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ABSTRACT

With the exponential growth in worldwide population, crowd analysis has become

a dire need for public safety and security perspectives. Visual analysis of dense

crowd is particularly difficult because of the high density of individuals, severe

occlusions, cluttered background, and fewer pixels per individuals which hardly

exist in regular surveillance environments.

This thesis intends to tackle these issues both in images and videos of intensely

dense crowds. The dense crowd consists of hundreds to thousands of people per

image or scene. The target is to handle the elementary problems of crowd detec-

tion, density estimation, flow segmentation and anomaly detection in such images

and videos using texture features which are extracted from the crowded scenes.

In this dissertation, the study of crowd analysis includes crowd density estimation

and crowd scene understanding. We also find out the limitations of approaches

present in existing literature to bring out the solution of fully automatic crowd

density estimation and analysis of crowd scenes. This dissertation focuses on four

topics, namely crowd detection, crowd density estimation, flow segmentation, and

anomalous scene detection.

For density estimation, we present to leverage the clues obtained from multiple

sources, to figure out the density of people existent in exceptionally dense crowd

images. Our approach depends on multiple sources such as head detection with low

confidence, recurrence of texture elements by using frequency domain, wavelet and

scale invariant feature transform (SIFT) descriptor to measure the density count.

The information obtained from different sources trains a support vector machine

(SVM), which generates a patch count estimation. Furthermore, we apply Markov

Random Field (MRF) on image patches to obtain uniformity in counts in local

neighborhoods and across scales. We tested this approach on four different datasets

such as Shanghai Tech A, UCF CC 50, extended UCF CC 100 and UCSD.

The former three datasets are a crisp contrast to existing crowd datasets used in

literature which contains almost hundreds or tens of individuals in crowd images.

The latter UCSD dataset is used to test the robustness of our technique in the

low-density crowd too. We also compare our method with both traditional and

convolutional neural network (CNN) based approaches. Low computational com-

plexity indicates that our technique provides decent performance rate and can be

employed in real-world applications.
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Our experimental results validate the adequacy and efficiency of the intended

methodology by measuring the density of people in images of high-density crowds

in contrast to existing methods which are merely suitable for low to medium crowd

density.

Understanding crowd scene is another important task in crowd analysis where

the goal is to segment dominant flow pattern for preventing accidents as well as

anomalous scene detection for implementing evacuation plans essential in case of

over-crowdedness, clogging or riots in the urban regions.

In crowd flow segmentation, the objective of this work is to segment crowd flow

while simultaneously considering the newly appearing object in the scene. It is

accomplished by applying an updating procedure after a temporal window of a cer-

tain number of frames. Furthermore, the essential aspect of the presented method

is taking advantages of foreground segmentation by active contouring scheme.

From the segmented region, trajectories are extracted by considering block level

tracking instead of individual point tracking.

The presented approach is highly successful in high-density crowd scenes due to

block level tracking, which is a primary reason for decreasing the performance of

standard tracking by individual detection approaches. We cluster the extracted

trajectories by designing a novel clustering algorithm, especially applicable to a

high-density crowd scene. We extract the shape, location, direction and density

features of trajectory patterns. Next, each pixel is labeled depending upon their

motion pattern to segment the final crowd flow and eventually, the crowd flow

segments are analyzed to understand the flow. As the approach does not demand

high computational resources, it can be used in segmenting flow patterns in real

time crowd video sequences.

Once crowd flow patterns are segmented, we then use the extracted tracklets for

detecting anomalous scene in dense crowd videos. The purpose of crowd scene

analysis is early detection or prediction of anomalous events which could lead to

potentially dangerous situations that threaten the safety of individuals. By early

detection of anomalous scenes, potentially threatening reactions can be reduced

or prevented. This work considers the anomalous crowd scene detection by per-

forming a statistical analysis on the oriented tracklets of the crowd. We adopt

two statistical parameters as entropy and temporal occupancy for anomaly de-

tection. Our idea is to model a normal crowd scene based on these parameters

and any discrepancy in the normal crowd behavior is detected as anomalous. Our

method is evaluated on various crowd video sequences containing medium to high-
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density and outperforms on existing approaches without prior learning of crowd

flow patterns.

We validate the reliability of our algorithms by evaluating the performance of

crowd detection, density estimation, as well as flow segmentation and anomalous

scene detection on different datasets comprising thousands of persons in challeng-

ing crowd scenarios.
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Chapter 1

INTRODUCTION

Due to experiences of exponential expansion in the worldwide population, crowd

scenes have been more common than ever. Crowd scene comprises a significantly

large number of individuals assembled collectively in one place. Such places often

acquire mass gathering events such as political speeches, public demonstrations,

music concerts, marathons, and religious gatherings. There are intrinsic dangers

coupled with each large public gathering. Every year there are stories of over-

crowding and crushing incidents from around the world. Each year individuals are

injured and die in crowd-related mishaps, even in some cases at planned occasions.

Parsing through a timeline of crowd-related disasters over the past decade paints a

sad picture. For instance, some well-known examples of crowd calamities include

Chamunda Devi temple stampede at Rajasthan (India) in 2008, Love Parade dis-

aster at Germany in 2010, Khmer water festival-Penh in Cambodia (2010), Boston

marathon bombing in 2013, Mina-Mecca stampede in 2015 and Mumbai railway

station stampede in 2017 are illustrated in Figure 1.1. A few more illustrative ex-

amples of worldwide deadliest stampedes are shown in Table 1.1 where the number

of deaths is reported as high as 2262 persons.

To prevent these unfortunate events or tragedies from happening, crowd phe-

nomenon is becoming an important topic for research. The learning of the crowd

has therefore caught the attention of multidisciplinary research from civil, com-

puter science, physics, psychology, and biology. In computer science, computer

vision researchers have gained much attention towards an automatic analysis of

crowd in the past decade.

Crowd analysis has numerous real-world applications in public space construction,

virtual simulation, visual surveillance, and especially in crowd management. To

1
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Figure 1.1: Some well-known cases of crowd related tragedies at venue of mass
gatherings: first row left to right indicates Chamunda Devi temple stampede,
Rajasthan-India (2008), Love Parade disaster-Duisburg, Germany (2010) and Khmer
water festival-Penh, Cambodia (2010). The second row left to right indicates Boston
marathon bombing, Massachusetts-United States (2013), Mina-Mecca, Saudi Arabia
(2015) and Mumbai railway station stampede(2017) respectively.

observe a big area of the crowd, various surveillance cameras are set up around

the world that generate a large number of video streams. Manual analysis of these

massive amounts of video data and to make intelligent decisions for emergencies

are impossible for any security personnel. Even, a human observer may fail to

notice a suspicious event. Therefore, there must be an automated way to analyze

the data generated by surveillance systems.

The visual analysis of crowd incorporates numerous computer vision tasks such as

object detection, counting (density estimation), tracking, and understanding the

behavior of various objects or crowd scenes, as shown in Figure 1.2. To perform

these tasks, many vision-based algorithms are developed, but they were primarily

designed for frequent scenes with a low density of crowd [Hu et al. (2006, 2004)].

The complexity of computer vision tasks augments disproportionately relying on

the number of persons forming the crowd. For low-density crowd scenes, detection

and tracking methods might work very well due to the apparent visibility of peo-

ple. However, detection and tracking fail when it comes to high-density crowded

scenes with hundreds to thousands of individuals, and also increases computational

complexity. Therefore, the applicability of a particular computer vision technique

relies upon the density and structure of the crowd.

Dense crowds put forward a set of challenges in visual analysis like cluttered back-

ground, fewer pixels per person, severe occlusions and perspective effects, etc.
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Table 1.1: List of notable crowd stampedes and crushes by death toll

S.No. Year Location Deaths Event

1 1883 Victoria Hall, Britain 180 Entertainment

2 1913 Italian Hall in Calumet City,
Michigan

73 Religious

3 1964 National stadium in Lima, Peru 300 Sports

4 1989 Hillsborough Stadium in Sheffield 93 Sports

5 1990, 2004, 2015 Hajj pilgrimage in Mina, Mecca,
Saudi Arabia

1426, 244, 2262 Religious

6 2003 New Jersey’s Station Nightclub 96 Night Club

7 2005 Bridge stampede, Bagdhad 1000 Religious

8 2006 The Ultra arena in Manila,
Philippines

73 Sports

9 2008 The Chamunda Devi Temple at top
hill in Jodhpur, India

200 Religious

10 2013 Hindu Navratri festival, Datia,
Madhya Pradesh, India

115 Religious

11 2016 Annual thanksgiving festival of the
Oromo people in Ethiopia

300 Protest

12 2018 The El Paraso Social Club, Caracas,
Venezuela

21 Protest

Figure 1.2: Schematic representation of the topics tackled in crowd analysis.
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Therefore, in the dense crowd, the entire understanding of the scene or image is

necessary. In this thesis, the study of crowd analysis includes crowd density es-

timation and crowd scene understanding. For density estimation, we explore the

use of texture features in the dense crowd. Since it is observed that the closely

coupled crowds of persons can be considered as a texture, and it appears irregular

when viewed at a coarse-scale but with greater details of the texture, it follows

a harmonic or regular pattern. We adopted holistic approaches for crowd scene

understanding in terms of finding anomalous scenes and segmentation of crowd

flow or motion patterns.

1.1 Crowd Density Estimation

Crowd density is the number of people within a unit area, such as people per square

meter. Crowd density estimation is a prerequisite for all the measures of crowd

analysis. Density is one of the primitive explanation of crowd status and, has

applications in public space design inclusive of their expansion and amendments,

by inspecting the counts of commuters that generally travel through these areas. It

estimates the capacity of public space design and marks the tendency of abnormal

changes in density over time. Manual counting of people in a dense crowd is

a tremendously laborious task. The computer vision researchers have proposed

various automated and semi-automated solutions for crowd density estimation.

Traditional crowd counting methods, [Chan et al. (2008); Ryan et al. (2009); Chan

and Vasconcelos (2012)] estimate crowd density by individual pedestrian detection.

Human detection is a basic function for density estimation, people tracking, and

strange activity recognition. Reliable human detection is a key component of

robust human tracking. In mass gatherings, the human body may be partially or

completely occluded, which degrades the resultant performance. A face is the most

evident part of the body which gets captured in the images since cameras are fixed

at high altitude for improved surveillance. We developed a crowd face detection

method that incorporates a skin color model, histogram of oriented gradient feature

with Support Vector Machine (SVM). In this approach, the non-skin color objects

are automatically discarded by the skin color model. SVM classifies the leftover

objects based on the histogram of gradient oriented features, which simplify an

object in such a way that the object generates nearly the same features when

envisioned in diverse conditions. We find excellent results for the low-density crowd

where faces are visible. However, the performance of our approach deteriorates
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with an increase in crowd density or invisibility of frontal faces.

In the extremely dense crowded scenes, where each individual occupies very few

pixels with severe occlusion, face, head, and full body detectors fail to detect

the individuals. A single feature or detection method alone is not suitable to

produce a correct crowd count due to small target size, low resolution, harsh

occlusion between individuals, cluttered background, and perspective effects. Even

the state-of-the-art like human, head, or face detectors perform poorly in such

scenarios. High-density crowd images occupy very few pixels per target so that

neither it can be detected nor its presence be verified in the location. These are

the key requirement of the existing literature. The practicability of most existing

techniques is bounded by the following two shortcomings:

1. Incapability to deal with crowds of hundreds or thousands of people.

2. Dependence on a single feature or detection method in the high-density

crowd.

Therefore, to deal with a high-density crowd, we present a regression-based mul-

tisource approach that extracts effective texture features from crowd images to

estimate the density of the crowd. We examined that the tightly coupled crowds

of individuals can be considered as a texture, and the texture looks irregular when

viewed at a coarse scale but as we go into finer details of the texture, it seems to fol-

low a particular harmonic or regular pattern. The multi-source approach includes

scale invariant feature transform (SIFT) descriptor, Fourier analysis, Wavelet anal-

ysis, and head detection. Initially, Fourier analysis is employed along with head

detections, followed by Wavelet analysis and interest point based SIFT counts.

All these techniques are sequentially applied in local neighborhoods at multiple

scales for avoiding the issues arising from irregularity in the observed textures

arising from dense crowd images. The density count is performed at patch level

to overcome the problems arising due to foreshortening and local geometric dis-

tortions. The estimated counts of each patch are accumulated while keeping the

consistency constraints over the whole image. We gain the advantage of multiple

counts from different approaches by analyzing the individual source. We obtain

a confidence score from each source, and a Support Vector Regressor (SVR) is

trained by using the ground truth annotations and computed features. Further,

all the information sources are combined with their corresponding confidences, the

count is independently computed at localized patches, and then the entire image
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count is estimated with global consistency constraint. Since the counts are com-

puted separately at different scales, the uniformity constraint is suitable for spatial

neighborhoods along with direct neighbors at diverse scales.

We present a solution to gain uniformity at all scales to the whole image by

applying multi-scale grid Markov Random Field (MRF) [Li (2009)] structure that

enforces the count consistency constraint. The total crowd density count in an

image is achieved by aggregating the patch counts of corresponding image patches

in the grid structure. Our approach is adequate to estimate the crowd density in

high-density crowd images. Several other tasks aimed at automated analysis of

dense crowds require crowd scene analysis where the goal is to segment dominant

flow patterns to prevent accidents, as well as anomalous scene detection from

implementing evacuation plans essential in the unlikely event of over-crowdedness,

clogging or in the case of riots in urban areas.

1.2 Crowd Scene Analysis

Automated analysis of crowd scenes has a significant role in ensuring public safety

and better management of incidents comprising a huge crowd. It has various uti-

lizations, for instance, a pronouncement of crowd congestion, anomaly detection,

and dominant pattern analysis, etc., which may assist in avoiding unnecessary

crowding or clogging, and tragic incidents. In high-density crowded places, con-

gested situations can cause crowd tragedies emanating from the maximum density

and uneven flow of crowd (anomalous). Our purpose of this study is to model high-

density crowd scenes. Here, the term model includes tasks of segmenting crowd

motion patterns or flows and detection of abnormalities present in the scene using

computer vision and machine learning techniques.

1.2.1 Crowd Flow Segmentation

The flow we are dealing with can be defined as a prevailing path generated by

moving crowds in a video. A video can have multiple flows without having the

details of the number of flows and the location of each flow. This incomplete infor-

mation makes the problem of flow segmentation more challenging. The difficulty

of a computer vision system is capturing precise motion information, which is de-

pending upon motion representation. The required motion representation should
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produce long and consistent trajectories. These trajectories can then be used to

define the flow for the entire video.

Usually, optical flow computes pixel-wise flow between frames [Lu et al. (2010);

Brox and Malik (2010)]. There are some intrinsic complications in the direct

handling of optical flow for motion representation. One is, it generates uncertain

outcomes on the borderlines of overlapping flows and acts poorly when the object’s

movement is prolonged. Other is, long-range spatio-temporal motion samples re-

quired in numerous applications are not covered by optical flow. Normally, It is

difficult to attain full trajectories of moving crowd in high density. Hence, a con-

cept of tracklet is used to obtain complete trajectories and to capture short-term

motion. A tracklet, obtained by the tracker for the object is a section of trajectory.

In general, it is challenging or impractical to detect, segment, and track objects in

high-density crowd scenes.

To model such high-density scenes, we adopt a holistic approach. The holistic

approach considers the crowd as a single entity rather treated as a collection of

individuals as in object-based approaches.

The holistic consideration handles the issue of occlusion present in a highly dense

crowded scene. These techniques aim to acquire global level details and discard

the local ones like main crowd flow is processed while an individual going opposite

to flow is discarded.

In this thesis, we present a crowd flow segmentation approach by following an un-

supervised paradigm. The approach develops an active contour-based trajectory

clustering algorithm. Since the crowd is not present in the whole frame, some

portion of the frame is occupied by buildings, walls, trees, etc. Therefore, the

active contour approach segments the foreground crowd region from the entire

frame to minimize further tracking. Tracking of individuals in the high-density

crowd is impractical. We consider a block-level structure of active contour region

for trajectory extraction and exploit the essential temporal information depicted

in trajectories to handle the complex flow patterns in a better way. We present a

new methodology for trajectory representation and feature selection that consid-

ers the shape, location, flow direction, and density of trajectories. The extracted

trajectories are partitioned into K-primitive clusters using the standard K-mean

algorithm and further merged by our presented clustering algorithm. This way

trajectories are clustered which have the same flow patterns. It is observed that

different trajectory clusters comprise one flow segment. This kind of situation

occurs when people with the same flow direction comes into the scene at a dif-
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ferent time. To address this issue, we introduce a slightly different version of the

density-based clustering technique and segment the crowd flow based on spatial

overlapping, direction, and location of clusters. At this point, we obtain physi-

cally and dynamically meaningful segments which tell us about how much flow is

heading in which direction. Further, each segment is analyzed and, if the density

of flow increases beyond a certain threshold, an alert is issued for safety concerns.

The second goal of this crowd scene analysis is the detection of the anomalous

scene, which is discussed in the following subsection.

1.2.2 Anomalous Scene Detection in Crowd

Anomalous activities are usually categorized as an outlier detection problem. Ex-

isting literature on anomaly detection can be classified as global and local anomaly

detection. The global detection identifies whether the scene has an anomaly or

not, and the local one tells about the place of an anomaly. Our approach falls into

the global anomaly detection method with the aim to detect the anomalous scene,

and precisely find out the origin and finishing point of anomaly occurrence in the

scene.

Anomalous scene detection in dense crowd consists of two crucial problems. One

is severe occlusion between individuals which can be handled by considering the

crowd at the holistic level as a single entity. Another issue is the behavior descrip-

tion. A crowd scene contains thousands of behaviors, and it is nearly impossible

to describe each of them. Hence, designing a general technique for crowd behavior

detection is a cumbersome task. The description of the behavior in this framework

can be described as the direction and density of the crowd, whereas anomalous be-

haviors are the transition which is usually not expected to take place. Here, crowd

direction depicts crowd behavior like where the crowd is heading for. Furthermore,

through the density information, crowd congestion or bottleneck problem can be

identified, if the density of certain place increases beyond a threshold, it is also a

sign of an abnormality in the scene.

In this dissertation, we developed an approach for anomalous scene detection that

performs statistical analysis on the oriented tracklets of moving crowd. We adopted

the two statistical parameters as entropy and temporal occupancy for anomaly

detection. The entropy reflects that infrequent events are more informative than

frequent ones. Entropy provides a degree of uncertainty or randomness. Higher

disorder or chaos leads to higher entropy. And, the temporal occupancy measures
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the area occupied by the crowd over time. We can judge the abnormality of a

scene concerning massive deviation in both measures. If entropy and temporal

occupancy increase beyond a certain threshold, that means something anomalous

is happening. Therefore, an alert is issued to prevent potentially dangerous sit-

uations. Our experiments are conducted on three datasets: UMN [UMN], UCF

Web [Mehran et al. (2009)], and Violent Flows [Hassner et al. (2012)]. The UCF

Web and Violent Flows datasets are complementary to the presented approach as

they consist of dense crowd scenes of real-world applications such as the marathon,

stadium, stampede, and political rallies, etc.

1.3 Motivation

Due to mass gatherings at public places, chances of crowd-related disasters has

increased like a stampede, clogging, over-crowdedness, etc. In the recent past,

many crowd calamities had occurred due to lack of crowd management, monitor-

ing strategies, and the way our public spaces are constructed. Crowd analysis has

become an essential task to provide safe and secure environments in public places.

In crowd scene analysis, the focal point is object detection, counting, tracking, and

behavior recognition. The conventional techniques are not recommended for high-

density crowd scenarios having severe occlusions, small target size, low resolution,

and extremely cluttered background. In such scenes, undetected abnormal deeds

might lead to undesirable conditions. A crowd has both dynamics and psycho-

logical characteristics, and it is very difficult to analyze the behavior and model

the dynamics of a crowd at a proper level. Crowd analysis has a large number of

real-world applications such as

1. Crowd Management: It helps to develop management schemes to prevent

adversities arising due to the crowd for ensuring public safety.

2. Public Space Design: It can give former guidelines in public space design-

ing by guarantying comfort levels and safety measures in the structuring of

railway stations, shopping malls, and airport terminals, etc.

3. Visual Surveillance: It provides an automatic procedure to detect the anomaly

and generates an alarm for emergency evacuation.

4. Intelligent Environment: This environment can be used to make a wise judg-

ment on how to divert crowd based on their activities at overcrowded places.



Chapter 1. INTRODUCTION 10

5. Entertainment: With profound knowledge of crowd phenomena, the devel-

opment of mathematical models can give a more precise simulation, which

can be exercised in film industries and computer games. It can also be used

to produce crowd videos with realistic behavior.

There are places of public domain where crowd analysis has broad applications to

detect potential risk due to the large gathering and to control the gathering from

being getting overcrowded such as at sports stadiums, protests, demonstrations,

marathons, rallies, political speeches, shopping malls, religious places, railway sta-

tions and music concerts, etc. which are described by gatherings of hundreds to

thousands of people. The public space design and intelligent surveillance is the

main scope of this research work. The goal of this thesis is to develop a robust

method for crowd density estimation using computer vision approach and to de-

sign an efficient algorithm for crowd scene understanding which leads to segment

dominant flow pattern by trajectory clustering and detect anomalous scenes by

oriented tracklets and generate a quicker response to the emergent situations.

1.4 Research Gaps and Objectives

The computer vision research presented in this dissertation targets two applica-

tions of crowd analysis which are public space design and intelligent surveillance.

The outcomes of this research can be used to provide guidelines for public space

design by estimating the reckoning of customers or commuters that frequently

travel through these places. This work also analyzes and segments the crowd flow

which assists in avoiding unnecessary crowding or clogging and tragic incidents.

Moreover, we detect potentially dangerous situations (anomalous scene) to prevent

accidents along with to aid evacuation plans essential in the unlikely events.

Most of the existing techniques are designed for handling a crowd of less than

hundreds of individuals, above this the existing literature fails. For crowd density

estimation, detection-based methods like head, face, and full-body detectors fail

to detect a person in the excessively dense crowded scenes. Any detection or single

feature method is not appropriate enough to give a precise crowd density due to

severe occlusion, low resolution, perspective, and foreshortening. It is required to

formulate a robust method for density estimation in a high-density crowd where

each individual occupies a few pixels per target with severe occlusion. The crowd

scene analysis depends on motion cue merely between consecutive frames that do
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not capture substantial temporal motion. The tracking of an individual is imprac-

tical, so we need to consider the whole crowd as a single entity. To segment crowd

flow, existing methods track the interest points in the entire frame, though the

crowd is not distributed in the entire frame region (i.e., the background contains

trees, sky, building walls, etc.). Therefore, only the foreground (crowd region)

needs to be tracked to minimize the tracking. Also, in anomalous scene detection,

existing methods have a high probability of false alarm generation because they

consider only single frame for change detection.

Given the above shortcomings, this research work focuses mainly on the following

objectives:

1. Study recent issues and challenges in crowd density estimation, crowd flow

segmentation, and anomalous scene detection so that they can be optimized

and applied to real-life applications.

2. It has been observed that no single feature or detection method alone is

appropriate for density estimation in the dense crowd. Therefore, a multi-

feature based method is needed to provide an accurate density count in the

high-density crowd.

3. We aim to take into account the challenges offered in dense crowd images

like occlusion, foreshortening, and local geometric distortions.

4. Automated analysis of dense crowds requires crowd flow analysis. To find

the dominant crowd flow pattern, robust tracking is required to maintain

the track of crowd flow. With the recent advancements in computer vision,

it can be claimed that there are feasible solutions available for addressing

the robust tracking of single or multiple targets. But high-density crowd

tracking with severe occlusion is very cumbersome tasks in computer vision.

Our objective is to develop and optimize feasible solutions for crowd flow

segmentation in the presence of various tracking challenges such as occlusion,

short or corrupted trajectory.

5. The performance of crowd flow segmentation mainly depends on the accurate

selection and representation of the trajectory feature of the moving crowd.

We aim at robust selection and representation of trajectory features.

6. To develop an efficient algorithm for crowd flow segmentation while optimiz-

ing the tracking.
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7. To generate a method for crowd scene behavior classification (normal or

abnormal) by minimizing the false alarm generation.

