matrices is

combined to form a three dimensional matrix. Using this, a stakeholder can perform

the ranking for the entire system through a single customized sheet. Based on the

mapping the SCDs are consolidated and CSCDs are developed for each functionality.

Further, a rigorous empirical analysis is performed on the ranks which is a novelty

that is absent is any of the prior works. Empirical analysis is performed on the ranks

to obtain the ranks of individual assets, functionality and the parameters in the

software. This information is then added to the CSCDs to obtain the Functionality

Rank Diagram (FRD) for each functionality. The FRD alone represents several

aspects for a functionality including authentication level, stakeholders and assets

involved, and its criticalness. Authorization rank Diagrams (ARD) are also developed.

These diagrams are also a novelty that tell the rights a stakeholder holds over an asset.

We developed a tool as a part of this research work that inputs the list of entities,

develops rank sheets, saves the rank values furnished by different stakeholders,

computes the rank values and develops the corresponding diagrams. In other words it

automates the mapping, ranking and empirical analysis and generation of diagrams.

The application of the proposed methodology in Internet Banking (INB) software is

successfully shown in chapter four. INB system has large security requirements. It is

shown that the methodology addresses the security aspects of such a system and it is

effective in design and development. The application of SecREAD to INB is quite

close to the actual implementations available. FRDs present very clearly security

levels of individual functionalities in the internet banking. The ARDs represent the

145

two-way access rights of every stakeholder over different assets involved in the

system which are of paramount importance in this domain.

Another case study is taken from a different domain of Internet of Things (IoT). To

validate the proposed methodology, Smart Building application is chosen and

elaborated in chapter five. IoT is very important in modern era and software should be

IoT compliant. It is successfully demonstrated that proposed methodology can ensure

safety requirements of such systems and can help in reducing the risk of security

breach.

SecREAD is unique in several ways than its predecessors. The formation of a

comprehensive consultation group takes SecREAD ahead from the existing

methodologies. SecREAD ranks both assets and functionalities over security

parameters which has not been done so far. Furthermore, use of very less but

orthogonal structures renders these diagrams simplicity in drawing and understanding

without affecting lucidity. All in all, the hallmark of the methodology lies in active

involvement of stakeholders, ranking by only relevant stakeholders and empirical

analysis, which is quite rare in this domain of research. The methodology is quite

flexible to cater to software of different domains. It embraces both technically-aware

and common stakeholders. Ranking is done by only those stakeholders relevant to

them. This notion of relevance is unique to all prior methodologies.

The diagrams are coupled with templates to provide an unambiguous view.

Furthermore, these are simple to draw and understand. All the good practices, of

related prior works, have been incorporated in SecREAD. The provision of assigning

weights to stakeholders or parameters makes it more realistic and flexible.

6.1 Contributions of SecREAD Methodology
Security-aware Requirements Elicitation, Assessment and Design (SecREAD)

Methodology has following contributions:

• The methodology formalizes the processes suggested by the existing related
works.

• The methodology is unique as it takes into account both the popular views of
researchers i.e. security is integrated in both requirements and design phases.

146

• A method is proposed to elicit requirements in the form of stories in natural

language from all kind of stakeholders.

• The notion of Story Conversion Diagrams (SCDs) is proposed which formally

represent the requirements elicited from users. It is the basic diagram from which

complex diagrams evolve incrementally. Diagrams are drawn in stages as more

and more information is gathered.

• Effectiveness of SCDs is demonstrated even in identification and refinement.

• The diagrams are coupled with textual templates to avoid any ambiguity.

• The diagrams proposed are quite close to the popular UML diagrams, making

them easier to draw and understand.

• It assimilates the views of all kinds of stakeholders of the system.

• A ranking method is proposed in which entities are ranked over apt security

parameters.

• The ranking process is based on an elaborate mapping mechanism based on the

concept of relevance i.e. software entities are ranked by relevant stakeholders only

on the parameters of their expertise.

• Although ranking process includes an intricate mapping procedure, ranking itself

is easy and practical for the stakeholders of all kind, both technically conversant

and naive.

• Empirical analysis is proposed and included in the framework of this

methodology.

• Design process to reflect security concerns is in unison with the ranking process.

• SecREAD combines all of the best practices like iteration in requirement

elicitation [54][73], involvement of a representative from client side in the

development team [50], communication within the development team and

between teams [81] and involvement of stakeholders in the development of

software [69].

6.2 Future Work
In future, the methodology can be improved by adding more parameters. The
methodology can be made more domain specific by assigning weights to rank values
furnished by certain stakeholders. The tool developed can be enhanced. The
methodology can be validated for different applications by considering case studies
from other domains.

