
A

Ph.D Thesis

on

Attacks and Mitigation in Web Browsers

Submitted for partial fulfillment for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in

Department of Computer Science and Engineering

(2015-2016)

Supervisors: Submitted by:

Dr. Manoj Singh Gaur Anil Saini

Dr. Vijay Laxmi (2011RCP7124)

MALAVIYA NATIONAL INSTITUTE OF

TECHNOLOGY JAIPUR

Declaration

I, Anil Saini, declare that this thesis titled, “Attacks and Mitigation in Web

Browsers” and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a Ph.D. degree

at MNIT.

� Where any part of this thesis has previously been submitted for a degree

or any other qualification at MNIT or any other institution, this has been

clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

Signed:

Date:

i

Abstract

A Web browser is an important component of every computer sys-

tem as it provides the interface to the Internet world. The browser

allows users to view and interact with content on the web pages.

With the rapid increase in the number of users and utility in every

facet of life, browsers are becoming the potential source of attacks.

Browser attacks over the years have stormed the Internet world with

so many malicious activities. These attacks have resulted in an unau-

thorized access, damage or disruption of the user information within

or outside the browser.

This research mainly examines the browser attacks occurring due to

(a) Browser extensions and (b) Misjudged User clicks. In former, we

observed that high privileges in browser extension and information

flow among critical operating resources are main causes of attacks.

Based on this insight, we propose semantic analysis model to detect

suspicious information flows in the browser extensions. This model

analyses information propagation among browser’s resources. In ad-

dition, we identified new browser attacks that circumvent all detec-

tion mechanisms proposed yet for browser extensions. We demon-

strate new attacks using collusion of two or more browser extensions

leading to privacy leakage. In particular, we illustrate an important

weakness in Firefox browser architecture and its XPCOM interface.

We observed that detecting a malicious flow in an extension is a par-

tial protection against extension-based attacks. Consequently, we

propose a sandbox and isolated environment to protect operating

system resources from such attacks. Our sandboxed policies enforce

restrictions on web browser extensions in accessing the operating sys-

tem resources. To understand the attacks targeting clicks of a user,

iii

we study new classes of clickjacking attacks in web browser. We find

that most of the attacks against users of web application are caused

by exploiting the fact that human visual system may not perceive

minor changes caused due to blurring or filters used in image pro-

cessing. We develop a novel detection method for such attacks based

on the behavior (response) of a website active content against the

user clicks (request). We also present an extensive comparison of our

approaches with the related work in the area.

iv

Dedications

This thesis is dedicated to my family for their endless support and

encouragement..

Acknowledgements

This doctoral thesis would not have been possible without the contribution, en-

couragement, and guidance of a number of individuals.

I especially want to thank my principal advisor, Dr.Manoj Singh Gaur , for her

guidance during my research and study at MNIT, Jaipur. He has been a constant

source of inspiration and guidance. His insights and feedbacks have directly shaped

several ideas in this thesis. His passion for excellence in research has motivated

me to work harder and has greatly influenced my personality.

My special thanks to my co–supervisor Dr. Vijay Laxmi for his invaluable

guidance on both academic and personal level. I will forever be obliged for her

support throughout my PhD life and guides me into the ocean of computer security

and privacy. Both supervisors set an example of world–class researchers with their

rigour and passion for research. They were always accessible and willing to help

their students with their immense knowledge.

I would like to thank my committee members, Dr. Dinesh Gopalani , Dr.

Preety Singh andDr. Lava Bhargava , who have provided numerous opinions

during my thesis proposal. I thank them for sparing time in providing me with

valuable comments to give the required direction to my work.

I would also thank Dr. Mauro Conti from University of Padua, Italy, who

provided me technical and non-technical support for the thesis.

My special thanks to my wonderful friends and fellow researchers, Smita, Chhagan

Lal, Rimpy, Manoj Bohra, Gaurav, Sonal, Ashish for revitalizing each day. I

cherish the prayers and support extended by them during low phases.

I will be forever indebted to my wife, my family who have been pillars of support.

For any glitches or inadequacies that may remain in this work, the responsibility

is entirely my own.

v

Contents

Abstract ii

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Contributions of Thesis 5

1.4 Thesis Organization 6

2 Browser Attacks and Countermeasures: An Overview 7

2.1 The Browser Ecosystem 7

2.2 Browser-based Attacks 9

2.3 Taxonomy of Browser-based Attacks 11

2.4 Extending Browser Functionality 13

2.4.1 Privilege Escalation Attacks through Extensions 16

2.4.2 Firefox Extension System 16

2.4.3 Security Risks with XPCOM Interfaces 18

2.5 Extension-based Attacks in Browser 20

2.6 Incorporating Security in Browser Design 22

2.7 Security against Browser Extensions 24

2.8 Hardening Browser Clicks against Clickjacking Attacks 28

2.9 Summary . 30

3 Malicious Flows in Browser Extensions 31

3.1 Problem . 32

vi

Contents vii

3.2 Threat Model . 33

3.2.1 Attack Scope and Target 33

3.3 Proposed Approach: BEAM 35

3.3.1 Transforming JSE Code 37

3.3.2 Tracking Information Flow 41

3.3.3 An Example 45

3.4 Implementation and Evaluation 46

3.4.1 Evaluation Methodology 47

3.4.2 Limitations 50

3.5 Summary . 51

4 Colluding Browser Extensions 52

4.1 Problem . 53

4.1.1 Colluding extensions in browser 55

4.2 Threat Model . 57

4.2.1 Covert Channel Collusion 58

4.2.2 Overt Channel Collusion 61

4.3 Instantiation of Colluding Attacks 63

4.3.1 Attack Technique: Intercepting Observer No-

tifications . 63

4.3.2 Attack Technique: Source to Sink Notifications 64

4.3.3 Altering Preferences 67

4.3.4 Observing Preferences 68

4.4 Results and Analysis 69

4.4.1 Evaluation of Collusion Techniques 70

4.4.2 Ramifications of Colluding Attacks 71

4.4.3 Mitigation Techniques 74

4.5 Summary . 76

5 sandFOX: Sandbox for Firefox Browser 78

5.1 Problem . 79

5.2 sandFOX: Proposed Sandbox 80

5.2.1 Threat Model 81

5.2.2 SELINUX Overview 83

5.2.3 SandFOX Architecture 84

5.2.4 Tuning OS . 88

Contents viii

5.2.5 Using SELinux Sandbox 89

5.3 Evaluation . 91

5.3.1 Security Analysis 91

5.3.2 Benchmarking of sandFOX 94

5.4 Summary . 96

6 Detection of Click-Hijacking in Browser 97

6.1 Problem . 98

6.2 Clickjacking Attacks 100

6.2.1 Existing Clickjacking Attacks 100

6.2.2 New SVG-based Clickjacking Attacks 102

6.3 Proposed Clickjacking Detection 109

6.3.1 Extracting Relevant Clickjacking Features . . 111

6.4 Behavior Model and Testing 116

6.4.1 Web Pages Behavior Model 116

6.4.2 Request Heuristics 119

6.4.3 Response Heuristics 121

6.5 Implementation and Evaluation 122

6.5.1 Experimental Setup 125

6.5.2 Evaluation of clickjacking features 126

6.5.3 Evaluation of advanced clickjacking features . 127

6.5.4 Evaluation of clickjacking attack using proposed
features . 128

6.5.5 Clickjacking impact on web ecosystem 130

6.6 Summary . 133

7 Conclusions and Future work 134

7.1 Browser Extensions 134

7.2 Click-Hijacking in Browser 136

7.3 Future Work . 136

Bibliography 138

List of Figures

1.1 Overview of the research work. 3

2.1 Major components of a web browser. 8

2.2 A Taxonomy of attacks in web browsers. 12

2.3 Browser Security Model. 12

2.4 XPCOM Architecture View in Firefox extension system. 18

3.1 Overview of the our proposed approach. 35

3.2 pre-Processing of Script Block . 38

3.3 Execution profiling of our proposed method 39

3.4 Mapping of Integrated Script Block to Sequence Flow Graph 46

3.5 Information Flow % in Legitimate and Malicious JSEs 48

4.1 Illustration of inter-extension communication in Firefox browser. 56

4.2 Interception on user-defined notification. 60

4.3 Source to sink interaction between two extensions. 60

4.4 Illustration of how preferences can be observed and altered by other ex-
tension. 61

4.5 Attack scenario intercepting observer notifications. 64

4.6 Scenario-1 showing how credentials can be stolen. 65

4.7 Scenario-2 showing how a new field can be added and sent to attacker
domain. 66

4.8 Scenario-3 showing how transactions can be modified on the fly. 67

4.9 Changing privacy settings of web browser. 68

4.10 Changing preference of NoScript extension. 69

5.1 The execution environment of a sandbox browser. 85

6.1 Illustration of clickjacking attack using frame overlays. 101

6.2 Attack Scenario for SVG based clickjacking Attacks. 103

6.3 Workflow for our advanced transparency attack using SVG filters. 105

6.4 SVG filter effects modifies web User Interface. 107

6.5 Illustration of the fill and stroke property applied on SVG based “submit”
button. 108

6.6 Proposed Approach. 110

6.7 State diagram representing behaviors of clickjacking and legitimate websites.117

6.8 True positive and false positive metrics. 130

6.9 Breakdown of the warning and attack alerts. 131

ix

List of Tables

2.1 Privileges associated with browser extensions. 16

2.2 Attack Vectors for Extension-based Attacks. 19

2.3 Comparison with other extension vulnerability and malicious mitigation
approaches. 27

3.1 Activities that introduce extension-based attacks in browser 34

3.2 Partial list of Sensitive Sinks . 38

3.3 Partial list of sensitive sources . 40

3.4 Sensitive information flows found in evaluated JSEs 48

3.5 Critical flows in some popular JSEs . 49

3.6 Suspicious flow in benign JSEs . 50

4.1 Actions Performed and Parameters taken in the Experiments. 69

4.2 Results for attack scenarios executed on web domains. 70

4.3 Results showing browser security leaks using preferences. 72

5.1 Extensions used in evaluating effectiveness of sandFOX. 92

5.2 Illustration of the browser load with and without sandFOX environment. 94

5.3 Memory Footprint of Firefox browser with and without sandFOX. 95

6.1 Illustration of existing and newly identified clickjacking attacks. 100

6.2 Transparency alternatives using SVG filters. 104

6.3 List of behavior expressed from extracted relevant features. 115

6.4 Relevant requests applied on the websites. 117

6.5 Relevant responses gathered from the dataset websites. 119

6.6 Clickjacking attack type and corresponding heuristics applied to detect
an attack. 121

6.7 Comparison of clickjacking attacks and prevention techniques. 123

6.8 Relavant features in visited web pages. 127

6.9 Newly identified advance (SVG-based) relevant features in visited web
pages. 128

6.10 Impact of clickjacking attack for each dataset. 130

6.11 Illustration of False Positives (FP). 132

x

Chapter 1

Introduction

A Web browser is an important component of every computer system as it provides

the interface to the Internet world. The browser allows user to view and interact with

content on the web pages. It provides user the interface to perform the wide range of

activities, such as personal financial management, online shopping, social networking and

professional business. Hence, the web browsers are becoming an increasingly adequate

and important platform for millions of Internet users. With the rapid increase in the

number of users, browsers are becoming the potential source of attacks.

Browser attacks over the years have stormed the Internet world with so many malicious

activities. It provides an unauthorized access, damage or disruption of the user informa-

tion within or outside the browser. The appearance of various browser attacks executed

on web browser causes real challenges to Internet user in protecting their information

from an attacker. For example, suppose an attacker can inject malicious scripts that

do not change the website’s appearance, but silently redirect you to another website

controlled by an attacker without your notice. This redirected malicious website might

execute some malicious program to download a malicious file on your machine [1, 2].

The major goal of such attacks is to allow remote access to your machine to the attackers

and to capture personal information, often related to obtaining a credit card, banking

information and data used for identifying theft.

Like other software, web browsers are vulnerable to attack and exploit if appropriate

updates and security patches are not applied. Moreover, a fully patched web browser can

1

Chapter 1. Introduction 2

still be vulnerable to attack if the browser plug-ins and add-ons are not fully patched.

The plug-ins and add-ons are third party software used to enhance browser functionality,

but at the same time they can be malicious and vulnerable. The vulnerabilities and dan-

gerous nature of browser extensions have been mentioned in the literature [3, 4], where

the risks associated with the Firefox extension have been explained. The plug-in and

add-on software are not automatically patched with the browser updates. Instead, they

require some extra support from third party for updating their versions and patching

vulnerabilities

Early versions of the browser are implemented with monolithic architecture [5] that

combines the browser components into single memory and process space. For Example,

a browser kernel and rendering engine run into a single process space. If an attacker

can exploit one of a browser component, it can easily compromise the other browser

components because all components run in the single process space. The vulnerabilities

in this design cause an attacker to execute malicious code with full browser privileges.

Older versions of popular browsers, such as Internet Explorer 7, Firefox 3, and Safari

3.1 were executed in a single operating system protection domain. Since the inception

of vulnerabilities [6] in web browsers design, the browser research communities and

developers have modified and extended the browser architecture to minimize the browser

attacks.

The Chromium browser allocates the rendering engine into sandbox environment to pro-

vide isolation from browser kernel [7]. The architecture allocates high-risk components,

such as the HTML parser, the JavaScript virtual machine, and the Document Object

Model (DOM), to its sandboxed rendering engine. This feature helps to reduce the crit-

ical attacks on the Web browser. Internet Explorer 8 browser allocates separate process

for tabs, each of which runs in protected mode. This architecture is designed to improve

reliability, performance, and scalability [8].

This research mainly examines the browser attacks occurring due to (a) Firefox browser

extensions and (b) User clicks. In former, we observed that high privileges in browser

extensions and information flow among the critical browser and operating resources are

the major cause of attacks. To understand the attacks caused by user clicks, we study

new classes of clickjacking attacks in the web browser. Figure 1.1 illustrates the work

flow of our research.

Chapter 1. Introduction 3

Figure 1.1: Overview of the research work.

1.1 Motivation

Over the last three decades, the web has rapidly transitioned from a set of interconnected

static documents into a platform for the feature-rich dynamic and interactive web appli-

cations. Consequently, the web browsers have also evolved from mere user interfaces for

remote documents into systems for running complex web applications. In other words,

web browsers have become full-fledged operating systems for web-based programs. But

the advancement in the technology leads to various complicated and more sophisticated

attacks on Web browsers.

The browser-based attacks are initiated different attack vectors apart from malicious

websites. The attacks may arise from trusted and legitimate web applications. Since all

web applications, developers are not security experts and due to poor security coding the

vulnerabilities occurs in these web applications. The attacker can exploit vulnerabilities

present in trusted or legitimate websites to deploy attacks. For instance, an attacker

can take advantage of vulnerabilities within the browser to run arbitrary code, which

can steal user’s sensitive information or install malware.

Traditionally, browser-based attacks are commonly originated only from malicious web

sites [9]. However, the attackers have been introduced attacks that are beyond the

malicious websites [10, 11]. These attacks not only exploits browser resources but also

operating system resources. In particular, the third-party softwares such as Plug-ins and

extensions can also be exploited by an attacker to initiate browser-based attacks.There

Chapter 1. Introduction 4

are several questions, which could help to characterize an attacker: Who is the attacker?

What source an did attacker use to enter into the system? What Vulnerabilities did he

exploit? By answering these questions, we can get the clear picture of an attacker and

what should be done next to protect the information.