8. Evaluate the presented methods on benchmark datasets and compare the

results with state-of-art approaches.

1.5 Contributions

Our contributions to this study are to create a crowd analysis system which consid-

ers the tasks of crowd density estimation, crowd flow segmentation and anomalous

scene detection in high-density crowd.

The study summarizes as:

1. Explore the literature work to find various steps involved in crowd analysis.

2. This work presents a texture based multi-source approach for crowd density

estimation which includes Fourier analysis, wavelet, HOG and SIFT tech-

niques.

(a) All these techniques are sequentially applied in local neighborhoods

(patch-level) at multiple scales to avoid the issues of foreshortening

and local geometric distortion arising from irregularity in the observed

textures rising from dense crowd images.

(b) Simultaneously, the presented method also maintains the smoothness

and consistency among neighboring patches by employing Markov Ran-

dom Field.

3. We present an unsupervised approach for crowd flow segmentation based on

trajectory clustering in active contouring specific to high-density scenarios.

(a) Active contouring segments foreground (crowd region) with the aim to

minimize tracking that takes segmented foreground regions as input to

select features for further tracking.

(b) We also continuously take into account the newly appearing moving

objects in a video by revising our existing set of tracker constituents

after processing a temporal window of frames.

4. We present a new methodology for trajectory representation taking into ac-

count the shape, location, flow direction, and density of trajectories.
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5. An automatic approach is presented for anomalous scene detection in crowd

videos by considering the statistical analysis of oriented tracklets in terms of

entropy and temporal occupancy.

6. Validation of our approach of crowd density estimation and crowd scene

analysis on benchmarks datasets with remarkable performance compared to

existing methods.

The outline of the thesis is visualized in Figure 1.3. Chapter 2 presents a review

of existing literature on crowd analysis in terms of crowd density estimation, flow

segmentation, and anomalous scene detection. Chapter 3 explains the presented

crowd detection approach using the Skin Color Model and Histogram of Oriented

Gradient and details its failure cases in a dense crowd. This chapter also provides

a detailed description of the presented crowd density estimation approach using

texture-based multisource approaches. Chapter 4 discusses a contouring based tra-

jectory clustering approach for crowd flow segmentation and, Chapter 5 describes

an algorithm for anomalous scene detection in the high-density crowd. Chapter 6

highlights the concluding remarks upon this dissertation with a discussion of the

identified directions for future work.

Figure 1.3: Visualization of the thesis outline



Chapter 2

LITERATURE REVIEW

Nowadays, crowd analysis has gained increasing attention along with the increasing

concern on public security and safety. Crowd analysis may cover a wide range of

research topics, and a lot of literature is available for crowd detection, density

estimation, tracking, and anomaly analysis applied to crowd analysis. This thesis

mainly focuses on crowd density estimation and crowd scene behavior analysis in

terms of crowd flow segmentation and anomalous scene detection. In this chapter,

we report a survey of those researchers that share a mutual interest in our work.

However, for presenting a complete review, we also include some similar approaches

and techniques used for the same task, though we have not used all of them

in this work. We first discuss a broad spectrum of crowd analysis approaches

proposed in the literature. The structure explained in the previous chapter includes

three main tasks for crowd analysis, which includes crowd density estimation, flow

segmentation, and anomalous scene detection. This chapter covers recent advances

and research related to each of these tasks.

2.1 Crowd Density Estimation

Crowd density estimation is one of the essential tasks in crowd analysis, it counts

the number of people in the given image or video. Generally, the techniques

of crowd density estimation are broadly categorized into two main approaches:

detection based approach and feature-based approach. This section presents an

overview of each of the approaches, with specific attention on the feature-based

approach that has shown to be effective in dense crowd scenarios.

14
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2.1.1 Detection-based Approaches

Detection based approaches detect occurrences of the pedestrian by examining

the image using a detector, which learned with local image features. Most often,

detection is executed either in the monolithic based or parts-based style.

Monolithic Detection: Monolithic detection is an instinctive technique to count

the number of people in a scene via detection. Monolithic detection approaches [Dalal

and Triggs (2005); Leibe et al. (2005); Li et al. (2008)] incorporate conventional

pedestrian detection techniques which train a classifier using several features like

haar wavelets [Viola and Jones (2004)], histogram oriented gradients [Dalal and

Triggs (2005)], edgelet [Wu and Nevatia (2005)] and shapelet [Sabzmeydani and

Mori (2007)] etc. as shown in Figure 2.1(a).

The choice of classifier introduces a powerful effect on the speed and accuracy

of detection. Non-linear classifiers viz. RBF SVM provides adequate accuracy

of detection but at a slow pace. Therefore, linear classifiers like boosting [Viola

et al. (2005)], linear SVMs, or Random Forests [Gall et al. (2011)] are widely used.

Afterward, pedestrian candidates are detected by applying a trained classifier over

an entire image in a sliding window manner. The monolithic detector of the entire

body can generate adequate detections in a low-density crowd but are contrarily

affected by the presence of occlusion and scene clutter in high-density crowds.

Part based Detection Partial occlusion problems can be resolved to some extent

by using part-based methods [Wu and Nevatia (2007); Li et al. (2008); Felzenszwalb

et al. (2010)]. In this, a classifier is designed for a specific body part (like head,

shoulder) for estimating the people count in a designated region, as shown in

Figure 2.1(b).

Comparing with monolithic detection, part-based detection releases the strict as-

sumption about the visibility of the complete body in the crowd scene, thus it is

comparatively more robust in crowded scenes. The parts-based detectors reduce

the occlusion-related problems but not suitable for highly dense crowds and clut-

tered backgrounds. However, these kinds of methods are not convenient for the

kind of datasets we deal with, because, in highly dense crowd images, an individ-

ual occupies very few pixels. Therefore, no human, face or even head are visible,

which further gets difficult because of severe multiple occlusions and cluttered

background.
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Figure 2.1: Results of pedestrian detection by (a) monolithic detection [Leibe et al.
(2005)], (b) part-based detection [Li et al. (2008)].

2.1.2 Feature-based Approaches

To overcome the issues of detection based approaches, researchers explored the

feature-based approaches which establish a relationship between extracted features

to their counts in a given image. These approaches are divided into two parts: (i)

low-level feature extraction, and (ii) regression modeling. Regression methods

consciously abstain from individual segmentation and feature tracking. These

methods calculate the crowd density on the bases of the holistic illustration of

crowd patterns. These approaches neither incorporate segmentation nor tracking.

Due to this, regression methods become more practical for a high-density crowd

where detection and tracking are extremely limited. Thus, feature-based methods

are more efficient than detection based methods as detection of features is easier

than the detection of individuals.

Several features of foreground pixels have been widely adopted like foreground

area [Davies et al. (1995); Marana et al. (1999); Ryan et al. (2009); Hou and Pang

(2011)], texture features [Rahmalan et al. (2006); Chan et al. (2008)], histogram of

oriented gradient [Chan et al. (2008); Ryan et al. (2009)] to calculate the density

using regression functions such as linear [Davies et al. (1995)], neural networks [Cho

et al. (1999)] and Gaussian process [Chan et al. (2008)]. Most of these methods

have given a linear mapping between the foreground features and the number of

people in the scene. But, this mapping performs poorly in high-density crowd

environment due to the complexity in crowd scenes.

Various methods have been developed in the recent past to mitigate the conse-



Chapter 2. LITERATURE REVIEW 17

quences of the perspective problem. For instance, [Paragios and Ramesh (2001)]

proposed a geometric factor to add weight at pixels as per its location on the

ground plane.

[Ma et al. (2004)] introduced a geometric correction to take all different distance

objects at the same scale and perspective mapping to weight all extracted features

of an image.

Moreover, occlusion problem can be mitigated by using various features such as

histogram of oriented gradient [Kong et al. (2005)], edge features [Davies et al.

(1995)], etc. Also, these methods suffer in complex crowd scenes due to several

reasons. For instance, the Edge-based features can give inaccurate results due to

complex and cluttered backgrounds and also very time consuming to extract such

big features, foreground separation becomes more complicated in a dense crowd.

Therefore, few techniques have been designed which make use of local features to

tackle these issues and minimize the need for training data. An image broadly

offers two varieties of features; pixel-based features and texture-based features,

which are used for encoding low-level information. These methods are detailed in

the upcoming sections.

2.1.2.1 Pixel-based Analysis

Pixel-based methods rely on locally computed features for estimation of crowd

density. These methods utilize low-level features and maintain a linear mapping

with foreground pixels and human count. [Velastin et al. (1994)] and [Davies

et al. (1995)] have introduced most popular crowd density estimation methods

in computer vision. They introduced two automatic approaches based on pixel-

level information. The former method extracts pedestrian pixels by examining a

three-pixel neighborhood of the difference image. The later applies a fast three-

pixel-neighborhood edge detector to the image to obtain edge magnitude and more

enhancement is done by thinning the edges as shown in Figure 2.2 with the help

of Kalman filtering approach. They proposed a linear model that maintains a

correspondence between the resultant binary image and the number of people.

[Cho et al. (1999)] introduced a feed-forward neural network (FFNN) based density

estimation system. In their approach, they performed a global learning algorithm

by combining least squares methods with random search, simulated annealing,
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Figure 2.2: The results of [Velastin et al. (1994)] using static background image (a)
Reference image, (b) background removal, (c) edge image, and (d) thinned image

and genetic algorithm. Their work concludes that hybrid of least-square and the

random search algorithm performs the best among all other hybrid combinations.

[Ma et al. (2004)] also proposed a crowd density estimation method that derives a

mathematical relation of geometric correlation and maintains a linear relationship

between foreground pixels and people to count human objects. This method is

only suitable in the absence of occlusions among the people.

[Choudri et al. (2009)] proposed a pixel-based robust selective background model

for crowd counting. Their method detects only pedestrian pixels rather than con-

sidering the whole foreground pixels. This method reduces miss detection with the

help of more potent people counting classifiers even after being slow or station-

ary. [Hussain et al. (2011)] introduced an automatic density estimation system

specifically for Masjid al-Haram crowd scene. They first employed background

subtraction and then carried out a relationship with foreground pixels and density

count. They performed supervised training to categorize the crowd density into

five different levels ranging from very low to very high. This system can detect

the crowd with almost 100% accuracy but in very low to low crowd density. The

performance of the system decreases in a high-density crowd, mainly due to severe

occlusion. Therefore, the pixel-based methods can not be applied in case of severe

occlusion in a dense crowd. Table 2.1 summarizes pixel-based techniques that are

commonly used for crowd density estimation.

2.1.2.2 Texture-based Analysis

The texture is one of the most prominent image characteristics that has gained

attention from many researchers. The texture is considered as an efficient feature

to deal with an extremely dense crowd. It primarily focuses on crowd density
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Table 2.1: Pixel-based crowd density estimation approaches and their learning
models.

Author Year Image Feature
Learning
Model

Site

Davies et al.
(1995)

1995
Foreground pixels and

edge detection
Linear Indoor

Cho et al.
(1999)

1999
Foreground pixels and

edge detection
FFNN Indoor

Ma et al.
(2004)

2004 Foreground pixels Linear Indoor

Choudri
et al. (2009)

2009
Foreground pixels and

edge detection
Linear Outdoor

Hussain et al.
(2011)

2011
Foreground pixels and

edge detection
BPNN Outdoor

Figure 2.3: Crowd density classification ranging in very low, low, moderate, high and
very high density levels respectively [Marana et al. (1998)].

estimation instead of individual counting in the crowd scene. Various texture-

based approaches have also been proposed for density estimation in a dense crowd.

[Marana et al. (1998)] and [Marana et al. (1999)] observed that dense crowd images

depict fine texture whereas sparse crowd images show coarse texture.

For density estimation, most of the texture-based methods incorporate GLDM,

Fourier analysis, Wavelet analysis, SIFT, LBP and fractal dimension, etc. In their

work, Haralick features known as Gray Level Dependence Matrices (GLDM) are

used to extract crowd density features. Then, these features are supplied to the

Self-Organizing Mapping (SOM) neural network to categorize the crowd images

into five density levels, as depicted in Figure 2.3. They combine the work of

[Marana et al. (1999)] with Minkowski Fractal Dimensions (MFD), which takes

an advantage over GLDM and Fourier spectrum. This work is not feasible for

real-world crowd scenes because it demands a smooth background which should

be free from objects.

In further work of [Marana et al. (1998)], the performance of four different meth-

ods like GLDM, straight-line segments, Fourier analysis, and fractal dimension

is compared for texture analysis. Furthermore, three different classifiers, namely
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SOM neural network, statistical Bayesian classifier, and fitting based approach

are compared. They get the best results by combing GLDM with the Bayesian

classifier.

Following the similar concepts of [Marana et al. (1998)], [Xiaohua et al. (2006)]

introduced a fusion of multiscale texture analysis and SVM. This hybrid method

outperforms the work of [Marana et al. (1998)] and [Davies et al. (1995)] with

respect to the computational complexity, but it decreases the attainment when

the crowd becomes non-uniform. [Brostow and Cipolla (2006)] and [Rabaud and

Belongie (2006)] count moving objects by calculating coherent motion pattern.

[Kratz and Nishino (2009)] and [Wang et al. (2007)] also proposed the coherent

motion patterns, but these patterns are not explicitly applicable for crowd density

estimation. These techniques are only applicable for moving scenes with a high

frame rate. These are not appropriate for still crowd images and videos that have

negligible motion viz. speeches, concerts, etc.

Another technique that relies on regression-based feature [Cho et al. (1999)] pro-

vides a direct relationship between local features and density estimation. This

regression parameter is learned for the entire image. They have the implicit pos-

tulation that the density is uniformly distributed in the entire image. This hy-

pothesis is fallacious in most of the realistic crowd scenes due to camera viewpoints

and high variable density.

[Lempitsky and Zisserman (2010); Ma et al. (2010)] proposed a cell-based method

for regression in which images are partitioned into small cells. Their aim of im-

age partitioning is to remunerate the localized geometric distortions by cause of

perspective. The primary issue with this approach, however, is to ignore spatial

consistency constraints as information among local neighbors is unshared. Re-

cently, [Chen et al. (2012)] claim that information shared among local neighbors

provides more precise and robust results of crowd counting. They offered a single

multi-output framework, but it was limited to the scenarios with a few tens of

people.

Furthermore, the great success of Convolution Neural Network (CNN) in innumer-

able computer vision applications has encouraged researchers to take advantage

of their strengths for learning nonlinear functions from crowd images to their cor-

responding density maps or counts. Numerous CNN-based methods have been

introduced in the recent past. [Wang et al. (2015)] and [Fu et al. (2015)] were

among the first ones to adopt CNN’s for estimating the density of the crowd.

[Wang et al. (2015)] have given a CNN based deep learned regression model for
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dense crowd counting. They adopted AlexNet network architecture [Krizhevsky

et al. (2012)] in which a single neuron layer takes the place of a fully connected

layer of 4096 neurons to estimate the crowd density.

[Zhang et al. (2015)] proposed a cross scene counting method and explored that

the performance of existing CNN based methods decreases remarkably when eval-

uated on an unseen video (different from the training dataset). Another similar

work done by [Hu et al. (2016)] adopted a CNN for extracting features and count

individuals in the crowded scenes with mid-level or high-level densities. A com-

prehensive survey of crowd behavior analysis using convolutional neural networks

can be found in the research article written by [Tripathi et al. (2019)]. We con-

clude that for cross scene analysis, a massive amount of datasets are required, but

the availability of such a large number of crowd datasets is minimal. Moreover,

augmentation of the training dataset is performed by replicating the images which

lose the variability of scenes. To summarize, deep learning-based techniques could

play better but with the requirement of expensive GPUs and the massive amount

of datasets. Furthermore, to help the readers in understanding the present day

challenges of crowd density estimation, we have depicted the tabular comparison

among different techniques as shown in Table 2.2.

Author
Approach

Regression or

Learning Model
Limitations Dataset

Davies et

al. (1995)

Foreground pixels,

edge detection
Linear

Relied on static background

model, effects of perspective

not apparent

–

Marana et

al. (1999)
MFD Linear regression

Classifier not able to classify

due to partial fractality,

limited discriminate power,

time consuming, sensitive to

noise

Liverpool

Street

Railway

Station,

London

Lin et al.

(2001)
HWT SVM

Works only when head

contour visible, occlusion

Random

images

Siebel1 et

al.(2003)
Motion detection SVM

Illumination effects,

installation and maintenance

cost

Manually

captured

Leibe et

al.(2005)
Chamfer Matching SVM

Train only 44 sequences of 35

different person with two

background

No dataset

Rahmalan

et al.

(2006)

MFD, GLCM, TIOCM SOM

Highly sensitive to external

change, illumination, low

density

Manually

recorded

Kong et al.

(2006)

MoG adaptive

background modeling,

edge orientation map

Linear fitting, neural

networks

Occlusion, complex

background
No dataset

Chan et al.

(2008)

Segment feature,

internal edge feature,

GLDM

Feature based

regression

Outlier due to lack of training

data
UCSD

Ma et al.

(2008)
LBP texture analysis K-mean clustering

Perspective distortion,

occlusion, clutter background
4 scene
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Ryan et al.

(2009)
Blob segmentation NN

Only group segment, poor

segmentation and low

scalability

UCSD

Dong et al.

(2010)

Texture feature-

GLDM, HOG, GGDM
Clustering

Only indoors, more advisable

to use contours or shapes for

crowd estimation

Subway

surveil-

lance

videos

Ma et al.

(2010)

Density classification-

GOCM
Cluster classification

Low density, occlusion, only

edge detection and

perspective distortion

Manually

collected-

hall,

square,

subway,

platform

Santoro et

al.(2010)
Optical flow

Density based

clustering

Only 2D coordinates for

motion points, distance

between motion points is not

accurate, low density

PETS2009

Hsu et al.

(2011)

DCT-frequency

analysis
SVM

Limited performance,

occlusion, very few people
No-dataset

Srivastava

et al.

(2011)

Crowd Flow: GLCM,

foreground pixel,

Weighted pixel

summation

Sensitive to number of density

level, occlusion,

UCF,

UCSD

Yang et al.

(2011)
SST-LBP SVM

Does not work in restricted

flow or dense flow
PETS 2009

Mousavi et

al. (2012)
Uniform LBP

Unique model

histogram

Fails in high density,

occulation

Soccer field

video

sequence

Chen et al.

(2013)

Foreground

segmentation, edge

and local texture

features

SVR
Low density, poor

segmentation, illumination

USCD and

Mall

dataset

Fradi et al.

(2013)

Density map: FAST,

RLOF

Gaussian symmetric

kernel
Low density count

PETS 2009

and UCF

Herrmann

et al.

(2013)

Local Fourier analysis Regression method High false positive

Aerial-

manually

collected

images

Idrees et

al. (2013)
SIFT, Fourier, DPM SVR, MRF

Implicit assumption of

uniform density at patch level
UCFCC

Meynberg

et al.

(2013)

FAST corner detector SVM Local inconsistency
Aerial

images

Tian et al.

(2013)

LCSSF (local color self

Similarity Feature)
SVM Fails in 5-6 people, occlusion

MIT,

CAISIA

GAIT

pedestrian

Forsyth et

al. (2014)
Object detection-DPM SVM

Labeling is required, does not

work in crowd
PASCAL

Handte et

al. (2014)
WLAN-devices K-NN

Should reduce the operational

costs of the network

Public

transport

system-

Madrid

Khan et al.

(2014)

Forground

segmentation, motion

flow segmentation

K-means Low precision UCF
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Maddalena

et al.

(2014)

Self-organizing

background

subtraction

k-NN Low accuracy at large crowd
EPFL,

PETS-2009

Perko et al.

(2014)
HOG SVM Scale variant

Manually

collected

Zhang et

al. (2014)

Forground pixel

extraction
Statistical regression

Not suitable for crowd,

occlusion
No dataset

Fradi et al.

(2015)

Robust Local Optical

Flow
Gaussian kernel

Only tested on low density,

perspective effects

PETS,

UCF,

UMN

Idrees et

al. (2015)

Combination of

Parts-DPM
Latent SVM

Low resolution, lower limit of

DPM 23×23 pixels

UCF-

HDDC

LE et al.

(2015)
Gabor filter SVM

Prior knowledge of people

behavior is required, Group
PETS

Wang et al.

(2015)
DNN Deep-CNN

Can feed deep model with

negative samples, large

number of training sets

required

UCFCC

Zhang et

al. (2015)

Foreground

segmentation, GLCM

Learning distribution

regression

Required labeling on training

data

UCSD and

Mall

Meynberg

et al.

(2016)

BoW, Gabor filter

bank
SVM Low resolution, illumination

Aerial

images

Hu et al.

(2016)
NN ConvNet

Need to include temporal and

multiresolution information

AHU-

CROWD

Siva et al.

(2016)

HoMG, background

subtraction
SVM regression Low density crowd

PTES,

QUT, Mall

Table 2.2: Comparative analysis among the literature of crowd density estimation

2.2 Crowd Scene Behavior Analysis

Nowadays, crowd scene behavior analysis is an active research topic in computer

vision and pattern recognition. In the past few years, various state-of-the-art

techniques are introduced to tackle crowd analysis and behavior understanding.

Generally, the temporal information like direction, velocities, and unusual motions

is used to analyze the behavior of the crowd. Approaches for crowd behavior

analysis can be broadly classified into object-based and holistic approaches. The

object-based techniques deal with crowd considering it as a collection of individuals

while in holistic approaches, a crowd is considered as a global entity to judge the

behaviors of the whole scene.
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2.2.1 Object-based Approaches

Object-based crowd behavior analysis is inferred by performing traditional detec-

tion and segmentation approaches on the individuals. For instance, the detection

or tracking of a single person moving against the dominant flow could be an anoma-

lous activity. Object-based methods can solve this kind of problem only in low

to moderately crowded scenes. These methods face complexity in recognizing in-

dividuals in high-density crowd scenes due to a large number of targets, small

resolutions, small target size, and severe occlusions, etc. Such factors increase the

chances of information loss related to target objects in crowded scenes. Therefore,

individual segmentation and tracking are not feasible in the high-density crowd.

To overcome this problem, some of the researchers [Wang et al. (2009); Zhou

et al. (2012b)] have adopted low-level features and probability models to ana-

lyze the dense crowd instead of focusing on tracking individuals. [Wang et al.

(2009)] explored the hierarchical Bayesian model to fulfill many challenging video

surveillance jobs like segmenting motions into different activities by utilizing visual

features and atomic activities. Their technique neither requires labeled training

nor tracking.

[Zhou et al. (2012b)] classify different pedestrian behavior based on the mixture

model of dynamic pedestrian agents, which learns the collective behavior patterns

on the pedestrian. Once the model is trained by various samples, the mixture

model can predict past and future behavior of pedestrians and classify the pedes-

trian behavior in the crowd scene. But, the mixture model has some shortcomings,

for instance, it considers the only affine transforms and faces difficulty in repre-

senting complex shapes.

2.2.2 Holistic Approaches

In high-density crowded scenes, individual objects appear unresolved. Therefore,

rather tracking individual objects, a top-down approach is followed, which con-

siders the crowd as a single element. This approach handles the issues arising

from the occluded crowd, which is not tackled by object-based approaches. Holis-

tic approaches generally extract the coarser-level information globally like main

crowd flows. They discard local information, such as an individual moving out of

the flow. In highly crowded environments, very few features are extracted from
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individuals, and some of them remain undetermined. In such situations, analyzing

crowd behaviors without recognizing individual activities is usually beneficial.

In the holistic approaches, a crowd is considered as a global entity to judge the

behaviors on the whole scene. These methods inspect the dynamics of the entire

crowd scene instead of focussing on individual activities. Therefore, these tech-

niques escape the exercise of individual detection and tracking people, and explore

crowd features to analyze the whole behaviors.

This class usually incorporates optical flow field-based approaches [Ali and Shah

(2007); Hu et al. (2008); Loy et al. (2009); Luvison et al. (2011); Benabbas et al.

(2011) and [Krausz and Bauckhage (2012); Rao et al. (2016)]. [Krausz and Bauck-

hage (2012)] represented global motion pattern by utilizing an optical flow his-

togram, which used to detect stampede situations such as Love Parade stampede.