147

Appendix A: Results of Internet Banking

Case Study

A.1 Relevance Matrices

Table A.1: Asset-Stakeholder Relevance Matrix Z for INB System

148

Table A.2: Asset-Functionality Relevance Matrix X for INB System

149

A.2 Ranking and Results

Table A.3: Rank Matrix R for INB System

150

Table A.4: Matrix T for INB System

151

Table A.5: Matrix U or Asset Rank for INB System

152

A.3 Functionality Rank Diagrams (FRD)

Figure A.1: FRD for Bill Payment

Figure A.2: FRD for Login

153

Figure A.3: FRD for DD Issue

Figure A.4: FRD for International Funds Transfer

154

Figure A.5: FRD for Inter-bank Funds Transfer

Figure A.6: FRD for Intra-bank Funds Transfer

155

A.4 Authorization Rank Diagrams (ARD) for INB System

Figure A.8 is a stakeholder-centric ARD for stakeholder ‘Customer’. It has Write with

Permission (WP) right on asset ‘Password’ permitted by ‘Rule Authorizer’. He holds

‘Read’ right on CIF and ‘Write’ right on Address. Table A.6 is the template for this

diagram.

Figure A.7: ARD for Customer

Table A.6: ARD Template for Customer

Assets Authorization
Rights

Permitting
Stakeholders

Password WP Rule Authorizer
CIF R
Address W

Figure A.9 shows an asset-oriented ARD for Username. It can be seen that over this

asset the stakeholder Building Manager has ‘Write’ right, Resident has ‘Write with

Permission (WP)’ right provided by Building Manager and Owner has ‘Read’ right.

Table A.7 is the template for this diagram.

Figure A.8: Asset-Oriented ARD for Username

WP Password

Rule
Authorizer

CIF

W

Customer

Address

R

R

Customer

DD No.

Branch
Staff

W

156

Table A.7: Template for Asset-oriented ARD Template for Username

Asset: Username
Stakeholder Authorization

Rights
Permitting

Stakeholders
Building Manager W
Owner R
Resident WP Building Manager

157

Appendix B: Results of Smart Building

Case Study

B.1 Relevance Matrices

Table B.1: Asset-Functionality Relevance Matrix X

Table B.2: Asset-Stakeholder Relevance Matrix Z

B.2 Ranking and Results

158

Table B.3: Rank Matrix R for Smart Building System

159

Table B.4: Matrix T for Smart Building System

160

Table B.5: Matrix U or Asset Rank Smart Building System

B.3 Functionality Rank Diagrams (FRD) for Smart Building System

Figure B.1: FRD for Fire Safety System

161

Table B.6: Template for Fire Safety System

Figure B.2: FRD for Lighting System

Functionality: Fire Safety System
 Stakeholders

Building Manager
Resident
Fire Department
Owner
Developer
Expert

Assets
Name Rank

CO Level High
SMS High

E-mail High
Functionality Rank: High
Measure: SMS and E-mail with highest precedence and integrity to authorized
stakeholders with no confidentiality

162

Table B.7: Template for Lighting System

Functionality: Lighting System
 Stakeholders

Building Manager
Resident
Owner
Developer
Expert

Assets
Name Rank

Electricity Consumption Low
Day-Light Luminance Low

Time of Day Low
Body Motion Medium

SMS High
E-mail High

Functionality Rank: Medium
Measure: Username and Password

Figure B.3: FRD for HVAC System

163

Table B.8: Template for HVAC System
Functionality: HVAC System

 Stakeholders
Building Manager
Resident
Owner
Developer
Expert

Assets
Name Rank

Electricity Consumption Low

Time of Day Low
Smoke Level High

SMS High
E-mail High

Room Temperature Medium
Humidity Level Low
AC/Fan Speed Low

Functionality Rank: Medium
Measure: Username and Password

B.4 Authorization Rank Diagrams (ARD) for Smart Building System

Figure B.4 is a stakeholder-centric ARD for stakeholder ‘Resident’. It has Write with

Permission (WP) right on asset ‘Fingerprint Pattern’ permitted by ‘Building Manager.

He holds ‘Read’ right on Day-light Luminance and ‘Read’ right on CO Level. Table

B.11 is the template for this diagram.

Figure B.4: ARD for Resident

Fingerprint
Pattern WP

Building
Manager

Day-light
Luminance

R

Resident

CO Level

R

164

Table B.9: ARD Template for Resident

Assets Authorization
Rights

Permitting
Stakeholders

Fingerprint Pattern

WP Building Manager

Day-Light
Luminance

R

CO Level R

Figure B.5 shows an asset-oriented ARD for Username. It can be seen that over this

asset the stakeholder Building Manager has ‘Write’ right, Resident has ‘Write with

Permission (WP)’ right provided by Building Manager and Owner has ‘Read’ right.

Table B.10 is the template for this diagram.