1.2 Objectives

Browser attacks provide an unauthorized access, damage or disruption of the user infor-

mation within or outside the browser. The browser add-ons (or extensions) runs with

full browser privileges, which can be the major source of browser attacks. We explore

new attacks caused with such high privileges in the web browser and devise new meth-

ods for detection of newly identified attacks. The objectives of the thesis are as stated

below:

1. To identify new browser attacks arise from highly privileged browser extensions,

which impacts privacy leakage in the browser by exploiting operating system re-

sources.

2. To explore the vulnerable areas in web browsers that allow an attacker to execute

privacy leakage and privilege escalation attacks.

3. To devise a method for detecting suspicious flow in high privileged browser exten-

sions that can effectively identify the malicious behavior of browser extensions.

4. To identify colluding extensions attack in web browsers that results in privacy

leakage attack in the browser.

5. To devise a method for advanced clickjacking attacks using finite state machines

build from request and response characteristics yield from user click.

6. To built an isolated and sandbox environment for web browsers that protects

operating system resources from being exploited by browser attacks.

Chapter 1. Introduction 5

1.3 Contributions of Thesis

In this thesis, we have identified new browser attacks occurring due to (a) Firefox browser

extensions and (b) Misjudge User clicks.

1. We observed that high privileges in browser extension and information flow among

critical operating resources is a major cause of attacks. This model analyzes

information propagation among browser’s resources (browser, web page, and host-

OS components accessed through JSE). Using the results of our analysis, we can

identify maliciousness in JSEs and provide comprehensive severity reports on their

behavior.

2. We found that detecting a malicious flow in the extension is the partial protection

against extension-based attacks. Therefore, we propose a sandbox and isolated

environment to protect operating system resources from such attacks. Our sand-

boxed policies enforce on the web browser extension that restricts and limits their

access to operating system resources.

3. We identified new browser attacks originate from collusion of two or more browser

extensions. We demonstrate new attacks leverage this concept and causing privacy

leakage in the web browser. In particular, we illustrate an important weakness

in Firefox browser architecture and its XPCOM interfaces [12]. This weakness

permits two extensions to collude with each other and share objects that are

allocated in a same address space.

4. To understand the attacks caused by misjudged user clicks, we study new classes

of clickjacking attacks in the web browser. In our analysis, we find that most

of the attacks against users of the web application are caused by misjudged hu-

man perception on web pages. We demonstrate that current defense techniques

are ineffective to deal with these sophisticated clickjacking attacks. Furthermore,

these attacks are browser agnostics. Subsequently, we develop a novel detection

method for such attacks based on the behavior (response) of a website active

content against the user clicks (request). In our experiments, we found that our

method can detect advanced Scalable Vector Graphics (SVG)-based attacks where

most of the contemporary tools fail. We explore and utilize various common and

Chapter 1. Introduction 6

distinguishing characteristics of malicious and legitimate web pages to build a be-

havioral model based on Finite State Automaton (FSA). Our results demonstrate

that proposed solution enjoys the good accuracy and a negligible percentage of

false positives of 0.28% and zero false negatives in distinguishing clickjacking and

legitimate websites. We also present an extensive comparison of our approaches

with the related work in the area.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides the relevant

background knowledge. We describe the background of browser ecosystem and various

classes of attacks in the web browser. We also describe how extensions can execute

attacks on the browser and operating system. The chapter also surveys the related work

of extension-based browser attacks, secure browser design, securing browser extensions

and securing misjudged user clicks. Chapter 3 presents our proposed approach based

on the semantic analysis of browser extensions. In particular, we describe how a suspi-

cious information flow among critical operating resources causing browser attacks can

be detected. Chapter 4 describes our newly identified browser attacks using collusion

of two or more browser extensions. We demonstrate new attacks leverage this concept

and causing privacy leakage in the web browser. In Chapter 5, we proposed a security

model for Firefox browser using isolated and sandbox environment. In Chapter 6, we

build a FSA model to detect hijacked user clicks in the web browser. We present a novel

detection method for such attacks based on the behavior (response) of a website active

content against the user clicks (request). Finally, thesis conclusion and scope of future

work is covered in Chapter 7.

Chapter 2

Browser Attacks and

Countermeasures: An Overview

This chapter provides an overview of background information and the work related to

the thesis. We first briefly discuss the browser components and how these components

work together to provide the standard web browsing features (Section 2.1). Section

2.2 discusses various class of browser attacks. In Section 2.3, we discuss the taxonomy

of browser-based attacks along with the working principles of current browser security

model. In Section 2.4, we discuss the extensibility feature of web browsers and how

they are susceptible to browser-based attacks. We then show how a combination of

widespread availability, usage of standard web technologies, and powerful privileges can

pose browser extensions as significant security threats to web browsers.

2.1 The Browser Ecosystem

The Web browser has become the dominant interface to a broad range of applications,

including online banking, Web-based email, digital media delivery, social networking,

and commerce services. Early Web browsers provided simple access to static hypertext

documents. In contrast, modern browsers serve as de facto operating systems that must

manage dynamic and potentially malicious applications. In particular, web browsers

7

Chapter 2. Browser Attacks and Countermeasures: An Overview 8

have also evolved from mere user interfaces for remote documents into systems for run-

ning complex web applications. Modern web browsers are complex multi-component

systems providing many features analogous to operating systems. For example, web

browsers extend its features using extensions (third-party software), which provide ac-

cess to system level resources (e.g., files, network etc.).

Figure 2.1: Major components of a web browser.

All major web browsers consists of various core components that interact in intricate

ways to provide the web browsing experience. Figure 2.1 illustrated a simplified view

of the major browser components. The Networking component handles fetching HTML

documents over various network protocols. An HTML document is parsed using the

HTML Parser and XML Parser, which produces a Document Object Model (DOM) [13]

tree. The Rendering Engine uses this DOM tree to calculate the document layout

for presenting on the screen. The Browser Engine controls the events performed by

the web browser. The Rendering Engine is the “backend” of the Browser Engine. It

loads the given URI and manages the session. The JavaScript Engine is a standalone

component that is used by browsers to execute JavaScript code present on web pages.

For this purpose, web browsers make a copy of the DOM tree available to the JavaScript

Engine. The User Interface (UI) is the “frontend” of the Browser Engine. It displays

Chapter 2. Browser Attacks and Countermeasures: An Overview 9

HTML documents based on the layout information received from the Rendering Engine.

Additionally, the User Interface contains UI Widgets such as navigation buttons, menus,

and the address bar.

Over the years, the browser research communities and developers have modified and

extended the browser architecture to minimize the browser attacks. The OP web

browser [14] runs multiple instances of a rendering engine, each in a separate protection

domain isolated using different trust labels. The isolation namespace implemented in

OP browser provides a protection domain to each web page. The Chromium browser al-

locates the rendering engine into sandbox environment to provide isolation from browser

kernel [7]. The architecture allocates high-risk components, such as the HTML parser,

the JavaScript virtual machine, and the DOM, to its sandboxed rendering engine. This

feature helps to reduce the critical attacks on the web browser. Internet Explorer 8 allo-

cates separate process for tabs, each of which runs in protected mode. This architecture

is designed to improve reliability, performance, and scalability [8].

2.2 Browser-based Attacks

To better understand the security issues and challenges faced by the Internet community

while using the web browser, we first need to understand the browser-based attacks on

browser ecosystem. An attacker can execute various attacks on the web browser to

target user information and system resources. The major goal of an attacker is to find

the vulnerable targets in a browser itself, web programs or the user itself (e.g., Social

Engineering Attack). We briefly discuss browser-based attacks as follows.

1. Attacks through Web Applications. Web applications are the most common way

to provide services, data and rich features to the Internet users. Unfortunately,

with the increase in the number and complexity of these applications, there has

also been an increase in the number and complexity of vulnerabilities. Web ap-

plications run in the browser, any security loop hole in the browser will lead to

exploiting the vulnerability in the web application. For example, an attacker who

knows an unpatched security vulnerability in the victim browser, and somehow

can convince the victim browser to render malicious web content. This activity

Chapter 2. Browser Attacks and Countermeasures: An Overview 10

will allow an attacker to inject malicious script into the browser page, this attack

is known as Cross-site scripting attack [15].

The common web application attack is code injection attack, such as HTML in-

jection, Cross Site Scripting, and SQL Injection [16] allows an arbitrary script to

execute in a browser. Other attacks originated from web applications are Cross-

site request forgery (CSFR) vulnerability

2. Attacks through Browser Extensions. The extension-based browser attacks are the

serious concern to user information, browser, and system. In browser, the exten-

sion scripts receive greater privileges than web application scripts. As browser

extension code runs with much higher privileges, the malicious effects can be dev-

astating. The extensions in the browser are allowed to read cookies, get access to

browser APIs, open a network connection to gain access to the victim machine,

and spawn OS process. For example, an attacker can execute privilege escalation

attacks [17] on the victim using code injection attack. It then can access cross-

domain network information, sensitive browser APIs and user’s file system [10, 11].

3. Attacks through Plug-ins. The plug-in based attacks arise from the vulnerable

plug-in installed in a browser. The plug-in are installed as third party software to

support the additional feature in the browser. A user can install Plug-in whether

for document reading, interactive content, Java run-time environment or ActiveX

controls can be subjected to attack. The attackers look for vulnerabilities in

plug-ins to carry out attacks like drive-by-download and Clickjacking attack. The

attacker exploits vulnerabilities in JavaScript code running under Java run-time

environment, one of the most susceptible languages to attack. For example, many

attacks do spawn a pop-up message from Java asking for permission to execute a

malicious Java file, but it’s often too hard for users to tell which browser window

created the pop-up. One accidental allow click is all it takes to start an attacker

to control victim browser. Once the malicious Java applet is running, it takes only

seconds for the malware payload to execute an attack.

4. Attacks through Architectural Vulnerabilities. The browser architecture consists

of several sub-systems, such as user interface, browser engine, rendering engine,

networking, JavaScript interpreter, XML parser, display backend and data per-

sistence subsystem [5]. At runtime, all components are instantiated and executed

Chapter 2. Browser Attacks and Countermeasures: An Overview 11

in the same protection domain. Consequently, a fault in any of them can com-

promise all the others. For example, if an attacker can craft a successful attack

on the JavaScript interpreter, it can take advantage of the data persistence sub-

system and access available information. The attacker might also exploit the core

component vulnerabilities of web browser. The authors have reported various

architecture vulnerabilities in the web browser, which are patched by browsers.

However, attackers have adopted different new ways to exploit the web browser.

For instance, the vulnerability in rendering engine can be exploited, which al-

lows an attacker to render a malicious page inside web browser through which an

attacker can execute arbitrary malicious code with high privileges.

2.3 Taxonomy of Browser-based Attacks

This section discusses the taxonomy of browser-based attack that characterizes the flow

of an attack in the browser. The taxonomy describes the complete attack action steps

that an attacker carries out to execute an attack in the browser. The classification is

based on the attacker and browser side sequence of actions. The attack starts with an

attack vector, vulnerability exploitation and finally reach a target. The browser security

model acts as a barrier to stop an attacker in successfully executing an attack. In

particular, these classifications represent the attack actions performed by an attacker to

produce a browser-based attack and browser actions to stop an attacker. The taxonomy

in Figure 2.2 shows the classification chart. The taxonomy describes how an attacker

enters into the browser by adopting attack vectors, how it propagates by exploiting

vulnerabilities at different levels of browser, what area it targets. The security model

plays its act if an attack is within its scope. Otherwise, the attacker successfully targets

the victim user.

1. Attack Vector. An attack process starts with an attack vector that an attacker

uses as an entry point to the victim browser and reaches its target. An attack

vector is defined as a path by which an attacker can gain access to a victim host.

Attack vector classifies various entry points for the attackers. The most common

trick adopted by an attacker is social engineering tricks in which an attacker lure

a victim user to perform some task and gets infected. Our understanding of the

Chapter 2. Browser Attacks and Countermeasures: An Overview 12

Figure 2.2: A Taxonomy of attacks in web browsers.

attack vector motivates us to analyze weak points in the system which can be used

by an attacker to route into the system.

2. Browser Security Model. The web browser enforces various security control tech-

niques to encounter attacks in the browser. The key to attack web browser and

applications is to find the vulnerabilities in the browser security model or circum-

vent one of the policies. Each security control attempts to be independent of the

others, but if an attacker can inject a little JavaScript in the wrong place, all the

security controls break down. Figure 2.3 illustrates the classification of various

security policies and mechanisms that are enforced on the web browser.

Figure 2.3: Browser Security Model.

3. Exploiting Browser Vulnerabilities. The taxonomy describes various vulnerable

points in the web browser that an attacker can exploit. The vulnerabilities

can originate from browser architecture, browser components, plug-ins/extensions

and web applications. For instance, an attacker can gain system-level privileges

Chapter 2. Browser Attacks and Countermeasures: An Overview 13

through the browser extensions to modify the browser configuration to taint the

normal functioning of running the browser.

4. Attacker Target. The attacker target(s) are the logical entities of the browser,

such as user credentials, web page information, file system and running the pro-

cess. Furthermore, an attacker can also target physical entity, such as, network

protocols. For instance, an attacker can steal cookies to execute Session Hijacking

attack. A malicious extension can access to network APIs to transfer user data

via networks. For example, extension based malicious scripts can send network

requests to arbitrary web servers using XMLHttpRequest API.

2.4 Extending Browser Functionality

Browser functionalities can be widely extended by browser extensions. Nowadays, mod-

ern web browsers support a modular architecture that allows third-party extensions

to enhance the core functionality of the browser [18]. Browser extensions enjoy high

privileges, sometimes as high as those of the browser itself. Extensions have access to

browser resources not usually available to scripts running on web pages. High privileges

allow extensions to read and modify arbitrary web pages, accesses browser components,

and even customize browser interfaces. Furthermore, extensions are also not subject

to the same origin policy [19] that applies to scripts on the web applications. With

access to these and other capabilities, malicious extensions might put browser at risk of

information breach and privilege escalation attacks. In particular, malicious extensions

can misuse these privileges to compromise confidentiality and integrity, e.g., by steal-

ing sensitive information from web pages, such as cookies and passwords, or executing

malicious code on the host.

Each major browser has its unique extension system. For example, Mozilla Firefox

and Internet Explorer use the Component Object Model (COM) approach. The com-

based architecture facilitates separation between the design and the implementation of

components. In this section, we briefly discuss the extension systems of the three most

popular web browsers: Internet Explorer, Mozilla Firefox, and Google Chrome.

Chapter 2. Browser Attacks and Countermeasures: An Overview 14

1. Chrome extension model. Google Chrome extensions are written using tech-

nologies like HTML, JavaScript, and CSS. Google Chrome extensions can use all

the APIs that are restricted to web pages, for example, XMLHttpRequest, JSON

and HTML5 local storage. Extensions with high privileges are allowed to modify

the user interface of Google Chrome browser. The security architecture of Google

Chrome gives minimal required privileges and restricts access to the file system

and other resources to the extensions. Furthermore, in Google Chrome, extensions

run in the separate process. The extension process is isolated from the browser

process and other operating system processes. Such an isolation restricts Google

Chrome extensions in accessing core components of browser, such as kernel, ren-

dering engine, and thus an extension cannot compromise core components of the

browser.

Google Chrome uses extension manifest file that describes the extension’s priv-

ileges. Extensions specify their resources and the capabilities they require in an

extension manifest file. When a user tries to install an extension, Google Chrome

reads the extension manifest and asks for user permission to allow or deny exten-

sion privileges. Furthermore, Google Chrome isolates memory of browser kernel,

web pages, extensions, and plug-ins. The isolation is achieved by using a separate

process for every extension.

