
ARCHITECTURAL IMPROVEMENTS FOR
SECURE SDN TOPOLOGY DISCOVERY

Ph.D. Thesis

AJAY NEHRA
ID No. 2014RCP9553

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

July 2019

Architectural Improvements for
Secure SDN Topology Discovery

Submitted in

fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Ajay Nehra
ID: 2014RCP9553

Under the Supervision of

Dr. Meenakshi Tripathi

Associate Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

July 2019

©Malaviya National Institute of Technology Jaipur - 2019.

All rights reserved.

Declaration

I, Ajay Nehra, declare that this thesis titled, ‘Architectural Improvements

for Secure SDN Topology Discovery’ and the work presented in it are my

own. I confirm that:

■ This work was done wholly or mainly while in candidature for a degree of

Doctor of Philosophy at Malaviya National Institute of Technology

(MNIT) Jaipur.

■ Where any part of this thesis has previously been submitted for a degree

or any other qualification at MNIT Jaipur or any other institution, this has

been clearly stated.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this Dissertation is entirely my own

work.

■ I have acknowledged all main sources of help.

Date:

AJAY NEHRA

(2014RCP9553)

I

Malaviya National Institute of Technology Jaipur
Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the thesis entitled “Architectural Improvements for

Secure SDN Topology Discovery” is being submitted by Mr. Ajay Nehra

(2014RCP9553) in partial fulfillment of the requirements for the award of the

degree of Doctor of Philosophy in the Department of Computer Science &

Engineering, Malaviya National Institute of Technology Jaipur, Rajasthan, India.

It is a record of the original research work carried out by him under my supervision.

The thesis has reached the standards fulfilling the requirements of the regulations

relating to the degree. The results contained in this thesis have not been submitted

in part or full to any other university or institute for the award of any degree or

diploma.

Dr. Meenakshi Tripathi

Date: Associate Professor, Supervisor

Place: Jaipur Department of Computer Science & Engineering

. Malaviya National Institute of Technology Jaipur, India

II

Abstract

Within the domain of SDN, in this thesis, we examine the security issues in topol-

ogy discovery. It includes the discovery of the host, the network nodes and links

between them. Most of the SDN controllers use a topology discovery mechanism

which lacks main security components such as authenticity and integrity. This

leads to the possibility of various attacks like poison, replay and flooding. In this

thesis, we analyze the vulnerabilities in host and link discovery in SDN. We ex-

amine in detail, how an attacker can perform poison, replay or flooding attacks

during link discovery. This detailed analysis provides the basis for designing our

proposed prevention mechanism, TILAK.

In this thesis, we also propose an improved SDN Link Discovery Protocol

(SLDP) which combines the security measures along with efficiency. The pro-

posed method is lightweight considering SDN characteristics.

Topology discovery cannot be secured without securing data link layer based

host discovery which is done by ARP protocol. Even if link discovery is secured,

Man-in-the-Middle (MitM) attack is yet possible at the data link layer. In this

thesis, we discuss the problem of ARP-based attacks in the context of SDN. We

propose FICUR to detect and mitigate ARP-based attacks. FICUR leverages

the programmability and centralized control of SDN. All proposed solutions are

validated through extensive emulations. Experiments have shown that proposed

methods are better than other existing methods in terms of computation overhead,

packet construction time and attack detection time.

III

Dedication

This small piece of work is dedicated to this great nation i.e. India, भारत, .

IV

Acknowledgements

Ph.D. is a long journey that we have to walk alone. Without constant and uncon-

ditional support from my family, it is hard to survive this journey. My mother

and father always make me strong enough to run on tough terrain. My brother

helps me to improve in life with my own logic. My sister is a silent observer and

her critical suggestions help me in improving a lot. I would like to thank my wife,

whose emotional support is really appreciable. I really admire naughty ‘लǠू’, i.e.

‘Laddu’, his consistent and energetic naughtiness refresh me a lot. I would like to

thank all of them once again for their necessary and kind support.

I would like to pay my sincere gratitude towards my supervisor Dr. Meenakshi

Tripathi. Without her constant demands for progress, it is not possible to com-

plete it. Her kind gesture and understanding nature are highly appreciable. Her

supporting behavior always helped me to keep moving. Her experiences always

helped to improve research articles and thesis. Thank you.,
The role of Prof. Vijay Laxmi and Prof. Manoj Singh Gaur in my Ph.D. jour-

ney is like a pole star enlightening the way of a stray passenger. Their constructive

criticisms improved the thesis a lot. Without their crucial support, it is not possi-

ble to nurture ideas more clearly. Their critiques also helped me to expand ideas

in various dimensions.

I would also like to thank Dr. Girdhari Singh, Dr. Santosh Kumar Vipparthi

and Dr. C. Periasamy. As DREC members, their suggestions help me to precise

the research direction. Their confidence in my work encourages me a lot. I truly

appreciate unconditional support from Dr. Ramesh Babu Battula throughout the

journey. Non-teaching staff was always kind to me and always ready to help within

their capacity.

V

Ph.D. leads a way to prosperous life. It taught to be a critique. I would like to

thank Mr. Gajendra Singh Shekhawat for being a discussion partner. His practical

views always guides my ideal view toward many problems. Without his company,

Ph.D. frustration cannot be overcome.

A good thesis is a completed thesis. Without Ms. Varsha Sharma, Mr. Avinash

Avthu, Mr. Ankur Gupta, Ms. Ritu Sharma and Mr. Kurra Chaithanya, it is not

possible to make thesis in the present form. Their unconditional and constant

support as first reviewers is highly admired. I would also like to express gratitude

to Dr. Chhagan Doot to share his experience to polish the research articles and

thesis.

I would also appreciate Mr. Ashish Sharma, Mr. Pranjal Ranjan, Mr. Anugrah

Jain, Mr. Jay Dave, Mr. Anurag Sharma and Mr. Ankit Pulkit for helping me in

traveling this Ph.D. journey more smoothly. I consistently argue them on various

topic, and they handle it gracefully. This discussion improves me a lot.

My two close friends from the far, i.e., Mr. Abhinav Srivastav and Dr. Gautam

Chandra refreshed me a lot with long discussions and gave me always a unique

dimension of thoughts. Such thoughts always help to build the character.

Thank, you all of you once again. It’s truly a long and adventurous journey.

Everyone plays a crucial role to complete the journey. I really appreciate your

valuable time and efforts.

VI

Acronyms

• ARP Address Resolution Protocol

• BDDP Broadcast Domain Discovery Protocol

• CDP Cisco Discovery Protocol

• DHCP Dynamic Host Configuration Protocol

• DDoS Distributed Denial of Service

• DoS Denial of Service

• EIGRP Enhanced Interior Gateway Routing Protocol

• HMAC Hash-based Message Authentication Code

• IP Internet Protocol

• LAN Local Area Network

• LLDP Link Layer Discovery Protocol

• MAC Media Access Control

• MIB Management Information Database

• MitM Man-in-the-Middle

• NAT Network address translation

• OFDP OpenFlow Discovery Protocol

• OFPT OpenFlow Packet Type

• SDN Software Defined Networking

• SLDP SDN Link Discovery Protocol

• SNMP Simple Network Management Protocol

• TCAM Ternary Content-Addressable Memory)

• TCP Transmission Control Protocol

• TLS Transport Layer Security

• TLV Time-Length-Value

VII

This page is intentionally left blank.

VIII

Contents

Abstract III

List of Figures XII

List of Tables XV

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Organization of the Thesis . 6

2 State of the Art 9

2.1 Software Defined Networks: A new era for networks 9

2.2 Topology Discovery in SDN . 16

2.3 Link Discovery . 19

2.3.1 Current Deployments . 21

2.3.2 Threat Model . 32

2.3.3 Attacker’s Approach . 37

2.3.4 Orthogonal Research . 43

2.3.5 Inferences . 46

2.4 Host Discovery at Data Link Layer 47

2.4.1 Current Deployments . 47

2.4.2 Threat Model . 49

2.4.3 Attacker’s Approach . 52

IX

2.4.4 Orthogonal Research . 55

2.4.5 Inferences . 57

2.5 Summary . 57

3 A Preventive Solution to Secure Link Discovery 59

3.1 Foundation . 60

3.2 TILAK Design . 62

3.3 Implementation . 67

3.3.1 Experimental Setup . 68

3.3.2 Performance Metrics . 69

3.3.3 Results and Discussion . 71

3.3.4 Correctness Analysis . 78

3.4 Summary . 81

4 A Lightweight Protocol for Efficient and Secure Link Discovery 83

4.1 Foundation . 84

4.1.1 Security . 85

4.1.2 Lightweight . 88

4.1.3 Efficient . 90

4.2 The SLDP Protocol . 91

4.2.1 Desired Characteristics . 92

4.2.2 SLDP Packet Format . 94

4.2.3 SLDP System Architecture 95

4.3 Test Case Analysis . 101

4.4 Implementation . 105

4.4.1 Experimental Setup . 106

4.4.2 Performance Metrics . 109

4.4.3 Results and Discussion . 110

4.5 Summary . 115

5 Securing Data Link Layer Host Discovery 117

5.1 Foundation . 118

X

5.2 FICUR Design . 121

5.2.1 Attack Detector . 122

5.2.2 Attack Source Localization 125

5.2.3 Attack Mitigation . 127

5.3 Implementation . 128

5.3.1 Experimental Setup . 128

5.3.2 Performance Metrics . 130

5.3.3 Results and Discussion . 130

5.4 Summary . 133

6 Conclusions and Future Scope 135

6.1 Conclusions . 135

6.2 Future Directions . 137

Appendix 139

A Details of Examined Controllers 139

B List of Publications 140

Bibliography 142

XI

List of Figures

2.1 Global view construction in SDN 17

2.2 Switch discovery process . 18

2.3 LLDP/BDDP packet format . 20

2.4 LLDP/BDDP movement for link discovery 21

2.5 POX LLDP frame structure . 22

2.6 Ryu LLDP frame structure . 24

2.7 OpenDayLight LLDP frame structure 25

2.8 Hash calculation for OpenDayLight LLDP frame 25

2.9 Floodlight LLDP frame structure 27

2.10 Hash calculation for Floodlight LLDP frame 27

2.11 ONOS LLDP frame structure . 28

2.12 Beacon LLDP frame structure . 29

2.13 HPE-VAN LLDP frame structure 30

2.14 Hash calculation for HPE-VAN LLDP frame 31

2.15 Topology for the link discovery attack vector 34

2.16 Basic setup to perform link discovery attacks 37

2.17 Attack details for OpenDayLight controller 38

2.18 Attack details for Floodlight controller 39

2.19 Attack topology . 40

2.20 CPU utilization during LLDP flooding 41

2.21 IP address to MAC address translation using ARP 48

2.22 An ARP Frame . 50

2.23 ARP tables in Man-in-the-Middle attack 53

2.24 ARP table in ARP flooding attack 55

XII

3.1 Token-based authentication . 63

3.2 LLDP packets life-cycle in TILAK 63

3.3 LLDP packet format for TILAK . 64

3.4 Original event sequence in topology discovery 65

3.5 TILAK event sequence in topology discovery 65

3.6 TILAK: Marking of removable ports 66

3.7 Topology 1: Tree topology with 4 level of depth and fan-out 4 . . . 68

3.8 Topology 2: Tree topology with 7 level of depth and fan-out 2 . . . 68

3.9 Topology 3: Fat tree . 69

3.10 Performance comparison . 71

3.11 Performance stabilization graph in the different iteration 72

3.12 LLDP packet construction time comparison 73

3.13 LLDP packet verification time comparison 74

3.14 LLDP packet construction and verification event sequence 75

3.15 Initial overhead in the discovery protocol 76

3.16 Evidence for LLDP Flooding attack prevention 77

4.1 Topology for attack vector . 86

4.2 SLDP packet format . 95

4.3 SLDP system architecture . 96

4.4 Event sequence in SLDP . 100

4.5 Test case 1: Attacker host starts work after switch 103

4.6 Test case 2: Attacker host starts work before switch 104

4.7 Test case 3: Two attacker hosts starts work before switch 104

4.8 Test case 4: A non-OpenFlow switch as separator 105

4.9 Test case 5: Attacker host starts work before switch 105

4.10 Topology 1: Tree topology with 4 level of depth and fan-out 4 . . . 106

4.11 Topology 2: Tree topology with 7 level of depth and fan-out 2 . . . 107

4.12 Topology 3: Fat tree . 107

4.13 Link discovery packet length among all controllers 110

4.14 Number of packets in link discovery with three topologies 111

XIII

4.15 Computation overhead for link discovery 111

4.16 Link discovery packet construction overhead 112

4.17 Link discovery packet verification overhead 112

4.18 Link discovery packet construction and verification sequence 113

4.19 Topology discovery time . 114

4.20 Eligible ports over the time . 114

4.21 Initial overhead in RYU-OFDP . 115

5.1 Normal temporal sequence of IP and ARP packets 120

5.2 ARP packets sequence with Man-in-the-Middle attack 120

5.3 ARP packets during ARP Flooding 120

5.4 FICUR block diagram . 122

5.5 Flowchart of attack detection module in FICUR 123

5.6 Threshold calculation . 126

5.7 Attack source localization . 127

5.8 Mitigation flow diagram . 128

5.9 Experiment topology . 129

5.10 Arrival of every ARP request at controller 131

5.11 Number of ARP entries on affected machine 131

5.12 Attack detection time . 132

5.13 FICUR computation overhead . 132

XIV

List of Tables

2.1 SDN features with various aspects 15

2.2 Summary table for different controllers 32

2.3 Attack setup . 40

2.4 Different controllers with attack vector 42

2.5 Comparison of different research proposals for security 46

3.1 TILAK with different threat causes 62

3.2 Number of Switches, Links, Ports and Hosts 69

3.3 TILAK execution environment . 70

3.4 Averaged resource consumption in second(s) 72

3.5 Comparison in different solutions of LLDP packet based threats . . 77

3.6 Choosen values for different time parameters in second(s) 80

4.1 Different controllers with attack vector 86

4.2 Comparison of different research proposals for security 88

4.3 Length of different LLDP packets 90

4.4 Eligible ports in different topologies 91

4.5 Number of Switches, Links, Ports and Hosts 108

4.6 Experimental environment for SLDP 108

5.1 Experimental environment for FICUR 129

XV

List of Algorithms

1 POX LLDP packet parsing . 23

2 Ryu LLDP packet parsing . 24

3 OpenDayLight LLDP packet parsing 26

4 Floodlight LLDP packet parsing . 28

5 ONOS LLDP packet parsing . 29

6 Beacon LLDP packet parsing . 30

7 HPE-VAN LLDP packet parsing 31

8 Update eligible port list . 97

9 Calculate port eligibility . 98

10 Detect Poison and Replay attacks 98

11 Detect Flooding attacks . 99

12 Extract information to detect ARP Poison & ARP Flooding 124

13 Detect ARP Poison attack. 125

14 Detect ARP Flooding attack. 126

XVI

This page is intentionally left blank.

Chapter 1

Introduction

Over the past decades, the world is experiencing a significant increase in the num-

ber of internet services such as e-commerce, Internet of Things (IoT) based ser-

vices, social sites, chat applications search engines, etc. All these are hosted in the

cloud/data centers, and end users are accessing them using their personal com-

puter, phones or tablet through Ethernet, Wi-Fi or cellular network. New services

create new markets. As Bain[1] also predicts that the IoT market is doubled in

2021 since 2017.

The assurance of fast, reliable and secure services in these complex networks,

has raised several challenges in network management. Now there is a need to

configure the network on the fly, which can respond to the updates, faults or

loads. Traditional network is unable to satisfy these new requirements. SDN is a

new paradigm which has come up as a solution to this. Statista[2] also predicts

that the Software Defined Networking (SDN) market worldwide will be 30.8 billion

USD in 2022.

One of the key concepts of SDN is the separation of control plane and data

plane. A logical centralized controller introduces the logical concept of network

programmability, which has simplified the possibility of innovation, network man-

agement, and configuration. With promises of flexibility, SDN also provides so-

lutions to the traditional network security threats i.e. SYN Flooding, Address

Resolution Protocol (ARP) Poison, rogue Dynamic Host Configuration Protocol

(DHCP) server, etc. At the same time, SDN architecture also imposes a new class

1

of vulnerabilities in network i.e. poisonous topology discovery, Controller Flood-

ing, flow entry flooding and, etc. Among other threats, this thesis is restricted to

vulnerabilities in the topology discovery mechanisms only. The topology discov-

ery is done by the controller to get the information about the latest state of the

network. It consists of the discovery of various components such as forwarding

elements, links, and hosts.

1.1 Motivation

Software Defined Networking (SDN) introduces a sea of opportunities in the re-

search domain. Its newly introduced architecture gives various challenges and new

future directions to improve communication. The research areas in SDN include

controller placement, programmable data plane, traffic classification, security, ab-

straction, verification[3][4]. Security is an essential factor to deliver basic function-

alities efficiently. The security domain in SDN covers various aspects introduced

by either its new architecture or assurance of new solution to traditional network

threats. Few security related problems in SDN are Denial of Service (DoS) attacks

at both the planes, topology poisoning, malicious app detection, and malicious

link detection[5].

The controller gives ample flexibility to counter various security vulnerabilities.

However, this flexibility can only obtain with the help of available information.

This information makes the controller to take a decision and perform the required

task. Information is available with data plane using OpenFlow protocol. Infor-

mation about existence and arrangement of data plane is also important. For the

security of any threat, detection, mitigation and prevention are different dimen-

sions. Any attack detection strategy must require source data plane information.

If attack probes are found on a particular switch, detection strategy for that switch

will activate. For mitigation strategies, port-link information is needed. Few links

must block/slowdown for a unique kind of traffic, for this some ports need to re-

configure. For prevention methods, entire topology must be known in advance.

The controller must know, the possible paths by which attack probe may occur,

2

all details for in-between forwarding elements, links, and ports. In a nutshell with-

out accurate topology information, it seems hard to achieve optimal results. Let’s

start with two security problems and their unique solutions to examine whether

topology information can help in designing an attractive solution? Problems are

related to flow entry flooding and SYN flooding.

In SDN, every time a switch receives a packet, it checks a flow table to act

accordingly. Flow table consists of flow entries, and flow entries are stored in

Ternary Content-Addressable Memory (TCAM) based memory which is expensive

and fast. Sometimes programmer uses the property from received packet rather

than hard coding to generate flow entries. But if an attacker successfully passes

packets to the controller with random attributes, and the controller generates a new

flow entry for every such random attributed packet. It may be used for flooding the

flow table of a switch. OpenFlow provides a mechanism for storage and retrieval of

statistical counters associated with flows, ports, tables. The security vulnerability

discussed here can be detected if we extract some of those counters. Flows are

stored in one among many tables. If we can extract the number of flows and

the number of packets that matched in the table, then we can detect an attack[6].

Packet Flow Ratio(PFRatio) is used to detect the aforementioned attack. PFRatio

is defined as Number of Packet over the Number of Flows. This work is published

in [C3].

Transmission Control Protocol (TCP) SYN Flooding is the most popular among

all DoS attacks that exploit the TCP vulnerability at the server i.e. any type of

service that uses TCP as the underlying transport layer protocol. The server keeps

some half-open connections until the corresponding final ACK arrives from the in-

teracting clients. Keeping such connections require a certain amount of memory

reserved at the server. Attacker(s) can open a large number of such incomplete con-

nections, thus depletes the SYN-Queue easily which will ultimately deny or delay

the legitimate connections request. A proposal called SAFETY : an early detection

and mitigation technique for TCP SYN Flooding attacks in SDN networks[7], is

implemented. The Solution is based on entropy, which is used to measure the ran-

domness or uncertainty associated with a random variable. SAFETY calculates

3

the entropy of packets in a fixed time window to determine any abnormal behavior.

In particular, entropy is calculated on few fields namely destination IP address,

destination port, and TCP flags. In the case of non-attack scenarios, there are

multiple hosts which communicates with each other and their packets identified

with a pair consists of destination IP and port, are randomly distributed in the

network. However, in presence of adversaries, a particular service irrespective of

its location will generate packets with same destination IP and port address. To

perform an attack with the highest possible strength, packets with the same desti-

nation IP and destination port have to be generated by a single malicious host or

a group of malicious hosts. The attacker may also perform a low-intensity attack

from the network and wait for other attack probes from outside the network. In

such scenarios, the randomness is limited due to the nature of the attack, hence

entropy decreases drastically. This work is published in [J3].

In both solutions i.e. PFRatio and SAFETY, some part of topology is used

such as the existence of switch. Both are detection approaches. For mitigation in

SAFETY, some ports information must know to the controller to block a specific

type of traffic. Switch to Switch link will also play a significant role in preventive

approaches. For example, if certain traffic seems to be malicious but needs more

signature to conclude as malicious, a separate path can be provided so that legit-

imate traffic will not suffer. It seems our hypothesis that topology is crucial for

optimal results, is validated.

1.2 Objectives

The goal of this research is to explore vulnerabilities of topology discovery in SDN

and suggest the measures to strengthen the security. To meet this objective we

have.

• Explored the vulnerability of topology discovery in SDN by performing state

art of analysis.

• Developed a preventive solution for LLDP Poison, Flooding and Replay at-

4

tacks.

• Proposed a lightweight and efficient protocol variant for the link discovery

process.

• Developed a solution for ARP based threats.

1.3 Contributions

This section provides an overview of the contributions along with the correspond-

ing publications. Most of the work has been published in reputed journals and

conference proceedings.

• First of all, we accomplish an extensive literature survey on security issues

in SDN topology discovery. This has been discussed in Chapter 2. Based on

the review, we observe that most of the attacks in the topology discovery are

launched by exploiting vulnerabilities in discovery protocols. We also notice

that most of the proposed security solutions are based on cryptography or

static binding. Such topology discovery methods which are costly in terms

of computation. Our focus was on developing lightweight non-cryptographic

solutions. Most of the work of this chapter is published in [J2, C1, C2].

• Secondly, we perform an in-depth investigation of threats during the link dis-

covery mechanism. We investigate both theoretically and then through ex-

tensive implementation on various controllers such as POX[8], Ryu[9], Open-

DayLight[10], Floodlight[11], Beacon[12], ONOS[13], and HPE-VAN[14], the

impact of LLDP poison, LLDP Replay and LLDP Flooding attacks. We find

that there are two major reasons for this kind of attacks in all the above-

mentioned controllers: first, lack of verification of source authentication and

second, lack of the integrity of LLDP packets. By analyzing the characteris-

tics of the attack, we propose TILAK, a prevention methodology for LLDP

packet based attacks. TILAK generates random MAC for LLDP packet and

uses this randomness to create a flow entry for LLDP packets[15]. This work

has been published in [J2] and reproduced in Chapter 3.

5

• Thirdly, we also propose an SDN Link Discovery Protocol (SDLP) for effi-

cient link discovery in SDN[16]. SLDP creates and maintains the global net-

work topology at SDN controllers by using a small number of SLDP packets.

Depending upon the scenario, it either prevents or detects and mitigates the

LLDP based attacks. We prove both theoretically and with emulation that

SLDP is lightweight, secure and efficient link discovery protocol for SDN.

This work has been published in [J1] and discussed in Chapter 4.

• We notice that host discovery mechanism is also vulnerable to ARP spoof-

ing attacks. We also observe that most of the existing solutions are based

on either pre-stored MAC/IP binding or cryptographic mechanism. These

methods are either static or require high computation, which makes them un-

suitable for real-time implementations. Finally, we propose FICUR, a novel

method for verification and detection of ARP based threats in SDN[17]. FI-

CUR leverages the SDN programmability and analyzes the traffic patterns

to detect the attacks at the centralized controller. The validation of FICUR

has been done on both the emulated environment using Mininet and real-

time environment using HP switch. Chapter 5 is devoted to this work and

has been published in [C2].

1.4 Organization of the Thesis

The thesis is structured as follows. Topology discovery plays an important role in

the operation of SDN. Chapter 2 provides a detailed description of topology dis-

covery mechanisms used by different SDN controllers. This chapter also identifies

the vulnerabilities of topology discovery mechanism and describes various attacks

that exploit these vulnerabilities in SDN. Chapter 3 describes our proposed pre-

vention for LLDP Poison, LLDP Flooding, and LLDP Replay attacks. Theoretical

analysis and emulation results are also presented to increase confidence. Chapter 4

describes proposed link discovery protocol for SDN. SLDP packet and SLDP event

sequence are discussed in detail. The chapter also provides details of emulation

experiments conducted and result achieved. Chapter 5 describes our proposed,

6

SDN solution for ARP threats. Emulation results for the proposed solution are

also presented. Chapter 6 concludes our thesis along with suggestions for future

work. The appendix lists the publication and the emulation details for our work

with different controllers.

7

This page is intentionally left blank.

8

Chapter 2

State of the Art

In this chapter, literature is analyzed around our research objectives. Among vari-

ous topology components, two components are focused mainly considering existing

discovery process, possible threats, attackers view, attack’s manifest, available or-

thogonal research, and observed gaps. This analysis is helpful to the next chapters

where solutions will be provided for threats. A brief introduction to Software De-

fined Networking (SDN) and the comparison with traditional networking is also

provided in the chapter to build abstract understanding regarding SDN.

2.1 Software Defined Networks: A new era for

networks

Since unfolding the initial communication network in 1876 in the telephone, net-

works always served the humanity in best possible extent. Communication net-

works are still growing in tune with ever growing human needs. To serve the

requirements, various modifications have been accepted in communication tech-

nology. Design of TCP/IP protocol suite in the 1970s by Vint Cerf and Bob Kahn

for DARPA project is another milestone for current data networks[18]. Network

research groups always try to provide a new solution over existing infrastruc-

ture. Applications are well known now so we can think of new architecture for

9

the network paradigm. One such disruptive technology which will change the sce-

nario from master complexity to extract simplicity is Software Defined Networking

(SDN). Traditional network is unable to afford next-generation requirements. This

section explains SDN features while comparing with traditional networking. The

problems in traditional networking and how SDN resolves these are discussed as

follows.

Heterogeneity in the traditional network is an operational essential. Tra-

ditional network is heterogeneous due to different devices, i.e., switches, routers,

gateways, firewalls, Network Address Translators , etc. Heterogeneity in networks

is also due to devices from different vendors, i.e., Cisco, hp, dell, Juniper, etc[19].

Different vendors use different proprietary protocols, i.e., Enhanced Interior Gate-

way Routing Protocol (EIGRP), Cisco Discovery Protocol (CDP), etc which also

contribute to heterogeneity. Different devices are capable to perform computation

on different layers of TCP/IP stack[20]. Generally, more the layers available for

computation, more the cost of device. Different devices have different instruction

sets for managing the devices[21]. This situation is even worse in case the devices

available are from different vendors. SDN proposes a lesser heterogeneous envi-

ronment with OpenFlow enabled forwarding elements. These forwarding elements

have a simpler configuration than traditional router or switch. Simpler the design,

cost-effective the solution. Therefore, each vendor is supposed to build forward-

ing devices with OpenFlow specifications. In this way, same devices are avail-

able in networking environment even if those are coming from different vendors.

OpenFlow restricted protocols are introduced like OpenFlow Discovery Protocol

(OFDP)[22]. To provide different behaviors from forwarding elements like routing

or switching, a logically centralized controller is used to control the forwarding

elements. The SDN controllers are written and can modify in generic purpose

programming languages like java or python. Openness in SDN also improves the

rate of innovation in networking[23].

Flexibility offers effectiveness in operation and managing the networking de-

vices. In each networking device, two plane plays distinguish and significant role.

Control plane computes logic while the Data plane forwards packets as per compu-

10

tation result. For example, the control plane performs all computation for shortest

path calculation. Result for this computation is reflected in the form of a routing

table[24]. The data plane forwards each incoming packet as per the routing table.

In the traditional network, both planes reside on the same device. Each device has

to manage separately and having a local view of available information i.e. neigh-

bor devices. Managing each device in network separately is tedious and human

resource intensive[25]. This process will be more complicated if the devices are

from different vendors. Hence different instruction sets are needed to manage the

network. Making decisions on a global view is always optimal than a decision on

a local view. SDN gives the opportunity to separate the control and data plane.

The control plane may be deployed with any other service for the infrastructure

i.e. web service. And forwarding element is designed to hold data plane and an

OpenFlow agent. Separation gives control plane a bigger visibility of topology

hence helps to make efficient decisions. Because logically centralized controller(s)

controls the entire network, a consistent policy can be installed in forwarding ele-

ments throughout the network[26]. It is also easy to manage a logically centralized

controller(s) than a variety of devices.

In traditional networking devices, i.e. switch’s or router’s forwarding decision

is made based on the destination address. A switch forwards packets based on

the destination MAC address, while a router forwards the packet based on the

destination’s IP address. Traditional switches or router cannot be configured to

make forwarding decision on the basis of other fields from the transport layer,

network layer or data link layer. But SDN offers a unique opportunity to man-

age forwarding devices to make the decision from the various fields of different

networking layers[19]. In SDN, OpenFlow is a widely accepted protocol for data

and control plane communication. OpenFlow specification[27] provides forty-five

match attributes to make forwarding decisions.

Traditionally a network administrator can configure logical isolation in Local

Area Network (LAN) as either port based or MAC address based. Virtual LANs

(VLAN) are used for such isolation for security, scalability and network man-

agement purposes. SDN comes with a new plan to logically isolate the network

11

segments as per forty-five parameters[27]. These parameters are restricted with

OpenFlow specifications[27–39].