Figure B.5: Asset-Oriented ARD for Username

Table B.10: Template for Asset-oriented ARD Template for Username

Asset: Username
Stakeholder Authorization

Rights
Permitting

Stakeholders
Building Manager W
Owner R
Resident WP Building Manager

Username

Building
Manager

Owner

Resident

R W

165

Appendix C:Publications
• R. Goel, M. C. Govil, G. Singh, “Eliciting, Analyzing and Modeling Software

Security Requirements”, International Journal of Software Engineering and Its

Applications, Vol. 11 no. 5, pp. 34-57, 2016.

• R. Goel, M. C. Govil, G. Singh, “Security in Requirements and Design Phases”,

IIOABJ, Vol.7 , no. 1, pp. 585 -589, 2016.

• R. Goel, M. C. Govil, G. Singh, "A Novel Methodology for Effective

Requirements Elicitation and Modeling“, In Proc. International Conference on

Computational Science and Its Applications, 2018, pp. 474-487.

• R. Goel, M. C. Govil, G. Singh , “Security Requirements Elicitation and

Modeling Authorizations”, in Communications in Computer and Information

Science, P. Mueller, S. Thampi, M.A. Bhuiyan, R. Ko , R. Doss, C.J. Alcaraz,

(eds) Singapore: Springer, vol. 625, 2016, pp. 239-250.

• R. Goel, M. C. Govil, G. Singh , “Modeling Software Security Requirements

through Functionality Rank Diagrams”, in Lecture Notes in Computer Science ,

O. Gervasi et al. (eds) , Singapore: Springer, Vol. 9790, 2016, pp. 398-409.

• R. Goel, M. C. Govil, G. Singh, "A Secure Software Design Methodology", In

Proc. International Conference on Advances in Computing, Communications and

Informatics, 2016 pp. 2484-2488.

• R. Goel, M. C. Govil, G. Singh, “Security Requirements Elicitation and

Assessment Mechanism (SecREAM)”, In Proc. International Conference on

Advances in Computing, Communications and Informatics, 2015, pp. 1862-1866.

• R. Goel, M. C. Govil, G. Singh, “Imbibing Security in Software Development

Life Cycle: A Review Paper”, In Proc. Afro - Asian International Conference on

Science, Engineering & Technology, 2015, pp. 593 – 599.

166

References

[1] B. Stroustrup, “Software development for infrastructure,” IEEE Comput., vol.
45, no. 1, pp. 47–58, 2012.

[2] B. W. Boehm, “Value-based software engineering: Overview and Agenda,” in
Value-based Software Engineering, G. P. Biffl S., Aurum A., Boehm B.,
Erdogmus H., Ed. Springer Berlin Heidelberg, 2006, pp. 3–14.

[3] G. Holodnik-Janczura and I. Golinska, “Decision Support System for Choosing
a Model for a Software Development Life Cycle,” Oper. Res. Decis., vol. 20
no. 1, pp. 61–77, 2010.

[4] On Point Corporation, “Incorporating Security into the System Development
Life Cycle (SDLC),” Report, Arlington, VA, 2010.

[5] R. S. Pressman, Software Engineering A Practitioner’s Approach, 5th ed. New
York: Mc Graw Hill, 2001.

[6] I. Sommerville, Software Engineering, 9th ed. Addison-Wesley, 2010.

[7] A. Van Lamsweerde, “Goal-oriented requirements engineering: from System
Objectives to UML Models to Precise Software Specifications,” In Proc. 25th
International Conference on Software Engineering, 2003, pp. 744–745.

[8] K. Beznosov, “Extreme Security Engineering: On Employing XP Practices to
Achieve ‘Good Enough Security’ without Defining It,” In First ACM Work. on
Business Driven Security Engineering, vol. 31, 2003.

[9] A. Mishra and D. Dubey, “A Comparative Study of Different Software
Development Life Cycle Models in Different Scenarios,” Int. J. Adv. Res.
Comput. Sci. Manag. Stud., vol. 1, no. 5, pp. 64–69, 2013.

[10] B. W. Boehm, “A Spiral Model of Software Development ans Enhancement,”
IEEE Comput., vol. 21, no. 5, pp. 61–72, 1988.

[11] N. Kumar, A. S. Zadgaonkar, and A. Shukla, “Evolving a New Software
Development Life Cycle Model SDLC-2013 with Client Satisfaction,” Int. J.
Soft Comput. Eng., vol. 3, no. 1, pp. 216–221, 2013.

[12] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, “Using the
WinWin spiral model: A case study,” Computer (Long. Beach. Calif)., vol. 31,
no. 7, pp. 33–44, 1998.

[13] Y. Yang, “Composable Risk-driven Processes for Developing Software
Systems from Commercial-off-the-shelf (COTS) Products,” USC Graduate
School, University of Southern California, 2006.