2. Internet Explorer (IE) extension model. Internet Explorer (IE) supports

several mechanisms for browser extensibility. The most commonly used tool is

Browser Helper Objects (BHOs). BHOs (usually native binaries) can be used to

add additional functionalities to the browser such as modifying the user interface,

adding toolbars, explorer bars, and shortcut menus.

The security architecture of IE is based on privilege separation and the ability to

create processes with lower privileges. In particular, it allows to run the browser

with limited rights, which protects the operating system in case the browser gets

compromised. This isolation is necessary, as the extensions run with the same

privileges as the browser. The new versions of IE (after IE7) run in protected

mode, which helps protect users from attack by running the IR process with

greatly restricted privileges. Protected mode significantly reduces the ability of

an attacker to write, alter or destroy data on the users machine or to install

malicious code.

Chapter 2. Browser Attacks and Countermeasures: An Overview 15

Unlike Google Chrome, which uses entirely isolated process, IE run extensions

(BHOs) in the process where they are called. The isolation depends on the number

of created tabs. As the number of tabs grows, new web pages are forced to share

the process with other web pages. Thus, the extension called from shared memory

space have direct access to the other websites and extension in that process.

3. Firefox extension model. Firefox extensions are developed using widely used

web technologies such as JavaScript, CSS, XUL Overlays, RDF, and XUL tem-

plates [20]. This extension system was originally intended for expert browser

developers, but its use has expanded widely. The developers familiar with basic

web technology can quickly develop Firefox extensions. The extensions in Firefox

browser interact with browser components through XPCOM framework [12], the

Cross Platform Component Object Model, which provides a variety of services

within and across the browser.

Due to unrestricted access, powerful privileges, and ease in development, the

XPCOM interfaces are very popular among extension developers. As these devel-

opers are often not security experts, there is a high chance of bugged/vulnerable

or malicious code that is liable to exploitation by an attacker. The Firefox JSEs

have critical functionalities provided by XPCOM interface and APIs that may

pose security risks in browsers. For example, a password stealing from web page’s

password input field by accessing browser DOM [13], accessing cookies to steal

session, is a critical security threat. JSEs exploit this threat to leak privacy. Also,

the interfaces also allow JSE to access arbitrary files from a file system and invoke

new process on the host system.

When comparing with Google Chrome and IE, Firefox uses single process mem-

ory model. All the windows, tabs, plug-ins and extensions run inside the same

process. Threads that run inside the browser process share the address space with

extensions, plug-in, tabs and thus there are no borders between threads. With

a single process model, Firefox extensions can access and modify the stack of a

random thread inside the process. Furthermore, Firefox does not provide any iso-

lation between extensions. As a result, an extension can change the functionality

of other extensions.

Chapter 2. Browser Attacks and Countermeasures: An Overview 16

2.4.1 Privilege Escalation Attacks through Extensions

To enhance the browser functionalities and get customizable features, the extensions are

required to execute with the full chrome privileges. The COM [21] interface include ser-

vices such as file system access, process launching, network access, browser components

and APIs access. These interfaces allow browser extension to have full access to all the

resources browser can access. For instance, Firefox supports the XPCOM APIs that are

implemented in C++ or JavaScript. In Firefox, JavaScript code of extensions receives

higher privileges [22] than JavaScript code of web applications.

The JavaScript code of JSEs and chrome can access any browser and system resources

through XPCOM interface. These high privileges in browser may result in privilege

escalation attacks, which allows an attacker to execute malicious scripts with extra

privileges space. The authors have shown that malicious extension could spy on users

and install malware [23] [24]. Furthermore, these elevated privileges are not bounded

with any browser policy such as same-origin policy (SOP) [19]. In particular, the web

applications are bound with SOP while extensions can override the SOP and access cross-

domain components as well. Table 2.1 summarizes the privileges of browser extension.

Table 2.1: Privileges associated with browser extensions.

Privileges Description
Modifying DOM modify Page contents, add new contents
Accessing browser

components
browser password manager, cookies, bookmarks,

history, preferences, etc.
Accessing OS processes, files system, network

Modifying browser user interface, chrome
Accessing network sending same and cross-domain XMLHttpRequest

2.4.2 Firefox Extension System

In this thesis, we focus on JavaScript-based extensions of the Mozilla Firefox browser.

We opt Mozilla Firefox for some reasons.

Chapter 2. Browser Attacks and Countermeasures: An Overview 17

1. First, Mozilla Firefox is one of the earliest browsers to support JavaScript-based

extensions. As a consequence, Mozilla Firefox now supports a very robust and

mature JavaScript-based extension system.

2. Second, as of this writing, the Mozilla Firefox browser is the popular browser and

its extensions are used by millions of users1. The Mozilla add-on repository hosts

over thousands of extensions, providing us plenty of opportunities for experimen-

tation.

3. Some public disclosures about Mozilla Firefox extension vulnerabilities are also

available, providing us the opportunity to investigate and analyze the common

patterns in those vulnerabilities. Finally, Mozilla makes the source of the Firefox

browser publicly available, which allows us to experiment, implement, and evaluate

our solution in a real browser.

In the rest of the thesis, “extensions” and “JavaScript-based extensions of Mozilla Fire-

fox” are used synonymously unless stated otherwise.

XPCOM platform is similar to Microsoft COM [21], which provides a set of core compo-

nents, classes related to file and memory management. This platform also provides core

elements of threads, basic data structures (strings, arrays, variants). Figure 2.4 illus-

trates the interaction of various Firefox components and the extension. The extensions

in Firefox browser interact with browser components through XPCOM framework. This

interaction provides a variety of services within the browser, such as file system access,

process launching, network access, browser components and APIs access.

The JavaScript in extensions uses XPconnect [25] to invoke XPCOM components. XP-

Connect acts as a bridge between JavaScript and XPCOM. The user interface of Firefox

extension is programmed using XUL (XML User Interface Language). Firefox exten-

sions can randomly change the user interface of the browser via a technique known as

overlays [26] written in XUL. CSS are used to add the presentation and visual styles of

the Firefox extension.

The main weakness in Firefox extension system is the unrestricted privileges it assigns to

the extensions. Moreover, the system has not implemented any security policy to restrict

1http://www.w3schools.com/browsers/browsersstats.asp

Chapter 2. Browser Attacks and Countermeasures: An Overview 18

Figure 2.4: XPCOM Architecture View in Firefox extension system.

the rights of extensions. In [27], we have discussed various attack vectors showing how

an inexperienced user might install a malicious browser extension without suspecting

it is malicious. We also discussed various weaknesses in Firefox extensions arise due to

unrestricted privileges that can be used for malicious purposes.

2.4.3 Security Risks with XPCOM Interfaces

Table 2.2 illustrates various attack vectors used by an attacker. We have illustrated

the resources that are exploited along with the interfaces used to invoke these resources.

Also, Table 2.2 defines the severity of an attack action in terms of critical, high, moderate

and low ratings. For example, the information accessed from a web page password field,

steal cookies to hijack session is always essential to the user, and hence we have rated it

critical. Interfaces that allow to access arbitrary files and processes on the host system

are also very critical because using them an attacker can initiate a malware injection

to alter user les. Firefox and Chromium define the security severity ratings [28], [29]

Chapter 2. Browser Attacks and Countermeasures: An Overview 19

based on the information flows from various resources. We have adopted their rules to

define severity rating for different information flows in the browser.

Table 2.2: Attack Vectors for Extension-based Attacks.

Attack Class Resources Interface Used Rating
Exploited

Accessing password DOM nsIDOMNode, Critical
from web page nsIDOMElement

Launching arbitrary Invoke process nsIProcess Critical
local application

Cross-domain access Network channel nsIXMLHttpRequest, High
and violation nsIHttpChannel,

nsITransport

Profile attack [27] File system nsIFile, Critical
nsILocaFile,

nsIOutputStream

Accessing confidential DOM nsDOMNode, High
data nsIDOMElement

Stealing local files File system (OS) nsIInputStream, High
nsIFileInputStream,

nsILocalFile,

nsIFile

Accessing browser Browser nsIbrowserHistory, Moderate
history component nsIGlobalHistory

Accessing stored Password manager nsILoginManager, Moderate
passwords nsILoginManagerStorage

Accessing events Keyboard & nsIEventListenerService Moderate
Mouse events

Session stealing Cookie manager nsICookieManager, Critical
nsICookie,

nsICookie2,

nsICookieService

Accessing bookmarks Bookmark service nsINavBookmarksService Low
Setting browser Preference system nsIPrefService, High
preferences nsIPrefBrach

Setting extension Preference system nsIPrefService, High
preferences nsIPrefBrach

Accessing page DOM nsIDOMNode, Low
Information nsIDOMElement

(Images/text)
Turn on/off private Browser nsIPrivateBrowsingService Moderate
browsing mode Component

Access to windows Windows registry nsIWindowsRegKey High
registry system

Chapter 2. Browser Attacks and Countermeasures: An Overview 20

The next few sections discusses a range of work related to our thesis. We begin by

discussing research efforts that propose browser attack models and security risks pose

by the browser attacks (Section 2.5). The researcher had highlighted the alternative

browser designs for addressing the security and reliability problems for web browsers.

In particular, there has been a large body of work that aim to isolate browser compo-

nents and provide a sandbox environment for web applications to execute in the web

browser(Section 2.6). Although some of these work address architectural issues and

plugin-based extensibility, we do not find any approaches among these which directly

address the system-level attacks arises from the malicious flow in JavaScript-based ex-

tensions. Our approach also uses a static taint analysis for analyzing the JavaScript

code of extensions. Therefore, we discuss work that utilize static analysis techniques to

analyze JavaScript programs (Section 2.7).

In recent years, a number of research efforts have been made to secure the browser and

user privacy from extensions-based attacks in the web browser. However, none of work

ever addressed the security risk caused by the collusion of two or more extensions. Apart

from the extension-based attacks in the web browser, we discuss research efforts that

address the click-hijacking problem in web browsers (Section 2.8).

2.5 Extension-based Attacks in Browser

In [10, 30, 31], the authors have taken a practical approach and demonstrate examples

of possible attacks on Firefox extensions. They discussed the possible vulnerability in

reviewed existing Firefox extension, which could be used to exploit extensions and launch

concrete attacks such as remote code execution, password theft, and file system access.

But the author has not mentioned about the attack vector, which an attacker used and

how these malicious extensions spreads. We use attack scenarios inspired from these two

works to create our malicious extensions as proof-of-concept to show vulnerable points

in Firefox extension system and show how extensions install and spread.

The authors have studied the security and privacy in browser extensions for different

Browsers. Martin Jr. et al [32] investigate privacy issues in IE 6 extensions, where they

found some extensions monitoring users’ behaviors or intercepting and disclosing SSL-

protected traffic. Some author had studied the security and privacy issues in Firefox

Chapter 2. Browser Attacks and Countermeasures: An Overview 21

extension, the work by Ter Louw et al. [11] highlights some of the potential security

risks posed by Firefox extensions. In [33], the author investigate privileges in 25 Firefox

extensions that are necessary for extensions’ functionalists, and found that only 3 out of

the 25 extensions would actually require the most powerful capabilities of the privileges

Firefox extensions all have, violating the least privilege principle. Liu et al. [34] assess

the security features of the Google Chrome extension system. They demonstrate that it

is possible to write powerful malicious extensions in spite of the security options provided

by the browser.

In [35], raised serious concerns about the privacy of users. The authors have conducted a

comprehensive empirical study to assess the feasibility and accuracy of inference attacks

that are launched from the extension API of Social Network Systems. Recently in [36],

the authors have presented Hulk, a system to perform dynamic analysis for Google

Chrome extensions. They have demonstrated the effectiveness of HoneyPages and event

handler fuzzing to elicit malicious behavior in browser extensions. To the best of our

knowledge, no other work has considered an attack scenario due to inter-communication

between objects of two extensions. In our work, we have demonstrated the attacks on

user privacy using two colluding extensions in which individual extension is claiming to

be legitimate.

The extensions in the browser are similar to Apps in Android devices. The concept

of inter-component communication is not new in Android devices. The attacks using

inter-application communication system in Android devices deal with standard threats

that apply to all messaging systems. For example, eavesdropping, spoofing, denial of

service, etc. The researchers have discussed various privilege escalation attacks with

colluding application on mobile (Android) domain using inter-application collusion [37–

40]. As we have shown in this paper, the similar threats are also present in browser

extensions. Problems in XPCOM interfaces in sending/receiving notification (collusion)

lead to various privacy leakage attacks.

Researchers have shown how traditional browser security model (Same Origin Policy),

which isolates the content from different origins. However, the implementation of this

principle tends to be error prone due to the complexity of modern browsers [41]. Fur-

thermore, the same-origin policy is too restrictive for use with browser extensions and

plug-ins, which allows an attacker to execute attacks [42–44].

Chapter 2. Browser Attacks and Countermeasures: An Overview 22

2.6 Incorporating Security in Browser Design

Since the inception of vulnerabilities (Silic Delac, 2010) in web browsers design, the

Browser research communities, and developers have modified and extended the Browser

architecture to minimize the Browser attacks. Researchers have proposed a number of

alternative browser designs for improving security and reliability. Most of these work

view a web browser like an operating system and restructure the browser to enforce

protection principles inspired by operating systems.

The most closely related work are the building a secure browser environment was pre-

sented in [45–47]. These researchers are all focus on designing new browser architec-

ture that relies on the underlying OS policies (e.g., file system permissions) to enforce

browser security. Tahoma [46] shares many of the same design principles as discussed

in [45]. Tahoma uses Virtual Machine Monitors (VMMs) to provide isolation for differ-

ent web-based applications, and a manifest to help craft their network policy. In this

architecture, the web applications are treated more like desktop applications. The web

application runs inside a virtual machine is represented by a browser instance. This

architecture isolates web applications from each other; however, it is unclear whether

the browser instances themselves could be extended and how it might affect the security

of the architecture.

The OP [45] use OS-level mechanisms for isolation various browser components from the

Operating System. In particular, each browser components runs in a separate OS process

isolated from each other. The communication between the components is managed by

a lightweight browser kernel. OP tracks interactions of components at a finer level of

granularity. Moreover, OP allows browser-specific security policies to be specified which

prevents the DOM of a web page from being accessed by an untrusted plugin. Although

OP facilitates plugin-based browser extensibility, it does not provide any other extension

features, such as JavaScript-based browser extensions.

In [47], the authors propose a new browser architecture that relies on the underlying OS

policies (e.g., file system permissions) to enforce browser security. They present a secure

browser design that leverages an OS specific sandboxing system. The browser runs on

top of SubOS, an operating system that restricts the privileges of a process based on the

object that process is executing. When the browser tries to execute objects downloaded

Chapter 2. Browser Attacks and Countermeasures: An Overview 23

over the internet, the browser process is sandboxed to restrict the downloaded objects

access to sensitive resources. Although their approach sandboxes helper applications in-

voked by the browser to execute unknown content, plugins or extensions is not addressed

in their work.

MashupOS [48] proposes new abstractions to facilitate improved sharing among multiple

principles hosted in the same web page. In addition, the solutions are implemented to

provide powerful security policies for web Mashup application that communicates with

each other in browser [49], [50]. However, these solutions can be applicable only to web

applications. An obvious drawback of these solutions is that these policies do not apply

to browser extensions or plug-ins.