[Benabbas et al. (2011)] developed a crowd model based on direction and mag-

nitude and proposed a region-based segmentation algorithm which detects crowd

event by learning different motion patterns. [Rao et al. (2016)] developed an

optical flow-based probabilistic framework using Riemannian manifolds to detect

crowd activities.

In contrast to existing work that depends on motion cue merely between con-

secutive frames, more advanced approaches are developed that enhanced this cue

to larger temporal frames by tracking some salient [Shao et al. (2014); Mousavi

et al. (2015)] points or particles advections [Mehran et al. (2009); Mahadevan

et al. (2010); Mehran et al. (2010)]. This method results in trajectories that cap-

ture more substantial temporal motion, which helps in to analyze crowd motion

patterns. [Mousavi et al. (2015)] represents crowd motions by a histogram that

encodes magnitude and direction of motion. This is mostly used to recognize an

abnormality in the crowded scenes. Various methods have been introduced in the

literature on crowd behavior analysis by utilizing motion direction and magnitude

of trajectories. These methods only focus on individuals properties.

To consider the collective information about the crowd, [Mehran et al. (2009)] built

a social force model (SFM) that detects abnormal crowd behaviors by measuring

the interaction force among individuals in the crowd. This method considers

the collective information about the crowd and estimates the particle interactions

to identify abnormal scenes involving fighting or escaping events. Some of the

authors [Mahadevan et al. (2010); Mehran et al. (2010); Yuan et al. (2015)] have

also offered similar techniques.
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[Mahadevan et al. (2010)] proposed a clustered particle trajectories to detect

anomalous events in the crowd. The chaotic invariants of all clustered trajectories

are quantified as maximal Lyapunov exponent and correlation dimension.

[Mehran et al. (2010)] proposed an interaction energy potential function to model

the group activities based on social behavior. [Yuan et al. (2015)] proposed a

structural context descriptor (SCD) that considers how each tested target is re-

lated to other individuals present into the scene. The SCD descriptor detects and

localizes the abnormality by online spatio-temporal analysis.

In recent past, few researchers focus on particle advection approach [Mehran et al.

(2009); Gu et al. (2014)]. In this approach, a grid of particles is randomly dis-

tributed on the frame to represent crowd individuals and which are advected along

with the optical flow. [Gu et al. (2014)] proposed a particle entropy approach for

analyzing the crowded scenes.

In their particle advection scheme, particle resembles pixels, and the pixels are

hard to differ with their neighborhood, which results in corrupted tracklets. This

issue is addressed in this dissertation by considering the spatio-temporal interest

points to be tracked. We also filtered out the short length trajectories to not

affect the persistent crowd flow direction. In the following sections, we discuss the

literature of holistic based crowd flow segmentation and anomalous scene detection

methods.

2.2.3 Crowd Flow Segmentation

Flow segmentation is one of the most explored research problems in crowd anal-

ysis. Various techniques have been introduces in the past to address the issues

of identifying dominant flow pattern in high-density crowd videos [Ali and Shah

(2007); Wu et al. (2009a); Mahadevan et al. (2010); Rodriguez et al. (2011b); Wu

and San Wong (2012); Kruthiventi and Babu (2015)].

[Ali and Shah (2007)] introduced a crowd flow segmentation approach influenced

by the fluid dynamics principle. They proposed a Lagrangian dynamics-based

approach, in which a grid of particle is placed over the frame and advected along

with the optical flow field to generate trajectories of these particles. In the crowd

flow, the Lagrangian coherent structures (LCS) are detected to separate the flow

boundaries by using finite-time Lyapunov exponent field. Further, they enhanced
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their work to detect instability of a particular region by finding the abnormality

in the segmented flow field.

[Cheriyadat and Radke (2008)] reviewed several computer vision algorithm and

proposed an optical flow-based algorithm to develop a system for the automatic

detection of dominant crowd motion patterns. To handle spatial and temporal

changes efficiently, [Mehran et al. (2009)] also utilized the locations of individual

particles that passed through a particular point.

[Rodriguez et al. (2011b)] proposed a supervised method to analyze the crowd

behavior pattern learned from large datasets. From the unsupervised perspectives,

an optical flow-based region growing scheme was developed by [Mahadevan et al.

(2010)] to segment crowd flows. They also proposed a flow segmentation approach,

which is based on fuzzy c-means clustering [Wu et al. (2009b)].

Another local translation domain segmentation model [Wu and San Wong (2012)]

has been developed by computing optical flow only at salient points. [Kuhn et al.

(2012)] had developed an automated crowd behavior analysis framework with the

combination of optical flow and Lagrangian analysis of time-dependent vector

fields. The outcomes of motion analysis are also useful to recognize various crowd

behaviors like circle formation, blockage, bottleneck, etc. depending upon the

detection of accumulation points. These points can be further utilized to track

back the crowd motion.

On the other hand, to detect a salient region in a crowd scene, [Loy et al. (2012)]

proposed a salient motion-based approach that identifies global anomalous flows by

inspecting spectral singularities in the motion field. Similarly, [Lim et al. (2014)]

introduced an approach that detects saliency in the crowd by projecting low-level

features into global similarity structure; such structure concedes the exploration

of inherent motion dynamics.

In the recent past, researchers have addressed this flow segmentation problem in

compressed domain [Biswas et al. (2014); Kruthiventi and Babu (2015)] by using a

motion vector information. In [Kruthiventi and Babu (2015)], the motion vectors

are modeled as conditional random fields (CRF) and obtain the flow segments

which have the minimum global energy of the CRF model. CRF is a statistical

model useful in assigning the labels to sequential data that defines the probability

of an individual label sequence.

In another work of [Biswas et al. (2014)], motion vectors are clustered by employing

an expectation-maximization algorithm. [Fradet et al. (2009)] proposed a pixel-
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wise segmentation approach, which is based on trajectory clustering to segment

motion patterns in a dense crowd.

Our approach handles the flow segmentation problem by exploring the pixel do-

main where the entire video region (either crowd present or not) is considered to

track and further processed to achieve the crowd flow segmentation. Since tracking

the entire region is computationally expensive, and also not suitable for real-world

applications. We present a novel approach to accomplish flow segmentation in an

active contour region by using trajectory clustering, which can handle both linear

and intersecting flows of dense crowd scenes.

2.2.4 Crowd Anomaly Detection

In crowded scene analysis, anomaly detection is the main task which has drawn

huge attention in recent past [Ali and Shah (2007); Mehran et al. (2009); Kratz

and Nishino (2009); Mehran et al. (2010); Cong et al. (2013)]. In spite of enormous

efforts, anomaly detection still remains an open research problem both in terms

of approaches and problem definition, hypothesis, and targets [Sodemann et al.

(2012)].

Crowd anomaly detection methods can be supervised in various ways, such as

from labeled data of both behavior class, i.e., normal and abnormal, or from a

collection of unlabeled data, with most part normal as an assumption. Based

on the scale of interest, anomaly detection can be classified into two categories:

(i) global anomaly detection (anomaly exists in the scene or not), and (ii) local

anomaly detection (determine the place where the anomaly is taking place) [Cong

et al. (2013)].

In global anomaly detection, the whole crowd is considered as a single element.

Its key objective is to determine the dominant and (or) anti-dominant patterns of

the single event, without considering any particular behavior. For example, the

scenarios like congestion or stampede are a convergence of a crowd’s locomotion.

Due to this, global analysis, instead of focusing on specific behavior, focuses on

overall tendencies of the critical mass. Local anomaly detection concentrates on

the crowd more precisely. It focuses on the detection of individual behavior, actions

among other crowd entities. This task becomes more challenging when the crowd

density is too high, as in such cases, occlusion makes the task cumbersome. The

detailed description is provided in the following section.
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2.2.4.1 Local Anomaly Detection

Often, it becomes necessary to know the place of anomaly occurrence. To target

this goal, many local anomaly detection techniques are designed. Popularly used

models ranging from crowd dynamics and vision areas are being used for local

anomaly detection. These approaches fall under two categories: (i) vision-based

approaches, and (ii) physics-inspired approaches. Vision-based approaches are

based on visual features to supervise the model and predict the anomaly. Physics-

inspired approaches make use of physical models for the representation of the

crowd dynamics. It detects the anomaly using different learning methods.

Vision-Based Approach: Nowadays, a lot of machine learning approached have

gained success in vision tasks, which is also applicable to local anomaly detection.

These techniques extract the visual features and make cluster sets to depict various

possible event patterns.

(a) Dynamic Texture Model: The dynamic texture [Chetverikov and Péteri

(2005)] is a generative model used spatio-temporal features to detect anomaly in

videos. It depicts video sequences as an observation from a linear dynamical sys-

tem, and shows spatio-temporal stationary properties [Xu et al. (2011)]. As per

the recent literature [Mahadevan et al. (2010)], a dynamic texture is better than

optical flow for local event detection in crowded scenes. The approach proposed

by [Chan and Vasconcelos (2008)] is a mixture of dynamic texture (MDT) for

motion segmentation. In their technique, for representing samples from a set of

underlying dynamic textures, a set of video sequences is used. The Figure 2.4

depicts the MDT technique from a video subsequence. [Li et al. (2014)] designed

a unique detector that can be used for both temporal and spatial anomalies using

MDT. This detector is applied over a video sequence that considers both dynamics

and appearance using various MDT models. During the training phase, normal

patterns are supervised through the MDT model for every scene subregion. A

multi-scale temporal anomaly map is calculated based on the negative log prob-

ability for each video subsequence, which lies under the MDT of its respective

region. In the testing phase, the subsequence of low probability for respective

MDT, are categorized as anomalies.

(b) Hidden Markov Model: The HMM is able to consider inherently dynamic

nature of the observed features [Cong et al. (2013)].It is useful both in case of

video event detection as well as anomaly detection. The framework designed

by [Kratz and Nishino (2009)], model local spatio-temporal motion behaviors in
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Figure 2.4: This image is reproduced from [Li et al. (2014)]. A mixture of dynamic
texture is learned from spatio-temporal patches to detect temporal abnormalities.

a high-density crowd. The training phase of their method maintains a temporal

relationship between local motion patterns acquired via distribution-based HMM

whereas the spatial relationship is captured by a coupled HMM. During the test-

ing period, abnormal events are identified if it shows some statistical deviations

in video sequences of the same scene. It is shown in experimental results that the

proposed approach is suitable for analyzing anomalies in extremely dense crowded

scenes. Since authors have set up one single HMM for a local area, therefore

it will work only for limited normal behavior or specific crowded scenes. Unless

the model is retrained, changing the type of normal behavior decreases the de-

tection rate of abnormal behaviors. Similarly, [Wang et al. (2012)] proposed an

approach which calculates high-frequency and spatio-temporal (HFST) features

using wavelet transformation, for determining the dynamic structure of the local

region. Then, the detection of various local anomaly crowd events is performed

using multiple HMMs, and individual HMM accounts for a different type of be-

havior.

(c) Manifold Learning Model: This framework [Thida et al. (2013)] has also

been widely used for anomaly detection in a crowded scene. To understand the

local motion structure, spatio-temporal Lagrangian eigenmap method is used. In

both spatial and temporal domains, a pairwise graph is constructed taking into

account the visual context of multiple local patches. Such a process consider local

motion patterns for different spatial locations, where similar pattern are placed

closely, and different are distant apart. It helps to cluster embedding points and

to determine the various motion pattern in crowded scenes. Eventually, abnormal

regions are located using a local probability model. The clusters having small data
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points or outliers are marked as abnormal.

Physics-inspired Approach: Various physics-inspired models have also been

suggested for crowd representation. These model in combination with various

machine learning techniques are helpful for anomaly detection. A few examples of

these models are a continuum-based approach and an agent-based approach.

(a) Flow-field Model: In order to find out regular patterns, there is a require-

ment to have a knowledge of how and where crowds evolve with time. It helps

to know the place and the way in which crowd motion pattern changes. Based

on flow field, [Ali and Shah (2007)] has proposed techniques for motion pattern

segmentation which have been further extended for anomaly detection. They de-

veloped a finite time Lyapunov exponent (FTLE) field. Its boundary changes in

accordance with the variation in the crowd in terms of the dynamic behavior of

the flow.

[S. Wu (2010)] designed a method for crowd flow modeling and anomaly detection

for both structured as well as unstructured scenes. It begins with particle advection

which is based on optical flow. Further, particle trajectories are clustered in order

to get representative trajectories. Based on chaotic invariants, chaotic dynamics

of all representative trajectories are extracted and quantified. This process is

termed as maximal Lyapunov exponent and correlation dimension in the dynamic

system. From the obtained chaotic feature sets, a probability model is supervised.

Eventually, a query video of a scene is marked as normal or abnormal based on a

maximum likelihood estimation criterion.

(b) Social Force Model: This model is popular and widely used in research fields

as simulation and analysis of crowds. Using SFM, [Mehran et al. (2009)] designed

a technique for detection and localization of abnormal behaviors in crowd videos.

Therefore, the framework proposed by [Ali and Shah (2007)] is used for computing

particle flows, and their interaction forces are estimated using SFM.

After that, mapping of interaction force into an image plane is done for obtaining

force flow for every pixel in every frame. Using spatio-temporal volumes of force

flow, normal behavior is modeled. Finally, the frames are classified as normal or

abnormal by using BOW. With the help of interaction forces, the region of anoma-

lies in the abnormal frames are localized. Inspired by SFM, laterally, some more

methods [Raghavendra et al. (2011a,b)] have been proposed to detect abnormal

crowd behavior.

(c) Crowd Energy Model: The crowd has its own characteristics to measure
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the crowd dynamics, for instance, local density, velocity, etc. [Yang et al. (2012)]

proposed an efficient technique for crowd anomaly detection using the histogram

of oriented pressure (HOP). SFM and local binary pattern (LBP) are used to

calculate the pressure. Cross histogram is employed to generate the feature vec-

tor instead of parallel merging the magnitude histogram and direction histogram.

Subsequently, the support vector machine and median filter are used to identify

the anomaly.

[Xiong et al. (2011)] also suggested a scheme to identify two typical abnormal ac-

tivities: pedestrian assembling and running. The scheme is based on the potential

energy and kinetic energy. A name, crowd distribution index (CDI) is termed to

signify the dispersion, which can afterward determine the kinetic energy. In the

end, the unusual activities are identified through threshold analysis. The energy-

based model can well represent the dispersion on diverse directions and find moving

information and interacting information between individuals. The model functions

because obvious differences exist amid normal states and abnormal states in dy-

namic crowd features. Generally, some threshold-based methods are engaged here,

and the threshold is determined analytically when applied to diverse crowd scenes.

2.2.4.2 Global Anomaly Detection

Generally, a crowd scene exhibits a regular motion pattern due to self-organization

effects. But, when abnormal events influencing public safety occur, such as stam-

pede, explosions, fires, transportation disasters, and it turns crowd dynamics into

a totally different state. Global anomaly detection intends to differentiate the ab-

normal states of the crowd from normal ones. Correlated methodologies typically

have a tendency to identify the changes or events based on the obvious motion

assessed on the whole. A global anomaly detection system should correctly find

out the starting and end of the events, as well as the transitions between them

along with identifying the presence of an anomaly in the scene. Holistic methods

for crowd scene behavior analysis considered in Section 2.2.2, such as [Mehran

et al. (2010); Solmaz et al. (2012); Su et al. (2013)] can be employed for global

crowd anomaly detection. Some works carried out in the global style exclusively

for anomaly detection also exist in the literature which is as follows.

[Chen and Huang (2013)] presented an anomaly detection method in which human

crowd is considered as a graph and isolated region is represented as a vertex. To

efficiently model the topology differences, local and global features are used. These
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features are merged as an indicator to identify if any anomaly of the crowd exists

in the scene.

Recently, [Wu et al. (2014)] proposed a Bayesian framework for crowd escape

behavior identification in videos to directly model crowd motions as non-escape

and escape. Crowd motions are categorized by means of optical flow fields, and

the correlated class conditional probability density functions are formed based on

the field characteristics. Crowd escape behavior can be identified by a Bayesian

formulation. Experimental results depicted that the approach is more precise

than state-of-the-art approaches in detecting crowd escape behavior. But, this

approach is not suitable for high-density crowded scenes, because the high-density

crowd behavior varies from the behavior in low or medium density scenes.

2.3 Chapter Summary

In this chapter, we presented a literature survey of fundamental phases of crowd

analysis. Here, we have discussed the various techniques used for crowd density

estimation, especially crowd texture feature extraction. This step is a critical step

in crowd analysis because the result of later steps is primarily dependent on it.

After crowd feature extraction and crowd density estimation, crowd behavior de-

tection is the inherent part of crowd analysis systems. We have surveyed the

various existing techniques of crowd flow segmentation. Our review of the study

is that effective feature selection in dense crowd tracking is an essential step that

may affect the result of tracking significantly and segment the crowd flow pattern

effectively.

Next, we surveyed the holistic approaches for detecting the anomalous crowd scene

present in a crowd video. These methods consider the whole scene as a single entity

which are using labeled data for training of normal and abnormal crowd patterns.

We discussed both local and global anomaly detection methods based on situation

demands or interests. In this thesis, we adopted global methods because “ what

is happening is more important than who is doing it”.

In the next chapter, our proposed approach of crowd density estimation is ex-

plained. It is pertaining to state-of-the-art detection systems, as well as to the

algorithms used for crowd detection, considering many of the relevant algorithms

provided in this chapter.
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Crowd Density Estimation

This chapter focuses on the problem of crowd density estimation in images of ex-

tremely dense crowds. Our aim for density estimation is to predict the number

of people in the given image. The techniques of crowd density estimation are

broadly categorized into two main approaches: (i) detection based approach and

(ii) regression-based approach. Detection is a fundamental step in density esti-

mation. Though, the detection based approaches perform poorly in dense crowds

where the human bodies, faces, and heads are severely occluded and occupy just a

handful of pixels. But, detection of face and head adds robustness to crowd density

estimation by performing well in relatively low-density environments where crowd

faces are visible or facing the camera.

In this chapter, we present detection and regression-based crowd density estimation

method by implementing a skin color model, Markov random field, support vector

machine, and various texture-based features.

3.1 Detection-based Density Estimation

Previous works addressing the crowd counting problem majorly follow the count-

ing by the detection method. Initially, a detection based style was explored for

crowd density estimation, which uses sliding window detector [Dollar et al. (2012)]

to locate people in the scene. Most often, detection is executed in two styles (i)

monolithic-based style, and (ii) part-based style. This method trains a classifier

by utilizing various features like HOG, edgelet, shapelet, etc. Monolithic based ap-

proaches basically designed for pedestrian detection while the part-based methods

34
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are designed for a specific body part (like head, shoulder) to estimate the crowd

count. Detection based density estimation is successful only in low-density crowd

containing the few tens of people in an image. Their performance in highly dense

crowd environments is still an open problem. In these environments, usually only

partial or some part of the whole objects are visible that possess a great chal-

lenge to object detectors for counting or localization. A face is the most visible

part of the body, and also detection of crowd faces has further application in face

recognition pipelines to identify suspects in mass gathering events (whereas our

ultimate goal of crowd analysis is to give a safe and secure environment for public

safety). Unfortunately, the crowded scenes are too challenging to detect faces as

most of the faces are located far from surveillance cameras or nearby faces are

often occluded in the crowd.

Here, we consider the impact of these challenges and present a robust crowd face

detection method to estimate the crowd density.

3.1.1 Crowd Detection Method

In this method, the skin color model and Histogram of Oriented Gradient (HOG)

features are used for face detection in crowded scenes. HOG offers a robust feature

set to differentiate and detect human faces under different illumination conditions,

complex backgrounds, a wide variety of poses, etc. The skin color model segregates

skin color and non-skin color pixels, which is complimentary to oriented gradient

features. Their combination reduces false detection. The RGB and YCbCr color

spaces boundary rules are applied to segment skin color regions. The color range

is decided by analyzing various images from the existing database. The presented

approach involves two phases. In the first phase, the histogram of oriented gradient

features is extracted to train Support Vector Machine. In the second phase, skin

color segmentation is performed, and oriented gradient features are extracted from

the segmented region to classify the crowd faces by the trained model of SVM. The

schematic view of our crowd detection approach is depicted in Figure 3.1. Each of

these phases will be described in further sections.

3.1.1.1 Skin Color Segmentation

We present a skin color based segmentation technique which is applied to the crowd

images to extract foreground area (skin color region) in which the probability of
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Figure 3.1: Schematic representation of our method for crowd face detection using
skin color model and histogram of oriented gradient features.

human face existence is high. The skin color regions are extracted by using the

combination of RGB and YCbCr color spaces boundary rules. First, we establish a

skin color model that determines the skin tone color range by analyzing thousands

of skin color samples of different human races, collected from various sources with

different illumination conditions.

In computer vision, many color space models [Vezhnevets et al. (2003)] exist like

RGB, HSV, YCbCr, YUV, YIQ, etc. with variable performance. The selection

of an adequate color model for skin segmentation is essential as it can prevail the

detection rate to a large extent. To improve the detection rate, we have used the

combination of RGB with YCbCr because YCbCr provides explicit separation of

luminance and chrominance components. The range of skin color value in YCbCr

is determined by the skin color distribution graph as shown in Figure 3.2. These

color spaces achieve better performance at segmentation and detection. Next, skin

color boundary rules are determined for these color spaces. The RGB color space

boundary rules are shown in Equation 3.1, for this let the three primary color be

equal to W like W = [R G B].

RGB = R > 95 ∨G > 40 ∧B > 20 ∧ (max (W )−min (R,G < B)

> 15 ∧ |R−G|≥ 15 ∧R > G > B
(3.1)
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Figure 3.2: (a) Color distribution in YCbCr space, (b) Color distribution in CbCr
space (red color represents skin pixel)

YCbCr = (85 ≤ Cb ≤ 135) ∧ (10 ≤ Cr ≤ 45) ∧ (Y ≥ 80) (3.2)

From these boundary rules, we segment the skin color component. Morphological

operations are applied to remove tiny objects from the image that are well below

the size of a face while preserving the shape and size of larger objects in the

image. In our skin color segmentation, these two color models help to increase the

face detection rate. The segmentation output of both color models is depicted in

Figure 3.3. For each segmented skin color component, the histogram of oriented

gradient (HOG) features is computed, which is explained in the following section.

3.1.1.2 Feature Extraction: Histogram of Oriented Gradients(HOG)

Histogram of Oriented Gradients (HOG) [Dalal and Triggs (2005)] is a rotation-

ally invariant feature descriptor that has been used in computer vision, pattern

recognition, image processing as well as in optimization problems to detect visual

objects. HOG notably outperforms existing feature sets for object detection. HOG

aims to generalize an object in such a way that the object produces nearly the

same features when viewed in different conditions. These features are computed

at the local segment of an image by estimating the occurrence of gradient orienta-

tion. HOG is computed on a compact grid of equally spaced cells with overlapping

by which detection accuracy is improved. The key advantage of HOG is that it
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Figure 3.3: Skin color segmentation of an image by using RGB, YCbCr and intersect
RGB × YCbCr skin color models.

describes the local shape and appearance of an object just by the distribution of

local intensity gradient and edge direction without much knowledge of the gradient

position.

The procedure of HOG feature extraction is summarized in Figure 3.5. These

features estimate the occurrences of gradient orientation in local parts of a given

image. First, the gradient of an image is computed at a dense grid. The image

is partitioned into tiny uniformly spaced spatial areas named cells. Next, to form

HOG representation, gradient orientations are accumulated for all the pixels of

every cell. The cells are normalized using the accumulated local histogram over

slightly larger regions called blocks. The normalized features are invariant to

illumination or shadowing. These normalized blocks are concatenated to form a

feature descriptor. The step by step process is given below to extract oriented

gradient features for both training and testing crowd images. The size of each

training image is 32× 32 pixels.

1. Convolve the image by applying the 1-dimensional centered mask in both

horizontal (Dx) and vertical (Dy) directions with the given filter kernels

in Equation 3.3. Simple 1-dimensional mask works best [Dalal and Triggs

(2005)] as compared to larger masks.
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Further, subdivide the image into cells wherein every cells is made up of

4× 4 pixels and every block is made up of 2× 2 cells with 50% overlapping

as shown in Figure 3.4.