[14] S. Koolmanojwong, “The Incremental Commitment Spiral Model Process
Patterns for Rapid-Fielding Projects,” Ph. D. Thesis, USC Graduate School,

167

University of Southern California, 2010.

[15] J. Kerr and R. Hunter, Inside RAD, McGraw-Hill, 1994.

[16] R. Breu, K. Burger, M. Hafner, J. Jurjens, G. Popp, G. Wimmel, and V. Lotz,
“Key Issues of a Formally Based Process Model for Security Engineering,” In
Proc. 16th International Conference on Software & Systems Engineering and
their Applications, 2003, pp. 1–15.

[17] J. Martin, Rapid Application Development. Indianapolis: Macmillan publishing
company, 1991.

[18] J. Butler, “Rapid Application Development in Action,” Manag. Syst. Dev.
Appl. Comput. Res., vol. 14, no. 5, pp. 6–8.

[19] P. Krutchen, The Rational Unified Process—An Introduction, 3rd ed. Reading,
MA: Addison-Wesley., 2003.

[20] G. Booch, I. Jacobson, and J. Rumbaugh, Unified Software Development
Process, Pearson Education India, 1999.

[21] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, and G. Tortora, “Assessing
the Effectiveness of Dynamic Modeling in the Comprehension of Software
Requirements : Results from a Family of Five Experiments,” IEEE Trans.
Softw. Eng., vol. 39, no. 3, pp. 327–342, 2013.

[22] E. Woods, “Harnessing UML for Architectural Description —The Context
View,” IEEE Softw., vol. 31, no. 6, pp. 30–33, 2014.

[23] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide, 1st ed. Reading, Massachusetts: Addison Wesley, 1998.

[24] A. Cockburn, Writing Effective Use Cases. Boston: Addison-Wesley, 2001.

[25] C. Choppy and G. Reggio, “Requirements capture and specification for
enterprise applications: A UML based attempt,” In Proc. Aust. Softw. Eng.
Conf. pp. 19–28, 2006.

[26] B. Selic, “Framework A Generic Resources with UML for Modeling with
UML,” Computer, vol. 36, no. 5., pp. 64-69 2000.

[27] J. Jurjens, “UMLsec: Extending UML for Secure Systems Development,” In
Proc. 5th International Conference on The Unified Modeling Language, 2002,
pp. 412–425.

[28] S. Konrad, H. Goldsby, K. Lopez, and B. H. C. Cheng, “Visualizing
requirements in UML models,” In First Int. Work. Vis. Requir. Eng., 2007.

[29] B. Dobing and J. Parsons, “How UML is Used,” Commun. ACM, vol. 49, no. 5,
pp. 109–113, 2006.

[30] M. Glinz, “Problems and Deficiencies of UML as a Requirements Specification

168

Language,” In Proc. Tenth International Workshop on Software Specification
and Design, 2000, pp. 11–22.

[31] R. Goel, M. C. Govil, and G. Singh, “Imbibing Security in Software
Development Life Cycle : A Review Paper,” In Proc. 3rd Afro - Asian
International Conference on Science, Engineering & Technology, 2015, pp.
593–599.

[32] C. Kobryn, “UML 3 . 0 and the Future of Modeling,” J. Softw. Syst. Model.,
vol. 3, no. 1, pp. 4–8, 2004.

[33] G. Sindre and A. Opdahl, “Capturing Security Requirements through Misuse
Cases,” In Proc. 14th Norwegian Informatics Conference, Troms, Norway.
2001.

[34] D. D’souza and A. Wills, Objects, components, and frameworks with UML:
The catalysis approach. Reading, Massachusetts: Addision-Wesley, 1999.

[35] A. Herrmann, A. Morali, S. Etalle, and R. Wieringa, “RiskREP: Risk-based
Security Requirements Elicitation and Prioritization,” in 1st International
Workshop on Alignment of Business Process and Security Modelling , 2011,
pp. 155-162.

[36] J. Saltzer and M. Schroeder, “The Protection of Information in Computer
Systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[37] K. M. Goertzel, T. Winograd, H. McKinley, and P. Holley, “Security in the
Software Lifecycle Making Software Development Processes — and Software
Produced by Them — More Secure,” 2006.

[38] J. Yoder and J. Barcalow, “Architectural Patterns for Enabling Application
Security,” Urbana, vol. 51, p. 61801, 1998.

[39] G. P. Mullery, “CORE-A Method for Controlled Requirement Specification,”
In Proc. 4th International Conference on Software engineering, 1979, pp. 126–
135.

[40] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language User
Guide, vol. 2nd. Reading, Massachusetts: Addison Wesley, 2005.