The idea of sandboxing web browsers has been used in the past. For example, VMware

released a virtual-machine based “Web browser appliance”, containing a check pointed

image of the Firefox browser on Linux [51]. As another example, GreenBorder [52]

augments Windows with an OS level sandbox mechanism similar to BSD jails [53],

in order to contain malicious content arriving through Internet Explorer or Outlook.

Current research efforts to retrofit today’s web browsers help to improve security but

fail to address the fundamental design flaws of current web browsers.

The major theme of these projects is to restructure web browsers to support OS prim-

itives in order to enhance security and reliability. Except OP and Google Chrome,

none of these approaches addresses browser extensibility. Moreover, OP only addresses

plugin-based extensibility problems, not JavaScript-based extensions. In contrast, we

focus on the security issues associated with JavaScript-based browser extensions. Un-

like these approaches, our solution does not require a redesign of the browser, rather

leverages the existing components of the browser.

Moreover, the solutions mentioned above provide sandboxing policies at the web-application

level, which is too coarse-grained. These policies fail to isolate different scripts and ob-

jects within the same web application. Combining current fine-grained isolation tech-

niques with sandboxing systems does not provide a complete solution since it would still

rely heavily on the underlying browser itself. In contrast to these previous work, we

have not modified the browser architecture. Instead, we proposed a sandbox environ-

ment that is not applicable to a web application. Instead, we develop a sandbox policies

Chapter 2. Browser Attacks and Countermeasures: An Overview 24

using open-source SELinux policies, which restricts OS resources from the browser pro-

cess.

2.7 Security against Browser Extensions

Information flow tracking and control has been the basis of many operating systems and

programming language designs over the past several decades. There are few approaches

that uses static analysis of browser extensions differing in precision, runtime, scope

and focus. There are primarily two classes of threat models associated with browser

extensions described in the literature.

The first one is the malicious extension threat model. In this model, the attacks originate

from malicious extensions. The malicious extension authors are attackers themselves,

and try to trick users into installing a fake or altered extension to attack victim user.

The second model is the benign-but-buggy (vulnerable) extension model. These ex-

tensions are well-intentioned but contain exploitable vulnerabilities that let an attacker

execute malicious code with the privileges of the extensions. In particular, this exten-

sion behaves legitimately but contains malicious flow that can be exploited by malicious

web site operators and active network attackers. In this section, we discuss the research

effort addressing both kinds of threats.

Malicious JSEs. Attackers themselves write malicious JSEs, and simply by installing

the JSE a user becomes a victim. Zhuowei et al. [54] proposed a SpyShield, which

dynamically monitors for malicious Browser Helper Objects(BHOs) [55]. SpyShield

enforces access control rules for untrusted BHOs based on the sensitivity level of user’s

information.

Ter Luow et al. [11] were the first to highlight some of the potential security risks posed

by Firefox JSEs. They proposed run-time monitoring of XPCOM calls for detecting

suspicious activities in a manner akin to spyshield [54]. The suspicious access by JSE to

sensitive browser components and resources are monitored and are permitted or denied

based on predefined policies. Our technique is complementary to these techniques since,

we statically analyze the JSE source code before installing on the browser and avoid the

risks caused due to false negatives in the discussed approaches. In addition to that, it

Chapter 2. Browser Attacks and Countermeasures: An Overview 25

is difficult to detect accurately attack flow patterns at run-time because it is difficult to

distinguish the flow caused due to genuine browser activity or malicious JSE.

Benign-but-buggy JSEs. The attacks may also be induced by the vulnerabilities

exposed in benign JSEs. These benign JSEs contain exploitable vulnerabilities that can

allow an attacker to execute malicious code with the privileges of the extensions. How-

ever, the vulnerability can sometimes be introduced by an ill-intentioned JSE developer

so that it can later target the victims Browser. There are several prior work [56–59]

presented for detecting vulnerable and malicious JSEs and web applications through

information flow and taint analysis methods.

VEX uses a static information flow analysis on the JavaScript code of Mozilla JSEs to

identify vulnerable information flow patterns. VEX primarily focuses on vulnerable flow

induced by JavaScript objects. In addition to that it also checks few unsafe programming

practices that could lead to security vulnerabilities. In particular, VEX is a tool for

vetting JSEs to analyze security vulnerabilities in JSEs. But the JSEs can access various

XPCOM interfaces to interact with critical browser and system resources, and hence has

many other flow patterns causing maliciousness. In contrast, our work analyzes various

other flow patterns to detect maliciousness in non-vulnerable extensions. Since, VEX

do not check every flow in their analysis, it may have the possibility of false positives.

On the contrary, our security model covers the larger set of flow patterns that originates

from JavaScript as well as XPCOM APIs.

Researchers have also proposed dynamic analysis techniques to offer runtime protection.

In [58], the author, has proposed a policy enforcer for the Firefox browser that gives

fine-grained control to the user over the actions of existing JavaScript Firefox extensions.

However, their work is limited to only ten legacy JSEs and they define policies based on

only four attacks and hence the approach is not scalable due to limited policies.

Another related runtime approach SABRE [57] tracks the flow of JavaScript objects

from sensitive sources to sensitive sinks inside the Mozilla Firefox browser. SABRE also

includes the flow between browser components by tracking XPCOM objects. SABRE

assigns a label to every JavaScript object, which marks whether the object contains sen-

sitive information. However, it is difficult to detect accurately attack flow patterns since

many legitimate extensions also demonstrate flows similar to attacks. Furthermore, a

major drawback of the dynamic analysis approach is the high-performance overhead due

Chapter 2. Browser Attacks and Countermeasures: An Overview 26

to whole-system tracking of objects. In contrast, in past, the static analysis on JSEs

have only tracked information flows within resources accessed through JavaScript ob-

jects. This analysis is partial if JSE also contains XPCOM objects. The browser provides

access to resources through XPCOM objects, which have not been statically analyzed

in the past. Therefore, we advocate a static analysis based approach, as opposed to

dynamic ones, for its complete code coverage and scalability.

Another approach, which is based on Hidden Markov Model (HMM) is presented in [59].

HMM model uses potentially relevant features for constructing the models followed

by their probability distribution from a given set of extensions. The model consumes

these features to generate HMM models for benign, vulnerable, and malicious extensions

separately. It characterizes the features based on the presence of JavaScript and XPCOM

APIs in benign, vulnerable and malicious extensions. However, differentiating JSEs

with these features may not produce accurate results because it may be possible that a

legitimate JSE may use sensitive API, which is used by malicious and vulnerable JSE.

Also, the dataset that this work have used to extract features is not justified. So we can

not distinguish the JSEs just by looking at the presence of APIs. In contrast, our work

finds the malicious flow in a JSE to distinguish it as a malicious JSE from a legitimate

JSE. Moreover, we also assign the security ratings to each flow that is found in a JSE,

which is helpful in estimating the severity of a JSE.

Djeric et al. [60] also adopted a dynamic taint analysis based approach for vulnerable

browser extensions. In this, the authors have studied the vulnerabilities caused by

JavaScript in extensions and suggested solution against them. Their approach taints all

the data received from untrusted sources and prevents the execution of this unprivileged

data from being compiled into privileged bytecode. A major drawback of the dynamic

analysis approaches is the high-performance overhead due to whole-system tracking of

objects.

IBEX [61] is a general purpose browser extension development system that provides

verifiable security guarantees. IBEX requires the redesign of the extension system.

IBEX provides a new language and policies that let extension use common browser

functionalities. The extension code can then be verified with respect to the policy

using theorem provers. However, to use IBEX, extension developers need to program

the extensions in a verifiable language other than JavaScript. Moreover, each browser

Chapter 2. Browser Attacks and Countermeasures: An Overview 27

provides unique APIs for its extension system that is constantly updated with new

features, making it challenging to develop extensions using a general purpose system

like IBEX.

Table 2.3: Comparison with other extension vulnerability and malicious mit-
igation approaches.

Comparison Parameters

Work Technique
JavaScript

Flows
XPCOM
Flows

Requires
Redesign?

VEX [56]
Static Information Flow
Analysis

Yes Partial Yes

SABRE [57] Dynamic Taint Analysis Yes Yes No

Hossain et al. [59]
Classification based on
Hidden Markov Model

Partial Partial No

SENTINEL [58] Policy Enforcer No No Yes
IBEX [61] Formal Verification Yes No Yes
Djeric [60] Dynamic Taint Analysis Yes Yes Yes

Our Work
Static Information Flow
and Taint Analysis

Yes Yes No

Table 2.3 compares our proposed approach with the previous approaches. In partic-

ular, we note that while some of the approaches require a redesign of the extension

system [61], [60] [58], some of the approaches track limited from arises from XPCOM

object. In contrast, our work neither redesigns the extension system nor does it require

the developers to write an extension in a new language (e.g., IBEX). The dynamic taint

analysis approaches need to modify various browser components (e.g., DOM system,

privileged components) along with the JavaScript engine for tracking flows across dif-

ferent browser components. This instrumentation costs browsing experience in terms of

performance. In contrast to the aforementioned work, our work focuses on the security

issues in Firefox extension system. To understand the capabilities of Firefox extensions,

we have implemented malicious Firefox extensions using legitimate JavaScript methods

and APIs, which has been studied and reported by these authors. Our approach is based

solely on the syntax and semantics of the JavaScript language.

Chapter 2. Browser Attacks and Countermeasures: An Overview 28

2.8 Hardening Browser Clicks against Clickjack-

ing Attacks

Mozilla Firefox browser developers are the first to report the misuse of transparent,

or hidden iframes in their bug report [62]. However the term clickjacking was first

introduced by Hanssen and Grossman in 2008 [63]. The early clickjacking attacks were

completely focused on unsafe iframe based web pages. Hansen has presented several

attack vectors and proof of concepts for clickjacking attack [63].

In [64], Barth et al. has explored the unsafe use of iframes in the web page, analyzed

the frame navigation policies, and advocated a stricter policy to prevent attacks. The

attackers are constantly looking for exceptions and vulnerabilities in the browser. For

instance, the browser bugs had employed the unsafe frame communication to circumvent

the same-origin policy [19] checks with the aim of stealing or modifying sensitive user

information. The major research focus has been done on detection and mitigation of

iframe based clickjacking attacks. The clickjacking attacks are not limited to the use of

invisible iframes, but can be conducted in a variety of different ways. Apart from iframe

based attacks, we have also discovered some new attack classes and implemented attack

signatures from these classes.

There are several proposals for Clickjacking defense and countermeasures. The Browser

offers same-origin policy [19] to tackle cross-domain communication between web pages.

But, it fails to stop any of the clickjacking attacks reported in the literature. As a result,

several anti-clickjacking defenses have been proposed (many of such ideas were suggested

by Zalewski [65]), and some have been deployed by browsers as follows.

1. Web-key Authentication. The web-key authentication scheme proposed in [66]

uses unguessable secrets in URLs instead of cookies for authentication. This ap-

proach can mitigate confused Social Engineering attacks such as clickjacking and

CSRF [67]. Unfortunately, this approach degrades the user experience and the

benefits a web page get from cookies [68]. It also requires the server side modi-

fication to handle the new unguessable secret. In contrast to this, our approach

does not need any server-side modification and it compatible with the current web

pages.

Chapter 2. Browser Attacks and Countermeasures: An Overview 29

2. User Confirmation and UI Randomization. In [69], the author, has pre-

sented a client side defense to prevent clickjacking attack. In this, for every out-

of-context click the system would generate a confirmation dialog for end users.

Facebook currently deploys this approach for the “like” button, asking for con-

firmation whenever request come from blacklisted domains. Unfortunately, this

approach degrades the user experience, especially on single-click buttons. Another

technique is to protect a target element by randomizing the UI (GUI element) lay-

out of a legitimate web page. Thus, an attacker page failed to create an exact

overlap with the legitimate web page.

3. Detecting Frame Overlays. The authors had proposed the client-side solutions

to detect frame overlays. One of the solution in which a module is integrated

in Noscript Firefox extension [70]. The clearClick module aims for clickjack-

ing protection by extending the browser’s functionality to detect malicious clicks.

ClearClick monitors every click on the web page, which occurs during user inter-

action on framed web sites of different origin. Once a user attempts to click a link

on a framed website that appears to be the victim of obfuscation attempts from

its parent and cross-origin document, the interaction will be blocked. However,

the researchers have proposed the methods to circumvent the clearClick protec-

tion [71].

Balduzzi et al. [72] develop the ClickIDS Firefox extension. It compares the bitmap

of the clicked object on a given web page to the bitmap of that object rendered in

isolation (e.g., without transparency inherited from a malicious parent element).

It alerts users when the clicked element overlaps with other clickable elements.

Unfortunately, ClickIDS cannot detect attacks based on partial overlays or crop-

ping. In contrast to these frame overlays solutions, our approach enables a robust

handling because our approach considers the complete or partial overlapping of

every web page element, which is generating a click event.

4. Framebusting. A more effective defense is framebusting or avoids the unautho-

rized frames from being rendered in iframes. This is achieved using a small snippet

of JavaScript code in the target element, which first checks if the page that con-

tains the script is currently framed [73]. Other methods to deploy framebusting

is by using X-Frame-Options [73, 74] and CSP’s frame-ancestors [19]. A funda-

mental limitation of framebusting is its incompatibility with target elements that

Chapter 2. Browser Attacks and Countermeasures: An Overview 30

are intended to be framed by arbitrary third-party sites, such as Facebook “like”

buttons. Also, if JavaScript is blocked by means such as Noscript, XSSfilter [75],

then this framebusting code will not work.

All the defense mechanisms are focused on clickjacking attacks crafted using frame/iframes.

However, an attacker can craft more advanced attacks, such as SVG-based attacks, event

bubbling, (Cascading Style Sheets) CSS-based attacks. In contrast to the approaches

that examine the basic clickjacking attacks in websites, the focus of our work is on the

detection of novel advanced types of clickjacking attacks. To the best of our knowledge,

this is the first work investigating these novel clickjacking attacks. Our study provides

insight into the current prevalence of SVG-based clickjacking attempts on the web pages.

2.9 Summary

In this chapter, we have discussed the background details and a range of work related

to our thesis. We see that researchers have proposed secure browser architectures for

addressing the general security and reliability problems of web browsers, but none of the

work address the risk associated with extension that affects operating system resources.

A number of projects address the malicious extension problem. However, the threat

model does not address malicious behavior incorporated by extensions developed by

well-intentioned developers. We conjecture that, the best way to deal with malicious

behaviour of the legitimate extension is to analyse an extension before installing into

browser. In particular, we propose an static analysis approach solely based on the

semantics of accessing browser and system resources through JavaScript. We present

such an approach in the next chapter.

In particular, the attacks through colluding extension are not addressed by any of previ-

ous work. A number of techniques have been proposed which isolate browser components

from each other. However, these solutions require redesign of web browser architecture

and its components. The number of work has been proposed to detect clickjacking at-

tacks. However, all the defense mechanisms are focused on clickjacking attacks crafted

using frame/iframes. In particular, none of the work addresses the advanced clickjacking

attacks caused due to SVG-based filter and effects.

Chapter 3

Malicious Flows in Browser

Extensions

JavaScript Extensions (JSEs) enjoy high privileges, sometimes as high as those of the

browser itself. However, this may place the browser under risk of information breach,

privilege escalation attacks, etc. In this chapter, we discuss different classes of attacks

caused due to browser extensions and show how browser insecure policies and JSEs can

be abused by an attacker for malicious purposes. Subsequently, we present a semantic

analysis model, BEAM (Browser Extension Analysis Model), to analyse information flow

in JSEs and detect maliciousness in browser extensions.