Provisioning in the data center requires frequent configuration and reconfigu-

ration of networking devices[24]. Provisioning is mandatory in case of faults and

adaption to load changes. Traditional network devices support most of the manual

provisioning, which is clearly an error-prone and time restricted approach. The

manual process of uniform policy enforcement in a short period is also human

resource intensive. If devices are from different vendors, the process will be more

cumbersome. SDN gives a good spectrum of dynamic provisioning or automation

in network management. All general purpose conditional rational can be built for

provisioning. Another benefit of SDN is that all developing policies can be tested

over production network without compromising the performance hence increase

up-time for the production network. In traditional networking, devices need to

program as per requirement but only can be programmed with the available in-

struction set[19]. Each device from a different vendor and different capability have

different and limited instruction set. SDN offers to configure network rather than

devices with any generic purpose programming languages.

Openness Traditional networking technology always suffers from slow inno-

vation rate as compared to other fields of information technology. This is because

of proprietary hardware govern with the dedicated instruction set. Traditionally

custom Application-Specific Integrated Circuits (ASIC) are used for switches or

routers. Fixed network interfaces are used to connect control and data plane.

Different devices have different capabilities and must configure with a different

instruction set. Anyone who buys them can configure them only. If she has to

propose a new protocol variant which is suitable for her organization, has to go

through enough large development cycle. SDN promises to be as open as possi-

ble[40]. General purpose CPUs are used for forwarding elements; and control plane

is mostly placed along with other services i.e. web server. Like OpenFlow, Open-

Stack open standards are used to provide the communication in and management

of the network. Vendor-neutral Application Program Interfaces (API) are used in

the control plane to instruct the data plane[20]. Such openness also increases rapid

12

development because of a possible reduction in expenses or generation of capital

as entrepreneurship.

Cost plays a significant role in the traditional network. All devices are some

proprietary hardware-software combinations. In any network, various devices with

various capabilities are used. Higher the capability of devices higher the cost of

devices. Different devices have different ASICs to boost the performance. But

this approach does not seem very scalable. Only vendors are involved in devel-

oping new hardware and software[18]. The third party can not even try to give

any software solutions for given hardware, which is definitely a hindrance in the

innovation rate[41]. Traditional devices come with an instruction set to configure

them to work accordingly. This configuration may followed by unlimited times

reconfiguration, requires expensive human resources. In the era of Virtual Ma-

chines (VM) migrations in data centers, this configuration facility does not seems

adequate. SDN comes with a trivial but yet effective solution which essentially

consist of two parts. The control plane like any other server can be placed along

with any other service. To write controller applications, generic programming lan-

guages are used so that anyone can write a new solution. The data plane takes

instruction from control plane, is simpler as table look-up devices[42]. This ap-

proach makes data plane device simpler in logic hence cheaper in price. SDN

networks are programmable which means network provisioning which might con-

sist of a series of configuration and re-configuration, can be specified as network

policy inside the controller applications. This approach will significantly reduces

the human resources and helps inrunning the communication at a low operational

cost.

Introduction of SDN improves the efficiency in several aspects. In the tradi-

tional network, each device has a local view because of a local control plane[42].

Local view always restrict the plane to make an optimal decision. Each device

comes with a few configurable parameters. Sometimes configuration is needed

beyond the provided configuration parameters. In the traditional network, this

request takes a lot of time to serve from the vendor. If any device fails in the

network, it should be removed/replaced from the topology. Failing devices may

13

also result in a failed network. If devices fail, provisioning must be required. In

the traditional network, provisioning is almost static[22]. Sometimes few redun-

dant links are present in topology which need either to configure manually or be

blocked with various data link layer protocol like Spanning Tree Protocol. Different

devices have hardware of different complexities. Higher complexity is connected

with higher cost. SDN can compute a larger view with the help of OFDP protocol.

Controllers are programmable so that network administrator can specify almost

any policy in the form of network applications. In SDN, same devices behave

differently with different controller applications. The forwarding elements have

to take instruction from the controller to perform the expected behavior. The

hardware of forwarding elements only require fast table look-up facility to do any

task; this needed hardware is much simpler than traditional switch or routers.

Controller applications can also identify the failed device and logically removed it

from the topology. In SDN topology, if redundant links are present, the controller

has enough capability to manage/use these redundant links[43].

Table 2.1 summarizes all the above discussed properties. Each property has

different aspects and effects which are shown with different colors and different

shades. Different colors denote traditional networking and SDN while different

shades represent a new aspect or effect in any of the networking. Red and Blue

colors are used for Traditional network and SDN respectively.

Evolution of SDN also gives the opportunity to research in various aspects

to make the network more robust, flexible, secure, performance efficient, etc. Its

newly introduced architecture gives several challenges as well as new future di-

rections to improve communication. Scalability due to a single controller with

multiple forwarding elements must persist[44]. For a given/unknown topology,

placement of the controller is itself a big problem[45]. A controller fails or is

compromised then what next[46]? There must be consistency for multiple con-

trollers in a given network segment[47]. Other research areas in SDN includes

programmable data plane, traffic classification, security, abstraction, verification,

14

Property Different Aspects Effects
Local view restricted opinions
Limited configuration new device for new capability
Device dependency Device fails network fails
Less scalable manual redundant path for new devices
Complex hardware higher capability, more specific integration
Global view better decisions
Programmable same device with new program
Automation failed device will logically be removed
Scalable controller can always find redundant paths

Efficiency

Simplex solution simple hardware for table look-up
United control & data plane devices separately managed, local view
Destination based forwarding restricted forwarding decision
Port and MAC based isolation limited scope for isolation
Static provisioning error-prone and time restricted
Separation(CP and DP) bigger visibility, better manageability
Many match attributes large decision spectrum

Flexibility

45 parameter for isolation flexible isolation
Dynamic provisioning easy network management, increase up-time
Devices(router, switch,..) higher cost for high capability
Vendors(hp,cisco,..) different instruction set to manage
Protocol(EIGRP,CDP,..) incompatible with other vendor’s device
Forwarding Element cost effective solution for each capability
Similar behaviour simple management with each vendor

Heterogeneity

OFDP,.. rate of innovation with openness
Proprietary hardware higher capability, higher the price
Dedicated Software expensive branded solutions
Configurable need human resources to configure
Open standard specification cheaper hardware
Generic programmes write/buy as per need

Cost

programmable more automation less human resource
Proprietary hardware configurable but not programmable
Vendor specific instruction set only way to configure devices
Simpler data plane efficiently programmableOpenness

Vendor neutral APIs same for all

Table 2.1: SDN features with various aspects

to name a few [3] [4]. SDN also helps to run the experiment on production network

using network virtualization such as by creating different slices of network [48].

Among all orthogonal research, security is essential to efficiently deliver basic

functionalities. The security domain in SDN covers both aspects, which is either

introduced by its new architecture or to assuring a new solution to traditional

network threats. Few security related problems in SDN are Denial of Service

(DoS) attacks at both the planes, Topology Poisoning, malicious app detection,

and malicious link detection [5, 49]. SDN may also looks for providing solutions

for Address Resolution Protocol (ARP) poison, rogue Dynamic Host Configuration

Protocol (DHCP) server, etc. traditional networking threats.

15

In SDN, any security threat can be handled by either prevention, detection or

detection with mitigation. There is a hypothesis that for any of mentioned ap-

proach needs exact topology information to overcome. To validate the hypothesis,

flow entry flooding[6], and SYN flooding attacks[7] are examined with SDN open-

ness and programmability. A topology component is required for detection namely

switch. Some other components such as links are also mandatory for mitigation.

Next section discusses about topology in more detail.

2.2 Topology Discovery in SDN

Software Defined Networking (SDN) decouples the data plane from the control

plane. In SDN, the control plane is separated from data plane so a logically cen-

tralized controller can control various data paths (switches) in a data plane. Thus,

it provides visibility of the entire networking infrastructure to the controller. It

enables the applications running on top of the control plane to innovate through

network management and programmability. The visibility can be used in decision-

making for some controller applications. Applications such as shortest path rout-

ing, link load balancer, etc., need precise topology information to provide optimal

results. To envision the centralized control and visibility, the controller needs to

discover the networking topology of the entire SDN infrastructure.

Topology is a fundamental part of the network. Various components are

switches, links, and hosts as shown in Figure 2.1. Topology discovery performed

by the controller is used to make topology informed solutions. In the beginning,

switches are performing HELLO communication to the controller to show the ex-

istence. ECHO is periodically sent by both parties to show aliveness. Links are

discovered with the help of Link Layer Discovery Protocol or Broadcast Domain

Discovery Protocol (LLDP/BDDP) packet movement. These packets are gener-

ated with the controller. The same packets reach back to the controller with

traveled link information. Hosts are also discovered with generated traffic. Hosts

are also discovered differently at the data link level in which the Address Resolu-

tion Protocol (ARP) is used to discover the target machine’s Media Access Control

16

(MAC) address.

Controller

FE

FE FE

FE

MD
S

FEFE FE-A

FE

S H
H

H

H
H

H MD
MD

MD

FE: Forwarding Element

S: Server
H: Host

MD: Mobile Device
FE-A: FE with Access Point

OpenFlow Channel
Links B/W Switches
End Host Links

Figure 2.1: Global view construction in SDN

The switch discovery process is illustrated in Figure 2.2. In most of the sce-

narios, the controller starts earlier then switch boots. The switch establishes

a Transmission Control Protocol (TCP) connection with the controller on pre-

stored socket address. Optionally, Transport Layer Security (TLS) is also equipped

along with TCP to provide communication security. After establishing success-

ful TCP handshaking, OpenFlow Packet Type Hello i.e. OFPT-HELLO pack-

ets are exchanged to negotiate the highest common supported OpenFlow version.

Once OpenFlow version is finalized, controller and switch further communicate

on that negotiated version as shown in Figure 2.2. The controller asks the switch

about supported ports and their capabilities in OFPT-FEATURES-REQUEST. A

OFPT-FEATURES-REPLY packet holds response. Subsequently, OFPT-ECHO-

REQUEST and OFPT-ECHO-REPLY messages are exchanged between switch

and controller to confirm the liveliness status to each other. The link between

switch and controller is either physical or dedicated virtual.

Ordinarily, switches are connected with other switches in any topology. This

17

Figure 2.2: Switch discovery process

switch to switch link in SDN may be either configured as a control channel or

left as a data channel. The control channel is to be manually configured which is

used to carry OpenFlow packets. All other not-configured channels or links are

used to carry data packets for the network. Hereafter data links are referred to

as links. SDN provides programmable support to discover links. Two switches are

connected with links using ports. In switch discovery, switch information and port

information are made available at the controller. But still, the controller has no

idea about the link of two switches. In the link discovery process, the controller

gets the information about the link. In the link discovery process, the controller

generates LLDP/BDDP packets for each port on every switch. Receiving switch

pass them to the directed port. On the another end of the link, a switch receives

and send it back to the controller. The controller uses this information for a link

18

database. In the Section 2.3, a detailed discussion is made about link discovery[50–

52].

Host discovery is also possible due to a separation of control plane and data

plane. Hosts are attached to switch ports. Exact information of hosts can be

tracked for better control over the network. Host tracking is also helps to monitor

or maintains mobility to the hosts. Few network policy may be specified regarding

hosts. For this scenario, the controller must track mobility of controller. Mobility

monitoring also helps in virtual machine migrations. Host discovery is performed

with traffic generated with hosts [50, 53].

At the data link layer, the host is again discovered. In the TCP/IP model,

three types of address i.e. port, Internet Protocol (IP) and Media Access Control

(MAC) are used to locate communication parties. An IP address is used to locate a

logical network segment while MAC address is used to locate a host in the targeted

network segment. ARP protocol is used to map IP address to the corresponding

MAC address. Without this mapping, communication can‘t be completed. The

ARP protocol is vulnerable to ARP Poison and ARP flooding attack due to lack of

authentication and integrity. In the Section 2.4, ARP based communication and

attacks are analyzed[17].

In topology discovery, although there are various components, most vulnerable

are link discovery and data link layer host discovery. The switch discovery is

performed over TCP communication and it can be secured using TLS. The host

discovery is performed using traffic generated by hosts. It only affects mobility,

which is rare in wired SDN. In next sections, a detailed analysis of the link discovery

and host discovery(data link) is performed. Further threat model followed with

attackers strategy is discussed.

2.3 Link Discovery

Link discovery is a process to identify links between OpenFlow switches. This

section presents current deployments, the attack vector, and orthogonal research

for link discovery. In Software Defined Networking (SDN), so far the link discovery

19

is performed with a non-standard OpenFlow Discovery Protocol (OFDP) with Link

Layer Discovery Protocol (LLDP) packets. Each controller, e.g., POX [8], Ryu [9],

Floodlight [11], OpenDayLight [10], ONOS [13], and HPE-VAN [14] implement

their own OFDP variant. However, all of these are using either LLDP packets

or alike Broadcast Domain Discovery Protocol (BDDP) packets. As shown in

Figure 2.4, LLDP/BDDP packets are initiated by the controller, pass through

switches, and confirms a link between switches[50]. There are certain possible

cases in which non-OF-Switches separates two OpenFlow enabled switches. The

controller does not control a non-OpenFlow switch, hence, we assume that it works

as per specifications. However, a link discovery process must identify the links.

Figure 2.3: LLDP/BDDP packet format

Before understanding link discovery in SDN environment, let’s look at LLDP

packet format which is depicted in Figure 2.3. The LLDP packet is a collection

of different set of Time-Length-Value (TLV)s. Different controllers maintain a

different set of TLVs. The Chassis, Port, and TTL TLVs are generally used to

store source data path id (dpid), source port number, and packet expiry time. It

is because LLDP [54] is originally used in traditional networks, and SDN is just

using the similar packet format. Thus, each combination of TLVs serve different

purposes. In Section 2.3.1, we will show that few of TLVs are not required for the

topology discovery process.

As per Figure 2.4, LLDP packets are generated for each port on each OF-switch

(step 1). PACKET_OUT packet with LLDP packet as a payload is generated.

After reaching at the switch, payload LLDP packet is transferred on a specified

output port (step 3). If such a LLDP packet is received at the switch, its forwarding

table is consulted for further action. After consultation, a PACKET_IN message

is generated with received LLDP as payload (step 4). In step 5, the controller

receives PACKET_IN message with event information or destination dpid and

20

destination port. Because the LLDP packet holding source dpid and source port,

the controller has complete source to destination information on which the LLDP

packet is traveled. This information helps to create a unidirectional link between

source and destination. The process will be completed for each unidirectional link

to provide a complete set of unidirectional links.

Figure 2.4: LLDP/BDDP movement for link discovery

2.3.1 Current Deployments

This section provides an overview of different implementations for the link discov-

ery. We consider POX[8], Ryu[9], OpenDayLight[10], Floodlight[11], ONOS[13],

Beacon[12] and HPE-VAN[14] controllers for link discovery implementation and

vulnerabilities. The controllers with versions are specified in Table 2.2. Each con-

troller generates different variant of LLDP packet. Some have security feature in

it while other miss the opportunity. This section discusses different LLDP packets

from different controllers and how LLDP packets are parsed at controller upon

receiving.

POX generates LLDP packet with four TLVs as shown in Figure 2.5. ChassisId

and SystemDiscription TLVs having same content i.e. string start with ‘dpid:’

follows with target switch’s dpid. No security cryptic hash value in any of TLVs

exists which indicates prone to LLDP poison. POX controller installs a flow entry

with matching parameter dl_dst = 01:23:20:00:00:01, dl_type = 0x88cc to the

21

switch which forwards LLDP packet to controller. The appendix can be use for

directory tree for each controller to illustrate important class file and jar file. That

demonstration helps the reader for further exploration.

Figure 2.5: POX LLDP frame structure

Algorithm 1 gives an overall idea of LLDP packet parsing on the POX con-

troller. We can observe here that different unique destination Media Access Con-

trol (MAC) addresses in LLDP packets from multiple controllers are present. Each

LLDP payload is checked against some conditional TLVs which are specified in Ta-

ble 2.2. For POX, conditional TLVs are ChassisId, Port, TTL and TLVs count.

LLDP packet does not include any security TLV in POX. After all conditional pro-

cessing, the controller extracts source datapath identifier(dpid) and source port to

create link. For various controllers, this information is extracted from different

TLVs, which can also observed in Table 2.2. The event.dpid and event.port infor-

mation came with PACKET_IN, which is used as the destination of established

link. If any switch receives LLDP packet over non OpenFlow link, it generates

PACKET_IN with own id(event.dpid) and receiving port id(event.port).

Figure 2.6 shows Ryu LLDP packet structure which is quite similar to POX.

Chassis Id is 21 Byte long string i.e. ‘dpid:0000000000000003’. Before adding a

link, the controller checks subtype of Chassis TLV and value, which should start

with ‘dpid:’. Algorithm 2 gives a basic idea about Ryu controller for parse a

receiving LLDP packet. If few subtypes are matched against specified subtype

then only dpid and port information values are extracted otherwise such packet is

22

Algorithm 1 POX LLDP packet parsing
Require: ethFrame, event.dpid, event.port

1: procedure POX_LLDP_Parse
2: if ethFrame.ethType = 0x88cc then
3: if ethFrame.dstMac = 01:23:20:00:00:01 then
4: ethlldp ← Extract(ethFrame)
5: if ethlldp.totalTvls ≥ 3 then
6: if ethlldp.fstTvl = ChassisTlv then
7: if ethlldp.sndTvl = PortTlv then
8: if ethlldp.trdTvl = TtlTlv then
9: sysDescPort ←

10: Extract(ethlldp.PortT lv)
11: sysDescDpid ←
12: Extract(ethlldp.SysDesTvl)
13: if sysDescDpid = NULL then
14: sysDescDpid ←
15: Extract(ethlldp.ChassisT lv)
16: end if
17: if ethlldp.PortTlv.subType = 2 then
18: if isExist(sysDescDpid) then
19: addLink(event.dpid, event.port, sysDescDpid,

sysDescPort)
20: end if
21: end if
22: end if
23: end if
24: end if
25: end if
26: end if
27: end if
28: end procedure

23

Figure 2.6: Ryu LLDP frame structure

simply discarded. In Ryu, Chassis TLV has subtype seven and value field is having

a string starts with ‘dpid:’ then only source dpid will be extracted. For source port,

Port TLV must have length equals to four. After successful extraction of source

dpid and port, a link is added between source and destination. The destination is

carried in event information i.e. ‘event.dpid’ and ‘event.port’.

Algorithm 2 Ryu LLDP packet parsing
Require: ethFrame, event.dpid, event.port

1: procedure Ryu_LLDP_Parse
2: if ethFrame.ethType = 0x88cc then
3: ethlldp ← Extract(ethFrame)
4: if ethlldp.ChassisTlv.subType = 7 then
5: if startsWith(ethlldp.ChassisTlv) = ‘dpid:’ then
6: sysDescDpid ← Extract(ethlldp.ChassisT lv)
7: if ethlldp.PortTlv.subType = 2 then
8: if ethlldp.PortTlv.length = 4 then
9: sysDescPort ←

10: Extract(ethlldp.PortT lv)
11: addLink(event.dpid, event.port, sysDescDpid, sysDescPort)
12: end if
13: end if
14: end if
15: end if
16: end if
17: end procedure

OpenDayLight introduces security hash in its LLDP payload as shown in Fig-

ure 2.7. This hash is a MD5 digest of unknown TLV with id 1(UK1) TLV content.

UK1 TLV holds a string value i.e. ‘openflow:1:2’ which indicates that this packet is

24

generated for a switch having dpid 1 and port number 2. If an attacker calculates

md5 hash for similar string, then it can be used to poison LLDP.

Figure 2.7: OpenDayLight LLDP frame structure

Figure 2.8 gives an idea about the calculation of hash value. A node connector

id is added to a secure final key before calculating MD5 hash. Here a static security

key is used, which is the cause of vulnerability. If the attacker can use that key

to generate LLDP packet, it can deceive the controller. Section 2.3.3 presents

a detailed explanation of attacker strategies to uses this information along with

LLDP packet parsing algorithm to poison LLDP.

Figure 2.8: Hash calculation for OpenDayLight LLDP frame

Algorithm 3 can be used to understand LLDP packet parsing. After extracting

LLDP payload from Mininet frame, system name TLV is checked for not null.

25

Along with dpid and port id one more field is extracted which is node connector

id. Node connector id is added to a secure static key before calculation of the

MD5 hash. Received and calculated hash are compared for equality to make sure

of integrity. After assurance of integrity, algorithms add the link to link database.

Algorithm 3 OpenDayLight LLDP packet parsing
Require: ethFrame, event.dpid, event.port, finalkey

1: procedure odl_LLDP_Parse
2: ethlldp ← Extract(ethFrame)
3: if ethlldp.sysNameTvl ̸= NULL then
4: sysDescPort ← Extract(ethlldp.PortTvl)
5: sysDescDpid ← Extract(ethlldp.ChassisTvl)
6: nodeConnectorId ← Extract(ethlldp.sysNameTvl)
7: if nodeConnectorId ̸= NULL then
8: if ethlldp.Uk1 ̸= NULL then
9: receivedHash ← Extract(ethlldp.uk2)

10: calculateHash ← MD5(nodeConnectorId+ finalkey)
11: if receivedHash = calculateHash then
12: addLink(event.dpid, event.port, sysDescDpid, sysDescPort)
13: end if
14: end if
15: end if
16: end if
17: end procedure

Floodlight controller uses two different fields, one is hash for security and an-

other is time stamp for latency calculation. Figure 2.9 gives the detail of LLDP

frame used in the Floodlight controller.

Hash calculation in LLDP packet generated by Floodlight Controller is shown

in Figure 2.10. System time is multiplied by a prime number 7867 to generate

a security number. This number further added to a hash of interface list. This

operation generates a security hash of eight bytes long which is placed in second

unknown TLV of LLDP packet. The attacker can not generate this hash on the

local machine because of different network interface list i.e. Mininet, wireless. But

security loophole exists, and this hash is calculated once during controller startup.

So, same hash value put in each LLDP packet over the time again and again.

Attacker can copy this LLDP packet content to perform the attack.

26

Figure 2.9: Floodlight LLDP frame structure

Figure 2.10: Hash calculation for Floodlight LLDP frame

For a detailed understanding of LLDP packet parsing in Floodlight controller,

Algorithm 4 can be referred. After extraction of LLDP payload, port length must

be three to proceed. Port id and dpid are extracted from port and first unknown

TLVs respectively. Time-stamp which is used for latency calculation is extracted

from fourth unknown TLV. An order id(a security hash) comes in second unknown

TLV is compared with a stored id(myId) to ensure the integrity. After assurance

of the integrity of packet, a link is added.

Figure 2.11 shows the LLDP packet structure for ONOS controller. At the

controller, ChassisId TLV is used for validation of LLDP packet. This packet does

not contain any security hash, hence vulnerable to LLDP packet based threats.

27

Algorithm 4 Floodlight LLDP packet parsing
Require: ethFrame, event.dpid, event.port, myId

1: procedure fdl_LLDP_Parse
2: ethlldp ← Extract(ethFrame)
3: if ethlldp.PortTvl.length = 3 then
4: sysDescPort ← Extract(ethlldp.PortTvl)
5: sysDescDpid ← Extract(ethlldp.Uk1Tvl)
6: timeStamp ← Extract(ethlldp.Uk4Tvl)
7: linkLatency ← calculateLatency(timeStamp)
8: otherId ← Extract(ethlldp.Uk2T lv)
9: if myId = otherId then

10: if isExist(sysDescDpid) then
11: addLink(event.dpid, event.port, sysDescDpid, sysDescPort,

linkLatency)
12: end if
13: end if
14: end if
15: end procedure

Figure 2.11: ONOS LLDP frame structure

Algorithm 5 gives insight for LLDP packet parsing in ONOS controller. Ex-

tracted LLDP payload is checked on no null value. Source port id and dpid values

are extracted from port and chassis TLVs respectevely. And if dpid is present then

link is added.

It is shown in Figure 2.12 that Beacon does not include any cryptographic

value in its TLV, which clearly indicates that it is susceptible to LLDP packet

based threats. Length field in Port TLV is used for validation of LLDP packet at

28

Algorithm 5 ONOS LLDP packet parsing
Require: ethFrame, event.dpid, event.port

1: procedure onos_LLDP_Parse
2: ethlldp ← Extract(ethFrame)
3: if ethlldp ̸= NULL then
4: sysDescPort ← Extract(ethlldp.PortTvl)
5: sysDescDpid ← Extract(ethlldp.ChassisTvl)
6: if isNotNull(sysDescDpid) then
7: addLink(event.dpid, event.port, sysDescDpid, sysDescPort)
8: end if
9: end if

10: end procedure

the controller.

Figure 2.12: Beacon LLDP frame structure

In algorithm 6, LLDP packet processing on Beacon controller is discussed.

After LLDP payload extraction, port value is extracted from port TLV. This value

is used to validate valid LLDP packet. After extraction of source dpid, a link is

added from source to destination.

In Figure 2.13, HPE-VAN controller generated LLDP (infect HP claims that it

is BDDP) frame is represented. This frame use one of the two destinations MAC

address. One is used for direct link while other denotes indirect link. Indirect

link has one or more non-OpenFlow based switches. Ethertype field in frame is

different from other controller implementation i.e. 0x8999. LLDP packet contains

security hash. But that is fixed for controller’s current cycle, so attacker put that

directly in poisoned LLDP packet.

29

Algorithm 6 Beacon LLDP packet parsing
Require: ethFrame, event.dpid, event.port

1: procedure beacon_LLDP_Parse

2: ethlldp ← Extract(ethFrame)

3: sysDescPort ← Extract(ethlldp.PortTvl)

4: if sysDescPort ̸= NULL then

5: if ethlldp.PortTlv.length = 4 then

6: sysDescDpid ← Extract(ethlldp.Uk1Tvl)

7: addLink(event.dpid, event.port, sysDescDpid, sysDescPort)

8: end if

9: end if

10: end procedure

Figure 2.13: HPE-VAN LLDP frame structure

Figure 2.14 provides an insight of hash calculation in HPE-VAN. System time

is multiplied with a prime number i.e. 7867 to get a secure key. This secure key

is added to a hash of local IP address to generate a hash of 16 bytes. Due to its

static nature, an attacker does not need to generate this hash locally.

30

Figure 2.14: Hash calculation for HPE-VAN LLDP frame

Algorithm 7 HPE-VAN LLDP packet parsing
Require: ethFrame, event.dpid, event.port, calculateHash

1: procedure hpvan_LLDP_Parse

2: if ethFrame.ethType = 0x8999 then

3: if ethFrame.dstMac = 01:80:C2:00:00:0e or 01:1b:78:e9:7b:cd then

4: ethlldp ← Extract(ethFrame)

5: sysDescPort ← Extract(ethlldp.PortTvl)

6: if sysDescPort ̸= NULL then

7: sysDescDpid ← Extract(ethlldp.Uk1Tvl)

8: receivedHash ← Extract(ethlldp.sysDesTvl)

9: if receivedHash = calculateHash then

10: addLink(event.dpid, event.port, sysDescDpid, sysDescPort)

11: end if

12: end if

13: end if

14: end if

15: end procedure

The reader can use Algorithm 7 to understand BDDP packet parsing at the

HPE-VAN controller. Two different MAC addresses are used to identify different

type of packets. One for direct links and other for indirect link. After extraction

of Mininet payload, port value is extracted. For a valid port number dpid and

security hash are extracted. If recevied hash and calculated hash are equal then a

31

Controller(Ver.) Conditional Tlvs Information Source
TlvCnt CTlv PTlv TTlv SDTlv Dpid Port

POX(0.2.0) 3 3 3 3 CTlv PT lv
Ryu(4.12) 3 3 CTlv PT lv

OpenDayLight(3.0.7) 3 CTlv PT lv
Floodlight(1.2) 3 Uk1T lv PT lv
Beacon(1.0.4) 3 3 Uk1T lv PT lv
ONOS(1.9.0) 3 CTlv PT lv

HP VAN(2.7.18) 3 Uk1T lv PT lv

Table 2.2: Summary table for different controllers

link is added.

Table 2.2 presents a summary of considered controllers. Each controller is

summarized for conditional TLVs and information sources. The conditional TLVs

are examined for validation of LLDP packet. Source information for the link is

extracted from LLDP packet. Destination information is extracted with event

information. Conditional TLVs are TLV count, ChassisId TLV, Port TLV, TTL

TLV, and SystemDescription TLV.

2.3.2 Threat Model

Suppose an LLDP packet with false information is injected to an OpenFlow-

enabled switch, then it will be forwarded to the controller in the same way as

any other genuine LLDP packet. The poisoned LLDP packet creates a false view

to the controller which may lead to packet drop or eavesdropping, and such pack-

ets are also used to perform DoS attack. Few formal notations as it is seen below

are discussed to define the threats formally.

32

• Controller C = {V s, δ}

• View states V s = {ϕ, GV ′, GV }

• Transition_function δ :< LLDP > × V s → V s

• Global view GV = < S,L >

• Partial global view GV’ = < S,L′ >

• < LLDP > = < CTlv, PT lv, TT lv, UK1T lv, UK2T lv...UKnT lv,

ELLDP >

• Switch set S = {s1, s2, s3....sn}

• Link set L = {l12, l21, l23, l32....lmn, lnm}

• Partial link set L′ : L′ ⊂ L

• T lv = < Type, Length, V alue >

Formal Description

Here, we consider the controller with LLDP packets and global view only.