[41] Microsoft, “Security Development Lifecycle for Agile Development,” vol.
2013, no. October 15. Microsoft Press, 2012.

[42] F. Swiderski and W. Snyder, Threat Modeling, 1st ed. Microsoft Press, 2005.

[43] G. W. Gerhard Popp, Jan Jürjens, “Use Case Oriented Development of
Security-Critical Systems,” Inf. Secur. Bull., vol. 8, no. 2, pp. 55–60, 2003.

[44] D. Shreyas, “Software Engineering for Security - Towards Architecting Secure
Software,” ICS, vol. 221, pp. 1–12, 2001.

[45] J. D. Meier, A. Mackman, B. Wastell, P. Bansode, and C. Bijwe, “Security

169

Guidelines: .NET Framework 2.0.” Microsoft, 2005.

[46] R. Anderson., Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley, 2001.

[47] N. Davis, “Secure Software Development Life Cycle Processes : A Technology
Scouting Report,” No. CMU/SEI-2005-TN-024. Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, 2005.

[48] M. Lindvall, V. R. Basili, B. W. Boehm, P. Costa, K. Dangle, F. Shull, R.
Tesoriero, L. Williams, and M. V Zelkowitz, “Empirical Findings in Agile
Methods,” In Proc. 2nd XP Universe and First Agile Universe Conference on
Extreme Programming and Agile Methods, 2002, pp. 197–207.

[49] O. Korkmaz, “System simulation for Software Quality Assurance,” MS Thesis,
Department of Computer Engineering, Atilim University, Ankara, 2007.

[50] J. Wäyrynen, M. Bodeen, and G. Boström, “Security Engineering and eXtreme
Programming: An Impossible Marriage?,” In Proc. Extreme Programming and
Agile Methods, 2004, pp. 117–128.

[51] A. K. Talukder and H. A. Prahalad, “,” In Proc. Internet Multimed. Serv.
Archit. Appl. Int. Conf., 2009, pp. 1-4.

[52] J. J. Pauli and D. Xu, “Misuse case-based design and analysis of secure
software architecture,” Inf. Technol. Coding Comput. vol. 2, no. C, pp. 2005–
2010, 2005.

[53] D. Shackleford, “Integrating Security into Development, No Pain Required,”
SANS Whitepaper, September, 2011.

[54] Z. M. Kasirun and S. S. Salim, “Focus Group Discussion Model for
Requirements Elicitation Activity,” In Proc. International Conference on
Computer and Electrical Engineering, 2008, pp. 101–105.

[55] I. Sommerville, P. Sawyer, and S. Viller, “Viewpoints for requirements
elicitation: a practical approach,” In Proc. IEEE Int. Symp. Requir. Eng. RE
’98, 1998, pp. 74-81.

[56] J. D. McGregor, “Secure Software.,” J. Object Technol., vol. 4, no. 4, p. 33,
2005.

[57] A. Sachitano and R. Chapman, “Security in software architecture: a case
study,” In IEEE Work. Inf. Assur., June, 2004.

[58] P. Zave, “Classification of Research Efforts in Requirements Engineering
York, England. IEEE Press,” In Proc. Second IEEE International Symposium
on Requirements Engineering, 1995, pp. 214–216.

[59] N. Sportsman, “Threat Modeling,” Praetorian, Information Security Provider
and Research Center, 2007.

170

[60] S. F. Burns, “Threat Modeling : A Process to Ensure Application Security,”
GIAC Security Essentials Certification (GSEC) Practical Assignment, SANS
Institute InfoSec Reading Room, 2005.

[61] E. R. Keith, “Agile Software Development Processes A Different Approach to
Software Design”, A White paper available online at

 http://cf. agilealliance. org/articles/system/article/file/1099/file. pdf., 2003.

[62] S. Kishore and R. Naik, Software Requirements and Estimation, 1st ed. New
Delhi: Tata McGraw-Hill Education, 2001.

[63] L. Futcher and R. von Solms, “SecSDM: A Usable Tool to Support IT
Undergraduate Students in Secure Software Development,” In Proc. Human
Aspects of Information Security & Assurance, 2012, pp. 86–96.

[64] D. Burley and M. Bishop, “Summit on Education in Secure Software: Final
report,” 2011.

[65] N. Sharif, K. Zafar, and W. Zyad, “Optimization of Requirement Prioritization
Using Computational Intelligence Technique,” In Proc. International
Conference on Robotics and Emerging Allied Technologies in Engineering,
2014, pp. 228–234.

[66] F. Fellir, K. Nafil, and R. Touahni, “System Requirements Priorization based
on AHP,” Inf. Sci. Technol. (CIST), IEEE Int. Colloq., no. 978–1–4799–5979–
2/14, pp. 163–167, 2014.