Our model analyses information propagation among browser’s resources (browser, web

page and host-OS components accessed through JSE). A resource is labeled sensitive

when it accesses critical information (directly or indirectly). BEAM classifies information

as suspicious when a tainted object accesses sensitive information in an unsafe manner

(e.g., if a JSE extracts information from web page, and send it over the network or write

it to a host file). Furthermore, our model assigns a rating to every information flow to

compute risks associated with a JSE under analysis. Using the results of our analysis,

we can identify maliciousness in JSEs and provide comprehensive severity reports on

their behavior. We evaluate our work on a substantial body of benign and malicious

JSEs. The results of our experiments show that it is better to quantify some of the

benign JSEs that are prone to risks due to suspicious information flows.

31

Chapter 3. Malicious Flows in Browser Extensions 32

3.1 Problem

The Firefox JSEs have critical functionalities provided by XPCOM interface that may

pose security risks in Browsers. For example, a password can be stolen from the web

page password input field by accessing browser DOM, or by accessing cookies to steal

session, etc. is a critical security threat exploited by the JSEs to leak privacy [76]. In

addition, the interfaces also allow JSE to access arbitrary files from the file system and

invoke new process on the host system. These threats are also very critical because using

them an attacker can launch a malware process or can alter user files.

Browser renders JSEs to run with full chrome1 privileges, including access to browser

components such as browser DOM (Document Object Model) [13], cookie manager,

password manager and elements or information present in a web page. In addition,

JSEs can access OS resources such as file system, network services, and process system.

For example, a popular banking trojan attack, called Man-in-the-Browser [77], accesses

information from browser DOM to achieve malicious goals such as: stealing user’s login

credentials, modifying current web bank transaction on the fly, and modifying web pages

contents on the fly without the knowledge of the user.

Previously published analysis on Firefox JSEs have proposed static and dynamic tech-

niques for detecting maliciousness and vulnerabilities. VEX [56] analyzes Firefox ex-

tensions for suspicious flows using context sensitive and flow-sensitive static analysis.

However, VEX only checks for three flow patterns that capture flows from injectable

source to executable sinks. SABRE [57] presents a dynamic analysis framework to track

the flow of JavaScript objects from sensitive sources to sensitive sinks inside the Mozilla

Firefox browser. However, it is difficult to detect accurately suspicious flow patterns

at runtime since the browser itself has many pre-installed legitimate extensions, and

it is very difficult to differentiate the flow of pre-installed and malicious JSE. Another

related approach, which is based on Hidden Markov Model (HMM) is presented in [59].

HMM model uses potentially relevant features for constructing the models followed by

their probability distribution from a given set of extensions. It characterizes the features

based on the presence of JavaScript and XPCOM APIs in benign, vulnerable and ma-

licious extensions. The HMM model may not produce accurate results because it may

be possible that a legitimate JSE may use sensitive API. Another dynamic approach

1Chrome is an entity making up the user interface of a specific application or extension.

Chapter 3. Malicious Flows in Browser Extensions 33

for preventing legacy JavaScript-based Firefox extensions from the malicious activity is

presented in [58]. The approach is experimented only on ten Firefox extensions using

the four attack scenarios they proposed in [10].

3.2 Threat Model

In this work, we focus on finding the malicious intent of legitimate browser extensions.

We assume that some developers may have malicious intent while developing an exten-

sion and writing the code that has malicious information flow ignored by the Firefox

review process. In particular, we focus on finding suspicious information flow in the

JSEs, which causes an attack opportunity for an attacker. We do not try to identify

the JavaScript vulnerabilities, bugs in the browser itself, or bugs in other browser ex-

tensibility mechanisms, such as plug-ins. We consider all the JSEs that are free from

such vulnerabilities. We believe that our proposal will help Mozilla JSE reviewers in

finding suspicious information flows in legitimate extensions. Our goal is to automate

this process so that analysis can be done quickly on particular snippets of code that are

likely to contain suspicious flow.

We will use two threat models to illustrate the various aspects of our proposed approach:

(i) First, we consider attacks that originate from malicious extensions and we assume

that the authors of malicious extension try to trick users into installing a fake or al-

tered extension; (ii) In the second threat model, we consider the legitimate extensions

possessing suspicious flow. These extensions are well-intentioned but contain suspicious

flow that can be exploited by malicious web site operators and active network attackers.

3.2.1 Attack Scope and Target

JSE having elevated privileges and vulnerabilities are exposed to a wide variety of

threats. It is, therefore, important to clarify our threat model, specifically on the nature

of protections that we offer and the threats that are outside the scope of this work. We

use the term attack target, or simply target, to represent which resources an adversary

may target to achieve malicious goals. The browser provides built-in classes and APIs

through which an extension can access browser resources and may initiate an attack.

Chapter 3. Malicious Flows in Browser Extensions 34

Table 3.1: Activities that introduce extension-based attacks in browser

Activity ID Activity Target Resource Exploited
A1 Accessing password from web Page DOM
A2 Launching arbitrary local application Invoking OS process
A3 Code injection Browser chrome
A4 Send/Receive on network network channel
A5 Violation of Same origin policy network channel
A6 Profile attack File system (OS)
A7 Accessing confidential data DOM
A8 Stealing local files File system (OS)
A9 Accessing history Browser Component
A10 Accessing stored passwords Password manager
A11 Accessing events Keyboard & Mouse events
A12 Session stealing Cookie manager, Cookies
A13 Accessing bookmarked sites Bookmark manager
A14 Modifying browser configuration Browser preferences
A15 Changing browser and Extension preferences Modifying arbitrary
A16 Accessing web page information (images/text) DOM

The browser resources that are potential target includes cookies manager, password,

DOM, etc. An attack is accomplished by executing some course of actions, such as

modification, gaining access, tainting, and leaking information on the target resources.

In-Scope Threats. We define some key resources that an attacker may target, i.e.,

likelihood of attack. In general, we are trying to determine the impact of extension-based

browser attacker on the several browser and operating system resources. Table 3.1 illus-

trates the activities that an JSE can perform. These activities may result in the threat

in a browser. We have addressed the threats pose by given activities in our proposed

solution. For example, the most common target for an attacker is web page DOM for

stealing user password and other confidential information, and network channel for send-

ing sensitive information from the browser to other domain. Our solution will raise an

alert if a confidential information is send over a network channel.

Out-of-scope threats. Many security threats posed by browser JSEs have been iden-

tified by the security community. There has been intense research in analysing threat

caused due to JSEs, which can complement our approach for protection against specific

attacks. We are more focused towards attacks that are initiated by legitimate JSEs

or sometimes popular JSE. In particular, our work does not address the threats listed

below.

1. Threats with browser vulnerabilities: We do not address the threats caused due

Chapter 3. Malicious Flows in Browser Extensions 35

to browser vulnerabilities such as drive-by-downloads [78] [79], buffer overflow

vulnerability in HTML parser [80], buffer overflow in the bookmarks system [81],

threats with plug-in vulnerabilities and so on. Our goal is to prove that the

vulnerabilities in the browser are not the only attack vector to initiate privacy

leakage attacks in the browser. The attacks can also be initiated with a non-

vulnerable browser.

2. Threats with extension vulnerabilities: Our approach leverages suspicious infor-

mation flow in JSE, which determines the malicious intention of a JSE. A non-

vulnerable extension is thus sometimes causes a serious threat to user information.

Thus, our approach detects attacks that are initiated by non-vulnerable and le-

gitimate JSEs.

3. Attacks due to code obfuscation: The extension which uses code obfuscation using

hexadecimal and base64-encoded background script, eval and unescape are not

handled by our approach.

4. Colluding extensions attack: The attacks can be caused due to a collusion of two

or more extensions [82]. Our model do not address the flow that originates from

two or more colluding extensions. As a result, the suspicious flow originates from

two colluding extensions is the out-of-scope threat for our model.

Figure 3.1: Overview of the our proposed approach.

3.3 Proposed Approach: BEAM

In this section, we describe the internals of BEAM, our semantic analysis system that

identifies malicious behavior in JavaScript-based browser extensions. BEAM takes a

source code of a JSE to extract semantic information so as to analyse and deduce the

Chapter 3. Malicious Flows in Browser Extensions 36

maliciousness in the JSE. In particular, BEAM identifies the interaction of JSE under

analysis with the web pages, system, and browser resources. Using a set of heuristics

to identify potentially dangerous behavior, it labels extensions as malicious, suspicious,

or benign. In the rest of this section, we describe how BEAM works and the challenges

that arise in analyzing browser extensions.

Figure 3.1 shows an overview of browser extension analysis, which consists of two phases:

a transforming phase and information flow tracking phase. In the first phase, we parse

and perform appropriate code transformation on an extension’s source code. The trans-

formed source code is checked with the JSE profiles to extract important properties

of the JSE. In the second phase, the information collected from the previous phase is

analysed for suspicious information flow. Our model, also assigns the severity rating to

the suspicious flow found in the JSEs.

Abstraction Model Definitions. We introduce the notion of BEAM model, and, in

that context, formally defines an abstraction of JSE code with following definitions.

Definition 1: (Script Block) JSE contains the set of script blocks, δ = {δ1, δ2, ..., δn},
where δk represents kth script block containing set of JavaScript statements.

Definition 2: (Integrated Script Block) An Integrated Script Block (ISB) can be

defined as, ι =
⋃n

k=1
δk, where δi ∈ δ and δk+1 is called script block of callee δk.

Definition 3: (Sequence Control Flow Graph) Each integrated script block, ιi

consists of Sequence Control Flow Graph (SCFG) G, where, G = (N,E) defined as a

finite set N of nodes and a finite set E = {e, eout} of edges with N ∩E = φ. e is an edge

connecting node ni to its immediate successor node ni+1 and an edge eout is added from

(n̂a, na) iff the node n̂a is accessing the information of na.

Definition 4: (Node) A node n = {R,C} is a tuple of two attributes, where R is

a resource to be accessed by a statement, and C is a class associated with every resource,

such that C ∈ {source, sink}, which represents mapping of resource, r to its correspond-

ing class.

Chapter 3. Malicious Flows in Browser Extensions 37

The resource itself is a tuple of three attributes Resource(R) = (O,A,P). A resource

r ∈ R is referred to operating system, browser, and web resource that is accessed by

JavaScript Statement (JS). An Object O = {XpObject, JsObject}, where XpObject, and

JsObject are the object instances created by invoking XPCOM interface, and JavaScript

Method respectively. An action a ∈ A is viewed as the method invoked by an object

O for accessing resource r, and P is the parameter that is passed when a method is

invoked.

3.3.1 Transforming JSE Code

We transform the source code of the JSE to facilitate construction of a SCFG for the JSE.

The transformation occurs in three stages. In the first stage, Pre-processing processes all

statements of the JSE code (.js files) to make it compatible with static analysis. The next

stage constructs the SCFG from the pre-processed code. The nodes in SCFG generated

appropriate facts corresponding to statements in the JSE code. We now describe the

various stages of the analysis in detail:

Pre-processing. Pre-processing stage processes the entire JSE code statements and

transforms to make it compatible to static analysis. The Pre-processing is done in two

phases: (i) script block, and (ii) integrated script block.

Phase-I (Script Block): In script block the reference of called functions are inserted

into callee function. It may be more than one script block for a JSE, but if a JSE code

does not have any function call, only one script is created. The reason behind script

block creation is to reduce function call overhead.

Phase-II (Integrated Script Block:) In this phase the function reference from script

block is replaced with the corresponding function statements. Each script block is trans-

formed into blocks called integrated script blocks (ISB) which contained parser compat-

ible statements for next stage. As illustrated in Figure 3.2 the script block contains the

JSE code and is transformed into ISB, and wherever the objects and variables created by

API/XPCOM Interfaces are referenced or assigned they are replaced with corresponding

API names. For example, a nsILocalFile object wm is replaced with nsILocalFile

wherever the object wm is invoked (Figure 3.2, Line 2 of ISB). This example code is

executed on Windows platform. Pre-Processing stage maintains two data structures for

each script block: (i) a symbol table stores the key-value pair, where keys and its values

Chapter 3. Malicious Flows in Browser Extensions 38

Table 3.2: Partial list of Sensitive Sinks

Entity Method of Access

Files/Processes
nsIOutputStream, nsIFileOutputStream,
nsIFile, nsIProcess, nsIDownload

Network
nsIXMLHttpRequest, nsIHttpChannel, nsITransport,
worker.port.emit/on

are represented by variable name and string value respectively; and (ii) a parameter

table stores the parameters invoked by a function call.

Figure 3.2: pre-Processing of Script Block

SCFG Construction. For the purpose of statically analyzing the pre-processed JavaScript

code, we use an off-the-shelf tool to generate a sequence control flow graph. Figure 3.3

shows the various stages of our SCFG construction of a JSE under analysis. Once the

ISB is created for a JSE, every JavaScript statement is represented with a notion of

graph node. Each graph node, representing access to a resource, is then analysed for

identifying flows, i.e., what information is flowing from one node to another, and in

what order. We associate a notion of source and sink with every resource. A source is

referred as a sensitive resource from which the information originates, and sensitive sink

is referred to the resource that expose internal application data to the outside world.

Profiling Extensions. After SCFG construction, we generate appropriate facts cor-

responding to statements in the JavaScript code. In particular, we extract following

the set of information from the JSE source code. With this information, BEAM closely

approximate JSE execution behavior in the browser.

Chapter 3. Malicious Flows in Browser Extensions 39

Figure 3.3: Execution profiling of our proposed method

1. Cross-domain Interaction. Most extensions interact with the content of web

pages. We search the source code of JSE to extract the list of URLs that it inter-

acts. The list of URLs is useful in determining the cross-domain access performed

by a JSE. The malicious JSE may act as a middle layer to initiate communica-

tion between the cross-domain websites. The malicious JSE, then, can execute

cross-domain scripts and access and share cross-domain information. For exam-

ple, an extension is capable of violating same origin policy, which may lead to the

interaction of cross-domain websites.

2. Event-based Actions. The Chrome and Firefox browsers offer the set of APIs

to extensions for sending notifications that respond to certain browser-level events.

Firefox browser provides certain in-built notification topics, which an extension

can listen and take appropriate action. For example, a browser opens a Facebook

page to read information from Facebook server. When, the browser interacting

with Facebook server is completed, it generates a notification topic to the browser

in response to completion of the access (read) event. This notification can be

intercepted by an extension that requires read event to complete. Our analysis

records all the notifications topics be generated and intercepted by an extension.

3. Interaction with Network. Extensions often use network channel to send

and receive information to remote server. Browser provides several APIs such

Chapter 3. Malicious Flows in Browser Extensions 40

Table 3.3: Partial list of sensitive sources

Entity Sensitive Attributes/Method of Access
Document cookie, domain, forms, lastModified, links, referrer, title, URL

Form action.

Form input
checked, defaultChecked, defaultValue, name, selectedIndex, toString,
value

Select option defaultSelected, selected, text, value.
Location/Link hash, host, hostname, href, pathname, port, protocol, search, toString

Windows defaultStatus, status
DOM getElementbyId, getElementbyTagName
Files/Streams nsIInputStream, nsIFileInputStream, nsILocalFile, nsIFile

Password nsIPasswordManager, nsIPasswordManagerInternal

Cookies nsICookieService, nsICookieManager
Preferences nsIPrefService, nsIPrefBranch
Bookmarks nsIRDFDataSource

Extension’s objects nsIObservable

History nsISHistory, nsIBrowserHistory

as XMLHttpRequest, worker.port.emit/onto, HTTPChannel to establish commu-

nication with remote server. We identify the flow that sends sensitive information

over a remote location. In addition, network information also used to track the

information that is fetched from the remote server.