Hence the controller (C) can be defined as the view states (V s) and the transition

functions (δ). Different view states can be empty state (ϕ) or partial global view

(GV ′) or global view (GV). At any moment, the controller has a view state,

and it consumes a LLDP packet to create another view state. lmn specifies a

unidirectional link between switch m and n, and {, , } and <, ,> are unordered

and ordered sets respectively.

• δ(< LLDP >, ϕ) → GV ′

• δ(< LLDP >, GV ′) → GV ′

• δ(< LLDP >, GV ′) → GV

Transition_function

A controller with view state ϕ or GV ′ consumes LLDP packet and may transit

to another GV ′. Among various GV ′, at one GV ′ the controller consumes LLDP

33

and creates the global view GV . In link discovery process, three kinds of threats

are possible called LLDP poison, LLDP flooding and LLDP Replay.

The LLDP packets are generated for each port on each switch. These packets

are reached to target switch, the switch forwards them to the controller with the

help of a dedicated flow entry or default miss entry. The major threats for the link

discovery are Replay, Poison, and Flooding [55] attacks. Let’s investigate these

attacks with the help of Figure 4.1, which consists of three OpenFlow switches,

switches S1 and S2 have three hosts attached to each of them. The two hosts

are malicious, e.g., either a person with malicious intentions is operating them or

malicious application are installed on them. The switches S1 and S2 are connected

with S3, and the dash line between S1 and S2 represents a fake link.

Controller: C0

Switch: S1 Switch: S2

Switch: S3

Figure 2.15: Topology for the link discovery attack vector

Poison Attack (PA): The attacker creates fake LLDP packets and send

it to the attached switch. The switch is unable to differentiate genuine and fake

packets, thus the packets are sent to the controller. The controller also has no

way to find the source of the packet and it cannot evaluate the integrity of the

packet. In this way, a generated false link creates topology poison. For instance

in Figure 4.1, if an attacker at S1 creates an LLDP packet containing information

like Chassis id is 2 and port is 3, then the switch would forward it to the controller.

The controller makes a unidirectional link between S2 to S1.

34

• δ(< LLDP P >, GV ′) → GV P

• δ(< LLDP P >, GV) → GV P where GV P ̸⊂ GV

• GV P = < S,LP >
∪

< SP , LP > where SP ̸⊂ S and LP ̸⊂ L

LLDP Poison

If a poisoned LLDP packet LLDP P is consumed by the controller (C) with

GV ′ or GV , it creates poisoned global view (GV P). Each switch uses a flow entry

which forwards LLDP packets to the controller, and the entry can be used to flood

LLDP packets towards controller. Here, m1, m2 are match entries, and a1, a2 are

actions specified on OpenFlow protocol.

Flooding Attack (FA): When a controller receives a fake crafted LLDP

packet, it computes logic. Hence when an attacker sends a flood of LLDP packets,

e.g., 50,000 packets per second, the resource consumption at controller increases

rapidly, and it negatively effects the benign packets service rate. Additionally,

these large number of fake LLDP packets waste switch to controller bandwidth

and controller CPU cycles.

• < LLDP > moves from DataP lane→ ControlP lane iff matching flow entry

Fe exists

• Fe = < M,A > where M = {m1,m2, ..mn} and A = {a1, a2, ..an}

• If Fe exists then all packet with M moves from DataP lane→ ControlP lane

LLDP Flooding

Replay Attack (RA): Due to LLDP packet propagation to each port on

a switch, the attached hosts also receive LLDP packets. However, if one of the

attached host send a received LLDP packet from some other host that is attached

to another switch, then the receiving switch and the controller has no way to

identify the source of that LLDP packet. For instance, if a malicious host at

switch S1 receives LLDP and share it with malicious host attached to S2, then

the host at S2 send the LLDP packet on local port to S2, and again S2 sends the

35

received LLDP packet to S1 with its malicious host. Finally, S1 and S2 will send

these packets to the controller, and the controller confirms that S1 and S2 have a

direct link.

• < LLDP > packet generated at the time ‘t’ is < LLDPt >

• [δ(< LLDPt >,GV ′)→ GV P]t′

• where t′ > t+ latency

LLDP Replay

Sometimes an attacker captures the LLDP packet generated at time t, and

inject the same packet through the same or any attached node, and if the controller

consumes it at time t′, then it will generate a poisoned view. It is assumed that the

packet’s content are kept same otherwise it will become the LLDP Poison instead

of LLDP Replay attack.

In SDN, there is no robust mechanism to verify the authenticity and integrity

of the LLDP packets. It is the responsibility of controller to secure the LLDP com-

munications. The LLDP communication cannot be secured with Transport Layer

Security (TLS) because TLS secures only the switch to controller communication

and vice verse. At the edge switches, the end hosts are attached. If a host with

malicious intention sends an LLDP packet to switch, the switch has no clue to

differentiate. It forwards the poisoned LLDP packet to controller. The controller

has to identify genuineness of received LLDP packet to obtain a correct view.

Manifestation of Attacks

Effects of described attacks are ranging from a fabricated link to controller finger-

printing, which leads to wastage of network resources.

Fabricated Link: Replay and Poison attacks create fabricated links. Any

such fabricated link poison the topology, which effects topology aware applications,

e.g., load balancer.

Controller Fingerprinting: If a controller generates and sent LLDP packets

to each port, the host also receives these LLDP packet. Each controller have

36

different LLDP packets [56] which make the easy guess for controller identification.

Resource Wastage: In Flooding attack, the controller receives large number

of LLDP packets, and the processing of these packets waste controller CPU cycles.

These packets traverse from switch to the controller over TCP/TSL layer, hence

it causes bandwidth wastage. When OF-switch is configured with TSL to ensure

security, a large amount of computation has to be done to encrypt the fake LLDP

packets, this further increases the resource consumption at switches and controller

due to encryption/decryption process.

2.3.3 Attacker’s Approach

An attacker can proceed with the knowledge of LLDP packet format and parsing

algorithm employed by the controller. Each controller generates unique LLDP

packets. Some LLDP packets do not include any security hash, therefore an at-

tacker can place a poisoned LLDP packet directly to the local network interface.

For the LLDP packets that include hash, to break security for such controllers

an attacker can takes help of local instance of the same controller’s library. The

overall structure of the attack mechanism is shown in Figure 2.16. The attacker

takes help from packet parsing algorithm and local library to build poisoned LLDP

and send it to the nearest switch. The switch to controller communication follows

OpenFlow standard. In a nutshell, two kinds of attack are possible Rcraft and

Lcraft.

Figure 2.16: Basic setup to perform link discovery attacks

Rcraft: (row craft) In this attack, attacker craft poisoned LLDP packet

with the help of LLDP packet format and LLDP packet parsing algorithm of a

37

given controller. This crafting is possible only if the controller does not include

any library generated content which is completely unpredictable. After generation

of such poisoned LLDP packet, the attacker places it on an interface which is

directly connected to an OpenFlow-enabled switch. An attack is created in the

same way for POX, Ryu, ONOS, Beacon, and HPE-VAN. HPE-VAN includes a

library generated security hash but it is static, so its security could be broke.

Lcraft: (craft using a local library instance) Some controllers, e.g., Open-

DayLight and Floodlight, uses more secure way by generating dynamic content in

LLDP packet. To poison these controllers, the attacker needs the knowledge of

library which is used to build LLDP packet. We performed reverse engineering to

obtain important details. We use the same library on the local machine to create

a poisoned packet with desired changes. This packet is kept on a local interface to

forward it to switch.

Figure 2.17: Attack details for OpenDayLight controller

Figure 2.17 shows the attack strategy on the OpenDayLight controller, and

JAVA decompiler is used to obtain the source of building function for LLDP packet.

38

Secure key is extracted, and a MD5 function from the same controller library is

used to build poisoned packets. Some shared object files, i.e., libpcap.so and

libjnetpcap.so, are used to send Mininet frame containing LLDP directly on a

network interface.

Attack details for Floodlight controller is shown in Figure 2.18. As the source

code is available, some code is taken directly to build LLDP packet and use network

library to send a packet. The Floodlight controller includes some dynamic content,

but it is static.

Figure 2.18: Attack details for Floodlight controller

We performed LLDP Poison, LLDP flooding, LLDP Replay attacks on the

topology shown in Figure 2.19. All three attacks are performed on each type of

controller. It is also observed the effect of these attack on the Mininet [57] emulator

as well as a physical test bed. Table 2.3 briefs about configuration parameters

used while performing the attacks. Table 2.4 shows the complete information

about different types of attacks carried out on various controllers and required

attack type. S1, S2, S3, and S4 are the OpenFlow-enabled switches, and C0 is

an SDN controller. We explore seven specified controllers to find vulnerabilities.

The attacker operates using the host which is attached to switch S3.

To perform LLDP Poison, the attacker crafts an LLDP packet with information

such as ChassisId and PortId. In other words, the packet asserts that it has been

created for switch S4 and forwarded to the port 3. The attacker has sent this

39

Figure 2.19: Attack topology

packet to switch via its local interface that is directly connected to the switch.

The switch S3 (OpenFlow-enabled) reads the packet and send it to the controller

in PACKET_IN message. The controller parses the message to get event source

like port two on switch S3. It also explores the payload and gets LLDP packet.

Now the controller creates a link between port three on switch S4 and port two

on switch S3.

Resource Configuration
Victim/Attacker OS UBUNTU 16.04LTS(64bit)∗

Victim configuration 4CPUs and 8 GB
Attacker configuration 4CPUs and 8 GB
Attack traffic 50000 Packet/Sec
Software switch OpenVSwitch(2.5.0)
Hardware switch HP4506R
Network 1 Gbps

Table 2.3: Attack setup

An attacker also sends a large volume of LLDP packet, i.e., 50,000 packets

to switch S3. The switch forwards these packets to the controller with ready

flow entry. Although we perform attacks on each controller, Figure 2.20 presents

experimental evidence for CPU utilization during standard load, LLDP flooding,

and regular, again at the POX controller only. In our scenario, the POX controller

is hosted at Intel Core i5 CPU 650 @ 3.20GHz machine with 4GB RAM and the

operating system used is UBUNTU 16.04LTS 64bit.

To perform LLDP Replay attack, the attacker captures LLDP packet at one

40

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 u

til
iz

at
io

n(
%

)

Time(Seconds)

Figure 2.20: CPU utilization during LLDP flooding

of the hosts. The captured LLDP packet is transmitted after some time to the

controller via an attached switch. Table 2.4 shows that apart from OpenDayLight

and Floodlight controllers, all other controllers consume a delayed LLDP packet

and produce a poisoned view.

Table 2.4 illustrates security strength of controllers against LLDP Poison (LP)

, LLDP Replay (LR), LLDP flooding (LF) attacks. RC (Row Craft) and LC

(Library Craft) are two classes of attacks which are used to perform the security

attacks on topology in SDN. In RC, the attacker uses LLDP packet information

and parsing algorithm to perform the attack, while in LC the attacker uses a

library of the controller to perform the attack. Few controllers (e.g., Floodlight,

OpenDayLight, and HPE-VAN) attach a hash to the LLDP packets. To perform

the attack on these controllers, the library information is needed, which may have

the information about the hash generation algorithm (or a secure static key) that

is required for the successful attack. To understand more about how attacks can

happen on different controllers, please refer to [56].

POX, Ryu, and ONOS has no security content in their generated LLDP pack-

ets, hence these controllers are prone to attacks. The OpenDayLight controller

generates an MD5 hash of a string, i.e., ‘openflow:1:2’, which an attacker can also

create if she knows the MD5 library and a secret key. Both the information can

be achieved, if an attacker performs reverse engineering to the controller code.

41

Hence, having static hash key won’t help to protect from such attacks. In Flood-

light controller, local machine interfaces are required to calculate the hash, hence

the attacker is not able to compute the same hash on the local machine. But once

the hash is calculated, it is kept same for further LLDP packets. The attacker has

an opportunity to put the same hash in fake crafted LLDP packets. In case of

HPE-VAN, same mistake is repeated for all the packets, and same hash is used.

Hence, an attacker can copy and use the same fake LLDP packets. A point to note

in OpenDayLight is that hashes for each switch port are separate, but in case of

Floodlight and HPE-VAN hash for each LLDP packet is same. In a nutshell, most

of the industry and academic grade controller are insecure, specifically against the

LLDP-based threats.

Controller(Ver.) Vulnerability LLDP Attack Attack
LP LF LR Type

POX(0.2.0)[8] No hash 3 3 3 RC
Ryu(4.12)[9] No hash 3 3 3 RC

OpenDayLight(3.0.7)[10] Static hash 3 3 LC
Floodlight(1.2)[11] Static hash 3 3 LC
ONOS(1.9.0)[13] No hash 3 3 3 RC

HPE-VAN(2.7.18)[14] Static hash 3 3 3 RC
Beacon(1.0.4)[12] No hash 3 3 3 RC

Table 2.4: Different controllers with attack vector

The possible cause of these attacks are failing to check source authentication of

the received packet, and failing to verify the integrity of packet, static content and

constant flow entry. For instance, if a controller is unable to identify the source

of LLDP packets, and the LLDP packet holds static content then the controller is

prone to Replay attack. If the controller is unable to identify a source of LLDP

packets, fail to check the integrity of LLDP packet, and the LLDP packet have

static content, then Poison attack may happen. If the switch has a constant flow

entry to pass LLDP packets to the controller then flooding attack may happen [56].

42

2.3.4 Orthogonal Research

Due to the prominent features of SDN such as dynamic resource management

and centralized control, SDN can significantly improve the data communication

and security in the underlying network. Hence, the use of SDN paradigm is be-

ing envisioned in various next generation networks such as Internet of Things

(IoT)[58, 59], cellular networks (e.g., 5G)[60, 61], and intelligent transportation

system (ITS)[62]. Authors propose an integrated framework consisting of SDN and

edge computing application, which can enable dynamic orchestration of network-

ing, caching, and computing resources to improve the performance of applications

for smart cities. The topology creation and topology management at controller

is one of the key function in SDN for efficient networking. However, the decou-

pling of control and data planes also opens SDN to various security attacks such

as Distributed Denial of Service (DDoS), packet injection, and topology discovery

attacks [50, 63], thus limits the applications of SDN. Topology discovery attack

affects the visibility of the network by exploiting different core functionalities of

the SDN controller. To target LLDP based threats, few attempts in history were

also made. In rest of this section, we provide a brief overview of relevant and

substantial state-of-the-art efforts that are done for the mitigation of topology

discovery attacks. Mainly, these approaches are based on the inclusion of hash or

static binding.

In existing deployments[8–14], the link discovery is performed with LLDP/BDDP

packet movements. The controller generates LLDP/BDDP packets for each switch

on each port. These packets are wrapped in OpenFlow packets. Each receiv-

ing switch unwraps packet and sends to the described port. A dedicated link

is connected to the port to another port on another switch. Upon receiving an

LLDP/BDDP packet, a switch sends to the controller after wrapping in Open-

Flow message. Controller discovers the link with information within the packet

and information coming with the packet. This entire process is commonly known

as OpenFlow Discovery Protocol (OFDP). OFDP is a non-standard and vendor

dependent protocol as we already seen in Section 2.3.1.

Authors in [64] suggest a unique variant, which is an extension to OFDP, i.e.,

43

OFDPv2. In OFDPv2 LLDP packets are only generated as one for each switch

instead of each port on each switch. It is quite simple but reduces the number of

LLDP packet from the controller to switch drastically.

TopoGuard [53] identifies the cause of LLDP packet based threats as a check

failure in integrity and origin of the LLDP packet. It also refers that we have to

stop any host to participate in LLDP packet propagation to stop the attack. To

prove integrity and origin, an Hash-based Message Authentication Code (HMAC)

TLV is added into the LLDP packet. But HMAC is calculated once, and it is

used forever. Hence it suffers from LLDP Replay attack. This technique uses

default host traffic, i.e., DNS and ARP, to find hosts, but if malicious host stops

all such traffic then this process fails. Furthermore, the LLDP flooding attack is

not considered at all in this solution.

SPHINX [65] uses an abstraction of flow graphs generated by PACKET_IN

and FEATURES_REPLY messages. Flow graphs are used to validate all the

network updates and the given constraints. The LLDP Poison detection technique

uses static switch-port bindings to prevent LLDP Poison attack. Thus it does not

support the SDN dynamic evolution.

OFDP_HMAC [66] uses HMAC authentication to provide both integrity and

authentication. The HMAC is added to each LLDP packet. The dynamic value of

the key is used to prevent the LLDP Replay attack. This detection technique is

not addressing LLDP flooding attack, and it exhibits resource penalty to produce

HMAC for each LLDP packet.

ESLD [67] only generates LLDP packet for non-host ports on each switch. But

the approach is based on host traffic, and an attacker can forge its behavior. Also,

a key-based hash is sent to each packet, which is time-consuming.

sOFTDP[68] suggests a technique to secure the link discovery process. If any

switch is added to topology, LLDP packet is generated and sent to switch. The

LLDP packet containing a hash value instead of clear MAC address. After initial

discovery, no LLDP packets are sent to switches. To prevent from LLDP flooding

attack ‘no flood’ rule is installed in switch after an initial constant time. This

approach requires a change in OpenFlow switch design to support Bidirectional

44

Forwarding Detection (BFD). The race condition between initial flow entry and

LLDP packet is unresolved. The LLDP containing a hash value for MAC address

which is a time-consuming process.

Recently, authors in [69] propose a design of a self-healing protocol for auto-

matic topology discovery and maintenance in SDN. The proposed approach inte-

grates two enhanced features (i.e., layer two topology discovery, and autonomic

fault recovery) in a unified mechanism.

Similarly, authors in [70] propose an approach for rapid recovery from link

failures in SDN by using the local immediate (LIm) and the immediate controller

dependent (ICoD) recovery techniques, which addresses the limitations of OF-

based link recovery approaches. The results show that the proposed approach

reduces the alternate path flow rules by aggregating the disrupted flows using

VLAN tagging.

TEDP[71] or Tree Exploration Discovery Protocol is sending a single TEDP

packet to selected switch for each port. Receiving switch sends the packet to the

controller and all ports. Controller notes the source of the TEDP packet, which is

present in the packet. Topology can be constructed with a series of such packets

received from various switches. This approach is vulnerable to poison, Replay and

flooding attack.

Apart from present deployment of OFDP and LLDP packet in the various con-

trollers, the research community is also putting hard efforts to make efficient and

secure link discovery. Authors in [51] propose ForCES based link discovery which

provides additional computational capabilities to run LLDP at the switch level.

The controller queries periodically to gather the topology information. Authors

in [72] propose a switch agent based topology discovery mechanism. Initially, the

controller generates and sends a multicast message, called TDP-Request. Upon

receiving, the switches change from Standby to either Father nodes or Active node.

Each node collect neighbor information but only Father nodes send the information

asynchronously to the controller. Authors in [73] propose SDN-RDP, a distributed

resource discovery protocol. More than one controllers manage various switches,

hence the proposed protocol works in two phases, one for the controllers announce

45

and another for joining the switches. For each event, packets are moved in various

network entities to form the topology. SHTD [74] is a layer two topology dis-

covery with autonomic fault recovery protocol. Topology discovery is performed

with controller sending a topoRequest message. The propagation of this multicast

message with nodes in four roles, i.e., non-discovered, leaf, v-leaf or core and each

port in four states, i.e., standby, parent, child or pruned discover the topology.

Autonomic fault recovery is performed with the help of managed components and

autonomic manager. The autonomic manager detects the port status to make the

update for managed components.

We can classify existing approaches into two categories, one which is accepting

current OpenFlow specifications[53, 65–67]. In another classification, a certain

change is required in the specifications[68, 69, 72–74]. Table 2.5 compares LLDP

based current specification obeyed solutions to secure the link discovery. We as-

sumes change in OpenFlow specification is adequate.

Approach Authentication Integrity LLDP broadcast Poison Flood Replay
TopoGuard[53] y y y
SPHINX[65] y y

OFDP_HMAC[66] y y y y y
ESLD[67] y y y

Table 2.5: Comparison of different research proposals for security

2.3.5 Inferences

Based on deployed solutions and available literature on the link discovery, few

inferences are made as follows.

• Link discovery is vulnerable to poison, flooding and Replay attacks. So a

new solution is needed to reduce the effects of such attacks.

• Link discovery can be improved on current OpenFlow specifications.

• Current process of link discovery is inefficient. A new variant may increase

efficiency.

46

2.4 Host Discovery at Data Link Layer

Address Resolution Protocol (ARP) is used to get the physical address or Media

Access Control (MAC) address of an available Internet Protocol (IP) address.

Unavailability of authentication and integrity in ARP communication may lead to

exploitation of it for various kind of attacks. For example, a malicious machine

can craft an ARP reply for which there was no ARP request or it can reply to a

request which was originated for some other machine, or it can generate a false

ARP request etc. By doing so an attacker can perform ARP poison, ARP flooding

attacks which lead to Denial of Service attacks, Man-in-the-Middle (MitM) attack

or redirection attacks. In this section, we examine current version of ARP working,

the possibility of these attacks and try to assess their effects on security of Software

Defined Networking (SDN). This will help to utilize the SDN programmbility to

detect and mitigate such kind of attacks.

2.4.1 Current Deployments

Traditional computer network uses TCP/IP model (few layers) for communica-

tion. In this, whenever a computer (source) wishes to communicate with another

computer (destination), the application layer of source computer generates a byte

stream and transport layer converts it into segments using TCP or UDP. Next, IP

layer attaches the IP header which includes source and destination IP address. IP

address is used to uniquely identify a network segment. Based on the IP address

of destination, source computer will figure out if the destination is a part of local

network segment or not. If the destination is on a local network segment, source

computer will look into its ARP table (a table where the responses to previous

ARP requests are cached) to find the MAC address [75–77]. If it’s not there, then

it will broadcast an ARP request to find out the MAC address for the destina-

tion IP. If the destination is on a different network segment then the gateway

will respond. Although the behavior and services of ARP is same in SDN as in

traditional network but due the basic working principle of SDN, the mechanism is

different. Figure 2.21 illustrates the basic steps of ARP communication in SDN.

47

A

B

G

10.0.0.1

00:00:00:00:00:01

10.0.0.2

00:00:00:00:00:02

10.0.0.254 --> 00:00:00:00:00:54

00:00:00:00:00:54

00:00:00:00:01:54

00:00:00:00:01:02

00:00:00:00:01:01

10.0.0.2 --> 00:00:00:00:00:02

10.0.0.1 --> 00:00:00:00:00:01

10.0.0.254

10.0.0.2 --> 00:00:00:00:00:02

S

1

2

3

4

5

6

10.0.0.254 --> 00:00:00:00:00:54

10.0.0.1 --> 00:00:00:00:00:01

C

Figure 2.21: IP address to MAC address translation using ARP

As shown in Figure 2.21, each node has its own IP and MAC address while

switch has three MAC addresses. In SDN, the switch forwards a packet to the

destination only if it has a matching flow entry. If a packet is unable to match

with any stored entries, the packet is directed to the controller. So sometimes

ARP packet may visit controller C. For given topology, we are assuming switch

will forward data to a relevent port with the consultation of the controller. Initially,

each host if configured with Dynamic Host Configuration Protocol (DHCP), will

obtain the own IP address from gateway G, so each host has gateway IP-MAC

pair in own ARP table. Gateway G also has the pair for both the hosts because

it is serving as DHCP server in the network. DHCP process is out of context, so

we are omitting the details here. When host A needs to communicate with host

B, it generates ARP request such that “who-has 10.0.0.2 tell 10.0.0.1”. Switch S

will receive this broadcast message and forward it to all ports except receiving

port. Host B updates its ARP table with 10.0.0.1 —> 00 : 00 : 00 : 00 : 00 : 01

entry assuming this entry will be needed in near future. Host B will respond with

a unicast message such as “10.0.0.2 is-at 00 : 00 : 00 : 00 : 00 : 02” to host A via

switch S. After receiving ARP reply host A updates its own ARP table with entry

10.0.0.2 —> 00:00:00:00:00:02. In this figure, order for each entry is assigned a

positive number, where larger number denotes later in sequence. MAC entry at

48

G depends on DHCP request arrival at G. Gratuitous ARP is a mean which is

sometimes used to inform the receivers regarding information like change of L2

address or duplicate L3 address detection.

ARP frame must be considered to understand things more precisely in ARP

communication. Figure 2.22 illustrates an ARP frame structure. Given illustra-

tion is the total of forty-two bytes, which contains fourteen bytes Ethernet header

and twenty eight bytes long ARP payload. The Ethernet frame containing desti-

nation MAC Address, source MAC Address, and frame type. In the case of ARP

communication, frame type is set to 0806. ARP payload starts with hardware

type which is 0001 for Ethernet. Subsequently, the protocol type is set to 0800 for

IPv4. Next, hardware address length is specified which is 06 for Ethernet MAC

addresses. Protocol address length is set to 04 for IPv4 address. If the payload is

ARP request packet then 0001 is used, and 0002 is used for ARP reply payloads as

an operation code. Next field is dedicated to source MAC Address following with

source IP address. A source is a machine which initiates ARP communication. It

follows with destination MAC and IP address.

2.4.2 Threat Model

Figure 2.22 of ARP frame infers that packet is not containing any field to ensure

integrity and confidentiality. It also means that there is a chance to exploit ARP

based communication. ARP packet based threats are ARP Poison and ARP flood-

ing. In this section, we go to deep understanding of these threats and manifestation

of the attack.

Communication parties maintain MAC table as ARP list. Whenever commu-

nication happens, either MAC entry is available in ARP list, or ARP request is

generated. In response, ARP reply carries desired MAC entry. As a formal de-

scription, ARP system S can be described as a collection of ARP list ARPL and

a transition function δ. ARP list ARPL is a set of ARP entries. The transition

function δ is a mapping from ARPL and ARPE to ARPL.

49

 --
 |<--Byte-->|<--Byte-->|<--Byte-->|<--Byte-->|<--Byte-->|<--Byte-->|
 --
 |ETHERNET FRAME HEADER: ---Destination MAC Address--- |
 --
 |ETHERNET FRAME HEADER: -----Source MAC Address----- |
 --
 |EFH: -Frame Type- | 0806 for arp req/rep and 0800 for ip(tcp/udp)

 |AH: --H/W Type-- | 0001 for ethernet

 |AH: -Protocol Type- | 0800 for IPv4

 |AH: -HAL-| hardware address length 06 for ethernet nic address

 |AH: -PAL-| protocol address length 04 for IPv4 address

 |AH: Operation Code | 0001 for ARP request and 0002 for ARP reply

 |ARP HEADER: --------Source MAC Address-------- |

 |ARP HEADER: --Source IP Address-- |

 |ARP HEADER: -------Destination MAC Address-------- |

 |ARP HEADER: -Destination IP Address- |

Figure 2.22: An ARP Frame

• System S = {ARPL, δ}

• ARP list ARPL = {ARPE1, ARPE2 ... ARPEn}

• ARPEi = ith ARP entry in ARPL

• Transition_function δ : ARPL × ARPE → ARPL

Formal Description

Transition function can be interpreted as a union of new ARP entry ARPE

with existing ARP list ARPL.

• δ(ARPL, ARPE) → ARPL ∪ ARPE

Transition_function

50

ARP Poison Attack:

ARP entries are not validated against authentication and integrity hence vul-

nerable to Poison attack. A poisonous ARP packet is treated the same as a benign

ARP packet. A poisonous ARP entry ARPE(p) is also added to ARP list ARPL.

Afterward, any communication uses false IP to MAC binding.

• δ(ARPL, ARPE(p)) → ARPL ∪ ARPE(p)

ARP Poison

ARP Flooding Attack: If a single poisonous ARP packet can be added

as ARP entry in ARP list, then multiple ARP entries can also be added. An

attacker may send a massive number of fake ARP packets to a targeted host.

This kind of attack commonly known as ARP flooding attack. Or we can say

like if it is true that every ARP entry ARPE is added to ARP list ARPL then

it must also true that there will not be a single case for which a poisonous ARP

entry ARPE(p) is denied to added in the list. The speed of the attack probe is

restricted by underlying network capabilities, target host process capabilities, and

the attacker’s programming skill.

• If it is true that ∀[δ(ARPL, ARPE)→ ARPL ∪ ARPE]

• Then it must be true that ∄[δ(ARPL, ARPE(p)) ↛ ARPL ∪ ARPE(p)]

ARP Flood

Manifestation of Attacks

ARP packet based attacks are simple to perform but have significant effects. Most

prominent effects are Man-in-the-middle (MitM) attack and resource wastage.

ARP Poison for a single machine drop packets.

Man-in-the-middle attack: Two machines poisoned at the same time to

eavesdrop the traffic. An attacker set his machine as the middle of two targeted

machine. In the Section 2.4.3, exact implementation for the same is demonstrated.

With this attack, unencrypted data can be looked by the attacker.

51

Resource Wastage: ARP flooding attack installs a huge number of ARP

entries in the target machine. Huge ARP entry needs more time to be looked.

This also overruns the capacity of a MAC table in the target machine. After a

hard limit, the operating system removes certain entries. So next time any benign

ARP entry is uninstalled due to the attack, infers to new ARP request from the

machine or a reply from another machine. Extra processing, extra packets certainly

have a cost associated in terms of CPU cycle and network bandwidth.