Cell

Block 1 Block 2

Figure 3.4: Subdivision of image into blocks of 2× 2 cells with 50% overlapping and
cells with 4× 4 pixels.

The selection of cell size depends on image resolution, if the image resolution

and the face size is small it is better to use smaller cells as 4 × 4 or 8 × 8

but if the resolution is very high you can use larger sizes like 16times16. For

each cell, gradient magnitude(M) and orientation(O) are computed by the

following Equations, where i and j are the image(I) pixels.

gx(i, j) = I(i, j − 1)− I(i, j + 1) (3.4)

gy(i, j) = I(i− 1, j)− I(i+ 1, j) (3.5)

M(i, j) =
√

(gx(i, j))2 + (gy(i, j))2 (3.6)

O(i, j) = tan−1(
gy
gx

) (3.7)

2. A cell histogram is computed from the contribution of gradient magnitude.

In the case of color image, we opt the channel which has the highest gradient

magnitude value for each pixel of an image. The bins of the histogram can
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be in a range of 0 to 180 degrees for unsigned gradient and 0 to 360 degrees

for a signed gradient.

3. Next, normalize the gradient strength of each cell by combining the cells

into larger, spatially connected blocks to make contrast and illumination

invariant. The HOG feature vector is a concatenation of all the normalized

block regions. These blocks are overlapped together, which means each cell

contributes many times into the final HOG feature descriptor. For block

normalization, we concatenate all the cell vectors of a block into a larger

vector. This vector size should be the number of bins × number of cells in a

block. Now, normalization of this feature vector is done by using L2-norm(f),

which is computed in Equation 3.8 where v is non-normalized feature vector

at each block and e is a small positive constant which averts divisibility of

zero in gradient-less blocks. The final HOG feature descriptor is an array of a

feature vector of all images which is collected by concatenation of normalized

blocks.

L2-norm (f) =
v√

||v||2+e2
(3.8)

Figure 3.5: Detailed description of HOG feature extraction.

Visualization of HOG features is important to give us the confidence that HOG

descriptor is working as it should. The illustrations of the visualization can be

seen in Figure 3.6. The extracted features are passed to train the support vector

machine.

Figure 3.6: An example: HOG feature visualization of training images used in face
detection.
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3.1.1.3 SVM Training

Support vector machine [Suykens and Vandewalle (1999)] is the most widely used

supervised learning method for classification purposes. The primary task of an

SVM is to determine an optimal function of hyper-plane, which classifies or sepa-

rate the extracted features into a different class. For instance, in Figure 3.7 (a),

there can be an infinite linear plane to separate the classes, whereas in Figure 3.7

(b), there is only one plane which maximizes the margin between both class termed

as an optimal hyperplane.

Figure 3.7: Classification between two classes using hyperplane: (a) infinite
hyperplanes exist to separate the classes (b) support vector machine determines the
optimal hyperplane with maximum margin to separate the classes.

Let suppose, x1, x2, · · · , xn are the training feature vectors of an input pattern

and y1, y2, · · · , yn are the corresponding labels. Where xi ∈ Rn, yi ∈ −1,+1 and

wTx + b = 0 is a hyperplane that linearly separates these feature vector based

on their label values. The training feature vectors are considered to be optimally

separated by the hyperplane if margin of separation is maximal. A separating

hyperplane must satisfy the following constraints.

yi [(w · xi) + b] ≥ 1, i = 1, · · · , n (3.9)

The distance between a feature point x and hyperplane is

d (w, x) =
|w · x+ b|
‖w‖

(3.10)

The margin can be defined as 2
‖w‖ and maximization of margin between classes is

equivalent to minimization the Euclidean norm of the weight vector w. Therefore,
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the optimal hyperplane is the one which minimizes

Φ(w) = min
1

2
‖w‖2 (3.11)

The optimization problem of Equation 3.11 with the conditions of Equation 3.9 is

solved by lagrange functional

L (w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi {yi [(w · xi) + b]− 1} (3.12)

where i represents Lagrange multipliers. The Lagrangian function must satisfy

the two conditions (i) minimize corresponding to w and b, and (ii) maximize

corresponding to αi ≥ 0. The primal problem of Equation 3.12 is converted into

its dual form because it deals with a convex cost function and linear constraints

while the dual one is easier to solve. The dual problem is represented as

max
α

W (α) = max
α

{
min
w,b

L (w, b, α)

}
(3.13)

The dual problem can be solved by

ᾱ = argmin
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi · xj (3.14)

with constraints,

αi ≥ 0, i = 1, ....n
n∑
i=1

αiyi = 0
(3.15)

The solution of Equation 3.13 along with satisfying the constraints of Equation 3.14

and 3.15 computes the lagrange multipliers. The optimal hyperplane is determined

by,

w̄ =
n∑
i=1

ᾱiyixi (3.16)
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b̄ = −1

2
w̄ · [xr + xs] (3.17)

where xr and xs are support vectors that satisfy the criteria as,

ᾱr, ᾱs > 0, yr = 1, ys = −1 (3.18)

For a new data point x, the classification is done by,

f(x) = sign
(
w̄ · x+ b̄

)
(3.19)

For our classification, we only use a linear classifier. Therefore we do not further

discuss the non-linear decision classifiers. In our method, the extracted oriented

gradients feature vector of all training data along with their corresponding labels is

fed to SVM. We perform 5-fold cross-validation over training datasets and generate

a trained model. This trained model is utilized to classify the face and non-face

in crowd images.

3.1.1.4 Classification

This phase classifies the crowd image into the face and non-face classes. A pre-

trained model plus oriented gradients features of each segmented skin color com-

ponent are supplied to the SVM classifier. SVM classifier categorizes it into a

face or non-face. To localize or detect a face, a bounding box is fixed over all the

classified faces in an image. Further, we count the classified faces of an image and

estimates the density of the crowd in that image.

3.1.2 Experimental Results and Analysis

This section details the experimental setup, datasets, performance analysis metrics

used in the analytical analysis of our method and its comparison with some existing

state-of-art techniques.
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3.1.2.1 Dataset Used for Experiments

We trained the support vector machine by thousands of faces taken from MUCT [Mil-

borrow et al. (2010)] and FEI [Thomaz (2012)] databases which consist of 751 and

2800 face images of different human races, respectively. Various training face im-

ages are manually collected and cropped from several datasets to include the wide

varieties of faces of different races. Our approach is evaluated on BAO [Frischholz

(2012)] and FDDB [Jain and Learned-Miller (2010)] face datasets. We subse-

quently tested the approach on various manually collected images captured from

surveillance areas to determine its accuracy on crowded scenes and to also demon-

strate its failure cases.

3.1.2.2 Performance Metrics

The performance evaluation of our approach is done using Miss Rate (MR) and

Receiver Operating Characteristic (ROC). Miss rate defines the percentage of the

undetected face as defined in Equation 3.20.

MR =
FN

FN + TP
(3.20)

ROC is a probability curve that shows a mapping between the true positive rate

(TPR) and false-positive rate (FPR), where TPR and FPR are plotted on y-axis

and x-axis respectively. For our evaluations, we model the ROC curve between

the TPR and the number of false positives in contrast to the rate of false positives

to facilitate comparison with other methods. TPR also termed as sensitivity or

recall gives the ratio of detected true positives as compared to the total number

of true positives in the ground truth as shown in Equation 3.21

TPR =
TP

TP + FN
(3.21)

Where TP is true positive, i.e., the number of predicted faces which were actually

faces, FN is the total number of false negative, i.e., the number of faces which

actually belong to the positive class, i.e. face but, have been incorrectly classified

as non-faces. FP defines the number of the detected face which are not actually

face.
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3.1.2.3 Quantitative and Qualitative Evaluation

We evaluated our approach on BAO multi-face and FDDB datasets, which con-

sist of 1500 and 5170 human faces pictured in 157 and 2845 challenging images,

respectively.

Evaluation on BAO Dataset

To make a comparison with other state-of-the-art methods on BAO multi-face

dataset, we have listed our true positive rate, false positive and miss rate in Ta-

ble 3.1. This Table demonstrates the comparison of our approach among [Hsu

et al. (2002)], Viola Jones approach [Wang (2014)] and skin color approaches [Ya-

dav and Nain (2015, 2016)]. [Wang (2014)] usually fails when eyes are occluded

and becomes unreliable when in plane and out of the plane rotation increases more

than ±15 and ±45 degrees respectively. In [Yadav and Nain (2015)] and [Yadav

and Nain (2016)], they used skin color segmentation with the facial feature for

face detection. In their approach, visibility of facial feature like eye, nose, lips are

required to measure the eccentricity which is used to calculate the probability of

a skin color area is a face region. While in our method, proper visibility of mouth,

eye, nose, and other facial features are not as important. We trained the SVM

with the histogram of oriented gradient feature. It describes the local shape and

appearance of an object (face in our case) by the distribution of local intensity

gradient and edge direction without much knowledge of gradient position. So a

face with a covered mouth, wearing goggles still be detected.

Our algorithm is more efficient as it gives very few false detections (0.72%) as

compared to [Hsu et al. (2002)], [Wang (2014)] and [Yadav and Nain (2015, 2016)]

methods. In terms of accuracy, we achieve 98.02 value of true positive rate as

depicted in Table 3.1, which is higher than the compared methods. The qualitative

results of our approach on BAO dataset are depicted in Figure 3.8.

Table 3.1: Quantitative comparison evaluation of our method with other
state-of-the-arts mehods on BAO multiple face database

Method TPR FP MR

Viola Jones [Wang (2014)] 82.80 9.5 17.2
Face detection in color images [Hsu et al. (2002)] 89.17 8.1 10.83
Skin segmentation and facial features [Yadav and Nain (2015)] 94.26 6.7 5.74
Our method 98.02 0.72 1.98

Evaluation on FDDB Dataset
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Figure 3.8: Qualitative results of the presented approach on sample images of BAO
multiface dataset.

We also evaluate our approach on FDDB dataset [Jain and Learned-Miller (2010)]

which comprises 5170 faces pictured in 2845 images. The dataset comprises very

challenging images of faces such as out-of-plane rotation, convincing occlusion,

illumination effects, blur, etc. and some of them have dense crowd environments.

[Jain and Learned-Miller (2010)] provide bounding ellipses around faces as ground

truth annotations. They also produce cross-folds and binary scripts to validate

and evaluate the face detection performance. We evaluate the efficiency of our

method by comparing its outcome against ground truth ellipses of an image. The

matching score (MS) of our face detection method is computed as in Equation 3.22.

MS =
|FD ∩GT |
|FD ∪GT |

(3.22)

where, FD and GT represents an area of detected face and ground truth face

respectively in a given image. Every individual detection is associated with two

scores, namely continuous and discrete scores. The continuous score is determined

by the same matching score as in Equation 3.22. The discrete score acquires a

value of 1 or 0 based on the percentage value of the matching score of detection. If

the matching score is greater than 50% than discrete score associates a value of 1

otherwise 0 in case of less than or equal to 50%. The true positive rate is defined

either as the average continuous or discrete score for the ground truth faces. For

both scores, we depict the performance of our method along with state-of-the-art

methods by an ROC curve. We compared our approach with various algorithms

on FDDB dataset. Most of them have akin characteristics to the Viola-Jones

cascade structure. [Mikolajczyk et al. (2004)] adopted local orientation with blob
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Figure 3.9: Comparison of our approach against the state-of-the-art methods in
terms of ROC curve of discrete score on FDDB dataset.

features in a boosted cascade manner to detect faces and other body parts. While

[Kienzle et al. (2005)] approximated the Support Vector Machine (SVM) decision

function to develop a face detection algorithm and obtain very poor scores like the

parallel to x-axis as depicted in both Figures 3.9 and 3.10. Later, [Subburaman

and Marcel (2010)] used Modified Census Transform (MCT) features in a boosted

cascade and, [Li et al. (2011)] used Speeded Up Robust Features (SURF) in the

same boosted cascade architecture and obtained good performance at training and

detection time. Our approach outperforms the current state-of-the-art methods

except for the SURF based technique, as shown in Figure 3.9 and Figure 3.10 that

was introduced by [Li et al. (2011)] on FDDB dataset. Although our approach and

[Li et al. (2011)] detect almost equally well, but the bounding boxes generated by

SURF detector overlap the faces better than the bounding boxes of our approach.

Evaluation on Manually Collected Images

Our approach is also evaluated on manually collected crowd images from surveil-

lance areas and some Boston Marathon images [Su (2013)] collected from Flickr1

considering high density, dark illumination, clutter and skin color background.

1https://www.flickr.com/photos/tags/crowd/
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Figure 3.10: Comparison of our approach against the state-of-the-art methods in
terms of ROC curve of Continuous score on FDDB dataset.

This database contains 1121 faces pictured in 50 images with an average 20 to

25 people per image. We obtained 78.14% TPR with 21.85% MR as reported in

Table 3.2, and qualitative analysis is depicted in Figure 3.11.

We also performed the face detection without skin color segmentation by using

HOG only, the true positive rate degrades to 71.36% in the same image sets. It

shows the idea of skin color segmentation is very beneficial to improve the correct

detection rate.

Table 3.2: Performance evaluation of the presented method on our manually collected
images. Some images are of Boston Marathon, and some are collected from mass
gathering areas.

Method Total faces TPR FP MR

HOG 1121 71.36 4.46 28.63
Skin Color + HOG 1121 78.14 4.46 21.85
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Figure 3.11: Qualitative results of our approach on manually collected images.

3.1.2.4 Failure Cases

Performance is still far from perfection even though we trained the support vector

machine with off-frontal, occluded and blur poses. We have noticed a few different

failure cases as shown in Figure 3.12. The miss detections were mostly due to

small size, blurry, out of plane and occluded faces. The impact of severe occlusion,

blur, clutter background, and small target size should be taken into account since

they all frequently occur in the real-world unstructured crowd scene. Our main

aim is to deal with a high-density crowd consisting of hundreds or thousands of

people per image. In such images, people have severe multiple occlusion, occupying

very few pixels per target, very low visibility of head or face, clutter background,

perspective effects, etc. Hence, the detection based methods are not feasible for

real-world dense crowd scenes. Therefore, we adopted a regression-based approach

to analysis high density crowd which will be discussed in upcoming section 3.2.

3.1.3 Summary

We showed that skin color modeling and oriented gradient features are helpful in

improving face detection in a crowded scene. The skin color segmentation automat-

ically discards the non-skin objects, in the remaining skin color objects, some false

positive may exist due to skin color background, hand, necked neck etc. which are

further eliminated by oriented gradient features that provide shape appearances.

The presented approach explicitly handles partially occluded or off-frontal poses.
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Figure 3.12: Failure cases of face detection in real world crowd scenes, where most of
the miss detections are reported due to small size, out of plane and occluded faces.

The gain in robustness resulting from strong training of support vector classifier

by a large number of sample from different races under varied illumination and

environment. The utilization of this approach is in real-world indoor and outdoor

surveillance camera services for crowd density estimation (medium density (up to

50 person per image)). Further, it finds application in face recognition pipelines

to identify suspects in mass gathering events.

We compare the approach with current state-of-the-art methods, it is observed

that face detection in a high-density crowd in the presence of severe occlusion, blur

and perspective effects remains an understudied area. We have shown some failure

cases of face detection in the high-density crowd (hundreds or thousands of people)

which limits the applicability of detection based methods in such a challenging

and high-density crowd images. The inadequacy in robust face detector precludes

the use of such detection based approaches for density estimation. Therefore,

we adopted a regression-based approach for density estimation in a high-density

crowd.
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3.2 Regression-based Density Estimation

Regression-based approaches maintain a relationship between local image features

to their counts. These methods do not rely on learning detectors as it is relatively

a complex task. Regression-based techniques have two major components: (i)

low-level feature extraction, and (ii) regression modeling. An image broadly offers

two types of features; pixel-based and texture-based features, which are used for

encoding low-level information. The pixel-based methods maintain a linear map-

ping with foreground pixels and human count. [Davies et al. (1995)] and [Hussain

et al. (2011)] introduced pixel-based density counting methods that first employ

background subtraction and, then carried out a relationship with foreground pixels

and density count. [Ma et al. (2004)] also introduced a linear relationship between

pixels and people to count human objects. These pixel-based methods cannot be

applied in case of severe occlusion in a dense crowd. The texture is considered

as an efficient feature to deal with the extremely dense crowd. Various texture-

based approaches [Marana et al. (1998, 1999); Xiaohua et al. (2006)] have also

been proposed for density estimation in the crowd. In their approaches, the scale

of the crowd is limited to few tens to a hundred people, which is not considerable

nowadays. The real-world crowd scenes contain an average thousand people due

to exponential growth in the worldwide population. It has been observed that

dense crowd images depict fine texture, whereas sparse crowd images show coarse

texture. With this fact, we present a texture-based multi-source approach, which

includes Fourier analysis, Wavelet analysis, SIFT, and HOG features.

3.2.1 Multisource Approach

The main target of our approach is to quantify the number of persons in the given

crowd images. The crowd images hardly offer uniformity in terms of density dis-

tribution, i.e., every portion of the crowd image has a varying density of people.

The diversity in the density distribution of individuals may arise due to the dif-

ferent angle of viewpoint and perspective effects of the camera setup. The whole

crowd scene cannot be simultaneously analyzed for density estimation purpose.

Therefore, our approach partitions an image into uniformly sampled small patches

to make uniform density over the image. The density smoothly varies across the

image with the assumption that density should be similar across the adjacent

patches. To ensure the continuity of change in density across patches, we apply

Markov Random Fields, to handle the issue of smooth variation in density over the



Chapter 3. Crowd Density Estimation 52

whole image. When we count individuals at cell levels, we consider the uniformity

within the cell while assuming in-dependency among the patches. Once the den-

sity estimation is performed in each cell, we ignore the independence assumption

and put the density count of each cell in multi-scale Markov Random Field to

mark the dependency of densities among neighboring patches. The schematic dia-

gram of the presented approach is shown in Figure 3.13, and detailed in upcoming

sections.

Figure 3.13: A schematic diagram of crowd density estimation approach using
multisources of clues via Markov Random Field (MRF).

3.2.2 Patch level Crowd Density Count

We divide every image into small patches, and for each patch, crowd counts and

corresponding confidences are estimated from multiple sources as HOG based head

detection, Fourier analysis, Wavelet and interest point based (SIFT) techniques.

Later, these techniques are combined to obtain final crowd count for that patch

using individual counts and confidences.

3.2.2.1 Head-based Count: HOG

Human detection is a challenging task in dense crowd due to severe occlusions.

A quick glimpse at crowded scenes announces that the human bodies are almost
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entirely occluded, only head is the most visible part at this scale by which we can

detect and estimate crowd count. We adopted a Deformable Part Model [Felzen-

szwalb et al. (2010)] trained on the INRIA Person dataset, and applied only the

filter corresponding to head with a much lower threshold. This is because heads

are partially occluded and are very small in size in dense crowd images. In feature

pyramid H = (p0, p1, · · · , pn), is an object hypothesis which specifies the location

of each head filter in DPM model. The pi = (xi, yi, l) represents the location

(xi, yi) of filter with level l in feature pyramid (H). The level of pyramid is spec-

ified in such a way that the feature vector (f) at that level should be twice the

resolution of the root level i.e. li = l0 − λ for i > 0 where l0 is root level and λ is

level number. In the pyramid H, the feature vector f is present at position p and

is represented by f(H, p). The appearance score is defined as the dot product of

filter F ′ and feature vector such as F ′ · f(H, p). The deformation score of a part is

obtained by di · fd(dx, dy) where di and fd are deformation cost and deformation

features respectively. The confidence score (ConfiScore) as in Equation 3.23 is

computed by differencing the summation of the appearance scores of every head

filter at their corresponding locations and a deformation score which lies on the

location of each portion corresponding to the root with a bias term b.

ConfiScore (p0, · · · , pn) =
n∑
i=0

F
′

i · f (H, pi)−
∑

di · fd (dxi, dyi) + b (3.23)

where

(dxi, dyi) = (xi, yi)− (2 (x0, y0) + v0) (3.24)

defines the displacement of ith part and the displacement is correspondent to the

anchor position. The following equation defines the deformation features.

fd (dx, dy) =
(
dx, dy, d

2
x, d

2
y

)
(3.25)

Therefore, head detection includes the computation of comprehensive score at each

root position according to the best possible placement of the parts.

ConfiScore (pbest) = max (ConfiScore (p0, · · · , pn)) (3.26)

The computed comprehensive score of each root location can detect multiple oc-

currences of a particular object. This approach is equivalent to sliding-window

detectors because the ConfiScore(pbest) offers a detection score for a sliding win-

dow, which is described by the root filter. For every detection, the scale and
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confidence score is calculated. We may find many misleading head positions in

the detection results, as shown in Figure 3.14. However, we find excellent results

for nearby heads. HOG based head detection does not impart any useful result

in dense crowd images due to fewer pixels per target and invisibility of heads.

Therefore, instead of head detection alone, texture-based methods are adopted,

which include Fourier analysis, Wavelet transform, and SIFT.

Figure 3.14: Experimental results of head detection: left side image of our dataset
provides little bit of considerable outcomes of head detection. The red boxes represent
false positives, blue represents false negative, while the yellow one represents correct
detections. However, both images are evidence of false negatives and false positives.

3.2.2.2 Texture-based Count

The texture of dense crowd images is repetitive in nature. When we look at dense

crowd images, all people appear almost similar from a certain distance due to

recurrent crowd texture. Here, we employ two texture-based approaches: Fourier

and wavelet analysis. They give per patch count, which will be used posterior to

ensure the final image count.

Fourier Analysis

In crowd images, when thousands of people are present, each people occupy only

a few pixels per target, and some of them are also very distant from the camera

viewpoint. In such scenes, the histogram of oriented gradient does not provide any

beneficial information. A dense crowd is immanently monotonous in nature due to

the same appearance from a distance. The density of the crowd at the patch level

is uniform due to the repetitive texture pattern. Therefore, crowd texture can

be captured by Fourier Transform (FT ). In the frequency domain, the sporadic
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occurrence of peaks is considered as human heads, as shown in Figure 3.15. Partic-

ularly, for a given patch (P ), we convert that patch into gradient image patch ∂(P )

followed by low pass filter to ignore high-frequency component. Next, low ampli-

tude frequencies are discarded, and inverse Fourier Transform (FT ′) is applied

for reconstruction of image patch(Pr). After applying non-maximal suppression,

we select the local maxima in the reconstructed image patch. The number of

local maxima as in Figure 3.15 is defined as a Fourier count estimation, which

is denoted by red dots. Additionally, we calculate various statistical parameters

such as entropy, mean, variance, skewness, and kurtosis for both reconstructed

and difference (|Pr − ∂(P )|) image patch. The Fourier count and these computed

parameters are further used as input for regression modeling.

Figure 3.15: The local maxima (red points) considered as head peaks are obtained by
applying the inverse Fourier transform. We observe that in first three images, the local
maxima peaks corresponding to head are very well located in a dense crowd, while the
fourth image is crowd blind and can not count the approximate presence of the crowd.

Wavelet Analysis

The wavelet approach [Chang and Kuo (1993)] for texture analysis have been

widely and successfully employed in some real world applications. It is a very

powerful model for texture discrimination and has the ability to decompose com-

plex information and patterns into elementary forms. Wavelet transform can also

be used to reconstruct the 3D surface geometry from 2D image (i.e. shape from

texture), which is a major issue in texture analysis. The wavelet transform de-

composes a signal into the family of functions as:

ψm,n (x) = 2
−m
2 ψ[2−m(x− n)] (3.27)

generated by dilation and translation operations by using a prototype function ψ.