[67] S. Neetu Kumari and A. S. Pillai, “A survey on global requirements elicitation
issues and proposed research framework,” In Proc., IEEE Int. Conf. Softw. Eng.
Serv. Sci., pp. 554–557, 2013.

[68] U. I. Hernández, F. J. Á. Rodríguez, and M. V. Martin, “Use Processes -
Modeling requirements based on elements of BPMN and UML Use Case
Diagrams,” In Proc. 2nd Int. Conf. Softw. Technol. Eng. , 2010, pp. 36–40.

[69] M. I. Kamata and T. Tamai, “How Does Requirements Quality Relate to
Project Success or Failure?,” In Proc. Requirements Engineering Conference,
2007, pp. 69–78.

[70] F. Sher, D. N. A. Jawawi, R. Mohamad, and M. I. Babar, “Requirements
Prioritization Techniques and Different Aspects for Prioritization a Systematic
Literature Review Protocol,”In Proc. 8th Malaysian Software Engineering
Conference, 2014, pp. 31–36.

[71] M. I. Babar, M. Ramzan, and S. a. K. Ghayyur, “Challenges and Future Trends
in Software Requirements Prioritization,” In Proc. International Conference on
Computer Networks and Information Technology, 2011, pp. 319–324.

[72] R. Snijders, “Crowd-Centric Requirements Engineering,” In Proc.
International Conference on Utility and Cloud Computing, 2014, pp. 614–615.

171

[73] N. Sabahat, F. Iqbal, F. Azam, and M. Y. Javed, “An iterative approach for
global requirements elicitation: A case study analysis,” In Proc. International
Conference On Electronics and Information Engineering, 2010, pp. 361–366.

[74] C. B. Haley, R. Laney, and J. D. et al. Moffett, “Security Requirements
Engineering : A Framework for Representation and Analysis,” IEEE Trans.
Softw. Eng., vol. 34, no. 1, pp. 133–153, 2008.

[75] B. B. Chua, D. V. Bernardo, and J. Verner, “Understanding the use of
elicitation approaches for effective requirements gathering,” In Proc.5th Int.
Conf. Softw. Eng. Adv., 2010, pp. 325–330.

[76] B. H. Wu, “On software engineering and software methodologies a software
developer’s perspective,” In Proc. Int. Conf. Inf. Sci. Technol. 2011, pp. 155–
162.

[77] S. T. Redwine and N. Davis, “Processes to Produce Secure Software: Towards
More Secure Software,” National Cyber Security Summit, Vol.1, 2004.

[78] N. Coblentz, “Microsoft SDL : Agile Development”, OWASP Foundation ”
2010.

[79] S. Sawyer and P. J. Guinan, “Software Development: Processes and
Performance,” IBM Syst. J., vol. 37, no. 4, pp. 552–569, 1998.

[80] A. Birk, D. Surmann, and K. D. Althoff, “Applications of Knowledge
Acquisition in Experimental Software Engineering,” In Proc. 11th
EuropeanWorkshop on Knowledge Acquisition, Modeling, and Management,
1999, pp. 67–84.

[81] S. Basri and R. V. O’Connor, “The impact of software development team
dynamics on the Knowledge Management Process,” In Proc. 23rd
International Conference on Software Engineering and Knowledge
Engineering, 2011, pp. 339–342.

[82] J. Viega and G. McGraw, Building Secure Software: How to Avoid Security
Problems the Right Way. Addison-Wesley, 2002.

[83] J. Rasmussen, “Introducing XP into Greenfield Projects: Lessons Learned,”
IEEE Softw., vol. 20, no. 3, 2003.

[84] A. Knauss, “On the usage of context for requirements elicitation: End-user
involvement in IT ecosystems,” In Proc. IEEE International Requirements
Engineering Conference, 2012, pp. 345–348.

[85] F. I. P. Standards, “Standards for Security Categorization of Federal
Information and Information Systems,” Fed. Inf. Process. Stand. Publ., vol.
FIPS PUB 1, no. February, 2004.

[86] B. A. Forouzan, Data Communications and Networking, 4th ed. McGraw-Hill,
2007.

172

[87] K. Pohl K and C. Rupp, Requirements Engineering Fundamentals: A Study
Guide for the Certified Professional for Requirements Engineering Exam
Foundation Level-IREB Compliant. Santa Barbara, CA: Rocky Nook Inc,
2015.

[88] S. Hatton, “Early Prioritisation of Goals,” In Proc. 26th International
Conference on Conceptual Modeling Foundations and Applications, 2007, pp.
235–244.

[89] P. Saripalli and B. Walters, “QUIRC: A Quantitative Impact and Risk
Assessment Framework for Cloud Security,” In Proc. 3rd International
Conference on Cloud Computing, 2010, pp. 2005–2010.