Hinder Communication: An attacker can poison the victim to stop the

communication with pear. Suppose A and B need to communicate. The attacker

M poison A’s MAC table to indicate a random MAC address as of B’s. So whenever

A generate traffic for B, traffic will move toward random MAC not towards B.

Because B will not accept traffic generated for other than it.

2.4.3 Attacker’s Approach

ARP table is used by each host to fill destination MAC address in the frame.

Figure 2.22 specifies details of an ARP frame. If someone corrupts ARP table, it

leads to a problem like a Man in the Middle(MitM) or packet drop. ARP Poison

is usually used to perform MitM because if packets are dropped using poisoned

ARP table, then upper layer will re-initiate ARP request. In this section, we will

explore the feasibility to perform ARP poison. To create any ARP request or

reply, we have to follow the details given in Figure 2.22. By creating a frame with

required specification and putting it on a network interface helps the attacker to

perform the attack.

Attacker who wants to perform an ARP Poison attack can think of generating a

false ARP reply to poison the ARP table but will not be allowed to do so because

whenever an ARP request is generated, a neighbor entry is also created at the

host. A neighbor entry is a data structure which holds target IP address of sent

ARP request. If a host receives an ARP reply will for which no neighbor entry is

created, ARP reply will be dropped silently[78]. However, the attacker can wait

for some ARP requests and can send crafted ARP reply to it. Now there will

two ARP replies, one from the attacker and other from genuine node, ARP reply

52

received later will be fixed. Now in this case attacker have to wait to poison the

ARP table.

The attacker performs MitM only if some ARP requests are generated. Like

if malicious host M have to be in the middle of host A and host B, as shown in

Figure 2.23. It has to poison both A’s and B’s ARP table in displayed manner.

For this, host M have to wait for A’s ARP request for B and B’s ARP request for

A.

A

B

M

10.0.0.1

00:00:00:00:00:01

10.0.0.2

00:00:00:00:00:02

00:00:00:00:00:10

10.0.0.10

10.0.0.2 --> 00:00:00:00:00:10

S

10.0.0.1 --> 00:00:00:00:00:10

C

Figure 2.23: ARP tables in Man-in-the-Middle attack

Instead focusing on ARP reply, an attacker concentrates on ARP request. If

any host receives an ARP request for its own IP address, its ARP table gets

updated with the details received like source IP, source MAC, with no authen-

tication. Suppose in Figure 2.23 attacker M have to poison A’s and B’s ARP

table. The attacker will craft two ARP request. In the first request, all fields

are arranged like “who-has 10.0.0.2 tell 10.0.0.1” with setting source MAC address

to 00 : 00 : 00 : 00 : 00 : 10. Second ARP request looks like “who-has 10.0.0.1 tell

10.0.0.2” with source MAC address to 00 : 00 : 00 : 00 : 00 : 10.

First ARP Request:

ARP, Request who-has 10.0.0.2 tell 10.0.0.1, length 28

53

0x0000 ffff ffff ffff 0000 0000 0010 0806 0001

0x0010 0800 0604 0001 0000 0000 0010 0a00 0001

0x0020 0000 0000 0000 0a00 0002

Second ARP Request:

ARP, Request who-has 10.0.0.1 tell 10.0.0.2, length 28

0x0000 ffff ffff ffff 0000 0000 0010 0806 0001

0x0010 0800 0604 0001 0000 0000 0010 0a00 0002

0x0020 0000 0000 0000 0a00 0001

The first column of above representation specifies the offset. ARP request is

represented in hexadecimal format. ARP request is broadcasted hence first six

bytes are all ‘f’ followed by source MAC address which is 00:00:00:00:00:10 (MAC

of attacker machine). More details or each byte can deduced from Figure 2.22.

By putting first and second ARP request byte streams on network interface of

machine M, performs ARP poison for host A and B.

We have already discussed how ARP table could be poisoned. We will look

further in this section how attacker can perform ARP flooding using aforemen-

tioned technique. ARP table is always referred whenever a new packet is sent to

the target. ARP flooding is a situation in which ARP table is flooded with some

random information. Same is illustrated in Figure 2.24.

To perform this attack, attacker uses same trick as discussed for ARP poison.

But the only difference is that Now he will write a crafted packet with the desired

randomness and burst such packets on interface. Randomness can be inserted from

6th byte to 11th byte (0 is first) and same should be repeated from 22nd byte to

27th byte. Next bytes used for randomness are 28-31.

ARP Request for ARP flood:

ARP, Request who-has 10.0.0.1 tell 10.45.78.23, length 28

0x0000 ffff ffff ffff 12a2 4da1 0030 0806 0001

0x0010 0800 0604 0001 12a2 4da1 0030 0a2d 4e17

0x0020 0000 0000 0000 0a00 0001

54

Figure 2.24: ARP table in ARP flooding attack

Whenever a host’s ARP table is filled with random information, it needs more

time to process a genuine request and resources will be busy in fulfilling un-

wanted ARP requests. There is size imposed on ARP table same as gc_thresh1 ,

gc_thresh2 , gc_thresh3 on linux and then garbage collector will work upon[78].

The garbage collection is a process to free unused data structures.

2.4.4 Orthogonal Research

Traditional solutions for ARP based security threats start with putting static en-

tries in ARP cache. In some approaches, an IP to MAC pairing will be stored using

Simple Network Management Protocol (SNMP) or DHCP. ARP request/reply is

verified against those stored ones. Cryptographic solutions are also proposed to

address the issue. In this section, we discusses few of these approaches.

Arpwatch[79] tool keeps the log for IP/MAC pairings and generates email alert

if pairing is changed along with time stamp. Email analysis is totally dependent

on the ability of network administrator to identify which pairing change will use

to perform an attack. Carnut et. al.[80] proposed Request-Reply Imbalance Al-

gorithm for SNMP capable switches. The article uses statistics on each port to

calculate imbalances in arriving ARP requests and replies. To calculate and pro-

cess each port statistics becomes complex computation. Other SNMP based model

55

is proposed by Hsaio et. al.[81] using data mining techniques to detect ARP based

security threats. Goyal et. al.[82] proposed a solution based on digital signatures

and one-time password in the ARP reply. Secure Address Resolution Protocol[83]

and Ticket-based ARP[84] are other cryptography-based approaches. Involving

digital signature in the process increases overhead. Cisco Dynamic ARP Inspec-

tion uses valid IP to MAC address binding. Each ARP packet will be forwarded

if follows accurate mapping. Trusted database provides this mapping built during

DHCP service[85]. Process rely on DHCP service, so what if static ip addresses

are provided. Nam et. al.[86] proposed MitM-resistant address protocol. In this

protocol, long-term IP/MAC mapping table is introduced along with original ARP

cache. In long-term table, timer is associated with each entry. A new ARP request

will send whenever those timers expire.

Existing solutions of ARP-based threats are either use pre-stored IP/MAC

bindings or cryptographic approaches. In first approach, IP/MAC bindings are

created using DHCP or SNMP protocols. Therefore, in large networks the num-

ber of these bindings are enormous hence, the lookup time increases, and also

leads to resources wastage. The cryptographic approaches require additional com-

putational overhead in complex cryptographic algorithms. Apart from this, the

traditional methods of security are directly applicable but not taking the bene-

fits from the separation of control plane and data plane. In SDN, control plane

(controller) is a programmable plane having a global view of the network.

SDN offers separation of control plane and data plane, so resource intensive

computation is responsibility of controller. Controller runs along with its control

module on any high capacity general purpose computer. Dynamic programming

helps to take countermeasure automatically, if any of such attacks is detected.

Some recent SDN based solution are also discussed. Ding et. al.[87] calculates

the probability of a host being an attacker. ARP packet is processed for feature

extraction. These features are used to calculate some probability to match against

statistically achieved threshold. Mohammad et. al.[88] creates the database using

DHCP reply and use this database to verify any ARP Reply. ARP Poison can

happen due to ARP request as well. SPHINX[65] store MAC/IP bindings using

56

PACKET_IN event. This stored pair will use to validate any incoming connec-

tion. If any deviation from these permissible bindings are observed, this controller

extension will generate alarm.

Alharbi et. al.[89] suggests a NAT alike SARP_NAT to detect ARP Poison

attack. In SARP_NAT each ARP request and reply visit to the controller to be

sanitized. The source protocol address and source hardware address are changed

to fixed one in ARP request. Once ARP request reaches to end host, end host

store safe addresses in MAC table. In response, the end host generates ARP reply

for safe addresses. The controller again intervenes to translate the addresses. The

solution is assuming that ARP Poison can be done using ARP reply. A malicious

ARP request also poisons the ARP proxy table at the controller.

2.4.5 Inferences

After evaluating the existing literature for ARP based threats in both traditional

networking and software-defined networking, the inferences are as follows:

• Current deployed solutions for ARP based threat are insecure, costly.

• Pre-stored IP/MAC binding cannot be a preferable solution.

• Cryptography based solution hinder the performance.

2.5 Summary

SDN uses programmability and openness to produce an optimal result not only

in the new scenario but for traditional threats as well. Topology discovery is an

essential part of the SDN. Various components such as the switch, the link, and

the host must discover accurately to provide beautiful solutions in SDN. This

chapter focuses on the link discovery and data link layer based host discovery.

Current deployments, possible threats, and state of the art research are discussed

to improve the understanding. In the view of listed inferences, solutions for LLDP

threats and ARP threats are needed.

57

As this chapter provides adequate evidence that present deployed and proposed

link discovery is not secure against LLDP poison, Replay and flooding attack. In

the next chapter, a preventive solution is discussed for link discovery.

58

Chapter 3

A Preventive Solution to Secure

Link Discovery

The previous chapter figures out that possible causes for Link Layer Discovery

Protocol (LLDP) threats (LLDP Poison, LLDP Flooding, and LLDP Replay) are

the lack of authentication and integrity mechanism with a static payload. This

chapter introduces a token based preventive approach TILAK to secure the link

discovery process[15]. In the discussed approach, a periodic token is provided by

the controller to each LLDP packet. The same token is used to validate any

receiving LLDP packet. The implementation results for TILAK confirm that it

covers targeted threats with lower resource penalty.

The data plane switches receive OpenFlow messages and update its forwarding

table or respond to the queries. A forwarding table consists of a set of match

attributes, a set of actions, and some statistical data. Every packet arrived at

the switch is compared with a set of matching attributes of every flow entry. A

match satisfying flow entry provides an action to perform, and switch follows the

instruction to drop or pass it on a port. A packet with unmatched attributes makes

the switch to conduct a consultation with the controller or drop the packet as per

some default rules. Links in topology are identified using LLDP messages [50]. A

LLDP message consists of few Type-Length-Values (TLVs). The controller initiates

59

the LLDP communication by generating LLDP packets for every port on each

switch. The switch forwards these packets to the designated port(s). If any switch

receives an LLDP packet on one of its port, it forwards the packet to controller.

Once a controller has LLDP packet content which confirms the source and event

information from a switch, it extracts the destination information. This process

establishes a link between source and destination switches, which helps topology

aware applications. To achieve the view in the existing implementation, LLDP

packets created by different controllers are either not using any security scheme

for ensuring integrity or authentication or it carries a hash field which can not be

considered secure as discussed in previous chapter.

To detect LLDP attacks, several attempts were made in the state-of-the-art

survey [50]. TopoGuard [53] checks integrity and origin of LLDP packets with a

separate Hash-based Message Authentication Code (HMAC) TLV, but it suffers

from LLDP Replay attack. This technique assumes that the malicious host has

to send host traffic, i.e., Domain Name System (DNS), and Address Resolution

Protocol (ARP). SPHINX [65] generates flow graphs to validate with static switch-

port bindings to detect LLDP Poison attack, and OFDP_HMAC [66] uses HMAC

authentication to ensure both integrity and authentication. These approaches

address LLDP Poison and LLDP Replay attacks, but not the LLDP Flooding

attack. Additionally, all methods which are using HMAC always has a significant

resource penalty in both generation and verification processes. TILAK prevents

all attacks with negative resource penalty.

3.1 Foundation

This section explains the overall direction to build a solution. An attacker may

exploit vulnerabilities in Link Layer Discovery Protocol (LLDP) packet processing

to launch LLDP Poison, LLDP Replay, and LLDP Flooding attacks. In LLDP

Poison attack, an attacker crafts false LLDP packets to poison controller’s global

view. The LLDP packets are also received to attached hosts, some of these recorded

LLDP packets may be used to poison controller view later. This kind of attack

60

is termed as LLDP Replay attack. In LLDP Flooding attack, a large number of

LLDP packets are sent to the controller to waste its resources. Identification of

possible causes which let the attack happen, will help to build a robust solution.

Possible causes are authentication check failure, integrity check failure, LLDP

broadcast and reuse of static LLDP packets for the entire period of link discovery.

Authentication Failure(AF): Authentication is a process to confirm the

origin of the communication. In link discovery, the controller and switches don’t

have adequate knowledge to judge the origin of received LLDP packet. The re-

ceived packet also don’t carry any information to prove the source. Hence, when

a switch receives LLDP packets in any non-OpenFlow port, it has to accept and

forward to the controller. Once the controller receives LLDP packet, it also has

to accept for further processing without ensuring the origin.

Integrity Failure(IF): Integrity is a process to examine the tempering in

message since origin. In link discovery, an LLDP packet is generated at the con-

troller pass through two switches and consumed at controller again. The controller

has no way to ensure the integrity of the received LLDP packet. In the solution to

this problem, various hash-based approaches are used. Few solutions encourage a

static hash or a universal hash for each LLDP packet. In other solution, a unique

hash for different LLDP packet is used.

LLDP Broadcast(LB): In the link discovery, LLDP packets are sent to every

port on each switch. Few ports on any switch may be attached to hosts. For those

ports, LLDP packets are waste of computation resource, bandwidth resource and

vulnerable to LLDP packet attack. If any host receives an LLDP packet, it gets

more information about packet payload. And the same can be used as payload for

LLDP Poison, Flooding and Replay attacks.

Static Packets(SP): Mostly the controllers generate LLDP payload once and

use it for the future link discoveries. It may lead to an attack, if anyhow attacker

guesses or brute-force an LLDP packet, for a future attack such information may

be utilized. But if packets are constantly changing then it is less probable to get

attacked.

To target these, this chapter introduces TILAK. The word ‘TILAK’ is a re-

61

Proposal Authentication Integrity Limit LLDP Dynamic Content
TILAK y y y

Table 3.1: TILAK with different threat causes

production from the Hindi language i.e. "Ƞतलक" which generally is used for au-

thentication. Table 3.1 gives brief of working domain for TILAK. TILAK ensures

authentication with limited dynamic LLDP packets. TILAK uses randomness in

LLDP frame for source authentication. For each iteration, a flow entry is installed

to allow LLDP packets with randomness. TILAK sends LLDP packets only at

eligible ports which reduces the overall overhead, even making it negative. The

negative overhead means that after applying security extension to original im-

plementation, the original overhead is reduced. To reduce the probability of a

successful attack, TILAK further removes unidirectional links which are possibly

created by attackers. Emulation results were shown that TILAK successfully pre-

vents LLDP Poison, LLDP Flooding, and LLDP Replay attacks. Additionally, we

present the proof of concept to gain the confidence for TILAK’s methodology.

Assumptions:

Designing a universal solution for any problem is always challenging. The same ap-

plies for TILAK also. Few assumptions are identified which ensure proper working

of solutions.

• The controller with running applications is malware free.

• The switches work based on OpenFlow specifications.

• The switches are malware free.

3.2 TILAK Design

Packets are generated by the malicious hosts which carry the required specifications

to generate the poisoned view. Threats related to the OpenFlow discovery protocol

62

Figure 3.1: Token-based authentication

(e.g., LLDP Poison, LLDP Replay, and LLDP Flooding) are due to the source

authentication and integrity failures. In source authentication problem, the process

is unable to authenticate the source of a received packet. In integrity problem, the

process is unable to verify the integrity of the received packet. Some controllers

like OpenDayLight, Floodlight, and HPE-VAN use hash value to provide integrity

but they fail to do so as we discussed in the previous chapter. In this section, we

discuss a solution which is based on source authentication. Figure 3.1 gives an

overall idea of our proposed token-based authentication technique. The tokens are

source identifiers which are generated and assigned to packets. The packets are

verified with token upon receiving. The valid token holding packets are considered

as genuine. It is because the token is only generated by a particular process

which confirms the source of the packet. The source authentication solution also

relaxes the integrity problem, which we will discuss in Section 3.3.4. TILAK[15]

is a approach in which random token is generated, assigned, and verified to solve

source authentication problem.

Figure 3.2: LLDP packets life-cycle in TILAK

In Figure 3.2, a detailed overview of link discovery process while using TILAK

is illustrated. Initially, random destination Media Access Control (MAC) address

is generated, which is used in Link Layer Discovery Protocol (LLDP) Ethernet

frame as shown in Figure 3.3. In each switch, a flow entry is installed with same

63

random MAC address so that LLDP packets can be redirected to the controller.

These packets are generated by the controller, traverse a link and reach back to

the controller.

Figure 3.3: LLDP packet format for TILAK

TILAK link discovery process
Step 1: Controller (say C0) generates a random destination MAC.
Step 2: C0 installs a flow entry on each switch to allow LLDP packet
with same random destination MAC.
Step 3: C0 generates LLDP packet for each allowed port on each switch.
Step 4: Switch S1 receive one such LLDP packet to transmit on a port.
Step 5: Switch S2 receive this packet and pass it to controller due to
already installed flow entry.
Step 6: C0 creates a link between S1 and S2.

Available Software Defined Networking (SDN) controllers follow nearly the

same sequence to discover the topology. Any destination MAC address could be

chosen which is used for building LLDP packet and installing flow entry. Building

LLDP packet is done once for ever and the LLDP packets are sent subsequently

as shown in Figure 3.4. In this process, the problem lies in the creation of static

packets. The attacker could quickly discover that packet, as each host also re-

ceives LLDP packets. Hence, the attacker generates similar packet as per need

and can use for attack as discussed in the previous chapter. Thus, TILAK uses

two separate threads for sending the packets and creating the links.

TILAK change the original discovery process slightly to solve source authen-

tication problem. The LLDP packets build periodically, so after each fixed time

interval the LLDP packets with new random MAC are generated. To forward

newly created packets, the flow entry installation is done as per random MAC ad-

dress. We can refer to Figure 3.5 for exact event sequence in TILAK. The TILAK

assumes that if at a specified period, the LLDP packet flow entry is changed, then

less chance for an attacker to poison the topology will exist. Topology discovery

could always be poisoned if there is a flow entry in the switch, however, if switch

64

Figure 3.4: Original event sequence in topology discovery

is instructed to change its LLDP flow entry after each period, then there are lesser

chances for an attacker to guess the flow entry and build LLDP packet accordingly.

Figure 3.5: TILAK event sequence in topology discovery

TILAK also addresses the issue from the problem of generating a LLDP packet

for each port on each switch. The problem also means that the host attached to

a switch will also receive the LLDP packet. Hence if an attacker remains on any

of such host, it will know the LLDP packet and also about random MAC. This is

because the discovery cycle is periodic and usually for five seconds, hence the same

flow entry can be used to forward LLDP packet to the controller. The attacker

gets enough time to use the received LLDP packet to build malicious LLDP packet

and then launch the attack. Therefore, instead of sending LLDP packet to each

port, TILAK choose only the ports on which the switches are connected to other

switches. If ports are restricted, then no LLDP packet will reach to any of host,

65

and it will prevent an attacker to get the random destination MAC address.

Figure 3.6: TILAK: Marking of removable ports

TILAK creates an eligible port list as shown in Figure 3.6. Initially, all ports

are eligible, so the LLDP packet is sent on all ports. After some period, it is

checked that if some ports which are not receiving any LLDP packet are liable to

removal from the eligible port list. On next, in each discovery cycle, the LLDP

packets are sent to only eligible ports. In a nutshell, the steps for creating the

eligible port list are as follows.

Step sequence in TILAK for reducing number of ports
Step 3a: At beginning, controller creates a table for eligible port list
< switch, port1, port2.. >
Step 3b: Controller generates the LLDP packet for each port on each
switch.
Step 3c: Controller removes ports from the table which are not receiving
the LLDP packet or no other switch receives LLDP packet sent on those
port.
Step 3d: goto Step 4

What if any malicious host is activated even before the controller starts, will

TILAK fail ? It is because the early awake host will also receive the initial LLDP

packet which can be used to launch the attack. If it has to vary with less proba-

bility, TILAK target few of the suspicious links, so even if an attacker awakes at

the start of the process, a false link is created with the help of a known random

destination MAC address. But if the link from reverse direction is not established

in a same fixed time interval, then the forward link is liable to get removed. For

66

instance, in Figure 2.19, if a malicious host attached to Switch S3 creates a false

link with S4. However, if the link in reverse direction is not formed in the fixed in-

terval of time then the forward link will also be removed. After removing the link,

the port on which such information is received will be removed from the eligible

port list.

Even after all the above improvements in TILAK, one problem still exists. For

instance, if two malicious hosts are booted before the controller. These will get the

LLDP packets from the starting, and both of them can involve in a collaborative

attack. In this case, both the links, i.e., forward and reverse, can be established,

hence no removal will follow. However, doing so, the probability is very low that

two hosts have the idea when the controller will start. In such scenario, we believe

that further investigation is needed.

Any packet can only move to controller from a switch, if there is a matching

flow entry installed in the switch. In case the TILAK installs a new flow entry

after a fixed time interval, the attacker must know about the applied randomness

to get success. Section 3.3.4 demonstrates that the guessing randomness will be

not so easy task. Hence, TILAK prevents LLDP Poison and LLDP Replay attacks.

The same is also true for LLDP Flooding attack. However, a reader may argue

that any unmatched packet will always be sent to the controller. But, in any

production network, a network administrator has full knowledge for all possible

flows. Thus, in the production network, usually “Drop all others” rule can be

applied for unknown traffic.

3.3 Implementation

TILAK prevents Link Layer Discovery Protocol(LLDP) packets based threats to

secure link discovery process. This section discusses the implementation details

and used resources. Further, obtained results are examined and discussion on

correctness analysis is made.

67

3.3.1 Experimental Setup

To validate the implementation, three different topologies are used. Figure 3.7,

3.8, and 3.9 depicts the different topologies, where Table 3.2 presents related

statistics. In different topologies, some switches are fairly large to validate the

proposal. The number of links also include links between the switch and the host

apart from a switch to switch.

Figure 3.7: Topology 1: Tree topology with 4 level of depth and fan-out 4

Figure 3.8: Topology 2: Tree topology with 7 level of depth and fan-out 2

In Figure 3.7, five layers of switches are shown. Each switch is connected to

68

five switches except root switch. For example, S31 - S34 represents four switches in

layer 3 and so on. S4 and S5 switch in layer four and five respectively. H represents

hosts connected to layer five switches. In Figure 3.8, each switch connected with

three switches except root switch. Here eight layers of switches(total 127 switches)

form a tree topology. Figure 3.9 is a Fat tree topology which is typically used in

data centers. Here switches are arranged in three-layer arrangement namely core,

aggregate, and edge switch. In the experiments, two hosts per edge switch are

chosen.

Figure 3.9: Topology 3: Fat tree

Topology Switch Link Port Host
Tree,4,4 85 340 424 256
Tree,7,2 127 254 380 128
Fat tree 80 384 705 64

Table 3.2: Number of Switches, Links, Ports and Hosts

Table 3.3 provides the details of the execution environment for TILAK. It

includes Operating system and testbed details. We tested the implementation of

TILAK in the Mininet [57]. We have access to the private data-center to set up

the victim and attacker.

3.3.2 Performance Metrics

The performance metric is decided to verify implementation for correctness. In this

section, various metrics, the importance, and obtained methodology is discussed.

69

Resource Configuration
Testbed Mininet(emulation)
Victim/Attacker OS UBUNTU 16.04LTS(64bit)∗

Victim configuration 7 CPUs and 16GB
Attacker configuration 7 CPUs and 16GB(private datacenter)
Controller Ryu
Attack traffic 150000 Packet/Sec
Software switch OpenVSwitch(2.5.0)
Network 1 Gbps

Table 3.3: TILAK execution environment

These metrics are further used to understand the obtained results.

Resource Consumption: To run any algorithm computational and band-

width resources are used. In TILAK, the computational resources are used to

compare with original deployed implementation. The computational resources are

the time taken and the memory required to run the algorithm. In the following

subsection, time is used for comparison. Algorithms for the same task can be

compared with the time taken. Lesser the time, better the algorithm. In Ryu con-

troller, dedicated processes are used to LLDP packet sending and link discovery.

In a continuous process, measurement of resource consumption is always depen-

dent on implementation. Here the original switches.py have two separate threads

to maintain the LLDP sending and the link discovery. Some additional code seg-

ment is also executed, but it is restricted to once. Hence, two threads are targeted,

and each thread is invoking an infinite loop which runs periodically. Average time

taken by these loops in one iteration is used as the measurement. After that, a

sum of averaged values is used to generate final resource consumption.

LLDP Packet Construction Time: LLDP packets are generated and used

in the link discovery. In TILAK, an LLDP packet contains a random Media Access

Control (MAC) address. Random MAC generation also takes time. By LLDP

packet construction time, variance in delay can be obtained. It also helps to

identify that modification in LLDP packet is performed in allowable time.

LLDP Packet Verification Time: Once an LLDP packet received at the

controller, it must be verified before adding to the link database. This parameter

helps to identify the effect due to modification performed in an LLDP packet.

70

Once the packet is received, the total time taken is used as this metric.

Initial overhead: In current deployment, flow entry installation and LLDP

packet creation are performed once and at the initial stage. Once a packet is

created, the same packet is used for further iteration. Total time used in such

activities is used as the metric. In TILAK no such activities are performed.

3.3.3 Results and Discussion

To validate TILAK proposal, we present the result analysis in this section. The

SDN network could consist of multiple controllers. On each controller, different

link discovery implementations exist. We choose Ryu, a python based controller.

In this controller, switches.py file is dedicated to the link and host discovery pro-

cess. We compare TILAK (switchesTilak.py) with the original implementation

(switches.py). It will give a resource penalty analysis. Experiments are conducted

with three topologies with and without the solution. Experiments on Mininet [57]

are emulation only, and these are widely accepted in SDN research community.

 0

 5

 10

 15

 20

 25

 30

 35

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU(switches.py)
RYU(switchesTilak.py)

Figure 3.10: Performance comparison

Figure 3.10 shows the resource consumption in different situations. In Figure 3.10,

it is visible that resource consumption by the original implementation is higher

then TILAK irrespective of the topology.

Table 3.4 shows average resource consumption in different situations. Here

one may argue that the shown time is relatively large while few controllers have

71

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

T
im

e(
S

ec
on

ds
)

Different iterations

T1 with Original
T1 with TILAK

T2 with Original
T2 with TILAK

T3 with Original
T3 with TILAK

Figure 3.11: Performance stabilization graph in the different iteration

Topology Ryu (switches.py) Ryu (switchesTilak.py)
“tree,4,4” 20.42 7.63
“tree,7,2” 17.96 12.05
“fat tree” 34.37 23.74

Table 3.4: Averaged resource consumption in second(s)

LLDP cycle time of five seconds. Our work claims that even without a solution,

i.e., switches.py, it took 34.3 sec in a Fat tree. These are emulation result, and

we strongly believe that the original implementations will take decidedly less in

the actual hardware testbed. One thing to notice here is that in every topology,

TILAK is taking less time when comparing with switches.py.

Figure 3.11 gives the idea that how such lower resource consumption is achieved

with TILAK. It illustrates resource consumption in first few iterations. In this,

three different information pairs are shown, one for each topology. We have to

compare the results in each pair which has resource consumption for both with and

72

without the solution. Figure 3.10 is drawn as per these average values. Initially,

the solution in each topology is taking the same time as the time taken in without

solution, but after few iterations, it gets lower as compared to without solution

scenario.

The total time taken to complete an iteration is the sum of the time to install

flow entry in each switch, time to send LLDP packets to all eligible ports, and

time to create link after receiving the LLDP packets. In TILAK, we reduce the

number of eligible ports after Teport time interval. So as per Table 3.2 in Fat tree

topology, initially, 705 ports are discovered for which LLDP packets are created

and sent. But after Teport, 64 ports are declared not eligible. Thus average time

taken in each subsequent iteration is reduced accordingly. In Figure 3.11, we can

see that in Fat tree implementations, the switches.py is taking near to thirty five

seconds constantly. But in switchesTilak.py, initially the time taken to complete

the iteration reaches to thirty five seconds and then it drops to twenty five seconds.

 0

 5x10-5

 0.0001

 0.00015

 0.0002

 0.00025

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU(switches.py)
RYU(switchesTilak.py)

Figure 3.12: LLDP packet construction time comparison

Figure 3.12 shows the time taken in the LLDP packet construction. In this, we

can easily identify that in both, switches.py and switchesTilak.py, the time taken is

almost constant. For instance, the Tree 7,2 topology has taken 0.0001517 seconds

in switches.py, while 0.0001778 seconds in switchesTilak.py. Here the given times

are entirely dependent on the executing environment, but the critical thing to note

is that the time taken by switchesTilak.py is higher then switches.py, and it is due

73

 0

 2x10-5

 4x10-5

 6x10-5

 8x10-5

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0.0002

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU(switches.py)
RYU(switchesTilak.py)

Figure 3.13: LLDP packet verification time comparison

to LLDP packet construction and verification event sequence.