The prototype function has to satisfy the below criteria:∫
ψ (x) dx = 0 (3.28)
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The computation of a wavelet transformation of an image f(x) can be seen by

analysis and synthesis equations as given below:

Cm,n =

∫ +∞

−∞
f (x)ψm,n (x) dx where f (x) =

∑
m,n

Cm,nψm,n (x) (3.29)

The below scaling function φ(x) formulates the mother wavelet

φ (x) =
√

2
∑

h0 (k)φ (2x− k) ψ (x) =
√

2
∑

h1 (k)φ (2x− k) (3.30)

where h1(k) = (−1)kh0(1−k) The wavelet model can be generalized to any dimen-

sion. We use a two dimensional wavelet transform with multi-resolution properties

to extract texture features for crowd counting framework. The basic function of

two dimensional wavelet transform the separable product of scaling function ψ and

φ expressed as:

ψ1(x, y) = φ(x)ψ(y), ψ2(x, y) = ψ(x)φ(y), ψ3(x, y) = ψ(x)ψ(y) (3.31)

The multi-resolution property of 2D-wavelet intends to transform an image in

such a representation which contains both spatial and frequency information. For

a given patch P, a three-step pyramid-structured wavelet transformation is em-

ployed to achieve the 10 lower resolution sub-images. Each sub-image offers energy

calculated as:

e2j =
1

M ×N

M∑
x=1

N∑
y=1

I2
2j(x, y) (3.32)

where I2
2j(x, y) represent any of the sub-images with M × N resolution, and the

calculated energy represents the extracted feature vector.

Thus, corresponding to every patch of an image, a 10-dimensional feature vector is

obtained. Different texture patterns of an image generate different feature vectors.

Hence, the above-calculated energy feature is used for discriminating crowd and

non-crowd regions. These energy feature vectors and corresponding ground truth

counts of training images are used to train a support vector regression. The

previous statistical parameters viz. variance, skewness, and kurtosis of the 10

lower resolution sub-images are also calculated here and passed to the regression

phase along with the patch count.
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3.2.2.3 Interest Points based Count: SIFT

We use the quantized SIFT features used by [Idrees et al. (2013)] to divide an

image into positive and negative density regions. [Idrees et al. (2013)] focused on

interest point based SIFT descriptor for crowd counting and to obtain a confidence

score of an image patch whether the corresponding patch contains crowd or not.

We observe an interesting fact that sky, walls, and trees usually appear in outdoor

scenes where head detection results in a high rate of false positives. In such outdoor

scenes, the frequency based Fourier Analysis is unable to discriminant the crowd

texture. Therefore, it is necessary to ignore counts from such regions of an image.

Hence, we used interest point based SIFT descriptor to estimate crowd counts and

obtain confidence score of the presence of the crowd. We extract SIFT features

by utilizing VL-FEAT [Vedaldi and Fulkerson (2010)] library from training images

and cluster the interested key-points in a codebook of size S. We train a regression-

based support vector with sparse SIFT features and ground truth count of each

patch. The trained SVR model is used to obtain counts for testing image patches.

The probability of observing crowds in a specific image patch can be modeled as

spatial Poisson Counting Process (PCP) with λ density. The PCP is N(P ) ∼
Poisson(λ |P |) i.e. the expected value of N(P ) is equivalent to λ |P |. For the

image I, total density is the summation of the density of all patches. Since we

have assumed that the density among patches is independent and homogeneous in

a patch.

N(I) = N(P1 ∪ P2 ∪ · · ·Pn) = N(P1) +N(P2) + · · ·+N(Pn) (3.33)

where P1, P2, ...., Pn are disjoint patches of an image I. In a given patch, the

recurrence α of a specific feature i can be modeled by Poisson Random Variable.

The probability of a patch containing crowd with expected density λ+is defined

by

P (αi|crowd) =
exp(−λ+

i ) · (λ+
i )αi

αi!
(3.34)

Then as well, for a patch with no crowd with expected density λ−:

P (αi|−crowd) =
exp(−λ−i ) · (λ−i )αi

αi!
(3.35)

Therefore, the relative density of a particular feature will differ in the crowd and

non-crowd patches and can be used to locate crowded and non-crowded regions in
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an image. By our independence assumption of counts among patches, the count

of any two SIFT words in a patch is:

P (Si, Sj|crowd) = P (Si|crowd)P (Sj|crowd) (3.36)

The crowd and non-crowd patches maintain the log-likelihood ratio σ (P ) which

is interpreted as the confidence of detecting crowd in an image patch.

log (α1, α2...αS | crowd)− log (α1, α2...αS | αcrowd) =∑(
λ−i − λ+

i + αi
(
log λ+

i − log λ−i
)) (3.37)

3.2.3 Synthesizing Multiple Complementary Sources: SVR

To learn and synthesize at the patch level, the patches are sampled from the train-

ing images of the dataset. The multi-source methods explained above provide a

feature vector along with confidence score and other statistical features. Support

Vector Regressor (SVR) is trained by using the ground truth annotations and

computed features, which aggregates the information obtained from multi-sources

to generate a patch count estimation. The total crowd density count in an im-

age is achieved by aggregating the patch counts of corresponding image patches

in the grid structure. Initially, we assume neighboring patches are independent.

Later, we remove the independence assumption and mark the dependency of counts

among neighboring patches by putting every patch count in multi-scale Markov

Random Field.

3.2.4 Consistency Constraint: Markov Random Field

To remove discontinuity and impose smoothing among density counts at the patch

level, all patch counts are placed in Markov Random Field. Furthermore, density

around small patches maintains consistency with fewer texture repetitions. In

large patches, if the density is consistent, it results in more people, more repeti-

tions, and prominent significant frequency proportion. Therefore, it is crucial to a

priori determine the accurate proportion for an image analysis, which extends the

problem to a multi-layer MRF. The notations for the problem of discontinuities

among patch count can be defined as follows: in image grid graph, P and L are the

set of patches and their corresponding labels of an image, respectively. The labels
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refer to the values on which we want to impose smoothness at each patch. A label-

ing l accredits a label l ∈ L = [0, 1, 2, · · · , Cmax] to each patch p ∈ P . We consider

that the value of label differ smoothly among patches but may change drastically

at boundary lines. In multi-scale MRF, the label characteristic is defined by an

energy function as:

E (l) =
∑
p∈P

Dp (lp) +
∑

(p,q)∈N

V (lp − lq) (3.38)

where N represents four-connected neighbors at same level. The label assign-

ing cost to the two neighboring patches lp1 and lp2 is defined by V (lp − lq) =

min
(
(lp − lq)2 , τ

)
which is also known as discontinuity cost or smoothness term.

Data cost Dp (lp) = λ (ηp − lp)2 refers to the cost of assigning label lp to a particu-

lar patch p which is calculated independently from the patches at layers above and

below it. The Max-Product/min-sum BP algorithms [Felzenszwalb and Hutten-

locher (2006)] are used to calculate the minimum cost labeling of energy function

on image grid structure. The Max-Product algorithm details the probability dis-

tributions but an equivalent computation can deal with negative logarithm prob-

abilities, so the max-product converts into min-sum algorithm. This algorithm

processes by sending message among the patches by using 4 connected component

of an image. A message is a sequence of labels stored in a vector form. Let at

any particular time t, a patch node p1 sends a message mt
p1→p2(lp2) to neighboring

patch node p2 computed by:

mt
p1→p2(lp2) = min

lp2

lp1 − lp2 +Dp1 (lp1) +
∑

s∈N(p1)\p2

mt−1
s→p1 (lp1)

 (3.39)

where N(p1) \ p2 refers the neighbors of p1 apart from p2. Further, for an image

patch p2 with label lp2, a belief vector is obtained as:

btp2(lp2) = Dp2(lp2) +
∑

p1∈Np2

mt
p1→p2 (lp2) (3.40)

The interpretation follows by spanning Equation 3.39 with four neighbors at the

lowest layer. The belief vector for each patch is computed by Equation 3.40. Next,

the beliefs of every 2× 2 patch are summed up, providing the beliefs for the next

nodes bti till the one above the lowest layer. After finishing the four spans at
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the middle layer, the next span of message transfers to the middle layer from the

intermediate patch, then the belief computation is done at the middle layer. The

same steps are repeated for the top layer, and the entire process completes in a

single time sequence of t. Moreover, the entire steps are repeated from lowest to

top layer. The beliefs of an intermediate patch are distributed among every down

patch, i.e., each patch q in 2 × 2 group always shares the beliefs from the above

layers which are depicted by Equation 3.41

bt+1
i,q (lq) = btq (lq) · bt+1

i (lq) \ bti (lq) (3.41)

Figure 3.16: Results after imposing GMRF at one layer: The first row shows three
patches from the random images of the dataset. The corresponding ground truth
counts are shown in the second row, and the third and fourth rows depict the
estimated count without and after applying GMRF respectively.

Subsequently, the final beliefs are computed by using Equation 3.41 after a certain

number of reiterations. We choose the final labels (counts) with a minimum cost

from the belief vectors. The lowest layer offers the image count in terms of the

summation of labels at that layer. The patch count between adjacent layers can

be calculated simultaneously due to independent data term at each layer. Three

patches are shown in Figure 3.16, depicting the improved estimated count based on
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MRF. In these instances, the overestimated count is reduced near to ground truth

values after imposing a smoothing consistency constraint. A particular example is

considered in the middle column. The patch with GT = 38 calculated much lower

count compared to its neighbor, but after imposing the smoothing constraint, the

new count is closer to its neighbors.

3.2.5 Experimental Results and Analysis

This section states different measures used for performance evaluation and dis-

cusses the results of the presented method by showing quantitative analysis of

the various datasets. We also compared our method with existing state-of-art

techniques and analyzed the results. The combined comparative analysis of our

approach with other existing techniques of crowd density estimation on different

datasets is reported in Table 3.4.

3.2.5.1 Performance Measures

We adopted two standard measures for performance evaluations which are Mean

Absolute Error (MAE) and Mean Squared Error (MSE) as defined in Equa-

tion 3.42. The MAE defines the accuracy of density count while the MSE defines

robustness of count.

MAE =
1

N

N∑
i=1

|zi − ẑi| and MSE =

√√√√ 1

N

N∑
i=1

{zi − ẑi}2 (3.42)

Where, N represents the number of test images or patches, ẑi represents the num-

ber of the estimated count and zi is the ground truth count corresponding to ith

sample. Since we are dealing with patches, the presented approach is evaluated at

both image and patch level.

3.2.5.2 Datasets Used for Experiments

We evaluated our presented framework on four different datasets which include

publicly available UCSD pedestrian dataset [Chan et al. (2008)], Shanghai Tech A

[Zhang et al. (2016)] dataset, UCF CC 50 [Idrees et al. (2013)] dataset and ex-

tended UCF CC 100 dataset. The UCF CC 50 dataset was missing the images
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Table 3.3: Summarization of statistics of four datasets, where Max, Min, and Avg
represent the maximum number of people, minimum number of people and average
count in images respectively.

Dataset No of
Images

Min Max Avg Total Resolution

UCF CC 50 50 94 4543 1279 63,974 Varied

Extended UCF CC 100 100 81 4633 871 87,135 Varied

Shanghai Tech Part A 482 33 3139 501 241,677 Varied

UCSD 2000 11 46 25 49,885 158*238

with a wider variety of perspective distortions. Thus, we augment the UCF CC 50

dataset by accumulating 50 new images collected by [Bansal and Venkatesh (2015)]

to ensure the robustness of the presented method. The images of the extended

UCF CC 100 dataset have widely varying viewpoints with severe multiple occlu-

sions. The descriptions of all these datasets are summarized in Table 3.3, and

some sample images are depicted in Figure 3.17.

3.2.5.3 Quantitative Evaluation

We quantitatively evaluate our approach on four different datasets namely UCF CC

-50, UCF CC 100, UCSD and Shanghai Tech A datasets. The detailed description

of each dataset is given in the following sections.

(a) UCF CC 50 Dataset

Our first evaluation is performed on UCF CC 50 dataset [Idrees et al. (2013)]

which is publicly available. This dataset consists of 50 images ranging from 96 to

4633 persons. The authors of [Idrees et al. (2013)] provided the annotated ground

truth details for every image of this dataset. There are total 63974 annotations

of human heads in the 50 images. We partitioned the dataset into 5 groups, each

having 10 images, i.e. 5-fold cross-validation. The comparative results of our ap-

proach with the existing methods [Idrees et al. (2013); Lempitsky and Zisserman

(2010); Rodriguez et al. (2011a)] are reported in Table 3.5. Being independent of
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Figure 3.17: Illustrations of sample images from four datasets: (a)
UCF CC 50 [Idrees et al. (2013)], (b) UCSD [Chan et al. (2008)], (c) Shanghai
Tech A [Zhang et al. (2016)], (d) UCF CC 100 [Bansal and Venkatesh (2015)]. The
datasets (a), (c) and (d) have dense crowd images with varied scenes while the dataset
(b) has relatively very low density images with no variation in perspective across
images.

Table 3.4: The combined comparative results of our approach with existing methods
for crowd density estimation on UCF CC 50, Shanghai Tech A and UCSD datasets.

Approaches

Datasets & Performance Measures

UCF CC 50 Shanghai Tech A UCSD

MAE MSE MAE MSE MAE MSE

Rodriguez et al.
(2011a)

655.7 697.8 – – – –

Lempitsky and
Zisserman (2010)

493.4 487.1 – – – –

Idrees et al. (2013) 419.5 541.6 – – – –

Zhang et al. (2015) 467.0 498.5 181.8 277.7 1.60 3.31

Zhang et al. (2016) 377.6 509.1 110.2 173.2 1.07 1.35

Kang et al. (2018) 406.2 404.0 – – 1.12 2.00

Chen et al. (2012) – – – – 2.25 7.82

Chan et al. (2008) – – – – 2.24 7.97

Marsden et al. (2016) – – 126.5 173.5 – –

Our approach 376.1 477.8 123.6 167.3 1.09 1.25



Chapter 3. Crowd Density Estimation 64

videos and detection techniques, these methods are best suitable for comparative

analysis. [Rodriguez et al. (2011a)] used head detection based approach for den-

sity estimation while [Lempitsky and Zisserman (2010)] adopted SIFT features

with regression function to crowd count. The authors of [Idrees et al. (2013)]

claimed about the performance of [Rodriguez et al. (2011a)], which is best suited

for counts of approx 1000, but above 1000 counts, there is an increase in error

due to the dependency of the dataset, it does not work well for varying crowd

density. The errors increase dramatically for both very low and very high-density

levels. However, [Lempitsky and Zisserman (2010)] offer good accuracy at higher

density levels, but the performance degrades at lower density levels. Our method

outperforms all the compared methods and performs quite well at both medium

to high-density levels ranging greater than 1000 individuals per image.

Table 3.5: Comparative results of our approach with the methods of [Rodriguez et al.
(2011a)], [Lempitsky and Zisserman (2010)], and [Idrees et al. (2013)] in terms of MAE
and MSE on UCF CC 50 dataset.

Methods MAE MSE

Rodriguez et al. (2011a) 655.7 697.8

Lempitsky and Zisserman (2010) 493.4 487.1

Idrees et al. (2013) 419.5 541.6

Our approach 376.1 477.8

The group level qualitative analysis of our approach with the other methods is

depicted in Figure 3.18. The UCF CC 50 dataset is divided into ten groups of

five images, and the images are placed in increasing order of the ground truth

counts. The x-axis represents each of the 10 groups, and the y-axis represents

total average counts estimated by each of the compared approaches. We observe

that all the compared methods including presented one, underestimate the tenth

set when the density increases beyond 2200, and this can be due to histogram

features that capture relative texture frequencies. The relative frequency is hardly

distinguishable in very high-density images.

(b) UCF CC 100 Dataset

The second experiment is done on the augmented UCF CC 100 dataset, which

contains 100 images. As compared to UCF CC 50, the UCF CC 100 dataset have

much more diverse images having varying crowd densities at different viewpoints.

These enriched features of this dataset help in evaluating the robustness of the

presented method more efficiently. In this experiment, the dataset is divided into
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Figure 3.18: The group level qualitative analysis of our approach with the other
methods [Rodriguez et al. (2011a)], [Lempitsky and Zisserman (2010)], and [Idrees
et al. (2013)] on UCF CC 50 dataset. The comparison is done between actual ground
truth and estimated counts given by different methods. All the methods underestimate
the density in the tenth group where the density is > 2200.

groups of 25 images with 4-fold cross-validation. For quantitative analysis, the

influence of each individual and the complementary source is shown in the second

column of Table 3.6. The results of Fourier Analysis count (first row of the second

column) providing MAE and MSE of 803.9 and 782.1, respectively. Supplementing

the result in wavelet analysis reduces the mean absolute error by 292.7. Adding

the results from head detections improves the MAE to 507.2 (a little bit). With

the inclusion of interest point SIFT features, both performance measures reduce

to 498.6 and 568.6. Eventually, by imposing smoothness in order to maintain con-

sistency through MRF, both the measures improve the performance by reducing

MAE and MSE to 489.3 and 557.1, respectively. Table 3.6 demonstrates that

the error measures are reducing as we add more complementary sources, and the

MSE follows the same trend as MAE, which defines exactness and completeness,

respectively.

We also analyze and demonstrate the result of each image in terms of estimated

count and ground truths. In Figure 3.19, the blue dots represent the estimated

counts per image, and orange diamonds are the exact ground truth of images where

the images are sorted with respect to actual ground truths. The actual error per

patch is very small or almost constant until 85 images (sorted). We analyze that
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Table 3.6: Quantitative results analysis of each individual and complementary
sources are quantified in terms of MAE and MSE on extended UCF CC 100 and
Shanghai Tech A datasets. The result claims that each source is complementary to
others and improves performance.

Presented Methods

Datasets & Performance measures

Shanghai Tech A
Extended

UCF CC 100

MAE MSE MAE MSE

Fourier analysis (F) 385.6 406.1 803.9 782.1

F + Wavelet (W) 261.0 297.9 511.2 612.1

F + W+ HOG head (H) 250.4 295.6 507.2 612.1

F + W + H+ SIFT (S) 152.3 203.0 498.6 568.6

F + W+ H + S + MRF 123.6 167.3 489.3 557.1

the presented approach produces a high error for only those images which have a

very high density of people where crowd density is > 2500. One of the reasons

behind poor density count is, some of the images in the dataset suffer from lens

distortion, which leads to the high error rate.

Figure 3.19: Per image error analysis in terms of actual error count. The error is the
difference of estimated count (EC) and ground truth (GT). The total estimated count
of an image is the summation of patches of that image. The X-axis represents image
number, which is sorted (increasing order) regarding actual density count. The Y-axis
represents ground truth and estimated count in terms of blue and orange dots
respectively.
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(c) UCSD Dataset

We also test the presented approach for a single scene UCSD dataset [Chan et al.

(2008)], which contains 2000 images. Although this is not a suitable dataset for our

method as we are focused on the high-density crowd. But to measure the efficacy

and robustness of the algorithm, we consider this dataset and pursue the same

dataset settings as in [Chan et al. (2008)]. The dataset is partitioned into training

and testing images. The images from 601 to 1400 are considered as the training

sets, and the rest 1200 images are treated as testing sets. Each image is divided

into patches of size 72× 72. The training patches are randomly extracted but to

test the dataset, a sliding window approach is used without overlapping. Table 3.7

reports the comparative performance of our algorithm with two methods [Chen

et al. (2012)] and [Chan et al. (2008)] which are based on regression. It is important

to mark that our method is independent of any foreground information, while the

compared methods are dependent on the foreground segmentation features. Our

method outperforms these regression-based approaches for both MAE and MSE

error metrics. As per Table 3.7, error values of our approach significantly lower

than the compared methods. This demonstrates the strength of our method, which

can estimate the density count in both extremely dense and sparse crowd images.

Table 3.7: Comparative results of our approach with the methods of [Chen et al.
(2012)] and [Chan et al. (2008)] on the UCSD crowd counting dataset.

Approach MAE MSE
Ridge Regression [Chen et al. (2012)] 2.25 7.82
Gaussian Process Regression [Chan et al. (2008)] 2.24 7.97
Our approach 1.09 1.25

(d) Shanghai Tech A Dataset

We also evaluate our approach on recently introduced Shanghai Tech A dataset

[Zhang et al. (2016)] which contains 482 images with 241, 677 head annotations.

We arbitrarily divide the dataset into ten groups, with each group comprising 48

images. Therefore, we execute the 10-fold cross-validation for testing the perfor-

mance. The influence of complementary sources is reported in the second column

of Table 3.6. For this dataset, our algorithm is compared with the work of [Zhang

et al. (2015, 2016)] and [Marsden et al. (2016)] which use a convolutional neural

network (CNN) for crowd density estimation. The authors of [Zhang et al. (2016)]

also use the Local Binary Pattern and perform ridge regression to estimate the
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image count. It is observed that the single source based result is rather weak.

The comparative analysis of our approach with all these methods is depicted in

Table 3.8. For the performance metric MAE and MSE, we outperform the method

[Zhang et al. (2015)] and [Marsden et al. (2016)], and beaten by only [Zhang et al.

(2016)] in terms of MAE which is a much more computationally expensive CNN

based model. All CNN based methods require upscale GPUs and the massive

amount of datasets, while the presented method works very well in a cost-effective

manner.

Table 3.8: Comparative performance analysis of our method with convolutional
neural networks (CNN) based methods on Shanghai Tech A dataset in terms of MAE
and MSE. The presented approach outperforms [Zhang et al. (2015)] and [Marsden
et al. (2016)] and is only outperformed by a computationally expensive method [Zhang
et al. (2016)] in terms of MAE.

Method MAE MSE

Zhang et al. (2016) 303.2 371.0

Zhang et al. (2015) 181.8 277.7

Marsden et al. (2016) 126.5 173.5

Zhang et al. (2016) 110.2 173.2

Our approach 123.6 167.3

3.2.6 Summary

The presented approach estimates the density of people in exceptionally dense

crowd images. We employ a texture-based multi-source technique that grasps the

multiple information parameters gathered from various sources such as Fourier,

Wavelet, head and SIFT in terms of confidence scores and different statistical pa-

rameters. Every source provides a separate estimate of density count at patch

level, which is further integrated to provide a total count of an image. Then, a

Markov Random Field is applied to improve estimate over the image by ensuring

consistency and smoothness on nearby patches.

The presented approach performs well at various densities and gives persistent

error value over the entire images with variable crowd count. We report our ex-

periments on four datasets: UCF CC 50, UCF CC 100, Shanghai Tech A, and

UCSD. The former three are complementary to the presented approach as they

contain incredibly dense crowd images of real-world applications, and later one

tests the robustness of our approach by performing well in low density too. The

experimental results achieve remarkable performance in terms of MAE and MSE

when compared with existing methods of crowd density estimation. Also, the pre-
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sented framework is computationally simple as compared to the recent well-known

deep learned CNN. Being computationally light-weighted, it can be applied to real-

time density estimation in crowded areas, which presents a danger of stampede

and can provide guidelines for evacuation strategies in the emergency.

3.3 Chapter Summary

This chapter presents detection and regression-based approaches for density es-

timation in exceptionally dense crowd images. The crowd detection approach

incorporates a skin color model, oriented gradient features, and support vector

machine. The SVM strongly trained by a large number of face samples of different

races under varied illumination and environment conditions. The skin color mod-

eling, along with oriented gradient features, helps to reduce false-positive results.

The presented approach explicitly handles partially occluded or off-frontal poses

and obtain good results at nearby or larger faces in medium-density crowd.

We compared the approach with current state-of-the-art methods, and it is ob-

served that face detection in a high-density crowd in the presence of severe occlu-

sion, blur, and perspective effects remains an understudied area. We have shown

some failure cases of face detection in the high-density crowd (hundreds or thou-

sands of people), which limits the applicability of detection based methods in such

a challenging and high-density crowd images. The inadequacy in a robust face

detector precludes the use of such detection based approaches for density estima-

tion. Therefore, we adopt a regression-based approach for density estimation in

the high-density crowd.

In a regression-based approach, we combine counts and confidences obtained from

four different sources and then impose consistency constraints in neighborhood

patches to revise the count of incorrect patches, thereby better estimates are pro-

duced for the entire image. Experimental evaluation of both approaches depicts

good confidence for their efficacy in density estimation of dense crowd images. The

next chapter discusses an automatic analysis of crowd scenes. For this purpose,

we describe our crowd flow segmentation approach in high-density crowd videos.