4. Interaction with Host-OS. We identify the APIs that will allow an extension to

access host OS resources such as file system, and processes. Using this information,

we can monitor two major activities; (i) the source of information that is written

on file system, and (ii) the files from host file system are accessed by the JSE.

5. Interaction with Browser Components. Extensions often use browser com-

ponents such as DOM, Password Manager to access information stored on the

browser. We monitor the information that a user input in a web form and stored

passwords in a browser. We track this information to identify the flow that looks

to be sensitive. For instance, a stored password send over network channel, or

input information send to a cross-domain web page, etc.

6. Interaction with persistent Data. We track persistent data, such as cookies,

history, bookmarks that a JSE can access in the browser. In particular, we monitor

if a persistent information stored in the browser is leaked to a remote location. For

instance, if the cookies are leaked, then an attacker can hijack a web session [68].

Chapter 3. Malicious Flows in Browser Extensions 41

3.3.2 Tracking Information Flow

Our static analysis closely approximates JSE execution behavior in the browser. In

particular, first we find how information propagates from one resource to another. The

XPCOM interfaces of extension system allow developer (user or attacker) to establish an

inter-communication channel between components of operating system, browser compo-

nents, and web applications. Hence, the information can flow among various components

of the browser as well as the operating system in legitimate or illegitimate manner. The

Algorithm 1 illustrates the proposed algorithm for analyzing the information flow in a

JSE.

Algorithm 1 Proposed Approach Algorithm

δ = {δ1, δ2 · · · δn} : Set of n Script Blocks (SB)
ι:

⋃n

k=1
δk : Integrated Script Block (ISB), where δi ∈ δ and δk+1 is called SB

of callee δk.
preProcessing(δi) : Extracts .JS and configuration files of Extension
constructSCFG(preProcessing(δi)): Construct control flow graph
profileJSE(δi) : Extracting relevant information from the Extension

preProcessing(δi)
extract(.js files)
extract(conf files)
return ι
for p = 1 to ι do
// scanning all statements in ISB (ι)
N = profileJSE(δi)
GRAPH = constructgraph(N)
flag = findSourcetoSink(GRAPH)
if flag == false then

No Suspicious Flow
else

rating = suspiciousFlow()
end if

end for

Our goal in this work is to identify the information flows, which may be legitimate or

suspicious depending upon the functionality of a JSE. We define suspicious flow with re-

spect to the browser environment in which a JSE executes, which reflects how a JSE can

risk, and expose various resources to the attacker. For example, an extension might use

JavaScript method getElementById(id) to capture information from sensitive source

Chapter 3. Malicious Flows in Browser Extensions 42

(DOM), and then use XPCOM interface nsIXMLHttpRequest to send this information

to untrusted domain through sensitive sink (Network Channel).

This section overviews the core operations of BEAM. Here we discuss (a) source to sink

taint analysis, (b) explicit and implicit flows, (c) suspicious flow analysis, native code

taint propagation, and (d) whitelisting of flows.

Source to Sink taint analysis. BEAM associates action label with SCFG nodes.

Each action label stores two pieces of information: (1) a resource type, which determines

resource accessed by a node; and (2) a class, which determines the origin/destination

of the information. Hence, each action label is used in determining the sensitivity of

information used by the resources. For example, an action label associated with node

n3 in Figure 3.4 defines network as resource type and sink as its class. In our static

analysis, the taint information is modeled as the capability of accessing sensitive sources.

In particular, an object carrying information is tainted if (a) it directly accesses any of

the sensitive sources or (b) explicitly accessing the reference of an object that accesses

sensitive source.

In addition, we incorporated the tainting capability to our static analysis to isolate

potentially untrusted values from trusted ones. BEAM places an action label in each

of the nodes, based on that label BEAM marks whether the node is tainted or not.

Whenever a reference is assigned a value from potentially untrusted sources (e.g., the

DOM object window.content.document), it taints the node. The taint propagated as a

node is assigned or passed as a function parameter to other references. At the end of

the analysis, if we find that the tainted node reference points to a sink resource, we can

conclude that the use of such reference might potentially be unsafe.

We have identified several sensitive sources along with their method of access. The

partial list of potential sensitive sources and sinks are listed in Table 3.3 and Table 3.2.

Rows 1, 2, 3, and 4 of Table 3.3 are derived from Netscape Navigator 3.0 [83], which

primarily includes the data elements to which JavaScript engine provides data tainting

features. The origin of these data elements is considered as sensitive source, these

elements primarily deal with access to DOM elements. The remaining rows of Table 3.3

denotes sensitive sources originate from the browser and operating system resources, such

as cookies, passwords, bookmarks, files and preferences. Table 3.2 shows the sinks where

the information leaves or exposed to the outside world. One of the critical sink that we

Chapter 3. Malicious Flows in Browser Extensions 43

encountered during our analysis is network channel. For example, the information flows

from internal browser source such as DOM to the outside world such as network.

In some extensions that have spyware or bot [84–87] features, can use sensitive sink

such as network as a source. For example, a spyware can start a malicious process

using nsIProcess XPCOM interface on victim’s browser. An attacker machine can

send a signal through the network (sensitive source) to initiate a process on victim’s

machine. This example shows the network channel can also be used as sensitive source

to execute malicious activity on the browsers. In addition to monitoring sources and

sinks, our model also tracks information flow originated from JavaScript APIs such as

eval(), innerHTML(), wrappedJSObject(). For instance, some JSEs modifies web page

information at runtime. Our approach also monitors DOM information, which can be

modified using innnerHtml. It raises suspicious flow alert when the information accessed

from DOM is modified through innerHtml function.

Explicit and Implicit Flows. Our system handles explicit flows by updating left hand

side (LHS) labels of an assignment with the labels of values assigned to right hand side

(RHS) label. For example, the assignment var data = frame.document.getElements

ByTagName(‘input’) shown in Figure 3.4 that is used to take out information input

by user from web page INPUT field. BEAM handles this by updating data variables on

the LHS with label getElementsByTagName on RHS. Similarly, a info variable in as-

signment info = data[i].value is replaced with getElementsByTagName(‘input’).

The purpose of doing this is to recognise the source of information at each JavaScript

statement. In this example, the information to be entered in web page INPUT field prop-

agates from data to info variables. Thus, BEAM associates same label to data and

info variables. This way the labels are propagated in explicit flows. So if data variable

is labeled sensitive so as info variable. Implicit flows arise through the control flow in

the program. Our approach will handle limited implicit flow on an assumption that if a

information checked in the conditional expression is labeled sensitive then both true and

false statements are considered as sensitive. For example, if (document.cookie.length

> 0) then {T} else {F}, in this case document.cookie.length is sensitive and hence

both T and F blocks are considered sensitive.

Suspicious Flow Analysis. Our model will map all the nodes produced from ISB into

SCFG. Each node in ISB is referred using a relevant JSE statement. The connectivity

Chapter 3. Malicious Flows in Browser Extensions 44

between nodes is referred to as the control flow between statements. In this model, we

consider two types of edges: (i) a forward edge; and (ii) an outer edge. The consecutive

connectivity between nodes in SCFG represents a forward edge, whereas an outer edge

defines an edge between two or more nodes. When the information flows from sensitive

source to sink resource (defined in Table 3.3 and Table 3.2). For example, a JSE has

a functionality to access password field from web forms and send them to third-party

domains. BEAM found this flow as suspicious as the critical information flow from the

sensitive source (web forms) to sink (network). In addition, we also identified the severity

of suspicious flow in terms of critical, high, moderate, and low rating. Mozilla and

Chromium define security severity rating on the basis of information accessed by various

resources and discussed in [28] [29]. In more generalized way, we define a suspicious flow

as follows.

Definition 5: (Suspicious Flow) A suspicious flow Sf is defined as flow between any

two nodes, n1, n2, such that,

Sf = eout(nj , ni) : ni ∈ {sensitive source} ∧ nj ∈ {sensitive sink}

The above logic represents the suspicious flow that occurred between two nodes. The

flow between nodes n1 to nj is said to be suspicious only when there is an outgoing

edge from nj to ni and the node ni to nj belongs to a set of sensitive sources and sinks

respectively. An outer edge indicates that the information flows from node ni to nj.

Whitelisting of Flows. Sometimes a benign JSE can contain information flow that

may potentially be classified as suspicious by our method. For example, consider

LastPass, a password manager JSE, which extracts all passwords stored in the browser

or input by a user on website login page. It captures these passwords and sends them

to a third party site and provides password management functionality. The JSE reads

and modifies a sensitive resource (i.e., a password) from browser and web form, which

is then transmitted over the network. It raises a critical alert because an untrusted JSE

can use a similar technique to transmit passwords to a remote attacker. To handle such

flows for popular legacy JSE, BEAM uses whitelisting policies to declassify these flows.

BEAM defines trust-specific whitelisting policy, which permits declassification of all flow

from a trusted JSE. We trusted the JSE based on its popularity, and number of times

a JSE downloaded on Mozilla add-on store. If a newly introduced JSE contain such a

Chapter 3. Malicious Flows in Browser Extensions 45

flow, BEAM does not whitelist the flow.

3.3.3 An Example

We now demonstrate how the analysis detects flows in JSE code. This section explains

an example scenario for the extension-based attack on the browser. An example attack

scenario is described as follows: (i) an extension first creates an object to access web page

information from INPUT tag using getElementByTagName(‘INPUT’); (ii) an XPCOM

object is created to access network channel, and the information is send to the attacker

server by calling XMLHttpRequest.send() function. To understand the generic view of

the above attack scenario, we map it to an abstraction model. Figure 3.4 illustrates a

running example of suspicious flow with detailed node view. An overview of an example

scenario is as follows:

1. The script block/s are created from the given JSE code.

2. Our model then transforms script blocks into ISB that contains statements that are

compatible to B-parser. Our model will replace objects/variables with their corre-

sponding actual API name. As seen in example a statement info = data[i].value

is replaced getElementByTagName(‘input’)and req is replaced with XMLHTTPRequest.

The reason for doing this operation is to track the propagation of information flows

from one resource to another, and to reduce the number of backward calls which

improves the parser performance.

3. The ISBs are then mapped into SCFG after filtering abstract statements from

the ISB. The SCFG contains only those ISB statements that are associated with

source and sink resources. In this example, the statement that is forming nodes

(n1, n2, and n3) are relevant, and the rest are just ignored.

4. The statements associated with node n3 in ISB indicates a suspicious flow. It

invokes XMLHTTPRequest.op en() method and passes getElementByTagName as

argument, which indicates that the method is sending information extracted from

INPUT field of a web page. Our model denotes this with an Eout edge from n3 to

n2.

Chapter 3. Malicious Flows in Browser Extensions 46

These steps clearly show an attack scenario, which allows an attacker to illegally acquire

critical information, such as, authentication credentials from any web page and send it

to the attacker over network channel.

Figure 3.4: Mapping of Integrated Script Block to Sequence Flow Graph

3.4 Implementation and Evaluation

Our analysis model BEAM uses ANTLR tool [88], which can be used for creating script

blocks and grammar rules. We use ECMA Script v.5.0 grammar [89] for creating script

blocks. We have implemented B-parser (BEAM parser) component to capture exten-

sion’s control flow. BEAM is implemented in Java. We have modified ECMA script

grammar for parsing JSE code. The existing parser is not fully compatible with all JSE

statements because some JSEs contain statements other than core JavaScript syntax,

like XPCOM interface calls, regex pattern, etc. These statements cannot be parsed with

existing parser. We have implemented new grammar rules in ECMA-script for parsing

these statements. Our modified ECMA-script is able to parse all XPCOM interface calls

invoked in JSE, it also parses let statement and regex patterns.

To test the effectiveness of our security model, we have evaluated our model with ma-

licious and benign JSEs. To understand the suspicious flows in JSE, we downloaded

malicious JSEs reported in the literature and also developed new JSEs. We have evalu-

ated a total of 50 malicious JSEs. To test legitimate JSEs for suspicious flow, we have

downloaded 258 JSEs (50 JSEs are popular) from Mozilla Firefox AMO [18], which are

claimed to be benign. We performed a preliminary evaluation with some popular legit-

imate JSEs to explore their suspicious behavior. We have used BEAM to understand

Chapter 3. Malicious Flows in Browser Extensions 47

the flows and determine whether they are potentially malicious. We have also evaluated

each flow, and assign one of the four ratings to each flow based on attack rules defined

in Table 3.4.

3.4.1 Evaluation Methodology

We have evaluation our approach using three experiments; (i) evaluation of malicious

extensions, (ii) evaluation of popular legitimate extensions, and (iii) evaluation of benign

extensions.

Evaluating with Malicious Extensions. We have tested 50 malicious JSEs using

BEAM. Some of the malicious JSEs are developed by embedding malicious flow in small

benign JSEs. In addition, we also use publicly available extensions that have known

instances of malicious flows (e.g., FFSniff). The malicious extensions are implemented

such that they exhibit all potential behaviors of attack shown in Table 6.6. We adapted

the proof-of-concept given for malicious extensions [10] to implement these malicious

JSEs. The goal of this experiment was to understand the nature of information flows in

Malicious JSEs and analyse the sensitive source and sink resources they have used. We

have also assigned the severity ratings to each suspicious flow extracted from the JSE.

Evaluating with Popular Legitimate JSEs. We have tested 50 popular benign JSE

from different categories (mostly from security and privacy category). To determine

the JSE’s advertised functionality, we ran each JSE and manually exercised its user

interface and read the documentation available with it. The goal of this experiment was

to understand the nature of information flow between sensitive source to sink in these

JSEs and identify flow that are suspicious but not necessarily malicious. BEAM observed

all critical and high rated flows in some of these JSEs, since the JSEs are popular, and

we assume them trusted, we applied the trust-specific policy to whitelist flows. With

manual inspection, it is found that these flows are mandatory needed to accomplish the

desired functionality of an extension. However, we found that the information flows in

some of these benign JSEs closely resemble to those exhibited by malicious JSEs and

hence the question arises why these JSEs are trusted by Mozilla add-on review process.

Results. Our experiments on malicious as well as legitimate extension show suspicious

Chapter 3. Malicious Flows in Browser Extensions 48

flows. Table 3.4 shows some of the flows along with the severity that are found in the

JSEs.

Table 3.4: Sensitive information flows found in evaluated JSEs

Activities
Performed

Description
Severity
Rating

A1+A4
A12+A4
A10+A4

Send password from web page, cookies, stored password over
network to untrusted domain.

Critical

A2+A3
Injecting and launching malicious script with browser
chrome privileges

Critical

A6 Writing malicious file to browser profile folder. Critical
A7+A4
A8+A4

Send user input fields except password, reading file from host
file system and send over network to untrusted domain

High

A5 Read information from one and write it to other domain High
A9+A4
A11+A4

Record keyboard/mouse events, extracts browser history and
over network to untrusted domain

Moderate

A13+A4
A16+A4

Access bookmark sites, page information and end it over
network tountrusted domain

Low

To show threat posed by JSEs in the Firefox browser, we identified information flow

in the JSEs. Figure 3.5 illustrated the aggregated percentage flow in malicious and

legitimate JSEs. As we can see from Figure 3.5, both malicious, as well as legitimate

JSEs, have flows, which BEAM has ranked in terms of severity ratings. We observed

that some legitimate JSEs had suspicious flows. In addition to that, we also observed

that some popular legitimate JSEs have critical advertised flow, which closely resembles

the malicious JSEs flow. Most of the legitimate JSEs contains the benign flow, which is

labeled as none.