Figure 3.13 represents the time taken in the LLDP packet verification. A

controller verifies LLDP packet upon receiving. As we can see that time taken

by TILAK is higher then the original discovery process, i.e., switches.py. The

reasons for this is LLDP packet verification and construction sequence. As the

TILAK does not introduce any complexity in both, the LLDP packet construction

and the verification of original link discovery process, then how the time is taken

by TILAK is higher than the original solution. The answer lies in the event

sequence of LLDP packet construction and verification as it is shown in Figure 3.14.

Originally, switches.py construct LLDP packet once, and after that only sending

and verification is performed. We know if packets are static then the situation is

prone to attack as discussed in Section 2.3. In TILAK, after every fixed interval

Tflow, a new flow is inserted, and new packets are generated for all the eligible ports.

If packet construction is done before any valid load on the controller, then the time

taken will be fairly shorter. This is because, after Tflow, the newly generated LLDP

packets will surely affect the verification process in the form of a time penalty.

In Figure 3.14, we can see that in TILAK, both LLDP packet verification and

construction is a continuous process.

The TILAK introduces a periodic flow entry installation and LLDP packet

creation. In the switches.py, the sum of these two times are considered as initial

74

tree,4,4

tree,7,2

fat tree

con

ver

con

ver

con

ver

D
iff

e
re

n
t

to
p

o
lo

g
ie

s

Different iterations
RYU(switches.py)

RYU(switchesTilak.py)

Figure 3.14: LLDP packet construction and verification event sequence

overhead because the LLDP packet creation and flow entry installation are non-

periodic processes, and we removed it in TILAK. Figure 3.16 shows such initial

overheads across different topologies. The total initial overhead is directly propor-

tional to the number of switches in which a flow entry will be installed and the

number of ports for which LLDP packets will be created.

One important aspect is that the average time considered in Figure 3.10 accu-

mulates both, the LLDP packet construction time in Figure 3.12 and the LLDP

packet verification time shown in Figure 3.13. As it is depicted in Figure 3.15,

the initial overload is only with switches.py, so it counts zero in TILAK overhead.

Thus in a nutshell, the Figure 3.10 claims that TILAK performs better than the

original link discovery implementation.

Figure 3.16 gives the evidence of preventing LLDP packets flooding. Here,

three different packet streams were generated. The first stream is genuine LLDP

packets on switches.py, the second stream of packets is on the same implementation

but it is a flooded stream. Within a second, 5000 LLDP packets will be reached to

the controller. The third stream is again the LLDP packets flood stream but with

75

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU(switches.py)

Figure 3.15: Initial overhead in the discovery protocol

switchesTilak.py. In this case, we can see in the Figure 3.16 that only genuine

LLDP packets are reached to a controller, and all the forged LLDP packets are

blocked itself on the port due to unmatched flow entry for those packets. Discussed

examples are for the prevention of LLDP Flooding attack, but other attacks like

LLDP Poison and LLDP Replay are also prevented in the same way. It is because

the basic prevention approach is common for all. In the graph, we can see that

the number of packets from different streams and points at which sudden growth

in packets occurs.

The results compared with other controller are always tricky. Specifically, in

SDN environment where a number of controllers are available, each implementa-

tion may have a different topology. Hence, chosen parameter is controller inde-

pendent and available to compare, i.e., computational overheads. TopoGuard is

generating 4.56% overhead while OFDP_HMAC introduces 8%. TILAK success-

fully makes a negative overhead, i.e. (-)40.32%. This negative overhead is only

possible due to limiting the ports for which LLDP packets are generated and veri-

fied. Let’s understand this negative computational overhead. Suppose, P program

is completed in T CPU-seconds in a given environment. A security extension to

P is Ps, which is completed in Ts CPU-seconds. Now we have two scenarios, in

first, where Ts is greater than T , i.e., (Ts >T). It reflects that implementation of

security is added as a resource penalty. In another scenario, where T is greater or

76

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12

N
um

be
r

of
 L

LD
P

 p
ac

ke
ts

Time(Seconds)

Non-Attack
With Attack

TILAK With Attack

 90

 4.5 5.5

Figure 3.16: Evidence for LLDP Flooding attack prevention

equals to Ts, i.e., (T ≥ Ts). It means, in this implementation, improvement of the

algorithm is also happened along with security extension and the total required

time is less than the time required for original implementations without security.

Table 3.5 gives a comparison of all other available approaches with TILAK.

Here, TILAK is the only approach which is preventing all types of LLDP attacks,

i.e., LLDP Poison, LLDP Flooding, and LLDP Replay attack, and it also exhibits

lowest overheads. This is because TILAK does not broadcast the LLDP packets

to all ports after Teport times the new eligible port list is maintained to forwarding

LLDP packet. The resource penalty is negative as it is shown in Table 3.4, due to

limited LLDP packet generation and sent to the selected ports.

Approach Authentication Integrity LLDP broadcast Detection Prevention Poison Flooding Replay
TopoGuard [53] y y y y
SPHINX [65] y y y

OFDP_HMAC [66] y y y y y y
TILAK [15] y y y y y

Table 3.5: Comparison in different solutions of LLDP packet based threats

77

3.3.4 Correctness Analysis

In this section, we establish the correctness of TILAK. The correctness is a measure

that system works correctly or produce expected output within pre-specified and

erroneous inputs. Let’s define the true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) for the system to check its correctness.

TP is a rate at which genuine LLDP packets successfully allowed to reach to

the controller, and TN is the rate at which system successfully stop false LLDP

packets. In case of FP, the rate at which false LLDP packets are reached to the

controller, and FN is the rate at which genuine LLDP packets are blocked to reach

to the controller. Here malicious LLDP packets are LLDP packets generated by

an attacker and genuine LLDP packets are generated by the controller.

Definition 1 (Correctness): TILAK is correct if holding following condi-

tions:

• It must discover all the links (i.e., maximize TP and minimize FN),

• It must prevent the LLDP packet based threats (i.e., maximize TN and

minimize FP).

For instance, if the topology have links as a set L = {l12, l21, l23, l32....lmn, lnm}

and discovered links are represented as a set K = {k12, k21, k23, k32....kmn, knm},

then an essential property must satisfy to prove correctness as ∀x[x ∈ L ⇐⇒ x ∈

K], i.e., all elements which belong to L must also belong to K. The attack only

happens if an attacker have the same randomness which is present in the flow entry.

If random MAC addresses can be represented as A = {a1, a2, a3....ax} and possible

packet generated by attackers as B = {b1, b2, b3....by}. Then the probability that

attacker crafts a packet with identical randomness is P =
|B|
|A|

, and the desired

condition for prevention of the attacks is P ≈ 0.

TP and FN Analysis

The true positive and false negative are constrained with a valid flow entry at

each switch. In TILAK, for each cycle, a flow entry with random destination

78

MAC address is installed. The installed flow entry in each switch allows LLDP

traffic towards controller. After flow entry installation, the LLDP packets are

generated and sent to each switch to be sent to the directed port.

Race condition: A race condition can occur in an installation of a flow entry

and LLDP packets. If flow entry is installed successfully, then only LLDP packets

are sent to the controller. Otherwise, LLDP packet may drop at the switch because

of a flow entry which specifies that drop all packet from unintended flows. It will

help to prevent LLDP Flooding attack. The flow entry and LLDP packet ordering

can be assured with barrier messages provided by OpenFlow [31]. After proper

uses of barrier messages, the race condition will not happen.

Time relations: In TILAK, few time constraints are important to make

sure its correct working. The Tcycle is total time taken to complete LLDP packet

sending cycle. In this cycle, random destination MAC addresses are generated,

and LLDP packet for each eligible port are created and sent. Tflow is the time

for which an LLDP flow entry remains valid. After Tflow, new LLDP flow entry

with new random MAC is installed. Teport is time for the controller to wait before

removing ports from the eligible port list. Tlink is the time for which controller waits

before eliminating unidirectional links and update the eligible port list. Tfhard is

hard_timeout for LLDP flow entry. After Tfhard, the switch will remove the

corresponding flow entry. Few relations must be maintained to achieve desired

results in TILAK.

If Tcycle is more than Tflow, it causes LLDP packet drop. Because maybe some

ports receive LLDP packet after removal of the required LLDP flow entry. So Tflow

must be greater than Tcycle with some minimum threshold Tthsld1.

Tflow > Tcycle + Tthsld1 (3.1)

If Tfhard is set to be less than Tflow, then removal of an LLDP flow entry

happens early. A new flow entry is installed after a while, and in meanwhile,

LLDP packets may drop. The Tfhard will always be greater than Tflow because a

flow entry will remain in the switch until the new flow is generated and installed.

79

Topology Tcycle Tflow Tfhard Teport Tlink

“tree,4,4” 20.42 25 30 35 30
“tree,7,2” 17.96 25 30 35 30
“fat tree” 34.37 40 45 50 45

Table 3.6: Choosen values for different time parameters in second(s)

However, if Tfhard is set to too large, then there are chances that multiple LLDP

flow entries will exist in the switch, which weaken the defense. We can also use

barrier messages to ensure that an old LLDP flow entry remains up to the new

flow entry. Additionally, Tlink must be greater than Tflow to ensure that before

removal of any unidirectional link all flow entries must be installed, which can

only provide with Tflow. In our experiment, we use different time parameters as

it is shown in Table 3.6. All threshold are observationally chosen, and it gives the

desired results.

Tfhard > Tflow + Tthsld2 (3.2)

After successful link discovery, we can think of removal of few ports from the

eligible port list. So Teport must be kept such that before the removal event all

valid link should be discovered.

Teport > Tflow + Tthsld3 (3.3)

Tlink > Tflow + Tthsld4 (3.4)

TN and FP Analysis

The TN and FP are dependent on the strength of an adversary. We phrase it

with the following query “what is the probability that the false LLDP packets will

move to the controller?”. If the provided bit string matches with the flow entry

bit string, then only the packet will move towards the controller. The different

packets that an attacker can generate to the switch in a second at 1GBps network

80

with 100 bytes for an LLDP packet is Total_packet.

Total_packet = 109/100 = 107 (3.5)

Total_packet in 5 seconds = 107 ∗ 5 (3.6)

Suppose the controller install a flow with random MAC address in every 5

seconds. So total possible combination of installed flow entry is Total_combi.

Total_combi = 248 ≈ 2.8 ∗ 1014 (3.7)

The probability of generation of LLDP packet with same random MAC address

is Pr.

Pr ≈ Total_packet/Total_combi (3.8)

Pr ≈ (107 ∗ 5)/(2.8 ∗ 1014) ≈ 2.5 ∗ 10−7 (3.9)

From Equation 3.9, we can observe that to match a single packet, the prob-

ability is very low. Hence we can also conclude that LLDP Flooding is hard to

perform in TILAK.

3.4 Summary

SDN performs link discovery using a nonstandard OFDP and LLDP packet. The

discovery process is prone to LLDP packet based attacks as shown in the previous

chapter. This chapter discusses a novel countermeasure to prevent LLDP based

threats. In a nutshell, this chapter can be summarized in the following points.

• This chapter discusses the design of TILAK, which is a token-based pre-

vention technique for topology discovery threats in SDN. TILAK provides

81

solutions to effectively perform source authentication for LLDP packets to

countermeasure a set of LLDP-based security threats.

• The implementation of TILAK on Mininet network emulator shows its cor-

rectness i.e. resource penalty, LLDP packet construction and verification

time. A True Positive and False Negative analysis give more confidence to

prevent LLDP attacks, on various SDN scenarios.

This chapter presents TILAK as a security solution to link discovery. Each

current solution including TILAK is using a borrowed LLDP packet. Some fields

of the packet are not in use for link discovery in SDN. In the next chapter, a

new protocol is demonstrated which use lightweight packets to discover links more

efficiently and robustly.

82

Chapter 4

A Lightweight Protocol for

Efficient and Secure Link

Discovery

This chapter analyzes the need for an alternative in link discovery considering ex-

isting deployed mechanisms and provided solutions from the research community.

This chapter also discusses an SDN Link Discovery Protocol (SLDP) for efficient

discovery and extraction of topology information in Software Defined Networking

(SDN) networks. SLDP aims to prevent, detect, and mitigate various security

threats such as Poison, Replay, and Flooding attacks. SLDP is implemented on

Mininet emulator, and the results show the effectiveness and correctness of SLDP

concerning topology discovery time, CPU computational time, and bandwidth over-

heads when compared with the traditional OFDP.

In SDN, the global view is generated by performing the switch discovery, the

link discovery, and sometimes the host discovery. Once an OpenFlow-enabled

switch connects to the network, it performs a Transmission Control Protocol

(TCP) three-way handshake with a pre-stored remote socket residing at the SDN

controller. After successful handshaking, both negotiate on the OpenFlow version.

Subsequently, the switch is asked for its capabilities and ports status. These steps

83

help controller to discover the switch with available ports. To perform various

topology-aware activity, link discovery is mandatory. Most of the SDN controllers

use OFDP and LLDP for the discovery process. An LLDP packet is generated at

the controller, and sent to a switch with the forwarding instruction [52] [50]. The

switch receives such a packet, it consults with flow entry and forward the LLDP

packet to the controller. The controller puts source information in the LLDP

packet, and it also receives destination information on successful reception of the

same packet. This information is used to create a unidirectional link. The same

process is repeated in the discovery of each unidirectional link. To discover the

hosts in topology, the controller uses traffic from hosts. Such host discovery is

controller dependent. The controller independent host discovery is also performed

with Address Resolution Protocol (ARP).

In this chapter, we propose an SLDP for efficient discovery and extraction

of topology information in SDN networks[16]. The design of SLDP is motivated

from the need of a secure, lightweight, and efficient link discovery protocol in SDN.

SLDP aims to prevent, detect, and mitigate various security threats such as Poi-

son, Replay, and Flooding attacks, which are due to lack of source authentication,

lack of packet integrity checks, and reuse of static packets. SLDP creates and

maintains the global network topology at SDN controller by using smaller size

and lower number of SLDP packets during the topology discovery process. Thus,

it significantly minimizes the topology discovery overhead in the network. We im-

plemented SLDP on Mininet emulator, and the results show the effectiveness and

the correctness of SLDP concerning topology discovery time, CPU computational

time, and bandwidth overheads, when compared with the traditional OFDP. Ad-

ditionally, SLDP successfully prevent, detect, and mitigate various attacks (e.g.,

Poison, Replay, and Flooding) in different SDN scenarios.

4.1 Foundation

A link discovery protocol can be considered good if it discovers link as quickly as

possible, and it is secure against known threats while consuming less bandwidth

84

and CPU cycles. Further in this section, we provide adequate evidence that mo-

tivates us to design a new link discovery protocol in Software Defined Networking

(SDN).

4.1.1 Security

A secure link discovery in SDN ensures accurate topology discovery performing

prevention, detection, and mitigation from the known threats. It must be adaptive

to zero-day threats also. This subsection starts a quick discussion about security

threats even though already discussed in Chapter 2 in detail. The security threats

are possible due to the controller’s inability to perform source authentication,

packet integrity check, and static packet creation.

Attack Vector

The Link Layer Discovery Protocol (LLDP) packets are generated for each port on

each switch. These packets are reached to target switch, the switch forwards them

to the controller with the help of a dedicated flow entry or default miss entry.

The major threats for the link discovery are Replay, Poison, and Flooding [55]

attacks. Let’s investigate these attacks with the help of Figure 4.1, which consists

of three OpenFlow switches, switches S1 and S2 have three hosts attached to

each of them. The two hosts are malicious, e.g., either a person with malicious

intentions is operating them or malicious application are installed on them. The

switches S1 and S2 are connected with S3, and the dash line between S1 and S2

represents a fake link.

Replay Attack (RA): Due to LLDP packet propagation to each port on a switch,

the attached hosts also receive LLDP packets. However, if one of the attached host

sends a received LLDP packet from some other host that is attached to another

switch, than the receiving switch and the controller has no way to identify the

source of that LLDP packet. For instance, if a malicious host at switch S1 receives

LLDP and share it with malicious host attached to S2, then the host at S2 send

the LLDP packet on local port to S2„ and again the S2 sends the received LLDP

85

Controller: C0

Switch: S1 Switch: S2

Switch: S3

Figure 4.1: Topology for attack vector

packet to S1 with its malicious host. Finally, S1 and S2 will send these packets

to the controller, and the controller confirms that S1 and S2 have a direct link.

Poison Attack (PA): If the attacker creates fake LLDP packets and sends it

to the attached switch. The switch is unable to differentiate between genuine and

fake packets, thus the packets are sent to the controller. The controller also has

no way to find the source of the packet and it cannot evaluate the integrity of the

packet. In this way, a generated false link creates topology poison. For instance

in Figure 4.1, if an attacker at S1 creates an LLDP packet containing information

like Chassis id is 2 and port is 3, then the switch would forward it to the controller.

The controller makes a unidirectional link between S2 to S1.

Controller(Ver.) Vulnerability LLDP Attack Attack
LP LF LR Type

POX(0.2.0)[8] No hash 3 3 3 RC
Ryu(4.12)[9] No hash 3 3 3 RC

OpenDayLight(3.0.7)[10] Static hash 3 3 LC
Floodlight(1.2)[11] Static hash 3 3 LC
ONOS(1.9.0)[13] No hash 3 3 3 RC

HPE-VAN(2.7.18)[14] Static hash 3 3 3 RC

Table 4.1: Different controllers with attack vector

Flooding Attack (FA): If a controller receives a fake crafted LLDP packet, it

computes logic. Hence, if an attacker sends a flood of LLDP packets, e.g., 50,000

packets per second, the resource consumption at controller increases rapidly, and it

86

negatively effects the benign packets service rate. Additionally, these large number

of fake LLDP packets waste switch-to-controller bandwidth and controller CPU

cycles.

The possible cause of these attacks are failing to check source authentication of

the received packet, and failing to verify the integrity of packet, static content and

constant flow entry. For instance, if a controller is unable to identify the source

of LLDP packets and the LLDP packet holds static content, then the controller

is prone to Replay attack. If the controller is unable to identify the source of

LLDP packets, fail to check the integrity of LLDP packet, and the LLDP packet

have static content, then Poison attack may happen. If the switch has a con-

stant flow entry to pass LLDP packets to the controller then Flooding attack may

happen [56].

Table 4.1 illustrates the security strength of controllers against LLDP Poison

(LP) , LLDP Replay (LR), LLDP Flooding (LF) attacks. RC (Row Craft) and LC

(Library Craft) are the two classes of attacks which are used to perform the security

attacks on topology in SDN. In RC, the attacker uses LLDP packet information

and parsing algorithm to perform the attack, while in LC the attacker uses a

library of the controller to perform the attack. Few controllers (e.g., Floodlight,

OpenDayLight, and HPE-VAN) attach a hash to the LLDP packets. To perform

the attack on these controllers, the library information is needed, which may have

the information about the hash generation algorithm (or a secure static key) that

is required for the successful attack. To understand more about how attacks can

happen on different controllers, please refer to [56].

POX, Ryu, and ONOS has no security content in their generated LLDP pack-

ets, hence these controllers are prone to attacks. The OpenDayLight controller

generates an MD5 hash of a string, i.e., ‘openflow:1:2’, which an attacker can also

create if she knows the MD5 library and a secret key. Both the information can

be achieved, if an attacker performs reverses engineering to the controller code.

Hence, having static hash key won’t help to protect from such attacks. In Flood-

light controller, local machine interfaces are required to calculate the hash, hence

the attacker is not able to compute the same hash on the local machine. But once

87

the hash is calculated, it is kept same for further LLDP packets. The attacker has

an opportunity to put the same hash value in fake crafted LLDP packets. In case

of HPE-VAN, same mistake is repeated for all the packets, and same hash is used.

Hence, an attacker can copy and use the same fake LLDP packets. A point to note

in OpenDayLight is that hashes for each switch port are separate, but in case of

Floodlight and HPE-VAN hash for each LLDP packet is same. In a nutshell, most

of the industry and academic grade controller are insecure, specifically against the

LLDP-based threats.

Approach Authentication Integrity LLDP broadcast Poison Flooding Replay
TopoGuard[53] y y y
SPHINX[65] y y

OFDP_HMAC[66] y y y y y
ESLD[67] y y y

Table 4.2: Comparison of different research proposals for security

The research community is also trying to secure the link discovery process.

Table 4.2 provides the summary of such efforts. TopoGuard [53] identifies source

authentication and integrity check failures as possible reasons for the described

threats. Their proposed approach only considers LLDP based poison attack but

not the remaining attacks. SPHINX [65] detects the Poison attack with static

mapping of ports with hosts. OFDP_HMAC [66] identifies correct reasons, but

still, packets are broadcast to each port. LLDP Flooding is not detected or pre-

vented. All approaches are detection and mitigation based, hence leaves scope to

look for some preventive measures which can also reduces resource consumption

during the attacks. In conclusion, some security improvements are possible. For

instance, ESLD [67] only generates LLDP packet for non-host ports on each switch.

But the approach is based on host traffic, and an attacker can forge its behavior.

Also key-based hash is sent to each packet, which is time-consuming..

4.1.2 Lightweight

Currently, link discovery in SDN is performed with controller specific OpenFlow

Discovery Protocol (OFDP) implementation and LLDP packets. In traditional

88

networks, LLDP packet is designed to be a vendor-neutral link layer protocol for

Local Area Networks (LAN). LLDP is used to advertise network elements’ identity,

capabilities, and neighbors. Different fields in LLDP packet are Chassis ID, Port

ID, Time To Live (TTL), Port description, System name, System description,

System capabilities, Custom Time-Length-Value (TLV), and End of LLDPDU.

Chassis ID, Port ID, TTL, and End of LLDPDU are compulsory, and the rest are

optional. Each networking device is supposed to run an LLDP agent. The LLDP

agent gathers remote device information and advertise local information to remote

devices. The collected data is stored in management information database (MIB)

and it can be queried with the Simple Network Management Protocol (SNMP).

Currently, SDN community is using a borrowed packet format to perform the

link discovery. LLDP packet structure has some extra features which can not fit

anywhere in the picture with SDN’s topology discovery phase. Firstly, we need

chassis id and port id for source information. TTL field in LLDP protocol is used

to instruct remote LLDP agent for validness of the information. But in SDN,

no LLDP agent is installed in any of the forwarding elements. Hence, the TTL

field is not required. For validness of link in SDN, the controller sends periodic

packets. In SDN, no forwarding element is interested in the names or capabilities

of neighboring elements because the controller takes care of this information and

receives it in the first few packets of communication with the forwarding elements.

Also, the end of LLDP packet is not required if we can provide a fix length packet

for discovery.

In TLV structure, the LLDP has to insert various types and subtypes along

with the length. If we need fixed length chassis id (dpid) and port id, then no

need to put all type and subtype values. The OpenFlow specification specifies the

length of dpid and port id fields as eight and four bytes respectively. Because type,

subtype, and length field also consumes extra storage, it is essential to remove this

structure if not required for the topology discovery process.

Table 4.3 shows the length of each LLDP frame generated by different SDN

controllers. We can see that if we need only 26 bytes then why to go for 40 bytes

in Ryu and 85 bytes in the OpenDayLight controller. A reader may argue that

89

Deployments Size of link discovery frames(bytes)
POX(0.2.0) 41
Ryu(4.12) 40

OpenDayLight(3.0.7) 85
Floodlight(1.2) 75
ONOS(1.9.0) 66

HPE-VAN(2.7.18) 67
Target 14+8+4=26

Table 4.3: Length of different LLDP packets

controller might be storing some hash value in it. Yes, we agree but not ready to

recommend it because we can see in Table 4.1 that all controllers are vulnerable

then what is the use of storing the hash. Secondly, computation of hash is a costly

process. It will be more worse, if the controller has to calculate a different hash

for each LLDP packet.

4.1.3 Efficient

In the link discovery process the controller generates LLDP packets and sends them

to all switches. The receiving switch forwards these packets to the instructed ports.

If any switch receives a LLDP packet from its neighboring switch, it forwards the

packet to the controller. The controller parses the received LLDP packet and

creates a link. In present deployments, LLDP packets are generated for each port

on each switch. If some of the ports are attached to hosts, LLDP packets for those

ports are of no use. If the controller generates less number of LLDP packet, fewer

resources will be consumed at the controller. Same arrangement will also prevent

a malicious host to perform controller fingerprinting.

Table 4.4 shows the statistics about the number of switches, number of hosts,

number of ports, and number of links in few SDN topologies. For the structure of

topologies, consider Section 4.4. In Tree,4,4 topology, the controller has to generate

424 LLDP packets to discover 340 links. In the same topology 256 host are there,

which means 256 generated LLDP packets are of no use. The last column in the

table specifies non-eligible ports for LLDP packet. In particular, a controller can

90

reduce resource consumption by reducing the number of LLDP packets.

Topology Switch Link Port Host eligible ports
Tree,4,4 85 340 424 256 168
Tree,7,2 127 254 380 128 252
Fat tree 80 384 705 64 641

Table 4.4: Eligible ports in different topologies

In this section, we demonstrated with various examples that a lightweight,

efficient, and secure link discovery is still needed to achieve optimal results with

lesser resources in SDN.

4.2 The SLDP Protocol

In Section 2.3, we have discussed various security vulnerabilities in the existing

controllers. In this section, first we provide motivations for a new design of a link

discovery protocol. In particular, we propose an SDN Link Discovery Protocol

(SLDP). The design of SLDP consists of SLDP packet format, system architecture,

and event sequence. We also defines SLDP characteristics along with SLDP packet

structure in this section.

SLDP discovers a unidirectional link between two OpenFlow enabled forward-

ing elements, which may also be separated by a non-OpenFlow switch. The pro-

tocol is a lightweight, efficient, and secure solution for discovering links in SDN

physical topology. The discovered links along with the switch information is used

to create a global view at the controller.

Assumptions:

This section introduces a novel lightweight, efficient and secure link discovery

protocol for SDN. Correct and desired working of the protocol also depends on

few assumptions as follows.

• The controller with running applications is malware free.

• The switches work based on OpenFlow specifications.

91

• The switches are malware free.

4.2.1 Desired Characteristics

SLDP aims to discover links in a more secure, efficient, and lightweight way. More

precisely, SLDP will work correctly if holding the following characteristics:

Definition 1 (Correctness):

• SLDP must discover the link between two OpenFlow enabled switches.

• SLDP must discover the link between two OpenFlow enabled switches sep-

arated with a non-OpenFlow switch.

• SLDP must provide latency for each discovered link.

• SLDP should secure against Replay, Poison, and Flooding attacks. (Secure)

• SLDP packet size must be kept to minimum. (Lightweight)

• SLDP must perform link discovery with less number of packets. (Efficient)

If the discovery process is secure, the controller will work as intended, hence,

better controller resource utilization. If the link discovery is done with lightweight

packets (i.e., lower packet size and less number of packets to discover the topology),

then the discovery process uses less bandwidth and light traffic on network inter-

faces. If the discovery process is efficient, system requires less bandwidth and CPU

resources to generate the discovery packets. In particular, the SDLP’s theoretical

and practical analysis gives confidence towards its correctness. We theoretically

examine some of the stated correctness one by one. Security-related correctness

is analyzed with test cases that we will discuss in Section 4.3. Furthermore, the

experimental setup and evidence are demonstrated in Section 4.4.

SLDP must discover the link between two OF-switches. For instance, all uni-

directional links in a topology belongs to a set L = {l12, l21, l23, l32....lmn, lnm}, and

SLDP’s discovered links belong to set D = {d12, d21, d23, d32....dmn, dnm}. The fol-

lowing condition must be followed ∀x[x ∈ L ⇐⇒ x ∈ D], i.e., all elements which

belong to L must also belong to D. SLDP packets generated at the controller are

92

sent to a switch with OpenFlow TCP/TLS channel with forwarding instructions.

The switch obeys instruction and a linked switch receives the SLDP packet. The

receiving switch consults flow table to forward it to the controller. SLDP uses

the randomized information to create both flow entry and the SLDP packet. Here

one possible problem is to be considered which is called race condition. If an

SLDP packet reaches to the second switch before the flow entry packet, it must

be dropped. To prevent the race condition, SLDP uses Barrier message [31]. The

barrier message ensures the order of flow entry installation and SLDP packet sent

instructions. It confirms clarification of a single doubt while SLDP discovers the

link.

SLDP must discover the link between two OF-switches that are separated with

a non-OpenFlow switch. Layer two or layer three switch forwards layer two broad-

casts. SLDP Ethernet frame uses broadcast destination address. Hence, once a

broadcast packet is received by the layer two or three device, it must be forwarded

to all of its ports. An OF-switch is connected to one of its port so it will receive

the packet. Packets are received over non-OpenFlow switches also, however the

remaining process for link discovery stays the same.

SLDP must provide latency for each discovered link. Whenever a packet is

sent for discovery, the time stamp is noted. After traversing two switches, the

same packet comes to the controller. Upon receiving this packet, SLDP records

the second time stamp. The latency is calculated with both these time stamps.

The SLDP ensures that the discovery packet size stays to minimum. As Table 4.3

and Figure 4.2 suggests, SLDP takes the minimum bits for a link discovery packet.

SLDP uses 26 bytes, while others discovery protocols are taking in a range from

40 bytes to 85 bytes.

The SLDP must perform link discovery with less number of packets. As Ta-

ble 4.5 suggests, eligible ports are less than the number of total ports irrespective

of the topologies. The SLDP finds out non-eligible ports after few iterations and

removes them form eligible port list. For instance, a controller’s OFDP implemen-

tation is generating ‘o’ bytes link discovery packet. SLDP implementation for the

same controller is taking ‘s’ bytes. If p1, p2, p3...pn are ports of switches in a topol-

93

ogy, and h1, h2, h3..hm are the hosts attached to switches on some of the ports.