Chapter 4

Crowd Flow Segmentation

Identifying crowd flow patterns and direction of crowd flow is a crucial step in

monitoring crowded scenes. The mass-gathering events like rallies, marathon,

parades, protests, festivals, and sports matches, etc. comprise movement of the

crowd in a bounded arena such as city pavement, over-bridges, and narrow road-

ways. An important step in the analysis of these crowded areas is segmenting the

dominant flow patterns and directions. A crowd scene may consist of multiple

flow patterns and information of the number of flows, and their location is not

known beforehand. This makes flow segmentation a difficult task. The challenge

of the computer vision system is to capture precise motion information, which

is based upon the representation of motion. The required motion representation

should create long and reliable trajectories. Using these trajectories, the flow of

the whole video can be described.

4.1 Introduction

Conventionally, optical flow is used to compute pixel-wise flow between two frames

[Brox and Malik (2010); Lu et al. (2010)]. However, optical flow can not directly be

used for motion representation due to some implicit shortcomings. For instance,

optical flow is unable to extract long-range spatio-temporal motion patterns, which

are useful in a large number of applications.

In high-density crowd scenes, extracting complete trajectories from the crowd mo-

tion is a challenging task. Because of the aforementioned shortcomings of optical

flow, trajectory or tracklets based representations [Zhao et al. (2011); Shao et al.

70
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(2014); Dehghan and Kalayeh (2015)] has been favored by many crowd scene

analysis approaches. Even though it gives long and reliable trajectories for motion

representation, it still has numerous weaknesses. For example, in [Dehghan and

Kalayeh (2015)], trajectory extraction is imposed in the whole crowd video frame,

which is not required considering that some portion of the video frame is occupied

by buildings, walls, trees, etc. Thus, a pre-processing step is required to segment

the foreground (crowd region) from the entire frame with the aim to minimize

further tracking.

Moreover, the performance of most of the standard object detection-based track-

ing methods gets deteriorated in a dense crowd [Ali and Shah (2008)]. This is

because the high-density crowd scenes introduce complex dynamics among indi-

viduals and involve very small size object with occlusion, which is impractical to

track simultaneously.

In this chapter, we present the problem of crowd flow segmentation in high-density

crowd videos. The presented approach solves this problem by following an unsu-

pervised paradigm which develops an active contour-based trajectory clustering

algorithm for the purpose of crowd flow pattern segmentation. Our approach as

depicted in Figure 4.1 has two strong points: first, low computational complexity

with updating procedure attains the need to develop a real-time applicable crowd

analysis system. Second, the representation of the trajectory feature creates a

robust descriptor for a trajectory. By adopting active contouring, we pull out

the possibility of tracking only the crowd region rather track the entire frame.

Moreover, it does not demand specific training or learning for flow segmentation.

Figure 4.1: Schematic view of the presented method for crowd flow segmentation in
high density crowd videos.

The remaining sections of this chapter are organized as Section 4.2 expounds our

methodology to segment crowd flow patterns by trajectory clustering in the active

contour region. Section 4.3 outlines the experimental results and comparative

analysis of our approach with several state-of-the-art. Finally, the conclusions of
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this chapter are given in Section 4.4.

4.2 Flow Segmentation Approach

Motion trajectories are an efficient manner to obtain and represent the complex

temporal motion of a video scene. Therefore, we handle crowd flow segmentation

through trajectory extraction and clustering task in the active contour region. Our

approach consists of four phases:

1. Active contour segmentation: separate the crowd region from the entire

frame.

2. Trajectory extraction: detect interest points in the block-level structure and

track these blocks over the frames to extract the trajectories.

3. Trajectory clustering: cluster the extracted trajectories with the develop-

ment of a clustering algorithm that utilizes shape, location, direction, and

the neighborhood density of the trajectory patterns.

4. Crowd flow segmentation: mark individual pixels depending on their flow

pattern to segment the final crowd flow.

Eventually, the crowd flow segments are analyzed to understand the flow. A

detailed explanation of each phase is given in the consequent sections.

4.2.1 Active Contour Region Segmentation

Image segmentation plays a vital role in the detection, classification, scene under-

standing, and other visual analysis tasks. Active contour models (ACMs) have

been broadly practiced for image segmentation. For acquiring precise results, this

model utilizes prior knowledge related to image intensity distribution, boundary

shape, and texture. ACMs can be classified as edge-based models [Caselles et al.

(1993); Vasilevskiy and Siddiqi (2002)] or region-based models [Chan and Vese

(2001)].

In edge-based methods, image gradient forces the active contours to shift toward

the required boundaries of the given objects. These methods are prone to noise,

and weak edges, having small gradient values, which may lead to edge leakage.
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In region-based methods, image statistical information is utilized for forcing the

active contours towards the borderline of the object. In several cases, this method

is more beneficial than edge-based methods like in computer tomography (CT)

and magnetic resonance (MR) images.

We adopt a region-based method that relies on the fact that in the high-density

crowded scenes, the crowd region seems immanently homogeneous due to the same

appearance from a distance. Since the similar region provides small changes in

intensity while the inhomogeneous has a huge variation in intensity. Therefore, the

difference between intensities offers a prominent feature to segment the foreground

contour from the entire frame.

We follow CV model [Chan and Vese (2001)] for the contour segmentation with

the aim to minimize the tracking domain by tracking only the segmented active

contour region. Here, we focus on formulations where the video frame can be parti-

tioned into a foreground region Cin and background region Cout, and the intensity

distributions in different partitions are assumed to be independent. The contour

is generated recursively in an unsupervised manner to minimize the energy func-

tion, and the minimum is obtained when evolving contour reaches the boundary

between foreground and background regions.

The energy function of the CV model for a scalar-valued image is

µ · Length(C) + ϑ · Area(Cin)) + λ+

∫
Cin

(
I (x)− C+ (C)

)2

+λ−
∫
Cout

(
I (x)− C− (C)

)2
(4.1)

where C is a contour, I (x) ∈ R represents image intensity at x location of a pixel

in spatial domain Ω. µ ≥ 0 denotes as a regularization parameter which controls

the smoothness of the contour. The foreground and background regions are rep-

resented by Cin and Cout respectively. ϑ ≥ 0 is another regularization parameter,

which penalizes a large area of the foreground. C+ (C) = average (I (x) |x ∈ Cin)

and C− (C) = average (I (x) |x ∈ Cout) represent the average intensities of the

foreground and the background respectively. The parameter λ+, λ− ≥ 0 con-

trols the influence of the two image energy term λ+
∫
Cin

(I (x)− C+ (C))
2

and

λ−
∫
Cout

(I (x)− C− (C))
2

respectively at inside and outside of the contour.

In the variational level set formulation of Equation 4.1, the contour C is expressed

as the zero level set of an auxiliary function φ : Ω→ R :
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C := {x ∈ Ω : φ (x) = 0} (4.2)

From Equation 4.2, foreground (Cin) and background (Cout) of contour C can be

separately represented as in Equation 4.3

Cin := {x ∈ Ω : φ (x) > 0} , Cout := {x ∈ Ω : φ (x) < 0} (4.3)

The segmented foreground region, as shown in Figure 4.2) of the frame, is fur-

ther processed for spatio-temporal interest points detection. The detected interest

points are tracked over the frames. Here, according to our method, we refresh the

temporal window after a certain number of r frames, then the existing contour

region is re-segmented after every temporal window of r frames.

Figure 4.2: (a) Sample video frame (b) segmented foreground region using active
contour approach (c) the segmented region is further divided into blocks.

4.2.2 Trajectory Extraction

The videos, we are dealing with, are densely populated with the moving persons,

where each individual occupies very few pixels. The conventional object detection

and tracking algorithms are not practicable, as maintaining track of individual

persons in such a high density is a cumbersome process. Thus, instead of focusing

on individuals, we consider tracking a block-level structure in the segmented fore-

ground region Cin. For this purpose, we divide the foreground into non-overlapping

blocks of size b× b. At the boundary points, some of the blocks contain both the

foreground and the background region. We only consider those blocks as per

Equation 4.4, which consist of more than ε% pixels of foreground region.
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Block(i) =

select if Cin(pixelcount(block(i))) ≥ ε%

discard otherwise
(4.4)

For each block, we prefer interest points as the primary feature to examine the

intricate crowd motion. The interest points exhibits distinct entities that can be

efficiently tracked in crowded scene.

Therefore, we adopt the most widely used Harris corner detector [Harris and

Stephens (1988)] to detect these interest points. Suppose a grayscale image is

represented as R2 → R, the variation in image space at point (x, y) is shown by a

convolved matrix Ms as shown in Equation 4.5

Ms = g (., ., σ)×

(
I2
x IxIy

IyIx I2
y

)
(4.5)

Ix and Iy represent derivatives of image intensity in x and y directions respectively.

g (., ., σ) is the Gaussian kernel with variance σ

g (., ., σ) =
1√
2πσ

e−
x2+y2

2σ2 (4.6)

An interest point is detected by computing positive maxima of the corner function

as in Equation 4.7

H = det (Ms)−K × (trace (Ms))
2 (4.7)

As we are concerned about spatio-temporal scale, thus we follow the work of

[Laptev and Lindeberg (2003)] and generalize the above Harris corner detector to

the space-time domain.

The convolved matrix of interest points in the spatio-temporal domain is defined

as in Equation 4.8

Ms = g (., ., ., σ)×

 I2
x IxIy IxIt

IyIx I2
y IyIt

ItIx ItIy I2
t

 (4.8)

where Ix and Iy represent derivatives of image intensity in x and y directions

respectively and It denotes the derivative in temporal domain or consecutive frames



Chapter 4. Crowd Flow Segmentation 76

in time. The spatio-temporal interest points are chosen by their power which is

defined by the corner function as in Equation 4.9

H = det (Ms)−K × (trace (Ms))
3 (4.9)

where K represents the strength of spatio-temporal interest points. The more the

variation in space and time, the interest point has the larger value of k as expressed

in Equation 4.10

k =
λ1λ2λ3

(λ1 + λ2 + λ3)3
(4.10)

where λ1, λ2 and λ3 are the eigenvalues of Ms given in Equation 4.8. Our concern

is only for positive k and in this case, all the eigenvalues must be greater than 0

for space-time interest points.

After the interest points detection, for each block, a centroid of key-points is calcu-

lated. With the help of Kanade-Lucas-Tomasi (KLT) tracking algorithm [Tomasi

and Kanade (1991)], the centroid of each block is then tracked over the successive

frames. The tracker captures the trajectories for each moving block. The new

objects simultaneously enter into crowd videos over time, some of them disappear

after less than 20 frames and then reappear, which results in very short trajectories

(tracklets).

To take into account the newly appearing persons for tracking, we refresh the

frames after every r numbers of frames. Therefore, the existing foreground contour

region and interest points are recomputed. When the blocks exit the frame, they

are discarded from the tracker, and newly constructed blocks are considered for

further tracking. We keep only the trajectories having a length greater than a

certain threshold (LT).

The step by step process of trajectory extraction in the active contour region is

summarized in Algorithm 1.

The visual representation of the extracted trajectories of some sample videos from

datasets is depicted in Figure 4.4(b). After tracklets extraction in a temporal win-

dow of r frames in video sequences, we parameterize the trajectories as discussed

in following section.
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Algorithm 1 Tracklets extraction in active contour region

Require: Video Frames (I1, I2, ..., In) Frame Refresh Rate (r)= 40, Length
Threshold (LT)= 30;

Ensure: Extracted Tracklets
1: for i= 1 to n do
2: if (mod (i, r) == 0|i == 1) then
3: Cin = foreground segmentation as per Equation 4.3
4: divide segmented foreground region Cininto blocks b1, b2...bm of size (b×b)
5: for j= 1 to m do
6: if Cin(pixelcount(blockj)) ≥ ε% then
7: Ipts= interest points detection using Harris corner
8: Centroid(Ipts)= Centroid computation of set of Ipts
9: else

10: discard the block
11: end if
12: end for
13: else
14: Tracklets(k = 1, 2, 3...t) = track all block’s Centroid(Ipts) by KLT Tracker
15: end if
16: end for
17: for all tracklets do
18: Lk= Length computation
19: if Lk ≥ LT then
20: store or plot tracklets
21: else
22: discard the tracklets
23: end if
24: end for

4.2.2.1 Representation of Trajectory Features

Representation of trajectory is one of the key factors in trajectory based motion

segmentation. We represent the trajectory by taking into account the four fea-

tures, which include shape, location, flow direction, and density features. The

concatenation of these features creates a descriptor for a trajectory.

Suppose, a trajectory T is represented by T = f {(xs, ys) , (xs+1, ys+1) , ..., (xe, ye)}
where (xj, yj) denotes tracklet’s coordinates at jth frame having s as starting and

e as ending frame. The shape, location, flow direction and neighborhood density

features of the trajectory are defined as:

1. Shape: We capture the spatio-temporal shape of trajectory by expressing

them as a third order polynomial functions of time. We separately represent
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its shape in x and y dimensions as in Equation 4.11

x (t) = p0 + p1t+ p2t
2 + p3t

3

y (t) = q0 + q1t+ q2t
2 + q3t

3
(4.11)

where t ∈ (1, l) and l = e− s. The shape feature fs denotes trajectory shape

represented as fs = [p0, ...p3, q0, ...q3]T .

2. Location: The location of a tracklet is defined by the mean of its x and y

coordinates represented by location feature vector, floc = [x̄, ȳ]T .

3. Flow direction: This feature decides the flow direction of trajectories in a

video. Here, we determine 8 flow directions ranging from 0 to 360 degree.

Each trajectory is mapped to a scalar variable fm, which can take the value

of 1 to 8 depending on its direction.

4. Density: We extract a multi-scale density feature from each trajectory. A

trajectory obtains the information from its neighborhood trajectories, which

is useful in segregating spatially overlapping trajectories. For a trajectory

Tj, its density in a neighborhood of radius ε is computed as shown in Equa-

tion 4.12

ηj,ε =
∣∣{T i|∀i 6= j, d

(
f j, f i

)
< ε
}∣∣ (4.12)

where f j =
[
f js , f

j
l , f

j
m

]
represents concatenation of shape, location and di-

rection features.

We compute a multi-scale density feature for the three values of epsilon

to improve the robustness. Our multi-scale density feature fd is given by

fd = [ηj,ε1 , ηj,ε2 , ηj,ε3 ]
T . The final feature vector F j of a trajectory Tj is

build by concatenating all the corresponding feature vectors extracted from

a trajectory, which is represented by Equation 4.13.

F j =


f js

f jl
f jm

f jd

 (4.13)

Likewise, all the trajectories form their feature vector as described in Equa-

tion 4.13, and next, we cluster the trajectories as explained in the following

section.
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4.2.3 Trajectory Clustering

Trajectory clustering provides benefits for many vision tasks, such as motion seg-

mentation, object detection, action recognition, and scene modeling. Trajectories

often lie in low dimensional feature space before clustering. The purpose of clus-

tering trajectories in our approach is to segment flow patterns in a crowded scene.

In this section, we perform clustering using the similarity measures of trajectory

feature vector F j. We would like trajectories to be clustered together, which are

belonging to the same flow segments. The cluster formation is a two-step process:

firstly, all input trajectories are partitioned into a set of primitive clusters C = ∪Cn
where n = 1 · · ·K, then the primitive clusters belonging to same flow segment are

grouped into N clusters.

4.2.3.1 Partitioning Trajectories into K-Primitive Clusters

We use the standard K-mean clustering algorithm [Likas et al. (2003)] to create

a set of primitive trajectory clusters. The K-mean requires the value of the K

parameter apriori. Usually, the value of K is larger than the predicted flow seg-

ments in a video. However, determining the value of K is not critical because the

primitive clusters obtained from the K-mean algorithm will eventually merge into

clustered trajectories based on minimum pairwise distance.

Firstly, the K trajectories are randomly chosen as initial clusters center, and then

the rest of the trajectories are assigned to their nearest cluster centroids as per

the Euclidean distance metric. K-mean follows an iterative procedure until the

cluster centers are stabilized. This process converges to a local minimum only, as

different cluster centers can arise by different initializations. Finally, the primitive

clusters are formulated and used as building blocks to construct final flow clusters.

4.2.3.2 Merging K-Primitive Cluster into N Clusters

Once the primitive clusters are obtained from K-mean clustering, we randomly

choose a fraction of trajectories from each primitive cluster. These trajectories are

considered as representatives of all trajectory flow patterns referred as models.

Each trajectory is then matched against all the models for acquiring a priority

set for every trajectory. In the priority set, a binary matrix is constructed by
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storing a similarity match (either 1 or 0) of each trajectory to all models based on

a specified threshold.

The model similarity between trajectories is computed as given in Equation 4.14.

Pji =

{
1 |Tj −Mi| ≤ ∆

0 otherwise
(4.14)

Then, we perform agglomerative clustering between priority set matrix, repre-

senting the pairwise distance between any two trajectories d (Ti, Tj) using Jaccard

distance measure as in Equation 4.15.

d (Ti, Tj) =
|Mi ∪Mj| − |Mi ∩Mj|

Mi ∪Mj

(4.15)

where Mi and Mj denote two sets of models corresponding to trajectory Ti and

Tj.

Taking into account each trajectory as a cluster, we continuously merge the prim-

itive clusters which have the minimum Jaccard distance at every iteration. After

merging the minimum distance clusters at every iteration, we update the prior-

ity matrix and compute Jaccard distance for the remaining clusters. Repeat the

process until the least distance between any two clusters is greater than δ.

This way, we cluster the trajectories belonging to the same flow patterns. The

algorithm is summarized in Algorithm 2. The clustered trajectories of example

video sequences are demonstrated in Figure 4.3.

From Figure 4.3, we observe that the mentioned trajectory clustering method over-

clusters the given set of trajectories. To address this issue, we perform a second

round of clustering over the previously clustered trajectories, as discussed in the

following section.

4.2.4 Crowd Flow Segmentation

From the previous section, it can be observed that some of the trajectory clusters

which comprise one flow segment are structurally different. This kind of situation

occurs when people with the same flow direction comes into the scene at a different
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Figure 4.3: Results of trajectory clustering algorithm:(a)sample video frames (b) over
clustered trajectories (c) and corresponding ground truths of crowd flow segments

Algorithm 2 Trajectory clustering algorithm.

Require: All Trajectory Features(F1,2,3,4..t)
Ensure: Trajectory Cluster C1, C2, ....CN

for All Trajectory features Fall(t) do
K-clusters (centroid) = Kmean(Ft, K)
Models = Select-models(K-cluster, Fall(t))
P = Priority-Sets(Models, Fall(t)) using equation 6
PW-dist = Pairwise-distance(P, P, Jaccard)
Clusters(trajectories) = Clubbing Trajectories(PW-dist, P)

end for
for all i= 1:trajectories do
Ci = [i]

end for
while min(PW-dist) < 1 do

[i, j] ← Search-position(min(PW-dist))
Ci = [Ci, Cj] Merge Clusters using agglomerative clustering approach
Discard Cj
Revise P (i)
Discard P (j)
Revise PW-dist

end while
RETURN C1, C2, C3, ...., CN

time (i.e., they have trajectories with different start and endpoints). We customize

the density-based clustering algorithm [Ester et al. (1996)] to resolve this problem.

The primitive clusters are taken as input to our flow segmentation algorithm. To

start with, we randomly select cluster Ci as initial cluster and define its neighbor-
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hood Ni which consists of Cj(j 6= i) clusters. The cluster Ci and its neighborhood

Ni should satisfy the following three paradigms.

1. The spatial overlapping between cluster Ci and Cj should be greater than α.

2. The variation in flow direction between cluster Ci and Cj should not go

beyond the value of β.

3. The mean locations of a cluster Ci and Cj should not be far apart than the

value γ.

Based on the aforementioned paradigm, the cluster Ci’s neighborhood is computed

and merged with all clusters of neighborhood Ni with cluster Ci. Then, we expand

every neighborhood cluster one at a time and mark it visited.

Repeat the process for every newly included cluster until the neighborhood is

processed. The unprocessed clusters are restored and follow the same procedure.

Algorithm 3 explains the step by step procedure of final crowd flow segmentation.

The flow segmentation results are presented in the pixel domain, as shown in

Figure 4.4(e). The pixels of trajectories which belong to one flow are combined as

one region. Further, the sliding neighborhood operations are performed to smooth

the boundaries of flow segments, as illustrated in Figure 4.4(f).

4.3 Experimental Results and Analysis

In Section 4.2, we presented the crowd flow segmentation method that has been

formulated with the primary objective of precisely segmenting the crowd flow in

the high-density crowd. We claim that by segmenting foreground contour and

by clustering trajectories belonging to the same flow accomplish a comprehensive,

optimal result achieving higher flow segmentation efficiency. To establish this

claim analytically, we apply our approach on the distinct databases and evaluate

those experimental outcomes.

In the following subsections, we outline parameter details and different perfor-

mance measures used to evaluate the performance of the presented approach.

Next, we discuss the qualitative and quantitative results of our method along with

comparative analysis with other state-of-the-art on publicly available datasets.
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Algorithm 3 Crowd flow segmentation

Require: Trajectory Cluster C1, C2, ....CN
Ensure: Flow segments S1, S2, ....Sf

Initialization: unvisited cluster(C)= 0, f=0;
for all Trajectory cluster Ci do

Find neighborhood Ni

Increment in flow segment f
Call ExpandCluster(Ci, Sf , Ni)
Mark Ci as visited cluster

end for
function ExpandCluster(Ci, Sf , Ni)
Include Ci to segment Sf
for every Cj in Ni do

if Cj is unvisited then
Find neighborhood Nj

Merge neighborhoods (Ni, Nj)
Label Cj as visited

end if
if Cj /∈ Sf up to now then
Sf ← Sf ∪ Cj

end if
end for
Return S1, S2, ....Sf

4.3.1 Parameter Details

A number of parameters are responsible for controlling the outcomes of the pre-

sented methodology. It is critical to understand and assign appropriate values to

these parameters for generating better results. We decided the values of all men-

tioned parameters by empirical analysis. For this, we conducted our experiment

over different values of thresholds on various video sequences of two datasets. We

plotted an ROC curve and obtained an optimal value of the threshold. In this

section, we discuss the parameters which are used in our work.

(a) After active contouring, as the obtained foreground region is divided into b×b
size of blocks. Here to decide the size of a block, we conduct an experiment

to evaluate how the block size can influence the trajectory extraction. When

the block size is too small, it will result in pixel-based tracking of interest

points, which is too noisy to track. The larger size of the block again leads

to severe occlusion. In our experiments, we let the block size be 16 × 16 to

obtain reliable trajectories.
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(b) Next, the blocks which contain more than ε = 25% of foreground pixels are

chosen to detect interest point, and track over the frames, i.e., the selection

threshold is ≥ 25%. We decided it by empirical analysis. For this, we

conducted our experiment over 20 different values of ε on 40 video sequence

of two datasets. We plotted an ROC curve and obtained an optimal value of

ε. Once the blocks are selected, they remain the same for r = 40 number of

frames, and after that, the whole process in refreshed to take into account

the newly appearing objects in the scene.

(c) For trajectory selection, we choose the length threshold LT = 30. Some

objects move at very high speed and stay in camera for a very short period

of time. These temporary objects do not contribute in obtaining long and

reliable trajectories.

(d) In trajectory clustering, similarity match threshold ∆ = 100 and clustering

termination threshold is δ = 1. For flow segmentation, the value of α, β and

γ is 10%, 20 and 150 respectively. Where α, β and γ represent threshold for

spatial overlapping, difference in flow direction and mean locations between

clusters respectively.

4.3.2 Performance Measures

To evaluate the performance of the presented method, we adopted three standard

measures, which are the Jaccard similarity, F-score, and Mean Absolute Error

(MAE). The Jaccard similarity measures the similarity between the two sets of

data, as defined in Equation 4.16.

J (G,E) =
|G ∩ E|
|G ∪ E|

(4.16)

Where G represents the ground truth of crowd flow segmentation for a video

sequence and E be the experimental crowd flow segmentation obtained by the

presented approach. The intersection counts the number of pixels that are shared

between both labeled sets. The union counts the total number of segmented pixels

occupied by any of the two labeled sets.