[90] A. K. Talukder, V. K. Maurya, B. G. Santhosh, E. Jangam, S. V Muni, K. P.
Jevitha, S. Saurabh, and A. R. Pais, “Security-aware Software Development
Life Cycle (SaSDLC)-Processes and Tools,” In Proc. IFIP International
Conference on Wireless and Optical Communications Networks, 2009, pp. 1–5.

[91] D. E. Perry, A. a. Porter, and L. G. Votta, “Empirical studies of software
engineering,” In Proc. Conf. Futur. Softw. Eng., 2000, pp. 345–355.

[92] G. N. Fenton, S.L. Pfleeger, “Science and Substance: A Challenge to Software
Engineers,” IEEE Softw., vol. 11, no. 4, pp. 86–95, 1994.

[93] D. Turk, R. France, and B. Rumpe, “Limitations of agile software processes,”
In Proc. Third Int. Conf. Extrem. Program. Agil. Process. Softw. Eng. 2002, p.
4.

[94] K. Beznosov and P. Kruchten, “Towards agile security assurance,” In Proc.
Work. New Secur. Paradig., 2005, p. 47.

[95] R. Labbe, “Microsoft Security Development Lifecycle for IT.” Microsoft,
2006.

[96] M. Vetterling, G. Wimmel, and A. Wisspeintner, “Secure Systems
Development Based on the Common Criteria: The PalME Project,” pp. 129–
138, 2002.

[97] Y. C. Stamatiou, E. Henriksen, M. S. Lund, and E. Mantzouranis, “Experiences
from using model-based risk assessment to evaluate the security of a
telemedicine application,” In Proc. Telemedicine in Care Delivery, 2002, p.
115–119.

[98] K. Stolen, F. D. Braber, T. Dimitrakos, R. Fredriksen, B.A. Gran, S.H. Houmb,
M.S. Lund, Y. Stamatiou, “Model-based Risk Assessment - the CORAS
approach,” In Proc. NIK Informatics Conference, 2002.

[99] W. Xiong, X.-T. Wang, and Z.-X. Wu, “Study of a customer satisfaction-
oriented model for outsourcing software quality management using Quality
Function Deployment (QFD),” In Proc. 4th International Conference on
Wireless Communications, Networking and Mobile Computing, 2008.

173

[100] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented Domain Analysis (FODA) Feasibility Study,” No.
CMU/SEI-90-TR-21, Carnegie-Mellon Univ Pittsburgh Pa, Software
Engineering Inst, 1990.

[101] N. Douglas and H. W. J. Rittel, “Issue Based Information System for Design,”
Association for Computer Aided Design in Architecture, pp. 275-286, 1989.

[102] G. Sindre and A. L. Opdahl, “Eliciting Security Requirements with Misuse
Cases,” Requir. Eng., vol. 10, no. 1, pp. 34–44, 2005.

[103] D. Kulak and E. Guiney, Use cases: requirements in context. New York: ACM
Press, 2000.

[104] S. Swigart, Scott, Campbell, “Evolution of the Microsoft Security
Development Lifecycle,” SDL Series - Article #7, no. May. Microsoft, pp. 1–8,
2009.

[105] M. Howard and D. LeBlanc, Writing Secure Code, 2nd ed. Microsoft Press,
2004.

[106] R. S. Sanford Friedenthal, Alan Moore, Practical Guide to SysML: Systems
Modeling Language, 3rd ed. San Francisco: Morgan Kaufmann Publishers,
2015.

[107] J. Chanda, A. Kanjilal, S. Sengupta, and S. Bhattacharya, “Traceability of
requirements and consistency verification of UML use case, activity and Class
diagram: A Formal approach,” In Proc. Int. Conf. Methods Model. Comput.
Sci., 2009, pp. 1-4.

[108] C. R. Kothari, Research methodology: Methods and Techniques., 2nd ed.
Delhi: New Age International, 2004.

[109] R. Goel, M. C. Govil, and G. Singh, “Security Requirements Elicitation and
Modeling Authorizations,” In Proc. International Symposium on Security in
Computing and Communication, 2016, pp. 239–250.

[110] J. M. Andres Laya, Vlad-loan Bratu, “Who is investing in machine-to-machine
communications?,” In Proc. 24th European Regional Conference of the
International Telecommunication Society, 2013.

[111] A. Al-fuqaha, M. Guizani, and M. Mohammadi, “Internet of Things : A Survey
on Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surv.
Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[112] B. Sridharan and A. P. Mathur, “Infrastructure for the Management of
SmartHomes,” Software Engineering Research Center Tech Report SERC-TR-
177-P, 2002.

[113] R. J. Robles and T. Kim, “A Review on Security in Smart Home
Development,” Int. J. Adv. Sci. Technol., vol. 15, pp. 13–22, 2010.