Here ‘n’ and ‘m’ are the numbers of ports and hosts attached to switches respec-

tively. Hence, the total profit in terms of bytes can be represented as Equation 4.1

as per the iteration, i.e., every five seconds.

{
n∑

i=1

pi −
m∑
i=1

hi

}{
o− s

}
(4.1)

4.2.2 SLDP Packet Format

SLDP is designed to identify links between two OF-switches, which may be sep-

arated with a non-OpenFlow switch. For each discovered link, the latency is

also provided. SLDP is secure against Replay, Poison, and Flooding attacks.

Lightweight and efficient link discovery is desirable. For all these features, SLDP

uses a simple yet effective frame format, which can be seen in Figure 4.2.

To understand SLDP working methodology, understanding of the SLDP packet

structure is mandatory. Two partitions are shown in Figure 4.2, first is Ethernet

header and second is SLDP payload. SLDP utilizes both the partition to work

correctly. In Ethernet header destination, a broadcast address is used. In source

address field, a random MAC address is used. In EType a custom type is intro-

duced. The dpid and port are the source information of the link. In a nutshell

following information is used in SLDP.

DMAC → ff:ff:ff:ff:ff:ff

SMAC → Random MAC address

EType → 0xabcd

dpid → Source dpid

port → Source port

A reader may argue that how security and latency will be provided in SLDP

with such a basic packet structure. In Section 4.4.3, detail of security and latency

is discussed.

94

DMAC SMAC Etype Dpid Port

6 Byte 6 Byte 2 Byte 8 Byte 4 Byte

Figure 4.2: SLDP packet format

4.2.3 SLDP System Architecture

SLDP system architecture explains about basic function blocks, which are desig-

nated for dedicated work. In Figure 4.3, system architecture for SLDP is illus-

trated. Link discovery is a periodic activity, in each cycle, few operations needs

to be performed, i.e., random MAC address generation, flow entry installation,

SLDP packet generation and transmission. Randomness generator block will pro-

vide random MAC address, which is used in SLDP packets and flow entries. Ran-

domness ensures all restrictions, which are applicable to a MAC address. A flow

entry installer module installs flow entries in each OF-switches. Packet generator

takes random source MAC and creates SLDP packet. To generate random MAC

addresses, a python based cryptographically secure pseudo-random number gen-

erator i.e. os.urandom() is used. Once flow entry is installed, the SLDP packet

with the same randomness is allowed to pass to the controller. The packet sender

node sends an SLDP packet to the source switch. The Unique selling proposition

(USP) of this approach is an eligible port identifier, which identifies eligibility for

each iteration. Initially, all ports are considered eligible, but after each iteration,

the list is updated. In SLDP whenever a switch awakes, its every port is added

in the ePorts or eligible port list. Therefore, in the next cycle the SLDP packets

are generated for each eligible port including the latecomers of the previous cycle,

and the rest of the process for these latecomer ports remains the same.

An OF-switch receives an SLDP packet with instructions to forward it on a

particular port. On the other end of the tunnel, when an OF-switch receives the

SLDP packet, it consults the flow entry table. Due to flow entry installer, there

will be a flow entry, which forwards the packet to the controller. The packet

receiver receives the packet and validates it for SLDP packet. SLDP packet comes

95

Eligible Port
Identifier

Randomness
Generator

Flow Entry

Installer

Packet
Generator

Packet
Sender

Packet
Receiver

Poison Replay
Detector

Flood
Detector

Link
Detector

Link Latency
Calculator

Port List

Figure 4.3: SLDP system architecture

in wrapped in PACKET_IN packet. The header contains destination information

for the link. Both source and destination information are used to form the link.

Each packet is sent on a time stamp and receives on another time stamp, such

information is used to calculate latency in link latency calculator. If receiving

packet alerts Poison, Replay, and Flooding detector, the eligible port list will be

updated.

Flow Entry Structure: In each SLDP packet cycle, a new flow entry with

provided randomness is installed in each participating switch. Here an example of

that flow entry is shown.

*** s1 ---

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=1.687s, table=0, n_pa ckets=2, n_byte

96

s=52, hard_timeout=5, idle_age=0, priority=65535, dl_src=

96:66:e8:27:9f:94, dl_dst=ff:ff:ff:ff:ff:ff, dl_type=0 xab

cd actions=CONTROLLER:65535

In the above example, source MAC address is randomly generated, while desti-

nation MAC address is set as a layer two broadcast address. Ethernet type is fixed

to 0xabcd and action is set to the controller, i.e., matching packet will move to

the controller. Each time a port is declared as non-eligible, SLDP removes it from

eligible port list. Algorithm 8 gives the abstract idea of maintaining the eligible

port list. The updateEports procedure requires three arguments. One for eligible

port list, i.e., ePorts, and other two for the operation selected, i.e., opCode and

portId for a targeted port to addition or removal. Possible operations are addition

(ADD) and removal (REMOVE).

Algorithm 8 Update eligible port list
Require: ePorts, opCode, portId

1: procedure updateEports
2: if opCode = ADD then
3: ePorts = ePorts + portId
4: else if opCode = REMOVE then
5: ePorts = ePorts - portId
6: else
7: return
8: end if
9: end procedure

If a port is not receiving an SLDP packet for a long time or a packet is not

reached back to the controller which is designated for a port, then the port is

removed from the eligible port list. tflow is taken as 10 seconds as an observational

threshold. The optimal tflow calculation is one of the future works. Algorithm 9

illustrates that such ports are removed after tflow time period.

To detect Poison and Replay attack, Algorithm 10 is used. First part of the

algorithm suggests the case where an attacker is sitting on a non-OpenFlow switch

and sends fake SLDP packet to switch. Because of packet broadcast destination

address, this packet travels for two directions to the controller. At the controller, if

a packet (i.e., sldpPkt) is already available to SLDP packet set (i.e. sldpPktSet),

97

Algorithm 9 Calculate port eligibility
Require: ePorts, port

1: procedure portEligible
2: On each tflow seconds
3: portId, portTstamp ← Extract(port)
4: if portTstamp + teport ≤ now then
5: updateEports(ePorts, REMOVE, portId)
6: else
7: return
8: end if
9: end procedure

then an alarm is generated. In later part of the algorithm if a unidirectional link

(i.e., ulink) is not accompanying with the reverse direction within the report time,

then the destination for that link is suspected, hence it will be removed from the

eligible list (i.e., ePorts).

Algorithm 10 Detect Poison and Replay attacks
Require: ePorts, ulink, linkSet, sldpPkt, sldpPktSet
1: procedure PRDetect

2: On each received sldpPkt
3: if sldpPkt ∈ sldpPktSet then
4: dpId, portId ← Extract(sldpPkt)
5: generateAlert(dpId, portId)
6: end if
7:
8: On each teport seconds
9: if rev(ulink) /∈ linkSet then

10: srcPort, dstPort ← Extract(ulink)
11: portId ← Extract(dstPort)
12: updateEports(ePorts, REMOVE, portId)
13: end if
14: end procedure

Algorithm 11 is used to detect the Flooding attack. If at any switch port

(i.e., portId), the number of SLDP packets are received more than the maximum

number of ports on available switch (i.e., maxPort), it generates suspicion. SLDP

generates packet periodically, one for each port on each switch (not always), hence

if any port receiving more than maxPort is eligible for removal.

In SLDP, the following are the periodic tasks: flow entry installation, packet

98

Algorithm 11 Detect Flooding attacks
Require: ePorts, sldpPkt, maxPorts
1: procedure floodDetect

2: On each received sldpPkt
3: dpId, portId ← Extract(sldpPkt)
4: if countFor(dpId, portId) > maxPorts then
5: updateEports(ePorts, REMOVE, portId)
6: end if
7: end procedure

generation, sent, reception, and link discovery. The packet generation is restricted

with flow entry installation. Lets suppose Tf is a time interval for flow entry

installation. After Tf , a new set of flow entries are installed, thus new randomness

is inserted in flow entries. Let l1, l2, l3..ln are the latencies or round-trip-time in

delivering the SLDP packets back to the controller, i.e., the time between the

SLDP packet generation by the controller and the same SLDP packet received by

the controller. Here, li is the latency for ith link discovery in topology, therefore,

Tf > Max{l1, l2, l3..ln} will ensure that the SLDP packets are delivered back to

controller on time. If not, i.e., few SLDP packets not route back to controller due

to latency in the network, then the controller falsely calculates that few links does

not exist in the constructed global topology. If Tf is kept sufficiently large, then the

SLDP will become more vulnerable to described attacks. It is because the attacker

gets more time to craft a packet with the desired randomness. Test case #1 in

Section 4.3 gives a probability analysis of being attacked while Tf is five seconds.

Advancing Tf will increase the probability of being attacked. Also, Figure 4.15

suggests that the computational overhead for link discovery in SLDP is almost

constant, i.e., ≈ 1 second, irrespective of the examined topologies. We chooses the

time interval (Tf) to 5 seconds, which is based on the available literature [50] [67],

different implementations, and observations. Our observations indicate that for

any communication, the controller processes symmetric and asymmetric messages,

which are very low as compared to the entire packets. Therefore, there was not

identified any significant difference in the controller overhead with the varying time

interval.

99

C0 generates link S1 to S2
C0 updates eligible port list S2 sends SLDP packet to S1

S1 sends SLDP packet to S2

C0 sends FLOW_MOD to S1

Controller C0 Switch S1 Switch S2

C0 starts serving
S1 starts serving

S2 starts serving

C0 generates RSMAC

C0 sends PACKET_OUT(SLDP) to S1 ports
S1 install SLDP flow entry

C0 sends FLOW_MOD to S2

S2 install SLDP flow entry

C0 sends PACKET_OUT(SLDP) to S2 ports

S2 sends PACKET_IN(SLDP) to C0

S1 sends PACKET_IN(SLDP) to C0
 C0 generates link S2 to S1

C0 updates eligible port list

C0 sends FLOW_MOD to S1

C0 generates RSMAC

C0 sends PACKET_OUT(SLDP) to S1
eligible ports

S1 install SLDP flow entry

C0 sends FLOW_MOD to S2

S2 install SLDP flow entry

C0 sends PACKET_OUT(SLDP) to S2 eligible ports

Figure 4.4: Event sequence in SLDP

100

Event sequence in SLDP: Figure 4.4 illustrates events sequence to under-

stand SLDP in more detail. Here, three vertical time lines are shown for each

participating entity, i.e., the controller C0 and two switches S1 and S2. Initially,

the controller C0 starts serving after the switch S1 starts serving. C0 updates

the eligible port list with information it received from S1 i.e., ports. Later switch

S2 starts and C0 updates the eligible port list again. Hence, each participating

entity is ready to participate. C0 generates random source MAC address, which is

used in flow entries and SLDP packets. C0 sends flow entry in OpenFlow message

FLOW_MOD to S1 and S2 with generated randomness. After both S1 and S2

receives FLOW_MOD from C0, both installs SLDP flow entry. Only after instal-

lation of flow entries, C0 generates and sends SLDP packet in PACKET_OUT for

the eligible port list for S1 and S2. S1 receives SLDP frame in PACKET_OUT

from C0 and unwraps SLDP frame from the received packet. S1 sends SLDP

frame to the designated port. S2 receives SLDP frame and use installed SLDP

flow entry to generate PACKET_IN. The controller C0 receives PACKET_IN

from S2 and extracts eventDpId and eventPort information from PACKET_IN

header. The dpId and portId information is stored in SLDP packet. C0 creates a

link with source and destination information. Here source information is content

of SLDP packet, i.e., dpId and portId. Destination information is eventDpId and

eventPort information. Later C0 updates the eligible port list and makes it ready

for next iterations. The same process is repeated when S2 sends SLDP frame to

S1. Link discovery is a periodic process, i.e., entire process is repeated after a

fixed time interval. The highlighted area in the event sequence diagram shows the

repetitively executed instructions.

4.3 Test Case Analysis

In this section, we show the assurance of the correctness of SDN Link Discovery

Protocol (SLDP) with few test cases. SLDP promises to provide lightweight,

efficient, and secure link discovery protocol. SLDP works with less number of bits

in a packet and less number of packets for discovery process. The protocol provides

101

a probable security at three different levels, which are as follows.

A: Poison, Replay, and Flooding prevention

B: Poison, Replay, and Flooding detection and mitigation

C: Flooding attacks detection and mitigation

As the name suggests, best defense strategy is Poison, Replay, and Flooding

prevention. A controller creates an environment in which no such attack will

happen. Second best line of defense is Poison, Replay, Flooding detection and

mitigation. While detection is performed, still the system resources, i.e., CPU and

bandwidth are wasted. To fix further, attack mitigation helps. SLDP removes few

ports from the eligible port list to prevent further attacks. The last line of defense

is Flooding detection and mitigation. In some cases, SLDP can prevent all, while

in others, SLDP detect and mitigate the attacks. We ensure and prove that at

least SLDP detects flooding and mitigates for future incidents.

Now we explain the SLDP working by using few test case scenarios. In each

test case, a controller is attached with two or three switches. Switch to host

are attached as shown in Figures 4.5 to 4.9. Some of the host are infected with

the malicious application or controlled with a person with malicious intention. A

sidebar in each test case figures is showing the strength of the security defense in

that test case.

Test case # 1 In this test case, an attacker host exists which is attached to an

OF-switch as shown it is shown in Figure 4.5. If the malicious host starts serving

after the switches, and try to perform Replay, Poison, and Flooding attack. The

SLDP prevents the network from all the stated attacks. In case of SLDP, no SLDP

packet comes to any of attached hosts, hence protecting against the reply attack.

Poison uses crafted packet. The working of SLDP suggests that a packet can only

move to the controller if it has exact randomness as flow entry does. If the host

is unable to pass one packet to the controller then performing the flooding is too

hard.

Attacker generated packets for replay or poisoning will only reach to the con-

102

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Figure 4.5: Test case 1: Attacker host starts work after switch

troller if the packets have the same randomness as the flow entries. In each cycle,

SLDP generates a new random number, which is used in both flow entry and

link discovery packets. For instance, random MAC address is denoted as a set

M = {m1,m2,m3...mn}, and the packet generated by an attacker is denoted by

a set A = {a1, a2, a3...ax}. Then the desired condition for successful prevention is
|A|
|M |

= 0. Let’s examine the chances that a fake packet have the same randomness.

MAC address is 48 bits long, hence |M | = 248 ≈ 2.81 ∗ 1014. Size of SLDP

packet is 26 bytes. Total number of such packets on 10 GBps in one second is equal

to (10 ∗ 109)/26 ≈ 3.85 ∗ 108. If the flow entry remains constant for five seconds,

then in the same time period the number of total packets are |A| ≈ 1.92 ∗ 109.

Now |A|
|M |

= 0.00000683214 ≈ 0 confirms that even in theory the full speed packets

are generated, which makes the probability of a successful attack nearly to zero.

If one fake packet is hard to reach the controller, then the Flooding attack is hard

to believe.

Test case # 2 As shown in Figure 4.6, an attacker attached to an OF-switch

starts working before the switch starts. In this case, because the SLDP chose the

entire port list as an eligible port list in the beginning, the malicious host will also

receive the SLDP packet. As the host has the packet or the randomness stored

in a packet, it can perform attacks. Even though attacker successfully makes a

unidirectional link, it will still be unable to make a reverse link. The attacker only

sits on one end of the fake link; to make it in reverse direction, attacker’s control

is required on other side of the fake link. The above information helps the SLDP

103

to detect such attacks. To mitigate attacks, the SLDP removes packet receiving

switch port from the eligible port list.

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Figure 4.6: Test case 2: Attacker host starts work before switch

Test case # 3 The Figure 4.7 shows two attacker hosts attached to different

OF-switches. Now both the switch receives SLDP packets, extracts the random-

ness and craft the fake SLDP packets with the same randomness. Both hosts can

create the fake bidirectional link at the controller (shown with dash lines). In this

case, the detection of Replay and Poison is not possible, however the SLDP will

be able to detect and mitigate the Flooding attacks.

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Switch: S3

Figure 4.7: Test case 3: Two attacker hosts starts work before switch

Test case # 4 As shown in Figure 4.8, a non-OpenFlow switch separates a

link between two OF-switches. An attacker or host can be attached to an OF-

switch, but it will not receive any randomness information to perform an attack.

Hence, SLDP prevents Poison, Replay, and Flooding attacks.

104

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Switch: S3

Figure 4.8: Test case 4: A non-OpenFlow switch as separator

Test case # 5 Figure 4.9 represents an attacker host attached to a non-

OpenFlow enabled switch. The attacker always gets the information of same

randomness due to the broadcast destination MAC address. If the attacker crafts

an SLDP with the spoofed randomness, the SLDP packet reaches via both S1 and

S2 switches. Hence, SLDP detects Poison, Replay and Flooding attacks. However,

because a non-OpenFlow enabled switch can not be controlled by the controller,

mitigation is not possible.

Controller: C0

Switch: S1 Switch: S2

Poison, Replay & Flood prevention

Poison, Replay & Flood detection with mitigation

Flood detection with mitigation

no defence

Switch: S3

Figure 4.9: Test case 5: Attacker host starts work before switch

4.4 Implementation

To prove any given proposal’s correctness, theoretical and practical analysis is

necessary. In this section, we focus on the experimental evidence for correctness of

SDN Link Discovery Protocol (SLDP). Typologies and experimental environment

105

are discussed to justify the experiments.

4.4.1 Experimental Setup

All the experiments are performed on Mininet[57] network emulator. To per-

form experiments three different topologies are used as shown in Figure 4.10, 4.11

and 4.12. Table 4.4 is shows the relative statistics, i.e. number of switches, links,

hosts and ports. We consider the topologies that has 80, 85 and 127 number of

switches, which is fairly large to justify our experiments. In the Table 4.5, the

links are between switch to switch and switch to host. In link discovery process

only switch to switch links are considered, which can be obtained from the number

of hosts subtracted from the number of links in the table. ‘tree,4,4’ and ‘tree,7,2’

are topologies from Mininet environment. ‘fat tree’ is tree topologies to simulate

a data center arrangement of switches.

Figure 4.10: Topology 1: Tree topology with 4 level of depth and fan-out 4

In Figure 4.10, five layers of switches are used. Except for root and leaf

switches, each switch is connected to five switches. For example, S35−S39 repre-

sents four connected switches in layer three. S4 and S5 are switches in layer four

and five respectively. Hosts connected to layer five switches are represented with

symbol H.

In Figure 4.11, switches are connected with three switches except for root and

106

Figure 4.11: Topology 2: Tree topology with 7 level of depth and fan-out 2

leaf switches. The eight layers of switches(total 127 switches and 254 links) forms

a tree topology.

Figure 4.12: Topology 3: Fat tree

As in Figure 4.12, the Fat tree topology is shown and alike topologies are

used typically in a data center. Here the switches are arranged in a three-layer

arrangement, namely core, aggregate, and edge. Core switches are connected

to alternate aggregate switches for redundancy. The aggregate switches are also

connected to more than one edge switches. In our experiments, we choose two

hosts per edge switch.

Table 4.6 gives the details of an execution environment for validation of SLDP,

which includes operating system and test-bed details. The SLDP implementation

107

Topology Switch Link Port Host
Tree,4,4 85 340 424 256
Tree,7,2 127 254 380 128
Fat tree 80 384 705 64

Table 4.5: Number of Switches, Links, Ports and Hosts

is tested in the Mininet[57].

Resource Configuration
Test-bed Mininet(emulation)
Victim/Attacker OS UBUNTU 16.04LTS(64bit)∗

Victim configuration 4CPUs and 4 GB
Attacker configuration 4CPUs and 4 GB
Controller Ryu
Attack traffic 150000 Packet/Sec
Software switch OpenVSwitch(2.5.0)
Network 1 Gbps

Table 4.6: Experimental environment for SLDP

Generating results in self created environment is always questionable. Author

hooks ‘print’ statement over several code locations to generate the results. Even

this ‘print’ statement is performing I/O causes CPU resources. The results can

be viewed in relative terms rather than absolute. For comparison, other imple-

mentations are considered which varies from two implementations of the same

controller, i.e., RYU-OFDP, RYU-SLDP or various controllers, e.g., POX, RYU,

and ONOS. RYU-OFDP is OFDP implementation in Ryu, while RYU-SLDP is

SLDP implementation in Ryu controller.

The controller selection in any experimental setup is dependent on aspects

such as programming language, documentation, and controller updations. Most

controllers are written in either JAVA or python. For instance, the POX and

Ryu controllers are written in python while OpenDayLight, Floodlight, ONOS,

and HPE-VAN are written in JAVA. Few controllers are developed for academic

purpose, i.e., POX, Floodlight, and Ryu, while others are industry grade con-

trollers, i.e., OpenDayLight, ONOS, HPE-VAN. For our experimental setup we

use Ryu because it is being developed as open source using python and it is a

108

well-documented controller.

4.4.2 Performance Metrics

Some metrics mentioned below are used to understand the obtained results. Packet
Length: In link discovery, a dedicated packet is used. Different controllers use

different packets. Lighter packet uses less bandwidth in communication. However,

packet content may carry security information. Hence, a light packet which also

secures the link discovery will be a good choice.

Number of packets: In each cycle, discovery packets are generated. Few

modifications also reduce the number of packets. With less number of packets,

bandwidth can be saved. Hence an algorithm can be examined for the number of

discovery packets used in an iteration.

Computational Overhead: In Ryu controller, two threads controls discov-

ery packet generation and transmission. Each thread is infinite loop runs at a fixed

time interval. Total time taken in completion of one iteration is averaged over sev-

eral observations. An addition of averages for both threads gives computational

overhead.

Packet Construction Overhead: Time taken for discovery packet creation

can be used for comparing result. Based on the content, different controllers use

different times for packet generation. Packet construction and verification sequence

also affect the time taken.

Packet Verification Overhead: Whenever a controller receives a discovery

packet, the packet is examined for validness. Different deployments use different

validation checks which confer in the time taken in verification.

Topology Discovery Time: A received and validated discovery packet used

to create a link. The link is added to the topology database. Time taken to build

entire topology is measured as the time difference between a first link and last link

discovery time stamps.

Initial Overhead: The Ryu controller installs flow entries and generates dis-

covery at the initial phase. Further, the controller only transmits stored discovery

packet. Static installation and packet creation costs overhead.

109

4.4.3 Results and Discussion

SLDP is a lightweight link discovery protocol. The number of bits required in

SLDP is least among other implementations. As Figure 4.13 shows, the SLDP

requires 26 byte long Ethernet frame to accomplish link discovery along with effi-

ciency and security. SLDP removes some unnecessary fields and restructures the

packet to reduce its size. SLDP uses position based data separation to save some

additional space.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

S
LD

P

P
O

X

R
yu

O
pe

nD
ay

Li
gh

t

F
lo

od
Li

gh
t

O
N

O
S

H
P

E
-V

A
N

P
ac

ke
t L

en
gt

h(
B

yt
es

)

Controllers

Figure 4.13: Link discovery packet length among all controllers

In each link discovery, few discovery packets are generated and sent over Open-

Flow channel to switch. The traditional implementation of link discovery generates

LLDP/BDDP packets for each port on each switch. Edge switches are connected

to host, which infers no need to generate packet reaching to end host. The SLDP

approach also helps to prevent the controller fingerprinting. In SLDP, few non-

eligible ports are identified and SLDP packet is sent to each port except ineligibles.

Fewer generation of SLDP packet also consumes lesser CPU and bandwidth re-

sources. Figure 4.14 gives the idea of number of discovery packet required with

or without the solution in different topologies. RYU-SLDP always require lesser

packet irrespective of topology.

CPU resources are required for sending and parsing link discovery packets.

Figure 4.15 shows resource consumption in RYU-OFDP and RYU-SLDP with

three topologies. It is clearly identified that SLDP is doing so well because of

110

 0

 100

 200

 300

 400

 500

 600

 700

 800

tree,4,4 tree,7,2 fat tree

N
um

be
r

of
 P

ac
ke

ts

Topologies

OFDP-RYU
SLDP-RYU

Figure 4.14: Number of packets in link discovery with three topologies

its lightweight and an efficient number of the packet. As shown in Table 4.5, the

number of ports in topology Tree,7,2 is lower than other topologies (i.e., Tree,4,4

and Fat tree). In OFDP number of ports is equal to the number of LLDP packets

for any cycle. Hence, in the Tree,7,2 topology, less number of packets are being

sent and parsed during the link discovery. The same is reflected in Figure 4.15,

which shows the lowest overhead for OFDP.

 0

 5

 10

 15

 20

 25

 30

 35

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU-OFDP
RYU-SLDP

Figure 4.15: Computation overhead for link discovery

Figure 4.16 demonstrates, the time taken in link discovery packet construction.

As lighter packet takes lesser time to be constructed. In this figure, there is a clear

difference between RYU-SLDP and RYU-OFDP. RYU-SLDP is taking lesser time

111

to construct.

 0

 1x10-5

 2x10-5

 3x10-5

 4x10-5

 5x10-5

 6x10-5

 7x10-5

 8x10-5

 9x10-5

 0.0001

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU-OFDP
RYU-SLDP

Figure 4.16: Link discovery packet construction overhead

Upon receiving any link discovery packet, it is verified and parsed. Figure 4.17

shows that RYU-SLDP is parsed in smaller time than RYU-OFDP. SLDP use

lighter and simple packet which is parsed on a less complex algorithm.

 0

 2x10-5

 4x10-5

 6x10-5

 8x10-5

 0.0001

 0.00012

 0.00014

 0.00016

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU-OFDP
RYU-SLDP

Figure 4.17: Link discovery packet verification overhead

Most of the link discovery implementations in SDN are creating static LLDP or

BDDP packets. Later these packets are sent periodically. This kind of propagation

has a vulnerability that can be exploited by adversaries[56]. SLDP uses a new

packet for each iteration for a fixed port. Figure 4.18 shows event sequence for

discovery packet construction and verification. RYU-OFDP create packet once and

112

later use them, while RYU-SLDP generates and verifies SLDP packet alternatively.

tree,4,4

tree,7,2

fat tree

con

ver

con

ver

con

ver

D
iff

e
re

n
t

to
p

o
lo

g
ie

s

Different iterations
RYU-OFDP

RYU-SLDP

Figure 4.18: Link discovery packet construction and verification sequence

Topology discovery time is the time taken by the controller to build entire

topology. It is measured as the time taken from first LLDP or SLDP packet

generation to complete topology discovery. Figure 4.19 illustrates RYU-SLDP is

performing much better then RYU-OFDP irrespective of the topology. The reason

behind it is small packet size and the efficient way of processing them.

One of the key to success for SLDP is the calculation of eligible ports. SLDP

only sends SLDP packet to eligible ports. Initially, all ports are eligible ports but

later some ports are declared as non-eligible. Figure 4.20 demonstrates eligible

ports over time for SLDP with three topologies.

SLDP packets are generated and sent periodically, it also includes installation

of flow entry, which allows SLDP packet to reach back to the controller. In tra-

ditional implementation of link discovery, a unique flow entry is installed once

and it remains forever. It is because link discovery packets are created once in

OFDP, and thus the strategy works. With the SLDP, it is not the case, and it is

considered as initial overhead for RYU-OFDP only. Figure 4.21 shows the initial

113

 0

 5

 10

 15

 20

 25

 30

 35

 40

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU-OFDP
RYU-SLDP

Figure 4.19: Topology discovery time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800

T
im

e(
S

ec
on

ds
)

Number of eligible ports

T1 with SLDP
T2 with SLDP
T3 with SLDP

Figure 4.20: Eligible ports over the time

overhead, which is the sum of the initially generated LLDP packets and flow en-

try installation which is done once for RYU-OFDP implementations. However, in

RYU-SLDP, the same is a periodic task. Hence, the initial overburden is limited to

RYU-OFDP implementations only. Additionally, Figure 4.15 shows the overhead

in link discovery for both RYU-OFDP and RYU-SLDP. RYU-OFDP have initial

114

overhead apart from overhead to link discovery.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

tree,4,4 tree,7,2 fat tree

T
im

e(
S

ec
on

ds
)

Topologies

RYU-OFDP

Figure 4.21: Initial overhead in RYU-OFDP

SLDP demonstrates link detection ability with lighter weight packets. Results

demonstrate that low number of discovery packets are generated implying a lower

time for SLDP packet construction and verification.

4.5 Summary

Link discovery in SDN is crucial for topology-aware applications. This chapter

present the motivations i.e. security, lightweight, and efficient, for the design of a

new link discovery protocol in SDN. Design and implementation is also discussed

in detail. We can summarize as follows.

• A secure, lightweight, and efficient link discovery protocol (SLDP) is dis-

cussed for SDN networks. The design of the major components of SLDP

which includes a new packet format, system architecture, flow entry struc-

ture, and event sequence are explained. To ensure the security against var-

ious attacks, SLDP uses a token-based technique that generates random

source MAC addresses for SLDP packets, and it uses the randomness to

create a flow entry for the SLDP packets.

• A fully implemented SLDP is examined on Mininet emulator with Ryu con-

troller. The performance analysis done on different SDN scenarios show the

115

effectiveness of SLDP regarding prevention and detection of various attacks

(e.g., Replay, Flooding, and Poison attacks), computational overhead, topol-

ogy discovery time, and bandwidth consumption. A comparison of SLDP

with OFDP protocol shows the effectiveness of SLDP over the state-of-the-

art.