Next, we computed F-score as per Equation 4.17, which determines how well

our approach performs. We consider the crowd flows correctly segmented if the

segmented flow matches the marked ground truth region by more than 50%.
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F − score = 2× Precision×Recall
Precision+Recall

(4.17)

We also computed Mean Absolute Error (MAE) for all sequences in our dataset, as

defined in Equation 4.18. Where N represents the total number of flow segments

in a video sequence, z∩i represents the number of segmented crowd flows, and zi is

the ground truth of crowd flow segments.

MAE =
1

N

N∑
i=1

|zi − z∩i | (4.18)

4.3.3 Datasets

Experiments are conducted on publicly available high-density crowd datasets which

include UCF Web [Ali and Shah (2007)], Collective Motion [Zhou et al. (2013)]

and some sequences of Violent Flows datasets [Hassner et al. (2012)].

The datasets contain varieties of graphics and real-life scenarios with a wide range

of dynamics such as road traffic, marathon runner, railway stations, etc. For our

research point of view, we considered only real life’s crowd scenarios for evaluation.

These scenes are suitable to be considered for crowd flow segmentation.

4.3.4 Qualitative and Quantitative Results

In this section, we show the experimental results and discussion of our work. The

qualitative and quantitative comparison of presented work with other methods on

each dataset is discussed in the following sections.

4.3.4.1 UCF Crowd Dataset

Our first experiment is performed on the UCF crowd dataset, which consists of

20 video sequences of graphics and real-life scenarios. We manually generated

ground truths from all the video sequences and compared the presented approach

with recent works of [Ali and Shah (2007); Biswas et al. (2014)] and [Kruthiventi

and Babu (2015)]. Being dependent on videos, these methods are best suitable

for comparative analysis. The qualitative comparison of our approach is limited
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to only 4 videos because of the availability of the results of existing work [Ali and

Shah (2007); Biswas et al. (2014)] and [Kruthiventi and Babu (2015)] for common

videos is very small. The qualitative analysis of intermediate states involved in

the presented approach is demonstrated in Figure 4.4.

Figure 4.4: The main steps involve in our crowd flow pattern segmentation approach
(a) example frames from crowd video sequences, (b) all extracted trajectories from
videos, (c) primitive clustered trajectories obtained from K-mean clustering algorithm,
(d) merged trajectory clusters resulting into crowd flow segments, (e) pixel wise crowd
flow segments and (f) final crowd flows with smooth boundaries.

The comparative results for final flow segmentation of the presented approach are

shown in Figure 4.5, demonstrating that we can handle complex crowd scenes

much better than other existing methods.

Figure 4.5: Comparative result analysis of our approach against existing work of (a)
[Ali and Shah (2007)], (b) [Biswas et al. (2014)] and (c) [Kruthiventi and Babu (2015)]
for crowd flow pattern segmentation on UCF Web dataset.

Most of the relevant methods [Loy et al. (2012)] do not share the implementation

details. They only present qualitative results which are inadequate for present-
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ing quantitative comparison among the state-of-the-art methods. The quantita-

tive comparisons with other methods [Ali and Shah (2007); Biswas et al. (2014);

Kruthiventi and Babu (2015)] by the values of Jaccard measure J are shown in

Table 4.1 for some of the videos.

Our approach outperforms the benchmark method of [Ali and Shah (2007)] by the

value of 0.84 of Jaccard similarity as we precisely segment the active contour region

(foreground) of the video and discard the background region whereas [Ali and Shah

(2007)] performs the flow segmentation at the global level by compromising the

precision of the active contour region in the crowded sequence and obtained 0.57

of Jaccard similarity.

We also compared the presented approach with the work of [Biswas et al. (2014);

Kruthiventi and Babu (2015)], and obtained better results as their approach does

not handle intersecting flows due to mean statistics. [Kruthiventi and Babu (2015)]

used conditional Random Field to model motion vectors, which are a computa-

tionally expensive method as compared to our approach and obtained 0.78 Jaccard

similarity.

[Biswas et al. (2014)] proposed a super-pixel based algorithm in the compressed

domain for flow segmentation and is outperformed by our algorithm with a large

margin of 0.18 Jaccard dissimilarity for all video sequences.

It is observed that our approach can deal with intersecting crowd flow where the

existing one [Ali and Shah (2007); Biswas et al. (2014); Kruthiventi and Babu

(2015)] has failed. Therefore, our method outperforms the pixel domain and com-

pressed domain approaches such as fluid dynamics by [Ali and Shah (2007)], super-

pixel [Biswas et al. (2014)] and conditional random field of [Kruthiventi and Babu

(2015)]. Our approach degrades only for high-speed videos where the objects stay

for less than 5-10 number of frames in the video. For such cases, the extracted

trajectories are very short, so they could not be included as flow.

Moreover, we present flow segmentation results of the above video sequences in

terms of F-score, as shown in Table 4.2. We are unable to perform comparative

analysis over this measure due to the unavailability of results of existing work over

F-score measure . It can be noticed that our approach performs exceptionally well

with only a few false flow segmentation, which is due to ambiguous or complex

location motion.
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Table 4.1: Quantitative analysis of our proposed approach (PA) with existing work
on UCF Web dataset on Jaccard similarity measure.

Jaccard Similarity Measure

Video Sequences
Ali and Shah

(2007)
Biswas et al.

(2014)

Kruthiventi
and Babu

(2015)
PA

Sequence # 1 0.67 0.68 0.68 0.72
Sequence # 2 0.63 0.60 0.90 0.93
Sequence # 3 0.57 0.74 0.75 0.81
Sequence # 4 0.41 0.62 0.81 0.91

Average 0.57 0.66 0.78 0.84

Table 4.2: Quantitative performance of our flow segmentation (FS) approach on some
video sequences of UCF Web dataset in terms of F-score measure.

Video
Sequence

# of GT
# of

Correct
FS

# of
False FS

# of
Miss FS

F-score

Seq #1 7 6 2 1 .8

Seq #2 1 1 0 0 1

Seq #3 3 3 0 0 1

Seq #4 2 2 0 0 1

4.3.4.2 Collective Motion Database

We evaluate the presented approach on Collective Motion Database [Zhou et al.

(2013)], which contains 413 video sequences of 62 crowded scenes. This database

has various types of collective motions containing 100 frames per clips. We con-

ducted our experiments on high-density real-world crowd sequences.

Our approach is compared with six state-of-the-art motion segmentation algo-

rithms: The Lagrangian particle dynamics approach [Ali and Shah (2007)], the

local-translation domain segmentation approach [Wu and San Wong (2012)], the

coherent-filtering approach [Zhou et al. (2012a)], the collectiveness measuring-

based approach [Zhou et al. (2013)], general motion segmentation method [Brox

and Malik (2010)] and an anisotropic-diffusion-based image segmentation method [Wu

et al. (2013)].

The qualitative comparison of our crowd flow segmentation approach with the

aforementioned methods is demonstrated in Figure 4.6 for two video sequences.

We include ground truths in the second column provided by [Lin et al. (2016)].
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Figure 4.6: Crowd flow segmentation results: (a) results obtained from our approach,
(b) manually mark ground truths [Lin et al. (2016)], (c) results of Lagrangian
approach [Ali and Shah (2007)], (d) results of local-translation domain segmentation
approach [Wu and San Wong (2012)], (e) results of coherent-filtering approach [Zhou
et al. (2012a)],(f) results of collectiveness measuring-based approach [Zhou et al.
(2013)], (g)results of general motion segmentation method [Brox and Malik (2010)] and
(h) results of an anisotropic-diffusion-based method [Wu et al. (2013)]. (Best viewed in
color)

It can be observed that the presented approach gets better segmentation results

than the existing methods.

For instance, in the sequence 1, our approach effectively segments the circular

flow while the Lagrangian particle dynamics approach by [Ali and Shah (2007)]

can only segment the part of the circle. Moreover, the methods of [Zhou et al.

(2012a)] and [Zhou et al. (2013)] fail to segment due to the extraction of only a

few reliable key-points in the high density crowded scene.

Furthermore, for sequence 2, the methods in [Brox and Malik (2010)] and [Wu et al.

(2013)] do not provide satisfactory results due to complexity of crowd scenes.

These methods fail to extract reliable particle flow or trajectories since boundaries

of dense crowd flow are usually vague and unrecognizable.

The quantitative comparison of our method with other methods is reported in

Table 4.3. The quantitative results of compared methods are given in terms of

Mean Absolute Error (MAE), Jaccard similarity, and F-score.

Table 4.3 demonstrates that our approach achieves smaller values of MAE and

higher values of Jaccard similarity and F-score than the other methods. This

concludes that our approach can accurately segment the crowd flow in contrast

to other approaches, which usually over-segment or under-segment the crowd flow

regions.
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Table 4.3: Quantitative comparison of our approach with other methods on
Collective Motion Database in terms of Mean Absolute Error(MAE), Jaccard
Similarity and F-score.

Methods MAE Jaccard Similarity F-score

Ali and Shah (2007) 1.24 .75 .79

Wu and San Wong (2012) 0.93 .63 .70

Zhou et al. (2012a) 1.05 .43 .48

Zhou et al. (2013) 0.96 .47 .49

Brox and Malik (2010) 1.78 .37 .40

Wu et al. (2013) 0.84 .43 .44

Our approach 0.13 .82 .85

4.4 Chapter Summary

In this chapter, we presented an unsupervised approach for crowd flow segmen-

tation in the active contour region. The active contouring method provides the

separation between the crowd and the non-crowd region, which helps in the min-

imization of further tracking. We design a novel scheme for trajectory represen-

tation that utilizes shape, location, flow direction, and neighborhood density of

trajectories. Further, we developed a trajectory clustering algorithm that employs

a model-based grouping of trajectories. In contrast to existing methods, our ap-

proach can tackle complex crowd flows. In summary, our contributions to this

chapter are

1. The approach minimizes the region to be tracked as compared to state-of-

the-art techniques. We develop a foreground segmentation approach by using

active contouring. Since the crowd is not present in the whole frame, some

portion of the frame is occupied by buildings, walls, trees, etc. Therefore,

the active contour approach segments the foreground crowd region from the

entire frame to minimize further tracking.

2. We presented block-level tracking, especially suitable for high-density crowd

videos due to the inadequacy of standard detection and tracking methods in

the high-density videos.

3. The presented approach can handle intersecting crowd flows by designing a

clustering algorithm that considers the shape, location, direction, and the



Chapter 4. Crowd Flow Segmentation 91

neighborhood density of trajectory patterns to cluster the trajectories. We

exploit the essential temporal information depicted in trajectories for han-

dling complex flow patterns.

4. We tested our approach on a set of benchmark datasets, and results are com-

pared with several state-of-the-art methods. The performance is evaluated

both quantitatively and qualitatively, and remarkable results are obtained.

Our approach yields very good results for high-density crowd scenes due to block-

level tracking, which is a primary reason for decreasing the performance of standard

tracking by individual detection approaches. As the presented approach does not

require high computational resources, it can be used in segmenting flow patterns in

real-time crowd video sequences. The primary objective of this work is to segment

crowd flow while simultaneously considering the newly appearing object in the

scene. It is accomplished by applying an updating procedure after a temporal

window of a certain number of frames. Furthermore, the essential aspect of the

presented method is taking advantage of foreground segmentation by an active

contouring scheme.

The quantitative and qualitative results reported in Section 4.3.4 on standard

datasets exhibit that the trajectory clustering method surpasses state-of-the-art

methods used for flow segmentation in the high-density crowd. This algorithm

can be utilized in other applications of the high-density crowd. These promising

results motivate and enable us to analyze the flow segments and crowd scenarios

in order to detect anomalous scene in crowd video, as detailed in Chapter 5.
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Anomalous Scene Detection

The purpose of anomalous crowd scene detection is early detection or prediction of

anomalous events, which can result in life-threatening conditions for individuals.

By early detection of anomalous scenes, potentially dangerous consequences can

be reduced or prevented.

However, the analysis of crowd scene is a very strenuous task due to multiple

occlusion between individuals, random variations in crowd density over time, low-

resolution video sequences, complex background, and the inherent difficulty in

accurately modeling the crowd behavior. The crowd behavior patterns which

appear frequently are referred as normal pattern, and those appearing rarely are

considered to as abnormal or anomalous patterns.

5.1 Introduction

The existing approaches to crowd behavior analysis can be broadly divided into

object-based approaches and holistic approaches. The former approach considers

crowd as a collection of individuals and goes through the challenges to recog-

nize individuals in high-density crowd scenes due to a large number of targets,

small resolutions, small target size, and severe occlusions, etc. Such circumstances

lead to the loss of information of target objects in crowded scenes. To overcome

this problem, some of the researchers, [Wang et al. (2009); Zhou et al. (2012b)]

have adopted low-level features and probability models to analyze the dense crowd

instead of focusing on tracking individuals. [Wang et al. (2009)] explored the hi-

erarchical Bayesian model to segment motion into different activities by utilizing

92
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visual features and atomic activities. [Zhou et al. (2012b)] classify different pedes-

trian behavior based on the mixture model of dynamic pedestrian, which learns the

collective behavior patterns on the pedestrian. But, the mixture model considers

affine transforms and faces the difficulty in representing complex shapes.

In the holistic approach, a crowd is considered as a global entity to judge the

behaviors on the whole scene. These methods evaluate the dynamics of the whole

crowd rather than focusing on the particular activity of each and every individ-

ual. Therefore, these techniques escape the exercise of individual detection and

tracking people and explore crowd features to analyze the whole scene’s behavior.

This class usually incorporates an optical flow field-based approaches. [Benabbas

et al. (2011)] developed a crowd model based on direction and magnitude and

proposed a region-based segmentation algorithm which detects crowd event by

learning different motion patterns.

Krausz and Bauckhage (2012) represented a global motion pattern by utilizing an

optical flow histogram, which is used to detect stampede situations such as Love

Parade stampede. [Rao et al. (2016)] developed an optical flow-based probabilistic

framework using Riemannian manifolds to detect crowd activities.

In contrast to existing work that depends on motion cue merely between con-

secutive frames, more advanced approaches are developed that enhanced this cue

to larger temporal frames by tracking some salient [Shao et al. (2014); Mousavi

et al. (2015)] points or particles advections [Mehran et al. (2009, 2010); Mahadevan

et al. (2010)]. These methods result in trajectories that capture more substantial

temporal motion, which helps in to analyze crowd motion patterns.

In recent past, some researchers focused on particle advection approach [Mehran

et al. (2009); Gu et al. (2014)]. In these approaches, a grid of particles is randomly

distributed on the frame to represent crowd individuals and advected along with

the optical flow. Here, particle resembles pixels, and the pixels are hard to differ

with their neighborhood, which results in corrupted tracklets.

We address this issue in this chapter by considering the spatio-temporal interest

points to be tracked. We filtered out the short length trajectories to not affect the

persistent crowd flow direction. In this chapter, we describe an oriented tracklet’s

entropy-based approach for anomalous scene detection. In addition to entropy, we

also compute temporal occupancy deviation that specifies the sudden huge changes

in a crowd scene. We tested our approach on a set of benchmark datasets, and

results are compared with state-of-the-art methods.
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5.2 Methodology

In this section, an anomalous crowd scene detection approach is presented for

high-density crowd events. Our approach performs oriented tracklets extraction

and their statistical analysis in the active contour region to detect anomalous

scenes. The approach consists of four main steps:

1. Active contour region segmentation: separate the foreground region from the

entire video scene.

2. Tracklet generation: detection of spatio-temporal interest points blocks and

track them over the frames.

3. Flow direction computation: compute tracklet directions and generate his-

togram of oriented tracklets.

4. Anomalous scene detection: entropy and temporal occupancy computation

for oriented tracklets.

The anomalous crowd scene detection involves the deviation of a crowd from their

normal behavior with respect to entropy and temporal occupancy. To classify a

scene as anomalous, it should meet the following two conditions (i) the entropy

of the scene is greater than the decision threshold, and (ii) temporal occupancy

deviates from the specified bound limit. Further, an alert is issued to prevent

crowd-related disaster.

The schematic diagram of our methodology is depicted in Figure 5.1 and, a detailed

explanation of each step is given in the following sections.

5.2.1 Foreground Segmentation

We separate the foreground and background of the whole video frame by perform-

ing active contouring, as discussed in Chapter 4. We followed CV model [Chan and

Vese (2001)] that defines two forces to partition the background and foreground,

as shown in Equation 5.1.

F1(Cin) + F2(Cout)∫
Cin

|I(x)− c1|2 dx+

∫
Cout

|I(x)− c2|2 dx
(5.1)
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Figure 5.1: A schematic diagram of our approach for anomalous scene detection in
high density crowd events.

The first force (F1) is to shrink the contour and other one (F2) is to enlarge the

contour. As the contour touches the boundary between foreground and back-

ground regions, both the forces get stabilized. Here c1 and c2 denote the mean

value of everything inside and outside of the contour respectively. The segmented

foreground (Cin) and background (Cout) of contour C is separately represented as

shown in Equation 5.2.

Cin := {x ∈ Ω : φ (x) > 0} , Cout := {x ∈ Ω : φ (x) < 0} (5.2)

The background region (Cout) is discarded since it does not contain the crowd, and

further processing will be done in the foreground crowd region.

5.2.2 Tracklet Generation

We generate tracklets in space-time domain by utilizing spatio-temporal interest

points, as discussed in Chapter 4. In our method, tracklet generation utilizes

block-level structure in the segmented foreground region. Tracking a block-level

structure is feasible in high-density crowd because maintaining track of individual

persons in such a high-density crowd is a very cumbersome process. Tracking of

interest points is also too noisy to maintain the tracks. Therefore, to generate the

tracklets, the foreground Cin is partitioned into non-overlapping blocks of size b×b.
We discard those blocks, which consist of less than ε% pixels of foreground region.

For each selected block, we detect spatio-temporal interest points by generalizing

the work of [Laptev and Lindeberg (2003)] in spatio-temporal domain.
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After the interest points detection, for each block, a centroid of key-points is

calculated and then tracked over the successive frames by utilizing [Tomasi and

Kanade (1991)] tracking algorithm. The tracker captures the tracklets for each

moving block. The complete procedure of tracklet generation is repeated for every

r numbers of frames to take into account the newly appearing persons for tracking.

We keep only the trajectories having a length greater than a certain threshold (LT).

5.2.3 Tracklet Flow Direction

After tracklets extraction in a temporal window of r frames in video sequences, we

attain the direction features of the tracklets. A flow direction feature defines the

orientation of tracklets. We consider the direction of tracklets into 8 angles with

the range of [1 : 8] angles. Then, a variable fm is attached to each tracklet that

can select the value of 1 to 8 corresponding to its tracklet direction. The direction

of tracklets is computed by arctangent as shown in Equation 5.3. Here, ∆x and

∆y are gradient of a tracklet.

Angle = b(arctan 2 (∆x,∆y)÷ π × 4 + 4)c (5.3)

The dominant flow direction in a video can be determined by the median direction

of tracklets as a representative direction as in Equation 5.4. Further, we distribute

the direction of tracklets into histogram bins.

fm = median(Angle(Tall)) (5.4)

5.2.3.1 Histogram of Oriented Tracklets

We quantize the histogram into 8 uniform bins and all the tracklets are distributed

into them according to their flow direction. The tracklets associated with angle 1

are distributed in the first bin, angle 2 in second bin and so on. Each bin at x-axis

of histogram consists orientation of tracklets and y-axis defines the frequency of

tracklets at their respective orientation. The value of the eight bins defines the

eight flow direction of tracklets, as shown in Figure 5.2.

The orientation histogram is computed after every temporal window of r frames.

Further, we compute the entropy of each bin as per Equation 5.5.
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Figure 5.2: Flow direction of tracklets

EBini = −P (Bini) log2 P (Bini)

P (Bini) =
Mag(Bini)∑8
i=1Mag(Bini)

(5.5)

Where Mag(Bini) and P (Bini) represent magnitude and probability of tracklets

in ith bin. Then summation of all is made to compute the final entropy of that

temporal window as shown in Equation 5.6.

Entropy(final) =
8∑
i=1

EBini (5.6)

5.2.4 Anomalous Scene Detection

Anomalous activities are usually categorized as an outlier detection problem. The

definition of anomaly varies based upon the context. For instance, when an indi-

vidual runs in the marathon is considered as non-anomalous, but the same scenario

becomes anomalous for a road or mall.

In video sequences, the anomaly can be classified into two categories (i) local

anomaly and (ii) global anomaly. In a local anomaly, small regions of the video

act differently when compared to its nearest neighbors. For instance, the presence

of a cart on a pedestrian path is a local anomaly, as shown in Figure 5.3(a).



Chapter 5. Anomalous Scene Detection 98

In the case of global anomaly, the whole frame behaves differently as compared to

its consecutive frame rather than neighbors within the frame. A frightening situ-

ation of the stampede is termed as a global anomaly, as depicted in Figure 5.3(b).

Figure 5.3: Illustration of global and local anomaly (a) Local anomaly: cart on the
pedestrian path (b) Global anomaly: complete frame is anomalous as depicting a
frighten situation.

We focus on global anomaly detection because in a crowd scene, what is happening

is more important than who is doing it.

In this work, we consider the anomalous crowd scene detection by performing a

statistical analysis on the oriented tracklets of the crowd. We adopt two statistical

parameters as entropy and temporal occupancy for anomaly detection. Our idea

is to model a normal crowd scene based on these parameters and any variation in

the usual crowd behavior is detected as anomalous. The detailed description of

these parameters is given in the following sections.
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5.2.4.1 Entropy of Oriented Tracklets

The entropy reflects that infrequent events are more informative than frequent

ones. Entropy provides a degree of uncertainty or randomness. Higher disorder

or chaos leads to higher entropy. We present the entropy-based oriented tracklets

approach to detect the anomalous scenes in the high-density crowd. Only the

moving crowd can lead to anomalous activity; therefore, we considered only the

moving blocks. The oriented tracklets are used to simulate the direction of the

moving crowd.

Our approach intends to detect the anomalous behavior in crowd scenes according

to the entropy measure of oriented tracklets. The temporal window will be con-

sidered as anomalous if its tracklets’ entropy is higher than a certain threshold of

τ . To compute the entropy of oriented tracklets, we distribute each tracklet to the

histogram bins according to their corresponding orientation of flow direction. The

probability distribution of tracklets in each bin is computed as in Equation 5.7

Pi (θ) =
Ti (θ)

T
, i ∈ [1, 8] (5.7)

Where Ti(θ) denotes the number of oriented tracklets in ith bin at their corre-

sponding angle and T represents the total number of tracklets in all bins. The

entropy E(t) of all oriented tracklets is computed as in Equation 5.8.

E (t) =
8∑
i=1

Pi (θ) log2

1

Pi (θ)
, i ∈ [1, 8] (5.8)

where Pi(θ) represents the probability distribution of oriented tracklet at ith bin.

The entropy of extracted tracklets is measured for every temporal window of r

frames, and if the entropy of the tracklets increases beyond a certain experimental

threshold (τ), that means something of anomalous is happening.

5.2.4.2 Entropy based Scene Classification

Once entropy of a frame sequence is computed, we classify by predicting the class

of a scene in real-time while minimizing zero-one loss (i.e., minimizing the number

of false classification of an event and maximizing the concordance). We have used
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weighed k−NN classifier based on similarity measure for classification of an event

in binary class as normal and anomalous.

Here entropy computed in Equation 5.8 is a predictor variable. Let Nk(x) denotes

the k nearest neighbors of current scene entropy (x) and, η(x, xl), l = 1, ..., k

denotes the similarity between current scene entropy (x) and a nearest neighbor

sample (xl).

A Gaussian kernel is used to compute the similarity measure between x and xl as

in Equation 5.9

η(x, xl) =
1√
2πσ

exp

[
−d

2(x, xl)

2σ2

]
(5.9)

where d(x, xl) is the Euclidean distance between the x and xl. The similarity

between x and xl is normalized as expressed in Equation 5.10

zl =
η(x, xl)∑

xl∈Nk(x) η(x, xl)
(5.10)

The classification of event x in class a is performed using the probability measure

as:

P (y = a | x) =
∑

xl∈Nk(x)

αlzl (5.11)

where αl is an indicator function represented as:

αl =

1, if y = a

0, otherwise
(5.12)

The weighted k−NN classifier assigns event x to abnormal (i.e., class 1) if P (y =

1 | x) ≥ τ , otherwise a scene is classified as normal, where τ is used as the decision

threshold.