 0

 10

 20

 30

 40

 50

 60

Malicious Legitimate

F
lo

w
 (

%
)

Critical
High

Moderate
Low

None
Whilelisted

Figure 3.5: Information Flow % in Legitimate and Malicious JSEs

Our experiments indicate that several legitimate JSEs exhibit information flows that can

be suspicious and misused by an attacker. Table 3.5 has listed the critical flow found in

Chapter 3. Malicious Flows in Browser Extensions 49

4 popular extensions. BEAM marks these JSEs as critical and suspicious flow found in

them. We further analysed these extensions manually and found out that the suspicious

flow is because of JSE’s functionality. In such case, BEAM whitelists the flow. For

instance, few observations that we found with popular JSEs are listed as follow.

1. It is interesting to notice that Lastpass stores all your critical passwords (including

email, credit card, banking, etc.) and sends them to third party domain without

prompting any warning to the user. We have whitelisted this flow after manually

analysing the Lastpass JSE. The third party location at which the information is

being sent is found trusted by the security community.

2. The basic functionality of Flashgot is to download links, audio and video files

from the web page. To achieve this functionality it creates a file in binary format

using nsIFileOutputStream, and writing to same file using nsIBinaryOutputStream.

Once the file is created it invokes nsIprocess.init() method with parameters to

invoke a process. BEAM consider this as critical, suspicious flow as the control

flows from File System (sensitive source) to process (sensitive sink). This behavior

can be used by an attacker to launch malware script as OS process.

3. TheWOT JSE extracts cookies information using nsIcookieservice.getcookiestring()

from document URI (sensitive source), and it call XMLHttpRequest methods to

access HTTP channel (sensitive sink). This behavior can potentially be misused

to steal cookie information of any URI.

Table 3.5: Critical flows in some popular JSEs

JSE
Flow
Rating

Sentitive Source Sentitive Sink

LastPass
V 3.1.1

Critical
nsIPasswordManager.
adduser(), nsILogin-
Manager.findlogins()

XMLHttpRequest.

send()

WOT
V 20131118

Critical
nsICoolieService.

getcookiesstring()

XMLHttpRequest.

send()

Flashgot
V 1.53

Critical nsIFile, nsILocalFile nsIProcess.init()

GreaseMonkey
V 2.3

Critical nsIFile, nsILocalFile nsIProcess.init()

Evaluating with Benign JSEs. We have tested BEAM against 208 randomly se-

lected benign JSEs from different categories. This time the JSEs are less popular but

Chapter 3. Malicious Flows in Browser Extensions 50

downloaded more than 500 times. Again we determine the JSE’s advertised functional-

ity by manually running them. Our analysis model found all kinds of flows in selected

JSEs. We have critically rated flow in 3 JSEs, these JSEs mainly has flows like sending

credentials, and cookies from web page over the network to a untrusted domain. It has

been found that 19 JSEs exhibits highly rated flows as these JSEs takes information

from web page other than a password and send them over network channel. We have

found 13 JSEs with moderate and 20 JSEs with low rated flows. Furthermore, in some

cases we have found that the suspicious flow is a part of JSE’s advertised functionality,

which is whitelisted by BEAM. We found in total 153 JSEs with such flows.

Table 3.6 summarizes the critical suspicious flows found in two extensions. FacebookDislike

JSE maliciously stores web page information (userid and cookies) in JSON objects

(stored in local disk). The extension performs queries to Facebook’s website using

worker.port.emit/on APIs to retrieve userid and preference information from graph.

facebook.com and leaks these information to a remote website dislikenew.doweb.fr/get2.php

that is not related to Facebook. CoolPreview JSE finds stored password and login de-

tails from browser and use XMLHttpRequest.send() to send them over unknown re-

mote location. This functionality is not given in its documentation and hence cannot

be whitelisted.

Table 3.6: Suspicious flow in benign JSEs

JSE
Flow
Rating

Sentitive Source Sentitive Sink

Facebook
Dislike V 3.3

Critical
getElementById,
document.cookies

worker.port.emit

worker.port.on

CoolPreview
V 4

Critical
nsIPasswordManagerInternal.

findpasswordentry(),
nsILoginManager.findlogins()

XMLHttpRequest.send()

3.4.2 Limitations

Our work has three limitations: (i) Currently, our approach analyses JavaScript code

based on common DOM and XPCOM APIs. We do not check XPCNativeWrapper

based protection that limits access to the properties and methods of the object it wraps;

(ii) Our approach was only limited to malicious flows in JSE and has not analysed

the vulnerabilities in JSE instead we are assuming that the JSEs does not have any

Chapter 3. Malicious Flows in Browser Extensions 51

vulnerability; (iii) We have tested JSEs against the potential attack rules. The list of

rules that we have used for analysis is not an exhaustive list.

3.5 Summary

This chapter introduces Browser Extension Analysis Model (BEAM), a static analysis

model for analysing suspicious flows in browser JavaScript Extension (JSE). Our model

detects potentially insecure information flows within the sensitive source to sensitive

sink resources. In particular, it helps to investigate the suspicious flow in JSEs before

installing them onto the browser. We implemented our approach in a prototype tool

for Mozilla Firefox extensions, and detected suspicious flows that effect confidentiality

and integrity in a browser. Our observations found that the suspicious flows in JSEs

can be due to the unprotected and privileged access to critical resources. We also

associated severity rating with each flow, which rates the security risks present in a JSE.

The experiments demonstrate that BEAM can detect critical flows even in some benign

extensions, which closely resemble malicious flow and can be critical to the browser

security. In the next chapter, we discuss novel attack techniques using colluding browser

extensions.

Chapter 4

Colluding Browser Extensions

In this chapter, we first introduce the concept of colluding extension, and then we

demonstrate new attacks are leveraging this concept and causing privacy leakage in

a web browser. In particular, we illustrate a significant weakness in Firefox browser

architecture and its XPCOM interfaces. This gap permits two extensions to collude

with each other and share objects that are allocated in a same address space. Also,

we show the way in which colluding extensions can communicate over overt and covert

communication channels for executing colluding attacks. In addition, we have tested the

effectiveness of newly identified attacks against representative state-of-art techniques for

extensions.

We identify the vulnerable points in the extension development framework as (a) object

reference sharing; (b) event notification; and (c) preference overriding. We illustrate

the effectiveness of the proposed attack using various attack scenarios, and we provide

a proof-of-concept implementation for web domains including banking and shopping.

We believe that the use-case scenarios we consider in our demonstration underlines the

severity of the presented attack. Finally, we discuss possible mitigation techniques to

address the given colluding attack.

Contributions This chapter makes the following contributions.

1. We demonstrate that the attacks using colluding extensions can be easily imple-

mented in modern browsers. We test and implement our proposed attack on the

52

Chapter 4. Colluding Browser Extensions 53

Firefox browser. In particular, we explore several colluding extensions that com-

municate over overt and covert communication channels. The weakness of Firefox

extension system in handling JavaScript object allows the extensions to share

objects (carrying sensitive information) between other extensions. The attack-

ers can exploit this weakness to execute privacy leakage attacks on the browser.

Firefox browser has been used as an example as it is an open source browser

with API support for easy development of extensions. In this work, we have em-

ployed Firefox browser versions (3, 9, 12, 25) for implementing extensions towards

proof-of-concept.

2. We present a proof-of-concept of colluding attacks showing how a reference of

the JavaScript object of one extension can be invoked by another extension for

accessing and sharing sensitive information. This suspicious nature is difficult

to capture with known detection approaches. We have addressed the exploitable

coding features in two important Cross Platform Component Object Model (XP-

COM) interfaces [12], and JavaScript Wrapper method offered by Firefox.

3. We have evaluated our finding by applying colluding attack scenarios on different

web domain applications that demonstrates how two legitimate extensions can

collude with each other to achieve malicious goals in a browser.

4.1 Problem

Sometimes, extension code needs to send a message to itself or another extension for

notifying that a task is completed, and subsequent action(s) need be performed. In order

to achieve this functionality, the browser extension system provides message passing

techniques using interfaces: i.e., APIs that can send information to the local and global

environment. In this chapter, we investigate the Inter-Extension Collusion (IEC) to

infer the object sharing and explore communication channels in the browser.

We discuss how various components interact through browser extensions and also deter-

mines whether IEC in the browser can be exploited to produce colluding browser attacks.

For example, let us consider two legitimate extensions with the following functionalities:

the first extension (X) has the functionality to capture information from any web page.

Chapter 4. Colluding Browser Extensions 54

The second extension (Y) can communicate with network channel. Individually, these

extensions behave benign, and their information flow, when analyzed individually, can-

not be considered as malicious. However, if X can communicate sensitive information

through Y , this flow could be malicious. If X and Y collude, together, they can send

confidential information captured from a web page to the attacker through the network

channel. Since the attack comes from the combined activities of two extensions, it can

not be detected by a method that analyzes individual extension statically or dynami-

cally. Our study is a necessary step for a comprehensive security analysis on IEC in the

browser.

A number of recent techniques for securing web-based applications and browser plug-in

policy are presented in [45], [90]. The authors have designed and implemented secure

web browser policies, which provides OS-level mechanisms for isolation. In [45], the

authors developed flexible security policies that allow to include browser plug-ins within

the security framework defined by them. However, this secure browser architecture

does not provide any isolation for the JavaScript code in extensions. The policies that

are implemented for a plug-in are restricted to web applications only, and hence an

attacker can successfully launch colluding attacks that we are discussing in this chapter.

Furthermore, the researchers have also proposed a secure browsing environment for social

networking sites such as Facebook. For example, in [91], the authors have proposed a

complete architecture and implementation of Virtual Private Social Network (VPSN)

for Facebook website. Again, this analysis is restricted to web applications only. The

solution does not discuss the policies for browser extension JavaScript code.

The current research for detecting malicious flow in browser extensions is primarily

focused on an assumption that a single extension can only be used as a source of the

attack. This motivates us to explore the attacks that are originated from two colluding

extensions. This chapter demonstrates the weakness of this assumption and shows how

two legitimate extensions with benign functionality can initiate privacy leakage attack

in the browser. Several static [56], [92] and dynamic [57], [58], [93], [94] analysis methods

have been proposed to detect malicious or vulnerable extensions in isolation.

In this work, we analyzed four of the most popular techniques: VEX [56], SABRE [57],

H. Shahriar approach [94], and JSFLOW [92]. These methods can detect the vulnera-

ble points or tainted JavaScript objects in a browser extension. These techniques allow

Chapter 4. Colluding Browser Extensions 55

browser users to limit the impact that malicious extensions, if installed, have on their

system, browser, and their privacy. Unfortunately, these methods check taint object and

flow originating within single extension only. In particular, these methods do not exam-

ine whether an attack source has originated from some other extension. The primary

reason these methods are not effective against the attacks resulting from colluding exten-

sions. We show that colluding extensions can be constructed and can use covert1 as well

as overt channels to execute attacks on a browser. Colluding extensions can therefore

indirectly execute operations that these extensions can not perform individually.

4.1.1 Colluding extensions in browser

In this section, we investigate the extensions collusion to infer the locations and sub-

stance of all inter and intra-extension collusion in browser. This approach provides

high-precision means to study how various components interact through browser exten-

sions, and also determines whether this collusion in browser can be exploited to produce

colluding browser attacks.

Through analysis techniques developed for testing if a single extension is vulnerable

and/or malicious are efficient in identifying privacy leakage and privilege escalation at-

tacks, these remain fragile against multiple extensions collaborating for such attacks. We

show this by introducing the concept of colluding extensions in the browser. Colluding

extensions are the extensions that cooperate in a violation of some security property or

exploitation of some vulnerability of the browser. The attack by colluding extensions

is possible because current security mechanisms are not focusing on the objects that

are shared between two extensions. Instead, most efforts have been made in analyzing

information flow incorporated by a single extension [56], [57], [92], [94].

Apart from communication between extensions and web pages, the browser extensions

often need some mechanism for communicating with the other extensions. For example,

RSS reader extension might use content scripts on a web page to detect the presence of

an RSS feed on a page. Other extensions can use the RSS feed information in order to

send information to the remote server.

1we used “covert channel” term in a slightly different sense (also commonly used in the
literature), i.e., we used it for the secret communication where hidden exchange of information
takes place among extensions [95], [96].

Chapter 4. Colluding Browser Extensions 56

Google Chrome uses message passing for establishing communication between extensions

and their components, extensions, and their content scripts. In addition to sending mes-

sages between different components within an extension, Google Chrome uses the mes-

saging API to communicate with other extensions [97]. For example, chrome.runtime.

sendMessageAPI sends a single message to event listeners within your extension or a dif-

ferent extension [98]. Internet Explorer (IE) on the other hand provides postMessage() [99]

method to send messages between BHOs (Browser Helper Objects) [55] and web appli-

cations. Using postMessage() a BHO can establish communication channel with other

BHO, and they can collude with each other. Firefox provides XPCOM interfaces in order

to establish inter-extension communication. In this chapter, we discuss inter-extension

communication in details with reference to Firefox extensions. However, we underline

that the collusion is possible in other browsers as well, such as: Google Chrome and IE.

In this work, we decided to focus on open source Firefox browser because of its pop-

ularity, which allows easily accessible APIs for implementation, and ease in extension

development.

Figure 4.1 illustrates the layered architecture of the Firefox extension system. The first

layer is browser application layer, which includes pre-installed and third party extensions.

The middleware layer includes script layer and XPCOM framework, which allow exten-

sions to access core kernel components. The kernel layer contains the key components

of the system that provides essential system services to upper layers, such as process,

file system, and networking support. Our primary focus in this architecture is identify

the possible channels for establishing communication between browser extensions.

Figure 4.1: Illustration of inter-extension communication in Firefox browser.

Chapter 4. Colluding Browser Extensions 57

The components invoked by Firefox extensions can interact within or across components

through observer notifications. Our analysis aims at communications with components,

both within a single extension and between different extensions. Browser extension sys-

tem provides an interfaces for accessing different browser components. XPCOM offers

an easy way to achieve this functionality through observer service interfaces. The two

objects defined in different extensions can share information through observer notifica-

tion interface to set synchronous communication. Furthermore, the browser does not

provide any isolation among multiple extensions running simultaneously and hence all

installed extensions use same memory space for variables and objects. A more illustra-

tive scenario is shown in Figure 4.1, where an extension X is accessing some information

using Object Obj1, and notifies extension Y . Now, Y may have transitive access to in-

formation which was accessed through Obj1 because both X and Y share same address

space in memory.

4.2 Threat Model

Firefox browser contains a vast array of extensions, and a user may install extensions

from trusted source with varying trust levels. Besides that, a user may install an exten-

sion from unknown source alongside trusted extensions that handle private information

such as authentication of data and personal information. For example, a user might

install both a highly trusted banking extension and a free game extension. In an ideal

scenario, the game should not be able to gain access to the user’s bank account infor-

mation through bank extension.

The biggest disadvantage of Firefox browser extension model is that, it does not pro-

vide isolation among extensions. All extensions run in single-process and use shared

memory space. An attacker can take advantage of this weakness to set up collusion

among extensions, which may lead to privacy leakage and privilege escalation attacks.

Collusion can become a primary attack vector. Indeed, if a developer accidentally ex-

poses functionality, then the extension can be tricked into performing an undesirable

action. If an extension sends data to the wrong recipient, then it might leak sensitive

data. In this chapter, we consider how extensions can collude with each other to execute

Chapter 4. Colluding Browser Extensions 58

colluding-based attacks. It should be noted that we do not discuss the attacks initiated

by a single browser extension.