Even if link discovery is secured, a man in the middle attack is still possible.

Strange but true. At data link layer, the host is located using the ARP protocol.

ARP Poison can be utilized to perform a man in the middle attack. Hence without

securing the data link layer host discovery, topology discovery cannot be secured.

In the next chapter, an SDN solution is illustrated to detect and mitigate ARP

based threats.

116

Chapter 5

Securing Data Link Layer Host

Discovery

This chapter introduces a novel mechanism to detect and mitigate attacks in data

link layer based host discovery. In Internet Protocol (IP) based communication,

Address Resolution Protocol (ARP) based threats are so prominent that without

dealing, secure topology discovery is incomplete. In this chapter, a signature-based

detection and mitigation for ARP related threats are discussed. The validation

of solution has been done on both the emulated environment using Mininet and

real time environment, i.e. production Local Area Network (LAN) with OpenFlow

enabled HP5406R switch.

Software Defined Networking (SDN) is a new paradigm of networking which

has transformed the traditional way of network management. In SDN, the pro-

tocol stack is the same as traditional networking. ARP is used to locate and get

the physical address or MAC address of an available IP address. Unavailability

of authentication and integrity in ARP communication may lead to exploitation

of it for various kind of attacks such as ARP spoofing and ARP Flooding. For

example, a malicious machine crafts an ARP reply for which there was no ARP

request or it can reply to a request which was originated for some other machine,

or it can generate a false ARP request, etc. By doing so, an attacker can per-

117

form ARP Poison, ARP Flooding attacks which leads to Denial of Service attacks,

Man-in-the-Middle (MitM) attacks or redirection attacks. Existing solutions of

ARP spoofing attacks for traditional networks may not give the best result be-

cause either solution is based on pre-stored MAC/IP binding or use cryptographic

solutions. MAC/IP bindings are created using Dynamic Host Configuration Pro-

tocol (DHCP) or Simple Network Management Protocol (SNMP) protocols. In

large networks, the number of these bindings are enormous therefore, the look-up

time increases. The cryptographic approaches require additional computational

overhead in complex cryptographic algorithms. Apart from this, the traditional

methods of security are directly applicable but not taking the benefits from the

separation of control plane and data plane. In the SDN, the control plane is a pro-

grammable plane having a global view of the network. These feathers of controller

supported in defending the ARP-based security threats.

This chapter presents Traffic Pattern Based Solution to ARP Related Threats

(FICUR), a novel method for verification and detection of ARP-based attacks[17].

The word ‘FICUR’ is a reproduction from the Hindi language i.e. "ȠफŌ" which

generally used for worry or concern. In FICUR, the SDN controller has been ex-

tended by a module which gathers the required network parameters. This module

also analyzes these parameters to verify and detect ARP based attacks. The key

aspect of the proposed approach is that it does not require any authentication

check, cryptographic keys, network topology changes or network operator inter-

vention. Instead, FICUR analyzes the current traffic pattern to detect anomaly

in ARP packets. The validation of FICUR has been done on both the simulated

environment using Mininet and real-time environment using HP switch. It was

observed that the method is fast and does adds a limited overhead to the network.

5.1 Foundation

This section explores the directions in which the solution have to focus. Exist-

ing techniques to solve Address Resolution Protocol (ARP) based attacks can be

broadly classified into two classes. In first class, authors store MAC/IP binding

118

and generate an alert if a mismatch occurs. If detection solution uses Dynamic

Host Configuration Protocol (DHCP) database which is very large then lookup

process becomes very time consuming and sometimes, DHCP is not even used.

The cryptographic solution is provided in other class. In traditional network in-

termediate devices like switch and router have limited resources so resource inten-

sive solutions are not preferable. In most of these solutions, a host/server other

than router or switch takes care of such detection strategies. Suppose if detection

happens, network administrator has to perform countermeasure independently.

ARP based threats are prevalent due to lack of authentication and integrity in

ARP packets. ARP packet sequence in entire communication can also be consid-

ered for detection for ARP based threats. SDN gives the opportunity for detection

in a novel way due to two reasons. The first reason is separation of control plane

and data plane. The second reason is generic computation capabilities for the con-

trol plane. In traditional networking, these reasons are missing. In any genuine

communication, ARP request followed with ARP reply. The ARP packet pair is

followed with valid Internet Protocol (IP) packets. We can rephrase the statement

as hosts are discovered only if needed. This can be used as a detection signature

for ARP based threats.

Let us observe some interesting facts about traffic pattern with ARP packets.

Figures 5.1, 5.2 and 5.3 are snapshots from the output of customized POX con-

troller module. Column one specifies packet type. The controller module only

interested in two types of packets i.e. ARP and IP packet. Column two repre-

sents the sub-type of packet i.e. if the type is ARP then sub-type may be ’1’

for ARP request or ’2’ for ARP reply. In case of IP packet, sub-type is ’0’ only.

Column three specifies forwarding element event port i.e. port number on which

packet has-been arrived. Column four & six are IP addresses while five & seven

are Media Access Control (MAC) addresses. For IP packets, these addresses are

network layer and data link address while in a case of ARP, these addresses are

ARP header parts.

Highlighted box in Figure 5.1 depicts a normal communication. The commu-

nication starts with a host with 10.0.0.1 asking what is MAC address of 10.0.0.2.

119

Figure 5.1: Normal temporal sequence of IP and ARP packets

Host at 10.0.0.2 confirms that it is 00:00:00:00:00:02. After obtaining the MAC

address, actual IP packet travels from 10.0.0.1 to 10.0.0.2 and subsequently from

10.0.0.2 to 10.0.0.1.

Figure 5.2: ARP packets sequence with Man-in-the-Middle attack

Observation #1: In Figure 5.2, two lines are highlighted, both are ARP

requests. The attacker can perform ARP Poison using ARP request only. The

first ARP request can be a phrase like “A host with IP address 10.0.0.2 and MAC

address 00:00:00:00:00:03 want to know MAC address of a machine having IP

10.0.0.1”. The second ARP request can be a phrase like ”A host with IP address

10.0.0.1 and MAC address 00:00:00:00:00:03 want to know MAC address of a

machine having IP 10.0.0.2”. Now there is a catch; both ARP requests claiming

different source IP address but with same MAC address. This case is not possible

in any situation. Suppose a machine has two different interfaces then, there should

be two different IP address. This observation suggests a malicious host trying to

perform Man in the Middle attack.

Figure 5.3: ARP packets during ARP Flooding

Observation #2: Figure 5.3 describes the scenario for ARP Flooding attack

120

in which only ARP requests/replies are shown. This is important to note if any

genuine communication happens, it requires ARP to resolve the physical address.

That Communication then followed by valid IP packets. We can say, no genuine

communication completes generally with ARP packets only. So if a history of

packets in network suggests that only ARP communication is happening, it will a

possible alert for ARP Flooding.

Observation #3: In Figure 5.2 and 5.3, It’s worth noting that many ARP

requests are coming but at same event port on the switch. In any network environ-

ment, hosts are connected with the switch on different ports. Above observation

also gives an idea that something went wrong in the network. After observing

packets, a reader can conclude that attacker is attached to port number two of the

forwarding element.

Two ARP requests holding common source MAC address with different source

IP addresses creates suspicion. This doubt helps to detect ARP Poison for Man in

the Middle attack. The number of ARP request/reply packets without following

related IP packets leads to another doubt. This doubt helps to detect ARP Flood-

ing attack. Forwarding elements’ port information helps to locate and quarantine

malicious host.

Assumptions:

In next section, detailed design modules of FICUR are introduced. The desired

working of this solution depends on few assumptions as follows.

• The controller and running applications are malware free.

• The switches work on OpenFlow specifications.

• The switches are malware free.

5.2 FICUR Design

In the previous section, some important observations related to Address Resolution

Protocol (ARP) traffic patterns are discussed. These observations help to design

121

the desired solution. Design modules for FICUR are examined in this section.

Figure 5.4 illustrates a block diagram for FICUR. FICUR is divided into three

parts i.e. attack detection module, attack source localization module, and mitiga-

tion module. Attack detection module takes ARP and IP packets into inspection

and separates ARP Poison and ARP Flooding associated packets. Attack source

localization module extracts and calculates the source of attack information. In

mitigation module, the same information is used to quarantine the malicious host.

Attack Detection Source Localization Attack Mitigation

ARP & IP Packets Suspicious ARP Attacker Information

Figure 5.4: FICUR block diagram

The Software Defined Networking (SDN) can provide a global view of the

network so the network administrator can gather the required data and analyze it

to reveal the possibility of attacks. Once the attack has been identified, security

policies are reinforced using the SDN programmbility.

5.2.1 Attack Detector

Figure 5.5 represents flow diagram of FICUR attack detection module. The detec-

tion module is only interested in ARP request packets or IP packets. On receiving

such packets, a _logDetail file is updated, which is used to identify any suspicious

activity. If any two ARP packets with same source IP address and different MAC

addresses arrived at the controller, this leads to Man in the Middle attack detec-

tion. In another scenario, if multiple ARP packets are received without any IP

packet, this leads to detection of ARP Flooding attack. Detection of either ARP

Poison or ARP Flooding attack, deletes _logDetail file.

Algorithms can be considered for more detail to detect ARP Poison and ARP

Flooding attacks. Algorithm 12 helps to create a data structure which is needed

in the detection of both attacks. Algorithms 13 and 14 detect ARP Poison and

122

Idle

 is

Packet = ARP Request

 or IP

Update _logDetail

No

Yes

Doubtful _logDetail Entries

 ARP Poison Detected

is tsld Reached

 ARP Flood Detected

Update tsld

ARP Request without

following IP

Mismatched

ARP Request

Yes

No

 Delete

_logDetail

 Delete

_logDetail

No

Figure 5.5: Flowchart of attack detection module in FICUR

ARP Flooding attack respectively. Few abstract functions are used in the algo-

rithms. EXTRACT function extracts values that are specified on left side of the

statement from the given input. subType (ARP sub type), src_ip (source IP ad-

dress), src_mac (source MAC address), dst_ip (destination IP address), dst_mac

(destination MAC address) are fields of ARP packet header. UPDATE function

adds provided objects in _logDetail as one string.

Arguments to Algorithm 12 are Ethernet frame header, forwarding element

physical port and log detail file. The log detail file consists of logs of the received

packet i.e., IP or ARP. Each log comprises seven entries. In case of IP packet

123

seven entries are string (‘IP’), number(0), source IP address, source MAC address,

destination IP address, and destination MAC address. For ARP request packet log

entries are string (‘ARP’), number(1), source protocol address, source hardware

address, destination protocol address, and destination hardware address. For ARP

log entries, details are extracted from payload and not from Ethernet header.

READ function reads the _logDetail file and creates a list of strings. Algorithms 13

and 14 i.e. isARPPoison and isARPFlood uses the list to detect the attacks. Once

any ARP attack detected REMOVE function deletes the _logDetail file.

Algorithm 12 Extract information to detect ARP Poison & ARP Flooding
Require: Ethernet frame header(_efh) which comes as PacketIn event parameter,

Event port(_port) & a file (_logDetail) to store packet header and event port
details.

1: procedure ARPSecurityStructure(_efh,_port,_logDetail)
2: dst_mac, src_mac, type, payload ← Extract(_efh)
3: if type=‘IP’ then
4: src_ip, dst_ip ← Extract(payload)
5: Update(‘IP ′, ‘0′, _port, src_ip, src_mac, dst_ip, dst_mac)
6: else if type=‘ARP’ then
7: subType, src_pip, src_hmac, dst_pip, dst_hmac= Ex-

tract(payload)
8: if subType = ‘1’ then
9: Update(‘ARP ′, subType , _port, src_pip, src_hmac, dst_pip,

dst_hmac)
10: listd ← Read(_logDetail)
11: if isARPPoison(listd) = True then
12: Generate Alert for ARP Poison
13: Remove(_logDetail)
14: end if
15: if isARPFlood(listd) = True then
16: Generate Alert for ARP Flooding
17: Remove(_logDetail)
18: end if
19: end if
20: end if
21: end procedure

Algorithm 13 is a detailed outline for ARP Poison attack. isARPPoison checks

ARP entries for same source IP address and different MAC address. The function

i.e. isARPPoison is called with list of strings which is examined for any mismatch

124

i.e., same IP different MAC. For this, only ARP strings from list is selected.

Algorithm 13 Detect ARP Poison attack.
Require: List of IP and ARP request packet header detail(_listd)

1: function isARPPoison(_listd)
2: for item in _listd do
3: if item[0] = ‘ARP’ and item[1] = ‘1’ then
4: for eachItem in _listd do
5: if eachItem[0] = ‘ARP’ and eachItem[1] = ‘1’ and

eachItem[4] = item[4] and eachItem[3] != item[3] then
6: return True
7: end if
8: end for
9: end if

10: end for
11: end function

Algorithm 14 explains detection of ARP Flooding attack. If number of ARP

packets without following IP packets exist in log file , is used as Flooding attack

detection. In isARPFlood function getObservedThreshold gives average of ob-

served thresholds from history. The isARPFlood function checks if the number of

ARP requests for which no IP communication exists is more than threshold i.e.

‘tsld’ then it indicates the possibility of ARP Flooding.

Threshold calculation can be understood with Figure 5.6. A window is to

be filled with received flags i.e. the number of IP packets following any ARP

packet. Total zero flags are calculated and averaged with the previous result. This

threshold is to be provided to the Algorithm 14 for ARP flooding attack detection.

In the first iteration, there is no previous result. Therefore, the previous result is

considered equal to the present calculated result.

5.2.2 Attack Source Localization

Security measures for any threat can be prevention, detection, and detection with

mitigation. The FICUR considers detection with mitigation as a security measure.

For mitigation, FICUR locates vulnerable ports and prevent further ARP request

packets on same ports. For ARP Poison two ARP requests are generated with the

125

Algorithm 14 Detect ARP Flooding attack.
Require: List of IP and ARP request packet header detail(_listd)

1: function isARPFlood(_listd)
2: tsld ← getObservedThreshold()
3: for item in _listd do
4: flag ← 0
5: if item[0] = ‘ARP’ and item[1] = ‘1’ then
6: for eachItem in _listd do
7: if eachItem[0] = ‘IP’ and eachItem[2] = item[2] and

eachItem[3] = item[3] and eachItem[4] = item[4] and eachItem[5] = item[5]
and eachItem[6] = item[6] then

8: flag ← flag + 1
9: setThreshold(flag)

10: if flag ̸= 0 then
11: tsld ← tsld -1
12: end if
13: if tsld ≥ 0 then
14: return True
15: end if
16: end if
17: end for
18: end if
19: end for
20: end function

 R = (C+R)/2

Flag
arrived

Count total Zero flags
(C)

Wait for window to fill
with flags

C

R

Figure 5.6: Threshold calculation

different IP addresses and common MAC address. For ARP Flooding, a number

of ARP request packets without following IP packets crosses the threshold value.

Figure 5.7 illustrates source localization in FICUR for both ARP Poison and ARP

Flooding. In the case of ARP Poison detection, event port information from both

126

Poison
Detected

Extract event port of
first packet (P1)

Extract event port of
second packet (P2)

is
P1 = P2

Port P1 or P2 is
vulnerable

Y

N

Y

N

Flooding
Detected

Extract event port of
packet (P1)

Extract event port of
packet (Pn)

Y

N

Localization for ARP poison attack Localization for ARP flooding attack

Calculate most
common(P1,P2..Pn)

Port P
is vulnerable

Figure 5.7: Attack source localization

malicious ARP packets is extracted. If both ports are same, it infers that port

is vulnerable for ARP communication. In case of ARP Flooding attack, single

suspicious ARP request packet is examined for event port. This port declared as

vulnerable for ARP Flooding attack.

5.2.3 Attack Mitigation

After successful detection and attack source localization, any strategy to mitigation

can be done on the fly because SDN supports dynamic programming. Various

strategies can be applied e.g. completely block the port, block the port for outgoing

communication, block the port for ARP communication, or block the port for

ARP request only. Each has distinguished impact and can support with SDN

programmability. In FICUR, ports are blocked for outgoing ARP request packet

127

only. On blocking of outgoing ARP request, any previous communication will

not hinder. Any ARP request for a host attached to vulnerable port also serve.

Any new ARP request from the vulnerable port is dropped silently. Figure 5.8

illustrates the same.

M comes on
vulnerable port and

is ARP packet

Resumes the
communications

N

Y

New packet(M)
arrived

Drop the M

Wait for new packet

Figure 5.8: Mitigation flow diagram

5.3 Implementation

Validation of any proposal depends on the working prototype and theoretical proof

of correctness. This section discusses the experimental setup, working conditions,

used resources, and topology.

5.3.1 Experimental Setup

In FICUR, an application program is written in python which restrain the mali-

cious user to poison the ARP entries for the legitimate hosts lying on the same

network segment. An attack module is also written in python, to perform the

attacks. These attacks are also validated in the live network.

Various resources used in the experiment is listed in Table 5.1. For the im-

plementation of detection, we choose Mininet[90] environment running on Ubuntu

128

16.04LTS 64 bit 8GB RAM. OpenFlow enabled HP5406R switch attached with

hosts and controller is used to perform attack and detection. Each host has core

i5 processor with 8GB RAM and 64-bit Ubuntu 16.04LTS. The POX[8] controller

is used to run proposed module.

Resource Configuration
Test-bed Mininet(emulation) and HP5406R
Victim/Attacker OS UBUNTU 16.04LTS(64bit)∗

Victim configuration 4CPUs and 8 GB
Attacker configuration 4CPUs and 8 GB
Controller POX
Attack traffic 150000 Packet/Sec
Software switch OpenVSwitch(2.5.0)
Network 1 Gbps

Table 5.1: Experimental environment for FICUR

The topology used for experimentation purpose is shown in Figure 5.9. It

consists of a few hosts attached to OpenFlow enabled switch. Host M can act as

an attacker while host A and B are legitimate machines. To check the proposed

solution, we run two cases on the same topology. For the first case, M does not

perform any malicious activity. In second case, M was enabled with our attack

module to create ARP Flooding and ARP Poison (MitM) attack scenarios. MitM

module requires two target machine to perform the attack. This module sends two

requests to the specified targets to poison their ARP table. ARP Flooding module

needs only one target machine and floods the ARP table of that machine with a

large number of ARP request packet.

A

B

M

Forwarding Element

Controller

Figure 5.9: Experiment topology

In non-attack scenario, it is observed that normal communication occurs with-

129

out any disturbance. While in case of attack, target hosts are seen with corrupt

ARP table entries. FICUR not only identifies the spoofed ARP messages but

also filters these messages at the identified port. After sending a few spoofed ARP

packets to the victim, the attacker is not able to send the subsequent false packets.

Because all false packets will be denied.

5.3.2 Performance Metrics

FICUR is detection and mitigation based solution for ARP based security threats.

Before understanding results, a brief on performance metrics is presented.

Attack Detection Time: It is a time from the first suspicious packet arrived

to a conclusion i.e., attack detected. ARP Poison and ARP Flooding attack detect

using different approaches, hence varies in detection time. A good algorithm always

takes minimum time for detection. Early detection leads to effective mitigation.

Computational Overhead: Every security extension creates an overhead in

terms of CPU cycles. ARP Poison and ARP Flooding detection and mitigation

time are computed from various observations. These observations are averaged to

get a final overhead.

5.3.3 Results and Discussion

Few results increase the confidence over functional correctness of attack scenarios

and proposed solutions. Mostly, experiments are done on both Mininet and live

test bed, i.e., using switch HP5406R. Figure 5.10 illustrates a conventional scenario

and ARP Flooding attack scenario. Here, a number of ARP packets received at

the controller is plotted against time. Initially, a regular ARP communication is

shown. But after some time attack script started to show the difference in the

pattern. In Figure 5.10 a sharp change in slope in both curves shows the starting

of ARP Flooding attack. Standard communication rate at which ARP request

packets are reaching to the controller is less than after the attack. Due to scale

variation, zoomed plots are also shown for in-depth observations.

Figure 5.11 also illustrates the manifestation of the ARP Flooding attack. It

130

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 5 10 15 20 25 30 35 40 45 50

N
ew

 A
R

P
 R

eq
ue

st
 P

ac
ke

ts

Time(Seconds)

mininet
HP5406R

 1500

 3000

 4500

 12 14 16

 0

 200

 400

 0 2 4 6

Figure 5.10: Arrival of every ARP request at controller

exhibits the number of MAC entries in infected hosts over time. Initially, the rate

at which MAC entries are installed in the infected host is steady. ARP Flooding

can easily be identified by the sudden rise in the rate at which MAC entries are

stored in ARP cache.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1 2 3 4 5 6

N
um

be
r

of
 A

R
P

 e
nt

rie
s

in
 A

R
P

 c
ac

he

Time(Seconds)

ARP entries vs. Time

mininet
HP5406R

Figure 5.11: Number of ARP entries on affected machine

In Figures 5.10 and 5.11, actual hardware performs slower than Mininet. In

Mininet, packets are traveled in an emulated environment, but in the case of

actual hardware, the packet must pass through network interfaces which introduce

transmission and propagation delays.

FICUR successfully detect both ARP Poison and ARP Flooding. Figure 5.12

131

demonstrates detection time of these attack in microseconds. ARP Poison and

ARP Flooding attack are detected in 16056, 42840 and 422517, 1028160 microsec-

onds respectively. All these statistics are taken with both Mininet, and HP5406R

OpenFlow enabled switch. These numbers are averaged from different observa-

tions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

ARP Poison ARP Flooding

T
im

e(
S

ec
on

ds
)

mininet
HP5406R

Figure 5.12: Attack detection time

Any security extension comes with the cost. In the default configuration, the

controller has to install flow entries for ARP communication. In FICUR exten-

sion, extra processing is performed at the controller. Figure 5.13 depict the total

overhead due to FICUR algorithms.

 0

 1x10-5

 2x10-5

 3x10-5

 4x10-5

 5x10-5

 6x10-5

 7x10-5

 8x10-5

 9x10-5

 0.0001

ARP Poison ARP Flooding

T
im

e(
S

ec
on

ds
)

mininet

Figure 5.13: FICUR computation overhead

132

Each IP and ARP request packet reaches to the controller for the attacks

detection. In the switched environment where the number of hosts is limited

in a network segment to 48. The overall performance of the controller will be

sustainable. However, for a large network with multiple segments, the controller

performance may have serious challenges. One more aspect for many packets

reaches to the controller is prone to Denial of Service (DoS). However, this solution

may be employed along with DoS prevention, detection, and mitigation system.

This collaboration will help to rule out DoS threat.

Each incoming packet is logged in a log file. The log file is the data structure

that is continuously monitored, used and updated by the controller. Whenever an

attack is detected, the data structure is deleted, and a new copy is made available

for further incoming packets. Even if the attacks has not happened, this data

structure will reduce its size by removing old entries.

FICUR detects ARP Poison for Man in the Middle attack. If an attacker only

poisons a single host, the current version of FICUR will not detect it. Now consider

the case that an attacker infects a single host which implies that the attack affects

nothing. And as we all know that “There are no free lunches”, which means to

perform an attack, there should be a specific benefit.

FICUR detect ARP Flooding attack by monitoring ARP traffic followed by

IP traffic. If any port producing ARP traffic without following IP traffic leads

to detection followed by mitigation. Consider the case, that the attacker also

produces IP traffic along with ARP traffic to fool the solution. To generate IP

traffic the attacker has to invest resources. But this will lead to degradation of the

attack magnitude.

5.4 Summary

Nowadays SDN is considered a unique networking paradigm. Existing commu-

nication protocols are same, but devices can use them in a novel way to solve

problems. In this chapter ARP based threats are discussed. ARP has no built-in

mechanism to ensure authentication and integrity, hence ARP-based attacks are

133

serious attacks even for SDN. Although several different mechanisms are present

in literature to detect such kind of attack but most of them are resource intensive.

The proposed method utilizes SDN programmability with present ARP format.

In the nutshell, the chapter can summarized as follows.

• This chapter discusses a novel mechanism to detect ARP based attacks ef-

fectively with restricted overhead in space and time. The proposed method

utilizes the match and filter ability of SDN to detect and mitigate the ARP-

based attacks.

• This chapter also discusses experimental evidence. The Mininet emulator

with POX controller is used to validate proposal. Hardware test bed which

consist of HP5604R OpenFlow enabled switch also used to perform the exper-

iments. Obtained detection time and overall computation overhead assure

to use in a small size network.

Conclusions are limited to known facts. Previous chapters capture some facts

about topology discovery. In the next chapter few conclusions are made on these

facts. Future work for the reader is also suggested in the next chapter.

134

Chapter 6

Conclusions and Future Scope

Software Defined Networking (SDN) gives unique opportunity to handle communi-

cation needs and provides effective, scalable and reliable solutions. To achieve this

more effectively a secure, efficient and lightweight topology discovery is important.

This chapter ends the thesis with conclusions. However, conclusions are always

restricted to known facts. Future directions are also illustrated for the reader of

the thesis.

6.1 Conclusions

In the thesis, four main contributions are made namely an empirical state of the

art, preventive solution, i.e. TILAK, A new protocol, i.e. SDN Link Discovery

Protocol (SLDP) and detection and mitigation for Address Resolution Protocol

(ARP) based threat i.e. FICUR. From each such contribution, few conclusions are

drawn as follows.

• Several attacks on link discovery such as Link Layer Discovery Protocol

(LLDP) Poison, LLDP Flooding, and LLDP Replay attacks are possible on

current deployments. In particular, the link discovery process is examined

on various SDN controllers including POX, Ryu, OpenDayLight, Floodlight,

ONOS, Beacon, and HPE-VAN. Our work confirms that each aforementioned

controller is vulnerable to one or more types of LLDP attacks.

135

• Available literature for secure link discovery is inadequate. From the litera-

ture, various gaps are identified, i.e. insecure, if secure then costly, or maybe

necessitating to change existing OpenFlow specification.

• A novel solution called TILAK can prevent LLDP based security threats. It

is the only preventive solution among the array of state of the art solutions.

TILAK uses Media Access Control (MAC) address to binding randomness to

assure prevention for all the discussed attacks. Comparing with the existing

solutions, TILAK produced resource penalty in negative. The theoretical

analysis is also helping to prove the correctness of TILAK.

• The current version of link discovery is using borrowed LLDP frame and

generated LLDP packets are more than required. Few fields in LLDP packet

are of no use in link discovery. It also creates a vulnerable environment to

get exploited. Possible causes for these vulnerabilities are the use of static

LLDP frame and lack of authentication, integrity.

• SDLP is a secure, efficient and lightweight link discovery protocol for SDN.

SLDP is probably secure link discovery process against Poison, Replay, and

Flooding attacks. SLDP uses token-based prevention with lower number

of packets to provide link discovery. SLDP provides a design of discovery

packets which are lightweight. Resource penalty for overall computation is

far less than the original implementation.

• Without securing data link layer host discovery, secure topology discovery

is hard to imagine. At the data link layer, ARP based host discovery is

performed. ARP is vulnerable to ARP Poison and Flooding attacks. ARP

has no built-in mechanism to ensure authentication and integrity hence ARP-

based attacks are serious attacks even for SDN.

• FICUR utilizes the match and filter-ability of SDN to detect and mitigate

the ARP-based attacks. This solution neither does put any extra overhead

on the network nor it requires any changes in OpenFlow specifications.

136

6.2 Future Directions

Nothing is perfect. Even after investing a long time to find facts and make conclu-

sions in any research, there are possible improvements. The thesis also suggests

few future directions to make topology discovery more secure, efficient and robust.

• The controller assumes all received information is genuine. In link discovery,

if the controller or switch is malicious, it is more challenging to prevent,

detect or mitigate Poison, Flooding and Replay attacks. Consider the case

when a switch is sending false information or the controller is creating false

information database. Then, detection of any trust breach is interesting.

• The controller assumes that connected switch follows OpenFlow specifica-

tions. But if not, then what? How the controller discovers the topology

information even after this uncertainty.

• If two hosts attached to different switches started before switch awakes,

LLDP based threat could happen in link discovery. Although this is a low

probability event but can this resolved? If it is, SLDP can be more robust.

• In SLDP, packets generation, flow entry installation etc. are periodic tasks.

Optimal time for SLDP period is yet to prove by experiments. Optimal time

will reduce the overhead and make it less vulnerable to attacks.

• Distributed link discovery is challenging, and if it will be possible, it will

reduce the overhead of a single controller.

• Wired network is mostly stable, the need of periodic packets seems avoidable.

Lesser the packets, make link discovery more efficient. We can also explore

the possibility of packet less link discovery process.

• FICUR is a detection and mitigation system. In the attack scenario, a

machine is busy with false packets and in the same time detection system is

also running. Hence, a preventive solution for different test cases is needed.

137

• Any ARP based attack prevention, detection, mitigation system is challeng-

ing if the controller or a switch is malicious or is performing arbitrary.

• FICUR can be improved if research will continue to focus on the optimization

of threshold as well as by incorporating some extensive diagnosis capabilities

to the present scheme.

• FICUR is not scalable for the enterprise network. So we can also look forward

to make it scalable, with a lesser number of ARP, IP packets to the controller.

• FICUR is ARP based attack detection and mitigation system. However, a

combination with DoS detection system can be investigated.

138

Appendix A

Details of Examined Controllers

In this appendix, details for the various examined controller are listed. All

inspected files are at the leaf of each directory tree.