174

Author’s Biography

Rajat Goel joined Ph.D. at Department of Computer Science and Engineering,

Malaviya National Institute of Technology (MNIT) Jaipur in 2013. He obtained

M.Tech. in Computer Science and Engineering from Central University of Rajasthan,

Ajmer in 2012 with specialization in information security. He received B.E in

Computer Engineering from University of Rajasthan, Jaipur in 2008. He worked as

system developer in IBM India Pvt. Ltd. and later chose to make his career in

academics. He has taught at various institutions of repute. He is member of IEEE. His

areas of interests include Software Engineering, Information Security and Database

Management Systems.

	Introduction
	Software Development Life Cycle (SDLC)
	Waterfall Model
	V-Shaped Model
	Prototyping Development Model
	Incremental Development Model
	Spiral Development Model
	Win-Win Spiral Model
	CBSE and COTS‐based Application Process Decision Framework
	Rapid Application Development (RAD) Model
	Rational Unified Process (RUP)
	The Incremental Commitment Spiral Model (ICSM)

	Modeling and UML
	Diagrams in UML
	Advantages of UML
	Limitations of UML

	Stakeholders and Assets
	Principles of Secure Software Development
	Sources causing insecurity in software
	Problem and Motivation
	Objectives of the Research
	Organization of the Thesis

	Literature Survey
	Why Security in SDLC?
	Security in SDLC: Suitable Phase(s)
	Requirements Engineering
	Security in Design
	Human Factors and Team Composition for security

	Security Parameters
	Empiricalness in Software Engineering
	Related Works: Existing Secure Lifecycle Models & Methodologies
	Agile Software Development Methodology
	Extreme Programming (XP)
	Comprehensive, Lightweight Application Security Process (CLASP)
	Security Development Lifecycle (SDL)
	Secure Software Development Methodology (SecSDM)
	Security-aware Software Development Life Cycle (SaSDLC)

	Security Techniques/Models for Requirements Engineering
	Iterative Requirement Elicitation (IRE) for Global Software Development
	Risk-based security Requirements Elicitation and Prioritization (RiskREP)
	Common Criteria
	The Security Analysis Process
	PREview
	CORAS
	Controlled Requirement (CORE)
	Use Processes
	Quality Function Deployment (QFD)
	Miscellaneous Methodologies

	Secure Design Techniques/Models
	Requirements Visualization of UML (REVU)
	Security Design Patterns
	Focus Group Discussion for Requirements Elicitation (FGDRE)
	Misuse Cases
	Threat Modeling
	STRIDE
	UMLsec
	Miscellaneous Methodologies

	Security oriented Improvements in development team
	Team Software Process (TSP)
	SDLC with Developers Working with Security

	Inferences drawn from the literature survey

	SecREAD Methodology
	Proposed Methodology: SecREAD
	Identification
	Story and Story Conversion Diagram (SCD)
	Single-Entity Story
	Two-Entity Story
	Three-Entity Story
	Multi-instance Story

	Refinement
	Redundancy Removal
	Decomposition and Aggregation
	Aggregation
	Decomposition
	Addition of entities

	Culmination of Spiral

	Mapping
	Asset-Functionality and Stakeholder-Functionality Relevance Matrices
	Asset – Stakeholder Relevance Matrix
	Consolidated Story Conversion Diagram (CSCD)
	Stakeholder-Parameter Relevance Matrix
	Rank Matrix: A practical approach to ranking

	Ranking
	Cell Computation
	Calculating Asset Rank
	Calculating Parameter Rank
	Calculating Functionality Rank
	Authorization Computation

	Analysis
	Design
	Functionality Rank Diagram (FRD)
	Comprehensive Rank Diagram (CRD)
	Authorization Rank Diagram (ARD)

	Development of the Tool
	Summary

	Case Study: Internet Banking
	Identification
	Refinement
	Redundancy Removal
	Aggregation
	Decomposition
	Culmination of Spiral

	Mapping
	Ranking and Analysis
	Rank Matrix
	Results and Discussion

	Design
	FRD and CRD
	Authorization Rank Diagram (ARD)

	Summary

	Case Study: IoT-Enabled Smart Building
	Internet of Things
	Smart Buildings
	Major functionalities of Smart Buildings
	Security System
	Fire Safety System
	Heating, Ventilation, and Air Conditioning (HVAC)
	Lighting

	Identification and Refinement
	Redundancy Removal
	Decomposition
	Aggregation
	Culmination of Spiral

	Mapping
	Ranking and Analysis
	Rank Matrix
	Results and Discussion

	Design
	FRD and CRD
	Authorization Rank Diagram (ARD)

	Summary

	Conclusion
	Contributions of SecREAD Methodology
	Future Work