5.2.4.3 Temporal Occupancy based Scene Classification

The temporal occupancy measures the area occupied by moving crowd blocks over

time. To measure the occupancy of a scene, we estimate or count the number of

tracklets in a scene. The occupancy is directly proportioning to the number of

tracklets, i.e., more tracklets occupy more area. The occupancy of a scene can

be determined by counting the persons existing in the scene. But, the conven-

tional crowd detection and counting methods are cumbersome and less accurate in
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densely crowded scenario due to high density, severe occlusion, and low resolution,

etc.

We compute the tracklets of small windows corresponding to the moving crowd

region and then count them at their respective orientation. The deviation in the

number of tracklets in comparison to the previous temporal window is estimated

as in Equation 5.13, which defines the percentage of area occupied (O) by tracklets

during a time interval tth.

TOD =
O(t+ tth)−O(t)

100

TOD(t, t+ tth) =

true TOD > Ø

false otherwise

(5.13)

Where Ø is a decision threshold for temporal occupancy. The massive deviation in

the value of TOD indicates a sudden variation in the crowd scene. We can judge

the abnormality of a scene concerning a massive deviation in temporal occupancy.

This method is fast and shows effectiveness over template-based crowd detection

or estimation methods.

The Algorithm 4 summarizes step by step process of anomalous scene detection

by considering both techniques as mentioned above (i.e., entropy and temporal

occupancy deviation).

5.2.5 Decision Threshold Selection

To estimate the decision threshold for anomalous scene classification, we adopted

the receiver operating characteristic. The ROC estimates the optimal decision

threshold for specified ground truths that meets the maximum concordance. Ad-

justment of decision threshold is utilized to enhance the performance of the sensi-

tivity and specificity of a classifier under specified criterion.

We have analyzed three standard datasets for practical implementation and ap-

proximated various decision thresholds which fulfill the given sensitivity and speci-

ficity. Among experimented thresholds, the most appropriate threshold is selected

corresponding to the highest area under the curve.
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Algorithm 4 Anomalous Scene Detection Algorithm

Require: Tracklets t1, t2, · · · tn
Ensure: Anomalous or normal scene

for all ti= 1 to n do
ti → Binθ ∀ θ ∈ [1, 8]

end for
for all Binθ = 1 to 8 do
Pt(Binθ) = Mag(Binθ)∑8

i=1Mag(Binθ)

EBinθ= −Pt(Binθ) log2 Pt(Binθ)
E=

∑8
i=1EBinθ

end for
for all Scene with frame interval equal to frame refresh rate (r). do

Classify the scene based on two conditions given in Equation 5.11 and 5.13
if Entropyf ≥ τ and
TOD(t, t+ tth) = true then

Anomalous scene
Generate alert

else
Normal scene

end if
end for

5.3 Experimental Results and Analysis

The goal of the presented approach is to analyze high-density crowd events that

detect violent or anomalous behavior. Here, we outline parameter settings, per-

formance measures, datasets and the comparative analysis of our method with the

state-of-the-art on each dataset.

5.3.1 Parameter Settings

In this section, we discuss the parameters which are used in our experiments. In

active contouring segmentation, once the foreground is segmented, the frame is

divided into blocks of 16 × 16 size. The blocks which contain more than 25% of

foreground pixels are chosen to detect interest points, and track over the frames,

i.e., the selection threshold is ≥ 25%.

Once the blocks are selected, they remain the same for r = 40 number of frames.

For trajectory extraction: threshold for tracklet selection t = 30, frame refresh

rate r = 40. For oriented trajectories, we consider the direction of tracklets in



Chapter 5. Anomalous Scene Detection 103

the range of 0 to 360 degrees. The oriented tracklets are distributed into n = 8

number of bins with the interval of 45 degree.

In anomalous flow analysis, we have computed the entropy of oriented trajectories

of various violent or anomalous and normal crowd scenes. With the diversity of

scenarios, the optimal entropy for an anomalous scene is E = 0.7. For classifica-

tion, the weighted K-NN classifier is used with k = 5. In anomaly detection, if

the entropy increases beyond a certain decision τ value, then we generate an alert

for anomalous crowd flow to prevent crowd-related disasters.

5.3.2 Performance Measures

For performance evaluation, we utilized both qualitative and quantitative mea-

sures. In qualitative analysis, we present the abnormal frames and their corre-

sponding oriented tracklets and entropy in Figure 5.5. We discarded the short

tracklets that disappear after less than 20 frames. The discrimination between

normal and abnormal scene is made more clear after a set of frames and not a

single frame. Thus, we computed the entropy of oriented tracklets after every r

number of frames.

We also demonstrated some video frames which consist of both normal and abnor-

mal scenes. For quantitative analysis, four performance measures are adopted as

true positive rate (TPR), false-positive rate (FPR), receiver operating characteris-

tic (ROC), and area under the curve (AUC). The true positive rate represents the

rate of correct detection of an anomalous scene, and FPR is the rate of incorrect

detection of an anomalous scene.

5.3.3 Datasets

For evaluation purpose, we used three publicly available crowd datasets which in-

clude UMN [UMN], UCF Web [Mehran et al. (2009)], Violent Crowd Flows [Has-

sner et al. (2012)] datasets and on some manually collected video sequences. The

datasets contain varieties of scenarios with a wide range of dynamics such as road

traffic, marathon runner, railway stations, etc. These videos are a collection of

both synthetic and real-life scenes.

For our research point of view, we considered only real-life crowd scenarios for

evaluation. Some sample frames of these datasets are depicted in Figure 5.4. Some
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low-density crowd datasets are also considered for comparative study as most of

the literature work is limited to the low-density crowd. Table 5.1 summarizes the

statistics of all the datasets on which our approach is evaluated.

Figure 5.4: Sample frames of crowd datasets (a) first three coloumn represents UMN
dataset while in next three Violent Flow Crowd, and (b) shows UCF Web and our
collection of footage.

Table 5.1: Summarization of statistics of four crowd datasets namely UMN, UCF and
Violent Crowd for anomaly detection, where NoF, FR, GT represents number of
frames, frame rate and ground truth respectively. The last row represents our
manually collected video sequences from the Internet.

Datasets NoF Resolution FR GT
Scene/

Behavior
Density

UMN
Crowd [UMN]

7710 640× 480 30 Yes Real/Artificial Low

Violent Flows
Crowd [Hassner

et al. (2012)]
221400 Varied 30 No Real/Natural High

UCF Web
Crowd [Mehran

et al. (2009)]
24480 640× 480 24 No Real/Natural High

Collected
Footage

24000 Varied 30 No Real/Natural High

5.3.4 Qualitative and Quantitative Evaluation

The qualitative result of intermediate steps of our approach is illustrated in Fig-

ure 5.5 on some example frames of normal and abnormal scenes. In Figure 5.6, an

example video sequence, and their corresponding entropy graph are depicted for

every temporal window of r frames. The sudden change in entropy value indicates

that something anomalous has happened. Performance evaluation of our method

on each dataset is discussed in the following sections.
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Figure 5.5: The qualitative representation of the intermediate outcomes of our
approach on some sample normal and abnormal video sequences (a) shows example
frame of normal and abnormal video sequences, and in (b) extracted tracklets are
depicted (c) represents the flow direction of the tracklets and the corresponding
histograms of the tracklets’ orientation are depicted in (d). It is observed that the
tracklet of abnormal sequences are spread-out in all or random directions while the
direction of the tracklets of normal sequences produced dominant flow.

5.3.4.1 Evaluation on UMN Dataset

Our first study of experiments is on UMN dataset [UMN] which is publicly avail-

able on the website of the University of Minnesota1 to figure out the performance

of anomaly detection algorithms. The dataset resides 11 video clips of three differ-

ent scenarios. Each video sequence commences with general or normal behaviors

and ends up with a panic running crowd. It consists of 7740 number of frames

with 320× 240 resolution. Though the dataset is limited regarding crowd density

and variations, but we included this dataset to consider the comparative study of

existing literature.

The comparative results of our approach with the other state-of-the-art such as so-

1http://mha.cs.umn.edu/proj events.shtml#crowd
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Figure 5.6: Some snapshots of a video sequence and their corresponding entropy
graph of every temporal window of r frames. The sudden change in entropy values
indicates that something anomalous has happened.

cial force model [Mehran et al. (2009)], optical flow [Mehran et al. (2009)], chaotic

invariants [Mahadevan et al. (2010)], sparse reconstruction cost (SRC) [Cong et al.

(2013)] and matrix approximation [Wang and Dong (2012)] methods are reported

in Table 5.2.

All the quantitative results of compared approaches have been taken from [Cong

et al. (2013)]. These are the best suitable methods for comparative analysis.

[Mehran et al. (2009)] used the social force model to compute the interaction among

the crowd. It detects anomalies based on a high deviation in the magnitude of the

interaction force between particles. Their approach limits, when the video scene

consists of high-density particles because the interaction force between neighbors

will always remain high in a dense crowd. Their approach achieves good results

only with the sparse crowd. They also used a pure optical flow-based method,

which achieves 0.84 of AUC.

[Wang and Dong (2012)] compute motion matrix of video sequences, the motion-

based methods degrade performance in the presence of noise. And, the noise and

disturbances are obvious in natural crowd scenes.
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Figure 5.7: The ROC curves for each experimented datasets as UMN, UCF Web and
Violence Crowd datasets.

[Mahadevan et al. (2010)] defines chaotic invariants to analyze a scene and [Cong

et al. (2013)] utilizes the sparse reconstruction cost of motion field.

We observe that all methods, as mentioned above, detect the abnormality at a

frame or pixel-level while our approach works at scene level as the distinction

between normal and abnormal scene is more apparent after a certain interval.

This data set produces significant changes in the motion pattern of the scene. Due

to this noticeable change, our approach achieves nearly perfect results closest to

the ground truth, i.e., we achieve 0.995 value of area under an ROC curve. The

compared methods also hold good results but outperformed by our method as

depicted in Table 5.2. The ROC curve of our approach on a different dataset is

shown in Figure 5.7.

5.3.4.2 Evaluation on UCF Web Dataset

Our next evaluation is on the UCF web crowd dataset which has been used by

[Mehran et al. (2009)]. This dataset has 20 videos of normal and abnormal crowd

scenes with 640×480 resolution. The crowd is on the pedestrian walk or running in
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Table 5.2: The quantitative comparative analysis of our approach with the state of
the art methods for detection of an anomalous scene in the publicly available UMN
Crowd dataset.

Methods AUC Speed (FPS)
Optical flow [Mehran et al. (2009)] 0.840 10
FCSB [Pennisi et al. (2016)] 0.950 30
Social force model [Mehran et al. (2009)] 0.960 10
Chaotic invariants LP [Mahadevan et al. (2010)] 0.990 15
Sparse reconstruction cost (SRC) [Cong et al. (2013)] 0.980 20
Matrix approximation [Wang and Dong (2012)] 0.980 10
Our approach 0.995 30

marathons is considered as normal behavior while the abnormal behavior consists

of a stampede, protesters clashing, fighting and running in random directions. Out

of 20 videos, 12 video sequences are normal and the remaining 8 are abnormal.

For each footage, we manually marked the ground truth to abnormal frames.

For performance evaluation, we computed TPR, FPR, precision and also plotted

the ROC curve as shown in Figure 5.7. We have compared the area under ROC

curve with the social force model [Mehran et al. (2009)], optical flow [Mehran et al.

(2009)] and GLCM [Lloyd et al. (2017)] methods and demonstrated in Table 5.3.

[Mehran et al. (2009)] analyze the abnormality by advecting a grid of particles

into the scene and move them with the elemental optical flow field. Due to the

similarity of pixels, the advected particles are hard to distinguish and results in

corrupted flow. In the behavior of escape panic and sudden change, interaction

forces exhibit contrary results. Also, their approach requires prior training, thus

efficient for the real-time application.

[Lloyd et al. (2017)] proposed a GLCM texture-based anomaly detection method,

which requires a strong structure that is scarcely available in real-world random

crowd scenes. This dataset is not widely tested; therefore, our comparison is

limited to only two approaches, as mentioned above, and our presented approach

outperforms these two methods in terms of AUC. [Mehran et al. (2009)] holds 0.66

and 0.73 values as AUC for their optical flow and social force method respectively.

The AUC value for [Lloyd et al. (2017)] is 0.82 which is much better than both

the approaches proposed by [Mehran et al. (2009)]. Our approach achieves 0.85

value of AUC, is best amongst all the compared approaches.
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Table 5.3: Quantitative analysis of our approach with the other state of the art
methods on UCF Web Crowd Dataset for anomalous scene detection.

Methods AUC Processing Speed (FPS)
Optical Flow [Mehran et al. (2009)] 0.660 5
Social Force Model [Mehran et al. (2009)] 0.730 5
GLCM [Lloyd et al. (2017)] 0.820 10
Our approach 0.850 30

5.3.4.3 Evaluation on Violent Flows Crowd Dataset

Finally, we tested our approach on a highly complex Violent Flows Crowd dataset

obtained from [Hassner et al. (2012)]. This dataset is recent and rarely adopted

in the literature. The sole purpose of using this dataset is to evaluate the crowd

abnormality and violence in scenes. The dataset consists of 123 samples of both

violent and non-violent crowd scenes collected from the footage which are uploaded

at various websites. The violent video consists of various sequences which give

similar visual perceptions as in real-world crowd scenes. Therefore, this dataset

is appropriate to evaluate the performance of our approach for anomalous scene

detection in the high-density crowd.

We manually mark the frames which turn to violent from normal scenes by a

majority vote of 20 persons. Different methods are compared by their AUC for

anomalous scene detection. Specifically, we consider five methods [Hassner et al.

(2012); Xu et al. (2014); Gracia et al. (2015); Gao et al. (2016)and [Lloyd et al.

(2017)] for comparison with our approach.

In [Gracia et al. (2015)], fast fight actions are detected by blob processing, the

methods merely focus on fight actions with low accuracy and are not suitable for

general crowd violence flow.

The methods of [Gao et al. (2016)] and [Hassner et al. (2012)] also focus on vio-

lent scene detection by relying on the magnitudes of the optical-flow field. Both

approaches require a trained model to classify the violent and non-violent scenes.

The author of [Xu et al. (2014)] captures distinctive local shape and motion pat-

terns of activity to discriminate between violent and non-violent. The local shape

of activities is occluded in high-density crowd scenes.

[Lloyd et al. (2017)] describe the visual texture of scenes by using the statistical

properties of GLCM feature. The key requirement of their approach is to maintain
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the strong structure of scenes which is not practical in real-time surveillance sys-

tems as the footage may be influenced by illumination effects, darkness, occlusion,

etc.

In contrast to the above-aforementioned approaches, our approach does not require

a pre-trained model and operates in real-time scenarios. Table 5.4 demonstrates

the quantitative comparison of our approach with other state-of-the-art methods.

And, it is observed that the presented approach outperforms the state-of-the-art

with 0.95% value of the AUC as shown in Figure 5.7. The quantitative comparison

of our method with other state-of-the-art methods on three different datasets is

shown in Table 5.5.

Table 5.4: The quantitative comparative analysis of our approach with the state of
the art methods for detection of the anomalous scene in the publicly available Violent
Flows Crowd Dataset.

Methods AUC Processing Speed (FPS)
Fast Fight [Gracia et al. (2015)] 0.750 10
OViF [Gao et al. (2016)] 0.805 20
ViF [Hassner et al. (2012)] 0.850 30
MoSIFT [Xu et al. (2014)] 0.875 20
GLCM feature [Lloyd et al. (2017)] 0.940 10
Our approach 0.950 30

5.4 Chapter Summary

This chapter presents a novel method for anomalous scene detection in high-density

crowd employing statistical analysis of oriented tracklets. We employ a tracklet ex-

traction approach in active contour region. To extract tracklets, spatio-temporal

interest points are detected and tracked over the frames. With the active con-

tour method, only the foreground crowd region needs to be tracked that optimize

the tracking phase. The orientation of tracklets is computed and quantized in

histogram bins with respect to their flow direction.

Further, the entropy and temporal occupancy of oriented tracklets are measured

at each temporal window. The huge deviation in both measures predicts the scene

as anomalous. At the initial level, a weighted K-NN classifier is adopted that

predicts the probability of class based on Gaussian similarity measures. If a scene

is predicted as anomalous, an alert is issued to prevent the crowd-related disaster

such as over-crowdedness and clogging.
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Table 5.5: The quantitative analysis of our approach with the other state-of-the-art
methods on three different datasets.

Methods
Area Under Curve (AUC)

Processing Time
UMN UCF Violent

Optical flow [(Mehran et al.,
2009)]

0.660 0.840 – 10

FCSB [(Pennisi et al., 2016)] 0.950 – – 30

Social force model [(Mehran
et al., 2009)]

0.960 0.730 – 10

Chaotic invariants [(Mahadevan
et al., 2010)]

0.990 – – 15

SRC [(Cong et al., 2013)] 0.980 – – 20

Matrix approximation [(Wang
and Dong, 2012)]

0.980 – – 10

GLCM [(Lloyd et al., 2017)] – 0.821 0.940 10

Fast Fight [(Gracia et al., 2015)] – – 0.750 10

OViF [(Gao et al., 2016)] – – 0.805 20

ViF [(Hassner et al., 2012)] – – 0.850 30

MoSIFT [(Xu et al., 2014)] – – 0.875 20

Our approach 0.995 0.850 0.950 30

Experiments are conducted on three datasets: UMN, UCF Web, and Violent Flow.

The UCF Web and Violent Flows datasets are complementary to the presented ap-

proach as they consist of dense crowd scenes of real-world applications such as the

marathon, stadium, stampede, and political rallies, etc. The experimental results

obtain promising results when compared to existing approaches. Our approach

maintains low computational complexity and can be applied to real-world crowd

video sequences to detect potentially anomalous scenes.
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Conclusions and Future Work

This thesis work addresses several important problems of crowd analysis in the

high-density crowd with hundreds to thousands of people in an image or frame

with the aim to ensure public security and safety. In this research work, we study

various state-of-art methods used in the different tasks of crowd analysis and

find their limitations in various challenging environments. Further, we presented

techniques that aim to analyze the dense crowd in terms of density estimation,

flow segmentation, and anomalous scene detection. The presented techniques can

be implemented in any language that supports image processing, and it is not

prescriptive of any particular platform or tool. In this chapter, we present the

summary and conclusions drawn from our research study and the possible im-

provements as future directions to extend this work.

6.1 Summary of the Work

Chapter 2 provides a detailed literature survey of existing work for different tasks

of crowd analysis. The chapter explores various challenges that exist in crowd

analysis techniques. It also addresses the limitations of the widely used methods

for each of these tasks. The chapter illustrated the current image and video-

based crowd analysis techniques in multidisciplinary research such as intelligent

surveillance systems, public space design, anomaly detection, etc.

In Chapter 3, we presented detection and regression-based approaches for den-

sity estimation in images of exceptionally dense crowds comprising an average of

a thousand people per image. The complete description of the crowd detection

112
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method using the skin color model, oriented gradient features, and the support

vector machine has been presented. It is observed that face detection in the high-

density crowd in the presence of severe occlusion, blur, and perspective effects

remains an understudied area. We have shown some failure cases of face detection

in the high-density crowd, which limits the applicability of detection based meth-

ods in such a challenging and high-density crowd images. This chapter further in-

troduced a detailed description of regression-based approaches. These approaches

fuse information from four different sources in terms of counts and confidences.

This chapter also reported the comparative analysis of both approaches with state-

of-the-art methods.

In chapter 4, we presented an unsupervised approach for crowd flow segmentation

in the active contour region. The contouring helps in the minimization of further

tracking. The crowd flow segmentation approach starts by proposing a trajectory

clustering algorithm that uses a model-based grouping of trajectories that can

handle complex motion patterns and intersecting crowd flows.

Chapter 5 concerns to detect anomalous scenes in high-density crowd videos. The

process of implementation of the methodology describes the entropy and temporal

occupancy as decision criteria of abnormality of the crowd video. We have for-

mulated a method for abnormality detection by tracklet analysis. The orientation

of tracklets is computed and quantized in histogram bins with respect to their

flow direction. The entropy and temporal occupancy are computed for each bin

of the histogram. Classification of an abnormal scene is performed via similarity

measure with the normal behavior of the crowd scene. The normal crowd scenes

are modeled on statistical parameters, and any inconsistency in the normal crowd

behavior is identified as anomalous. The presented techniques can be applied to

any high-density crowd video and do not limit to specific video class.

6.2 Conclusions

In this work, we present an efficient system to analyze crowd scenes. We have

explored different tasks involved in crowd analysis and optimization is performed

over each task.

The major contributions of our research work can be summarized as follows:

1. We have found that the task of crowd density estimation remains challenging

when there are a high density of the crowd, severe occlusion, and perspec-
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tive effects, etc. We formulate a texture-based multi-source approach which

leverages the clues obtained from different sources, to figure out the den-

sity of people existent in exceptionally dense, crowded regions with repeated

texture. Our experimental results validate the adequacy and efficiency of

the intended methodology by achieving remarkable performance in terms

of MAE and MSE when compared with existing methods of crowd density

estimation.

Following implementations obtain these improvements:

(a) We grasp the multiple information gathered from various sources such

as Fourier, Wavelet, head and SIFT in terms of confidence scores and

different statistical parameters instead of using a single feature.

(b) All these techniques are sequentially applied in local neighborhoods

(patch-level) at multiple scales for avoiding the issues of foreshortening

and local geometric distortion arising from irregularity in the observed

textures rising from dense crowd images.

(c) Smoothness and consistency are maintained among neighboring patches

by employing Markov Random Field.

2. We have found that feasible solutions are available for addressing the robust

tracking of the single object. However, simultaneous tracking of individuals

in high-density crowd scene stays as one of the most challenging tasks in

crowd analysis. The accuracy of standard tracking methods reduces as the

density of crowd and occlusion between them increases beyond hundreds of

people. To achieve high performance in crowd tracking to segment crowd

flow patterns, we have applied the following enhancement:

(a) We segment foreground (crowd region) with the aim to minimize track-

ing that takes segmented foreground regions as input to select features

for further tracking.

(b) We track mid-level structure (block-level tracking), which is especially

suited for high-density crowd videos because individual detection and

tracking do not work for high-density crowd videos.

(c) The performance of crowd flow segmentation mainly depends upon the

accurate selection and representation of the trajectory feature of the

moving crowd. We aim at the robust selection and representation of

trajectory features. We exploit the rich temporal information contained

in trajectories for handling complex flow patterns.
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(d) We also continuously take into account the newly appearing moving

objects in a video by revising our existing set of tracker constituents

after processing a temporal window of frames.

(e) We perform trajectory clustering considering the shape, location, direc-

tion, and the neighborhood density of trajectory patterns to cluster the

trajectories for flow segmentation.

We test our approach on a set of benchmark datasets, and results are com-

pared with several state-of-the-art methods. The performance is evaluated

on both quantitative and qualitative measures, and remarkable results are

obtained.

3. Traditional anomaly detection methods localize anomaly in the scene con-

taining a few tens of people. But in a dense crowd, what is happening is

more important than who is doing it, therefore developed a global approach

for crowd scene behavior classification (normal or abnormal) by minimizing

the false alarm generation.

4. We validated our approach of crowd density estimation and crowd scene anal-

ysis on benchmarks datasets and obtained remarkable performance compared

with existing methods.

6.3 Limitations and Future Work

There are many current research opportunities and new challenges open with this

work for future action. The techniques implemented in this work for different

tasks of crowd analysis can be used as basic building blocks for many real-world

applications of crowd analysis. In the extension of the above research work done,

some of the future research perspectives are as follows:

• Deep learning architecture can be used to process the massive amount of

data generated by surveillance cameras.

• Potential enhancements incorporate the learning algorithms adapts to vari-

able crowd density, and the texture of crowd should discriminate the non-

ground plane regions, for instance, the texture of the sky can be confused

with crowd textures.
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• Localization of anomaly in the scene after anomalous scene detection will

assist the security agents for better crowd monitoring.

• Crowd analysis tasks can be further extended for multiple camera scenarios.
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