/pox/pox/openflow

discovery.py

class Discovery

class LLDPSender

class LinkEvent

class Link

POX(0.2.0)

/ryu/ryu/topology

switches.py

class LLDPPacket

class LinkState

Ryu(4.12)

/floodlight

floodlight.jar

class LinkDiscoveryManager

Floodlight(1.2)

/onos-1.9.0

onos-providers-lldp-1.9.0.jar

class LinkDiscovery

ONOS(1.9.0)

/distribution-karaf-0.5.2-Boron-SR2

lldp-speaker-0.3.2-Boron-SR2.jar

class LLDPSpeaker

class LLDPUtil

topology-lldp-d..ry-0.3.2-Boron-SR2.jar

class LLDPDiscoveryUtils

class LLDPActivator

topology-lldp-discovery.xml

sal-0.7.0.jar

class LLDP

class LLDPTLV

liblldp-0.11.2-Boron-SR2.jar

class CustomTLVKey

OpenDayLight(3.0.7)

/beacon-1.0.4

net.beaconcontroller.topology_1.0.4.jar

class TopologyImpl

Beacon(1.0.4)

/hpe-van-sdn-ctlr

sdn-ctl-oflinkdisco-2.7.18.jar

class BddpPacketBuilder

class DiscoveryPacketListener

class BddpPacketInfo

HPE-VAN(2.7.18)

139

Appendix B

List of Publications

Journal

J1 Ajay Nehra, Meenakshi Tripathi, M.S.Gaur, Ramesh Babu Battula and

Chhagan Lal. “SLDP: A Secure and Lightweight Link Discovery Protocol

for Software Defined Networking”. In: Computer Networks. Elsevier, 2018.

J2 Ajay Nehra, Meenakshi Tripathi, M.S.Gaur, Ramesh Babu Battula and

Chhagan Lal. “TILAK: A Token based Prevention Approach for Topology

Discovery Threats in SDN”. In: International Journal of Communication

Systems. Wiley, 2018.

J3 Prashant Kumar, Meenakshi Tripathi, Ajay Nehra, Mauro Conti and Chha-

gan Lal. “SAFETY: Early Detection and Mitigation of TCP SYN Flood

Utilizing Entropy in SDN”. In: Transactions on Network and Service Man-

agement. IEEE, 2018.

Conference

C1 Ajay Nehra, Meenakshi Tripathi and M.S.Gaur. “‘Global View’ in SDN:

Existing Implementation, Vulnerabilities & Threats”. In: Proceedings of the

10th International Conference On Security Of Information And Networks.

SIN’17. Jaipur, India: ACM, 2017.

C2 Ajay Nehra, Meenakshi Tripathi and M.S.Gaur. “FICUR: Employing SDN

Programmability to Secure ARP”. In: Proceedings of the 7th Annual Comput-

140

ing and Communication Workshop and Conference. CCWC17. Las Vegas,

USA: IEEE, 2017.

C3 Ajay Nehra, Meenakshi Tripathi and M.S.Gaur. “Requirement Analysis for

Abstracting Security in Software Defined Network”. In: Proceedings of the

8th International Conference on Computing Communication and Networking

Technologies. ICCCNT17. IIT Delhi, India: IEEE, 2017.

141

Bibliography

[1] Ann Bosche et al. Unlocking Opportunities in the Internet of Things. Aug. 7,

2018. url: https://www.bain.com/insights/unlocking-opportunities-

in-the-internet-of-things/ (visited on 01/01/2019).

[2] Software-defined networking (SDN) market revenue worldwide from 2016

to 2022 (in billion U.S. dollars). url: https : / / www . statista . com /

statistics/668394/worldwide-software-defined-networking-market-

revenue/ (visited on 01/01/2019).

[3] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.

In: Proceedings of the IEEE 103.1 (Jan. 2015), pp. 14–76.

[4] B. A. A. Nunes et al. “A Survey of Software-Defined Networking: Past,

Present, and Future of Programmable Networks”. In: IEEE Communications

Surveys Tutorials 16.3 (2014), pp. 1617–1634.

[5] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. “Sdn Security: A Survey”.

In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS). Nov.

2013, pp. 1–7.

[6] Ajay Nehra, Meenakshi Tripathi, and Manoj Singh Gaur. “Requirement

analysis for abstracting security in software defined network”. In: 2017 8th

International Conference on Computing, Communication and Networking

Technologies (ICCCNT). July 2017, pp. 1–8.

[7] P. Kumar et al. “SAFETY: Early Detection and Mitigation of TCP SYN

Flood Utilizing Entropy in SDN”. In: IEEE Transactions on Network and

Service Management 15.4 (Dec. 2018), pp. 1545–1559.

142

https://www.bain.com/insights/unlocking-opportunities-in-the-internet-of-things/
https://www.bain.com/insights/unlocking-opportunities-in-the-internet-of-things/
https://www.statista.com/statistics/668394/worldwide-software-defined-networking-market-revenue/
https://www.statista.com/statistics/668394/worldwide-software-defined-networking-market-revenue/
https://www.statista.com/statistics/668394/worldwide-software-defined-networking-market-revenue/

[8] POX. url: https://github.com/noxrepo/pox (visited on 01/01/2019).

[9] RYU. url: https://osrg.github.io/ryu/ (visited on 01/01/2019).

[10] OpenDaylight. url: https://www.opendaylight.org/ (visited on 01/01/2019).

[11] Floodlight. url: http://www.projectfloodlight.org (visited on 01/01/2019).

[12] Beacon. 2011. url: https://github.com/bigswitch/BeaconMirror (vis-

ited on 01/01/2019).

[13] ONOS. url: http://onosproject.org/ (visited on 01/01/2019).

[14] HPE-VAN. url: https://community.arubanetworks.com/t5/HPE-VAN-

SDN-Controller-OVA-Free/ct-p/HPEVANSDNControllerOVAFreeTrial

(visited on 01/01/2019).

[15] Ajay Nehra et al. “TILAK: A token-based prevention approach for topol-

ogy discovery threats in SDN”. In: International Journal of Communication

Systems (), e3781.

[16] Ajay Nehra et al. “SLDP: A secure and lightweight link discovery protocol for

software defined networking”. In: Computer Networks 150 (2019), pp. 102–

116.

[17] Ajay Nehra, Meenakshi Tripathi, and Manoj Singh Gaur. “FICUR: Em-

ploying SDN programmability to secure ARP”. In: 2017 IEEE 7th Annual

Computing and Communication Workshop and Conference (CCWC). Jan.

2017, pp. 1–8.

[18] ”Thomas Nadeau and Ken Gray”. SDN: Software Defined Networks. An Au-

thoritative Review of Network Programmability Technologies. O’Reilly, 2013.

[19] ”Paul Goransson and Chuck Black”. Software Defined Networks. A Compre-

hensive Approach. Morgan Kaufmann, 2014.

[20] Dell White Paper. Open Networking: Dell’s Point of View on SDN. 2015.

url: https://i.dell.com/sites/csdocuments/Business_solutions_

whitepapers_Documents/en/us/dell-networking-sdn-pov.pdf (visited

on 01/01/2019).

143

https://github.com/noxrepo/pox
https://osrg.github.io/ryu/
https://www.opendaylight.org/
http://www.projectfloodlight.org
https://github.com/bigswitch/BeaconMirror
http://onosproject.org/
https://community.arubanetworks.com/t5/HPE-VAN-SDN-Controller-OVA-Free/ct-p/HPEVANSDNControllerOVAFreeTrial
https://community.arubanetworks.com/t5/HPE-VAN-SDN-Controller-OVA-Free/ct-p/HPEVANSDNControllerOVAFreeTrial
https://i.dell.com/sites/csdocuments/Business_solutions_whitepapers_Documents/en/us/dell-networking-sdn-pov.pdf
https://i.dell.com/sites/csdocuments/Business_solutions_whitepapers_Documents/en/us/dell-networking-sdn-pov.pdf

[21] AMD White Paper. Enabling Smart Software Defined Networks. 2015. url:

https://www.amd.com/Documents/SDN- Whitepaper.pdf (visited on

01/01/2019).

[22] Siamak Azodolmolky. Software Defined Networking with OpenFlow. Packt

Publishing, 2013.

[23] HP White Paper. HP SDN hybrid network architecture. 2015. url: https:

//community.arubanetworks.com/aruba/attachments/aruba/SDN/43/

1/4AA5-6738ENW.PDF (visited on 01/01/2019).

[24] William Stallings. Foundations of Modern Networking. SDN, NFV, QoE,

IoT, and Cloud. Pearson Education, 2016.

[25] Microsoft White Paper. Software-Defined Networking. 2015. url: http://

download.microsoft.com/download/4/a/0/4a01102f-c83a-4cf6-824b-

c7e21d6a0160/software_defined_networking_white_paper.pdf (visited

on 01/01/2019).

[26] Juniper White Paper. Network Transformation with NFV and SDN. 2017.

url: https://www.juniper.net/assets/fr/fr/local/pdf/whitepapers/

2000628-en.pdf (visited on 01/01/2019).

[27] OpenFlow Switch Specification, Version 1.5.0. Dec. 19, 2014. url: https://

www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

(visited on 01/01/2019).

[28] Open Networking Foundation. OpenFlow Switch Specification, Version 1.0.0.

Dec. 31, 2009. url: https://www.opennetworking.org/wp- content/

uploads/2013/04/openflow-spec-v1.0.0.pdf (visited on 01/01/2019).

[29] Open Networking Foundation. OpenFlow Switch Specification, Version 1.1.0.

Feb. 28, 2011. url: https://www.opennetworking.org/wp- content/

uploads/2014/10/openflow-spec-v1.1.0.pdf (visited on 01/01/2019).

144

https://www.amd.com/Documents/SDN-Whitepaper.pdf
https://community.arubanetworks.com/aruba/attachments/aruba/SDN/43/1/4AA5-6738ENW.PDF
https://community.arubanetworks.com/aruba/attachments/aruba/SDN/43/1/4AA5-6738ENW.PDF
https://community.arubanetworks.com/aruba/attachments/aruba/SDN/43/1/4AA5-6738ENW.PDF
http://download.microsoft.com/download/4/a/0/4a01102f-c83a-4cf6-824b-c7e21d6a0160/software_defined_networking_white_paper.pdf
http://download.microsoft.com/download/4/a/0/4a01102f-c83a-4cf6-824b-c7e21d6a0160/software_defined_networking_white_paper.pdf
http://download.microsoft.com/download/4/a/0/4a01102f-c83a-4cf6-824b-c7e21d6a0160/software_defined_networking_white_paper.pdf
https://www.juniper.net/assets/fr/fr/local/pdf/whitepapers/2000628-en.pdf
https://www.juniper.net/assets/fr/fr/local/pdf/whitepapers/2000628-en.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf

[30] Open Networking Foundation. OpenFlow Switch Specification, Version 1.2.0.

Dec. 5, 2011. url: https://www.opennetworking.org/wp- content/

uploads/2014/10/openflow-spec-v1.2.pdf (visited on 01/01/2019).

[31] Open Networking Foundation. OpenFlow Switch Specification, Version 1.3.0.

June 25, 2012. url: https://www.opennetworking.org/wp-content/

uploads/2014/10/openflow-spec-v1.3.0.pdf (visited on 01/01/2019).

[32] Open Networking Foundation. OpenFlow Switch Specification, Version 1.3.1.

Sept. 6, 2012. url: https://www.opennetworking.org/wp- content/

uploads/2013/04/openflow-spec-v1.3.1.pdf (visited on 01/01/2019).

[33] Open Networking Foundation. OpenFlow Switch Specification, Version 1.3.2.

Apr. 25, 2013. url: https://www.opennetworking.org/wp- content/

uploads/2014/10/openflow-spec-v1.3.2.pdf (visited on 01/01/2019).

[34] Open Networking Foundation. OpenFlow Switch Specification, Version 1.3.3.

Sept. 27, 2013. url: https://www.opennetworking.org/wp-content/

uploads/2014/10/openflow-spec-v1.3.3.pdf (visited on 01/01/2019).

[35] Open Networking Foundation. OpenFlow Switch Specification, Version 1.3.4.

Mar. 27, 2014. url: https://www.opennetworking.org/wp-content/

uploads/2014/10/openflow-switch-v1.3.4.pdf (visited on 01/01/2019).

[36] Open Networking Foundation. OpenFlow Switch Specification, Version 1.3.5.

Mar. 26, 2015. url: https://www.opennetworking.org/wp-content/

uploads/2014/10/openflow-switch-v1.3.5.pdf (visited on 01/01/2019).

[37] Open Networking Foundation. OpenFlow Switch Specification, Version 1.4.0.

Oct. 14, 2013. url: https://www.opennetworking.org/wp- content/

uploads/2014/10/openflow-spec-v1.4.0.pdf (visited on 01/01/2019).

[38] Open Networking Foundation. OpenFlow Switch Specification, Version 1.4.1.

Mar. 26, 2015. url: https://www.opennetworking.org/wp-content/

uploads/2014/10/openflow-switch-v1.4.1.pdf (visited on 01/01/2019).

145

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.3.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.3.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.4.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.4.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.4.1.pdf

[39] Open Networking Foundation. OpenFlow Switch Specification, Version 1.5.1.

Mar. 26, 2015. url: https://www.opennetworking.org/wp-content/

uploads/2014/10/openflow-switch-v1.5.1.pdf (visited on 01/01/2019).

[40] Cisco White Paper. Software-Defined Networking: Why We Like It and How

We Are Building On It. 2013. url: https://www.cisco.com/c/dam/

en_us/solutions/industries/docs/gov/cis13090_sdn_sled_white_

paper.pdf (visited on 01/01/2019).

[41] Intel White Paper. Adopting Software-Defined Networking in the Enterprise.

2014. url: https://www.intel.com/content/dam/www/public/us/en/

documents/best-practices/adopting-software-defined-networking-

in-the-enterprise-paper.pdf (visited on 01/01/2019).

[42] ONF White Paper. Software-Defined Networking: The New Norm for Net-

works. 2012. url: https://www.opennetworking.org/images/stories/

downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf (visited

on 01/01/2019).

[43] Linux Foundation White Paper. Harmonizing Open Source and Standards

in the Telecom World. 2017. url: https://go.pardot.com/l/6342/2017-

04-27/3tjbm4/6342/173369/LF_StandardsOpenSource_Whitepaper.pdf

(visited on 01/01/2019).

[44] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. “On scalability of software-

defined networking”. In: IEEE Communications Magazine 51.2 (Feb. 2013),

pp. 136–141.

[45] Brandon Heller, Rob Sherwood, and Nick McKeown. “The Controller Place-

ment Problem”. In: Proceedings of the First Workshop on Hot Topics in Soft-

ware Defined Networks. HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 7–

12. isbn: 978-1-4503-1477-0. doi: 10.1145/2342441.2342444. url: http:

//doi.acm.org/10.1145/2342441.2342444.

[46] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. “Towards Secure

and Dependable Software-defined Networks”. In: Proceedings of the Second

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.

146

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/cis13090_sdn_sled_white_paper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/cis13090_sdn_sled_white_paper.pdf
https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/cis13090_sdn_sled_white_paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/best-practices/adopting-software-defined-networking-in-the-enterprise-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/best-practices/adopting-software-defined-networking-in-the-enterprise-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/best-practices/adopting-software-defined-networking-in-the-enterprise-paper.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://go.pardot.com/l/6342/2017-04-27/3tjbm4/6342/173369/LF_StandardsOpenSource_Whitepaper.pdf
https://go.pardot.com/l/6342/2017-04-27/3tjbm4/6342/173369/LF_StandardsOpenSource_Whitepaper.pdf
https://doi.org/10.1145/2342441.2342444
http://doi.acm.org/10.1145/2342441.2342444
http://doi.acm.org/10.1145/2342441.2342444

HotSDN ’13. Hong Kong, China: ACM, 2013, pp. 55–60. isbn: 978-1-4503-

2178-5. doi: 10.1145/2491185.2491199. url: http://doi.acm.org/10.

1145/2491185.2491199.

[47] Y. Hu et al. “Reliability-aware controller placement for Software-Defined

Networks”. In: Integrated Network Management (IM 2013), 2013 IFIP/IEEE

International Symposium on. May 2013, pp. 672–675.

[48] Rob Sherwood et al. FlowVisor: A Network Virtualization Layer. 2009. url:

https://www.gta.ufrj.br/ensino/cpe717-2011/openflow-tr-2009-1-

flowvisor.pdf (visited on 01/01/2019).

[49] I. Ahmad et al. “Security in Software Defined Networks: A Survey”. In: IEEE

Communications Surveys Tutorials 17.4 (Oct. 2015), pp. 2317–2346.

[50] S. Khan et al. “Topology Discovery in Software Defined Networks: Threats,

Taxonomy, and State-of-the-Art”. In: IEEE Communications Surveys Tuto-

rials 19.1 (2017), pp. 303–324.

[51] George Tarnaras, Evangelos Haleplidis, and Spyros Denazis. “SDN and ForCES

based optimal network topology discovery”. In: Proceedings of the 2015 1st

IEEE Conference on Network Softwarization (NetSoft) (2015), pp. 1–6.

[52] Leonardo Ochoa Aday, Cristina Cervelló Pastor, and Adriana Fernández Fer-

nández. “Current Trends of Topology Discovery in OpenFlow-based Software

Defined Networks”. In: International Journal of Distributed Sensor Networks

5.2 (2015), pp. 1–6.

[53] Sungmin Hong et al. “Poisoning Network Visibility in Software-Defined Net-

works: New Attacks and Countermeasures”. In: Proceedings 2015 Network

and Distributed System Security Symposium February (2015), pp. 8–11.

[54] Link Layer Discovery Protocol and MIB. url: http://www.ieee802.org/1/

files/public/docs2002/lldp-protocol-00.pdf (visited on 01/01/2019).

[55] Tri Hai Nguyen and Myungsik Yoo. “Analysis of link discovery service at-

tacks in SDN controller”. In: International Conference on Information Net-

working (2017), pp. 259–261.

147

https://doi.org/10.1145/2491185.2491199
http://doi.acm.org/10.1145/2491185.2491199
http://doi.acm.org/10.1145/2491185.2491199
https://www.gta.ufrj.br/ensino/cpe717-2011/openflow-tr-2009-1-flowvisor.pdf
https://www.gta.ufrj.br/ensino/cpe717-2011/openflow-tr-2009-1-flowvisor.pdf
http://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf
http://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf

[56] Ajay Nehra, Meenakshi Tripathi, and M. S. Gaur. “‘Global View’ in SDN:

Existing Implementation, Vulnerabilities & Threats”. In: Proceedings of the

10th International Conference on Security of Information and Networks. SIN

’17. Jaipur, India: ACM, 2017, pp. 303–306.

[57] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in a Laptop:

Rapid Prototyping for Software-defined Networks”. In: Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks. Hotnets-IX. New

York, NY, USA: ACM, 2010, 19:1–19:6.

[58] J. Lin et al. “A Survey on Internet of Things: Architecture, Enabling Tech-

nologies, Security and Privacy, and Applications”. In: IEEE Internet of

Things Journal 4.5 (Oct. 2017), pp. 1125–1142. issn: 2327-4662. doi: 10.

1109/JIOT.2017.2683200.

[59] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things:

A Survey”. In: Comput. Netw. 54.15 (Oct. 2010), pp. 2787–2805. issn: 1389-

1286. doi: 10.1016/j.comnet.2010.05.010. url: http://dx.doi.org/

10.1016/j.comnet.2010.05.010.

[60] A. Gupta and R. K. Jha. “A Survey of 5G Network: Architecture and Emerg-

ing Technologies”. In: IEEE Access 3 (2015), pp. 1206–1232. issn: 2169-3536.

[61] A. Gohil, H. Modi, and S. K. Patel. “5G technology of mobile communi-

cation: A survey”. In: 2013 International Conference on Intelligent Systems

and Signal Processing (ISSP). Mar. 2013, pp. 288–292.

[62] S. An, B. Lee, and D. Shin. “A Survey of Intelligent Transportation Sys-

tems”. In: 2011 Third International Conference on Computational Intelli-

gence, Communication Systems and Networks. July 2011, pp. 332–337.

[63] T. Alharbi, M. Portmann, and F. Pakzad. “The (in)security of Topology

Discovery in Software Defined Networks”. In: 2015 IEEE 40th Conference

on Local Computer Networks (LCN). 2015, pp. 502–505.

148

https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010

[64] F. Pakzad et al. “Efficient topology discovery in software defined networks”.

In: 2014 8th International Conference on Signal Processing and Communi-

cation Systems (ICSPCS). Dec. 2014, pp. 1–8.

[65] Mohan Dhawan et al. “SPHINX: Detecting Security Attacks in Software-

Defined Networks.” In: NDSS. The Internet Society, 2015.

[66] T. Alharbi, M. Portmann, and F. Pakzad. “The (in)security of Topology

Discovery in Software Defined Networks”. In: 2015 IEEE 40th Conference

on Local Computer Networks (LCN). Oct. 2015, pp. 502–505.

[67] Zhao Xin, Yao Lin, and Wu Guowei. “ESLD: An efficient and secure link

discovery scheme for software defined networking”. In: International Journal

of Communication Systems 31.10 (), e3552.

[68] A. Azzouni et al. “sOFTDP: Secure and efficient OpenFlow topology discov-

ery protocol”. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and

Management Symposium. Apr. 2018, pp. 1–7. doi: 10.1109/NOMS.2018.

8406229.

[69] L. Ochoa-Aday, C. Cervelló-Pastor, and A. Fernández-Fernández. “Self-Healing

Topology Discovery Protocol for Software-Defined Networks”. In: IEEE Com-

munications Letters 22.5 (2018), pp. 1070–1073.

[70] P. Thorat et al. “Rapid recovery from link failures in software-defined net-

works”. In: Journal of Communications and Networks 19.6 (2017), pp. 648–

665.

[71] E. Rojas et al. “TEDP: An Enhanced Topology Discovery Service for Software-

Defined Networking”. In: IEEE Communications Letters 22.8 (Aug. 2018),

pp. 1540–1543. issn: 1089-7798.

[72] L. Ochoa-Aday, C. Cervelló-Pastor, and A. Fernández-Fernández. “Discov-

ering the Network Topology: An Efficient Approach for SDN”. In: ADCAIJ:

Advances in Distributed Computing and Artificial Intelligence Journal 5.2

(2016).

149

https://doi.org/10.1109/NOMS.2018.8406229
https://doi.org/10.1109/NOMS.2018.8406229

[73] Y. Jimenez, C. Cervello-Pastor, and A. Garcia. “Dynamic Resource Dis-

covery Protocol for Software Defined Networks”. In: IEEE Communications

Letters 19.5 (May 2015), pp. 743–746.

[74] L. Ochoa-Aday, C. Cervello-Pastor, and A. Fernandez-Fernandez. “Self-Healing

Topology Discovery Protocol for Software-Defined Networks”. In: IEEE Com-

munications Letters 22.5 (May 2018), pp. 1070–1073.

[75] David C. Plummer. Ethernet Address Resolution Protocol: Or converting

network protocol addresses to 48.bit Ethernet address for transmission on

Ethernet hardware. RFC 826. RFC Editor, Nov. 1982.

[76] Cisco. Address Resolution Protocol. 2013. url: https://www.cisco.com/

c/en/us/td/docs/ios- xml/ios/ipaddr_arp/configuration/xe-

3se/3850/arp- xe- 3se- 3850- book/arp- config- arp.pdf (visited on

01/01/2019).

[77] SANS. Address Resolution Protocol Spoofing and Man-in-the-Middle At-

tacks. 2006. url: https://www.sans.org/reading-room/whitepapers/

threats/address-resolution-protocol-spoofing-man-in-the-middle-

attacks-474 (visited on 01/01/2019).

[78] Christian Benvenuti. Understanding Linux Network Internals. O’Reilly Me-

dia, 2005. Chap. 29, pp. 699–748.

[79] Lawrence Berkeley. arpwatch(8) - Linux man page. url: https://linux.

die.net/man/8/arpwatch (visited on 01/01/2019).

[80] M. Carnut and J. Gondim. “switched Ethernet networks: A feasibility study”.

In: Proceedings of the 5th Simposio Seguranca em Informatica. 2003.

[81] Han-Wei Hsiao, Cathy S. Lin, and Ssu-Yang Chang. “Constructing an ARP

Attack Detection System with SNMP Traffic Data Mining”. In: Proceedings

of the 11th International Conference on Electronic Commerce. ICEC ’09.

Taipei, Taiwan: ACM, 2009, pp. 341–345.

150

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/configuration/xe-3se/3850/arp-xe-3se-3850-book/arp-config-arp.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/configuration/xe-3se/3850/arp-xe-3se-3850-book/arp-config-arp.pdf
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_arp/configuration/xe-3se/3850/arp-xe-3se-3850-book/arp-config-arp.pdf
https://www.sans.org/reading-room/whitepapers/threats/address-resolution-protocol-spoofing-man-in-the-middle-attacks-474
https://www.sans.org/reading-room/whitepapers/threats/address-resolution-protocol-spoofing-man-in-the-middle-attacks-474
https://www.sans.org/reading-room/whitepapers/threats/address-resolution-protocol-spoofing-man-in-the-middle-attacks-474
https://linux.die.net/man/8/arpwatch
https://linux.die.net/man/8/arpwatch

[82] Vipul Goyal and Rohit Tripathy. “An Efficient Solution to the ARP Cache

Poisoning Problem”. In: Proceedings of the 10th Australasian Conference on

Information Security and Privacy. ACISP’05. Brisbane, Australia: Springer-

Verlag, 2005, pp. 40–51.

[83] D. Bruschi E. Rosti A. Ornaghi. S-ARP: a Secure Address Resolution Pro-

tocol. 2003. url: https://www.acsac.org/2003/papers/111.pdf (visited

on 01/01/2019).

[84] Wesam Lootah, William Enck, and Patrick McDaniel. “TARP: Ticket-based

address resolution protocol”. In: Computer Networks 51.15 (2007), pp. 4322–

4337.

[85] Cisco. Dynamic ARP Inspection. 2013. url: http://www.cisco.com/c/en/

us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/

guide/book/dynarp.html (visited on 01/01/2019).

[86] S. Y. Nam, D. Kim, and J. Kim. “Enhanced ARP: preventing ARP poisoning-

based man-in-the-middle attacks”. In: IEEE Communications Letters 14.2

(Feb. 2010), pp. 187–189.

[87] H. Ma et al. “Bayes-based ARP attack detection algorithm for cloud centers”.

In: Tsinghua Science and Technology 21.1 (Feb. 2016), pp. 17–28.

[88] M. Z. Masoud, Y. Jaradat, and I. Jannoud. “On preventing ARP poison-

ing attack utilizing Software Defined Network (SDN) paradigm”. In: Applied

Electrical Engineering and Computing Technologies (AEECT), 2015 IEEE

Jordan Conference on. Nov. 2015, pp. 1–5.

[89] T. Alharbi et al. “Securing ARP in Software Defined Networks”. In: 2016

IEEE 41st Conference on Local Computer Networks (LCN). Nov. 2016,

pp. 523–526.

[90] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in a Laptop:

Rapid Prototyping for Software-defined Networks”. In: Proceedings of the

9th ACM SIGCOMM Workshop on Hot Topics in Networks. Hotnets-IX.

Monterey, California: ACM, 2010, 19:1–19:6.

151

https://www.acsac.org/2003/papers/111.pdf
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/dynarp.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/dynarp.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/dynarp.html

Brief bio-data

Ajay Nehra completed a Doctoral degree in July 2019 with the Department of

Computer Science and Engineering, Malaviya National Institute of Technology,

Jaipur, India. He awarded the M.Tech. Degree in Computer Science and Engi-

neering from the Central University of Rajasthan, India, in June 2012 and received

the Bachelor of Engineering degree in Computer Engineering from the University

of Rajasthan in June 2008. He awarded scholarships for both the Master’s and

Doctoral degrees from the Ministry of Human Resource Development, Govern-

ment of India. His current research area includes Software-Defined Networking,

Information Security, and Network Security.

152

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Organization of the Thesis

	State of the Art
	Software Defined Networks: A new era for networks
	Topology Discovery in SDN
	Link Discovery
	Current Deployments
	Threat Model
	Attacker’s Approach
	Orthogonal Research
	Inferences

	Host Discovery at Data Link Layer
	Current Deployments
	Threat Model
	Attacker’s Approach
	Orthogonal Research
	Inferences

	Summary

	A Preventive Solution to Secure Link Discovery
	Foundation
	TILAK Design
	Implementation
	Experimental Setup
	Performance Metrics
	Results and Discussion
	Correctness Analysis

	Summary

	A Lightweight Protocol for Efficient and Secure Link Discovery
	Foundation
	Security
	Lightweight
	Efficient

	The SLDP Protocol
	Desired Characteristics
	SLDP Packet Format
	SLDP System Architecture

	Test Case Analysis
	Implementation
	Experimental Setup
	Performance Metrics
	Results and Discussion

	Summary

	Securing Data Link Layer Host Discovery
	Foundation
	FICUR Design
	Attack Detector
	Attack Source Localization
	Attack Mitigation

	Implementation
	Experimental Setup
	Performance Metrics
	Results and Discussion

	Summary

	Conclusions and Future Scope
	Conclusions
	Future Directions

	Appendix
	Details of Examined Controllers
	List of Publications
	Bibliography