The attacks discussed in this chapter are categorized based on two threat models. Col-

luding extensions use existing or construct new communication channels to perform

actions or access resources they are unable to gain access to otherwise. Two threat

models for collusion-based attacks in browser extensions are as follows:

1. Covert Channel Communication. In the first threat model, we consider at-

tacks that make use of covert channel communication, and we assume the attacker

can access shared memory space allocated for extensions. In particular, we focus

on attacks where the shared memory objects carrying sensitive information on one

extension communicate with another extension through a covert channel.

2. Overt Channel Communication. In the second threat model, we consider

attacks that originate from overt channel communication. In particular, we focus

on attacks where an attacker uses overt communication channel to compromise

browsers and other extensions. For example, an attacker can modify extension

and/or browser preferences to make them unsecure.

4.2.1 Covert Channel Collusion

We now briefly describe the colluding techniques using covert communication channels to

give an intuition of how they work. We examine the security challenges of IEC in browser,

from the perspectives of notification senders and notification listeners. We discuss how

sending a notification to the wrong application and sharing inter extension objects can

compromise sensitive user information. An attacker can exploit IEC functionality of

browser extension to deploy privacy leakage attacks, such as eavesdropping, service

hijacking, and side channel. This section discusses a detailed overview of achieving

collusion using covert communication, leaving the implementation details to Section 4.3.

It should be noted that we will not discuss the attacks that are originated using single

browser extension.

Observer Notification Collusion. When one component in an extension sends a

notification to another component to notify that a task is complete, there is no guarantee

Chapter 4. Colluding Browser Extensions 59

that the notification is received by the intended recipient (component). A malicious

application can intercept a notification over covert channel simply by registering using

an observer notification interface (nsIObserver). The malicious application then carries

out subsequent actions. We demonstrate how attacks are deployed on the browser by

stealing or intercepting the notification.

Our threat model assumes that individual extensions are benign, and they are installed

on a browser. The objective of attackers is to compromise the extensions and the

intended information access. In particular, the browser extension uses event or observer

notification messages to setup collusion among different applications (pre-installed and

third party extensions). We further classified this threat model into two sub-categories:

(i) intercepting observer notification; (ii) source to sink notification.

1. Intercepting Observer Notification: An attacker can intercept the observer

notifications to act maliciously. In this model, we assume that one trusted exten-

sion and one malicious extension are installed on the browser. Getting the victim

to load extension is not very difficult. For example, emails, social networks, and

advertisements can be used to load extensions. The objective of attackers is to

intercept notification topics on object, which is sent from a trusted domain to a

trusted service (web, network, and file system). Figure 4.2 illustrates the model

using various steps:

(a) In Step 1, a trusted extension sends a notification of Obj1 to communicate

with trusted service, which then replies to trusted extension in Step 2.

(b) Step 3 shows that a malicious extension intercepting a notification on Obj1.

(c) In Step 4, the information from trusted extension is used through Obj1

reference to execute a malicious event (Step 5).

Through eavesdropping on notification between two processes, an attacker can

accomplish malicious tasks. In Section 3, we present more illustrative examples

such as eavesdropping and service hijacking attacks caused due to an interception

of object notification.

2. Source to Sink Notification. The source to sink analysis has been used to track

tainted information flow in browser extensions. This analysis is limited to single

Chapter 4. Colluding Browser Extensions 60

Figure 4.2: Interception on user-defined notification.

extension, and hence an attacker can initiate privacy leakage through informa-

tion using source in one extension and sink in another extension. A component

from one extension can notify an object’s reference to the component from other

extension correspond to flow of information from source to sink. A static list of

source and sink APIs is given by [57]. Figure 4.3 illustrates the generic operation

by two extensions for sending information from source to sink. The component

from extension X first takes sensitive information from source resources, such as

DOM, password manager, and then notifies the object’s reference to extension Y .

Extension Y takes further action to send sensitive information to sink. Examples

include leaking information to attacker’s domain using network channel, writing

information to file system etc.

Figure 4.3: Source to sink interaction between two extensions.

Chapter 4. Colluding Browser Extensions 61

Figure 4.4: Illustration of how preferences can be observed and altered by
other extension.

4.2.2 Overt Channel Collusion

This section discusses a how overt communication can be used for achieving collusion

among extensions and the browser. In the overt channel collusion, we consider the pref-

erence overriding attacks. The attacker can change preferences of browser and extensions

using another extension over an overt channel, without violating any security policy. We

examine the security challenges of the browser from the perspectives of critical prefer-

ences. Also, we discuss how altering or listening to preferences can misconfigure the

browser as well as the extension.

Preferences Overriding. The preferences associated with either browser or extensions

can be misconfigured leading to serious threats. In this threat model, we discuss how

preferences can be overridden by an extension to achieve malicious goals. The model

assumes that a malicious extension manages to get installed on the browser. Figure 4.4

illustrates two different models to present how a malicious extension can compromise a

browser and other extensions by modifying the preferences. We discuss these two models

in the following paragraphs:

Observing Preferences. In this model, a malicious extension observes the notification

on preference change and executes malicious event afterwards. The browser is enriched

with various security related preferences that prohibit the attacker from executing ma-

licious tasks. Some extensions (especially security related) may also have preferences

that allow configuration at runtime [70]. To understand the threat which arises from

misconfigured preferences, let us consider a set of browser preferences denoted with

Chapter 4. Colluding Browser Extensions 62

Pb1, P b2, · · · , P bn and a set of extension preferences denoted with Pe1, P e2, · · · , P en.

A general overview of how an attacker can misconfigure a browser and/or extension(s)

by altering preferences is given in Figure 4.4. The steps (numeric representation) taken

by user or attacker for altering browser preferences are as follows:

1. Step 1: Suppose a preference Pb1 represents a preference to enable/disable the

pop-up windows for a browser. Initially, Pb1 value is set to disabled, which

prevents an extension from performing malicious events via pop-up window, for

example, Clickjacking attack [100].

2. Step 2: The moment Pb1 value changes to enable, the browser sends a global

notification, which might be observed by malicious extension.

3. Step 3: Malicious extension listens to the global notification sent for Pb1.

4. Step 4: After intercepting notification, the malicious extension can execute mali-

cious events, such as opening of pop-ups on browser.

Altering Preferences. In this model, a malicious extension alters the default prefer-

ences of the browser and/or other extensions. Some preferences are critical and if not

configured properly can cause a significant security threat to the browser. Figure 4.4

also illustrates various steps (alphabetic representation) to demonstrate how a security

enhanced browser can be breached by a misconfigured preference. More details of alter-

ing preferences with the example are discussed in next section. The steps for altering

extension preference are as follows:

1. Step a: Malicious extension changes security preference of either the browser or the

installed extension(s). For example, let us consider a security extension noscript,

which has whitelisting preference. If a malicious website acquires this preferences,

all security checks are bypassed for the web site.

2. Step b: A browser can be misconfigured by altering security relevant preferences,

such as, enable/disable JavaScript, cookies, password storage etc. This may lead to

cookie/password stealing, script injection etc. Altering of preferences can weaken

the browser security. In a similar manner, misconfiguration of an extension by

changing preferences can have security implications.

Chapter 4. Colluding Browser Extensions 63

4.3 Instantiation of Colluding Attacks

In this section, we introduce proof-of-concept example of the colluding attacks over

covert and overt communication channels. We describe an attack scenario and provide a

detailed description of our attack implementation. In the event notification threat model,

we demonstrate the impact of the collusion-based attack and show how these attacks

can lead to privacy leakage in the browser. In preference overriding threat model, we

demonstrate the effect of insecurely configured browser and extension preferences. We

have constructed our example attack scenarios employing security relevant preferences

of the browser and/or extensions.

In all our attack scenarios, we have assumed that a user downloads and installs the

extension from the Internet. Our extensions provide legitimate functionalities to the user

in declared benign mode but shall collude with another extension or service otherwise

to execute malicious tasks. Apart from collusion, in this section we also give a thorough

discussion of the implementation. First, we briefly discuss the colluding extensions using

observers notifications (Section 4.3.1) and source to sink notification (Section 4.3.2), then

we present their respective attack implementations with example attack scenarios. In

sections 4.3.3 and 4.3.4, we discuss the collusion by altering preferences with the help

of an illustrative example.

4.3.1 Attack Technique: Intercepting Observer Notifica-

tions

Using notification interception technique, we present an attack in which another exten-

sion intercepts the communication between the trusted extension and trusted applica-

tion. Figure 4.5 illustrates various steps taken by two extensions to achieve the malicious

goal of privacy leakage. We have implemented an extension X with the functionality

of reading information from trusted Facebook server that provides facilities such as like

and share Facebook timelines. Here, we assume that a user has logged into Facebook

application and X is legitimate. After X reads information from Facebook page by

reading DOM content (Step 1), it then sends a notification to the browser web window

to notify that read event is finished. The malicious extension Y (Step 2) listens to this

Chapter 4. Colluding Browser Extensions 64

notification and access object’s reference read by X in Step 1. More in detail: after Y

listens to the notification it can set up a covert communication channel with Facebook

server to steal sensitive information such as Facebook user profile (steps 3 and 4). Here,

the information extracted by legitimate extension (X) is stolen by malicious extension

(Y).

Figure 4.5: Attack scenario intercepting observer notifications.

4.3.2 Attack Technique: Source to Sink Notifications

This technique presents the attacks using two colluding extensions in which one extension

takes information from a source while other sends this information to a sink. Using the

proposed method, we implemented a modified version of the attack that is derived from

MitB (Man-in-the-browser) attack, a well known Banking Trojan [77]. The primary

goals of this attack are:

1. Stealing user assets, such as login credentials.

2. Modifying current bank transaction on the fly.

3. Modifying the web page’s contents on the fly without the victim’s knowledge.

The potential attack vector for MitB attack is through malicious browser extension.

Once installed into the browser as an extension, this gets activated when a user visits

target websites, such as bank websites. This technique demonstrates a new way of

launching the MitB attack using two extensions having benign functionality, so that

even malicious flow analyzers existing, such as, VEX [56], and SABRE [57] would not

be able to detect any maliciousness and vulnerability in either of the extensions.

Chapter 4. Colluding Browser Extensions 65

Object Collusion Attack Scenario 1. First attack scenario for collusion based attack

consists of two benign extensions. Extension Y has a functionality to read static and

dynamic information from web pages including the information input by the user at

run-time. The second extension X can send information over network channel. Using

these two extensions with benign functionality, we setup a collusion between them so

that one extracts information from web page and other can send this information to a

third-party domain. In addition, these extensions can work for every web page open

in the browser window. Figure 4.6 illustrates the process of exchanging information

between two colluding extension. The steps for achieving malicious goal using X and Y

are as follows:

1. Y first read web page information such as user credential from DOM. It creates

an object, stored in the global address space (Step 1)

2. The reference to the object stored in the global address space is notified to the

browser. This notification is listened to X (Step 2).

3. X then uses this reference to access the DOM information extracted by Y and

transmits over the network channel to the attacker’s domain (Step 3).

Figure 4.6: Scenario-1 showing how credentials can be stolen.

Object Collusion Attack Scenario 2. This scenario demonstrates the modification of web

page information on the fly. We construct this scenario using the websites that offer a

user to buy download credits (torrents, file hosting, warez sites, etc.) as an example.

These sites allow any user to create a userID with credentials and payment details. We

implemented two extensions to steal user credential in a way the credit provider server

Chapter 4. Colluding Browser Extensions 66

does not notice. Figure 4.7 shows various steps taken by two extensions in collusion to

modify current user details. At the time of account creation, our attack modifies the

user details without the victim’s notice. In particular, the behavior is as follows:

Figure 4.7: Scenario-2 showing how a new field can be added and sent to
attacker domain.

1. Step 1: X reads the information from the web page DOM.

2. Step 2: X wraps the reference of an object that carries web page information and

makes it accessible to extension Y .

3. Step 3: Y modifies the user details.

4. Step 4: Finally when victim user clicks on the submit button, the modified infor-

mation is sent to the credit server, and fake account is created on the server.

Object Collusion Attack Scenario 3. In this scenario, we demonstrate how an attacker

can dynamically add new fields on the current page. We have considered on-line shopping

websites as an example to demonstrate this attack. Suppose a victim user wants to buy

some item he has selected from a shopping site. We have implemented an attack using

two extensions having following functionalities: the first extension modifies the shipping

address, and mobile number of the purchaser. The second extension adds new field to

steal payment details of the victim user. Figure 4.8 shows the various steps taken by

two extensions to create this attack.

1. Y reads all information from the page DOM, and at the same time it adds new

field to the web page that asks for the payment details (steps 1a and 1b).

Chapter 4. Colluding Browser Extensions 67

2. Step 2: Y wraps the reference of an object carrying requisite information and

makes this reference accessible to X.

3. Step 3: X modifies the user detail by modifying DOM.

4. Step 4: When the victim user clicks on the submit button, the modified informa-

tion is sent to the credit server, and payment information is sent to the attacker.

X is benign because it modifies the information captured from sensitive source but this

information is not sent to sink. Instead, this information is obtained by Y .

Figure 4.8: Scenario-3 showing how transactions can be modified on the fly.

4.3.3 Altering Preferences

From the attacker’s perspective, the preferences can be set or modified for achieving

malicious goals. In Firefox, an extension has privilege to change the preferences of the

browsers, as well as any other installed extension. For example, an attacker, through a

malicious extension added to the victim’s browser can set a malicious page as the home

page. He can also modify the critical preferences of security tools such as noscript [70],

adblock, etc. and also has a capability to alter the browser’s privacy settings allowing

access to private data. This attack technique shows how two preference management

interfaces (nsIPrefService and nsIBranch) can be used by the attacker to set or reset

the stored preferences. We describe two potential attack points that can be exploited

by an attacker through preferences system.

Chapter 4. Colluding Browser Extensions 68

Attack Scenario 1: Altering browser’s Preferences. A browser has many security re-

lated preferences, such as, enable/disable cookies/JavaScript, and privacy settings. An

attacker can set or reset critical browser preferences through an extension having privi-

leges to override the default preferences values. For example, we can disable the Firefox

pop-up blocking by setting dom.disable open during load preference value to true.

Figure 4.9 shows an example for changing preference of the browser.

Figure 4.9: Changing privacy settings of web browser.

Attack Scenario 2: Altering Extension’s Preferences. Some extensions use preferences

for customizing. For example, noscript has provision for whitlisting an URL so that

security checks can be bypassed for this URL. An extension can change these pref-

erences without the user’s notice. We have implemented an extension for bypassing

noscript using nsIprefService. Our extension can change critical preferences of

noscript. We have added a malicious domain (e.g., malicious.com) in noScript using

capability.policy.manoscript.sites preference string, so that all security checks

provided by noscript for that domain are bypassed. Figure 4.10 shows the code snip-

pet of our extension.

4.3.4 Observing Preferences

A malicious extension can take advantage of misconfigured preferences to execute an

attack on the browser. An extension remains silent, waiting for user preference to change

and then launches the attack. An extension remains silent, waiting for user preference

to change and then launches a attack. The technique can be more elaborated with

real attack example. For this, we utilize the observer notifications technique to listen

to preferences change. Let us consider a simple attack scenario in which a malicious

extension is installed on the browser and has a capability of injecting scripts into the

browser content window. Initially, the malicious extension cannot execute script in the

Chapter 4. Colluding Browser Extensions 69

content window because the preference for the content security policy (CSP) is enabled,

i.e., security.csp.enable is set to true. The extension waits for user to disable this

preference, or it can use some social engineering trick enticing user to disable it. Once

the user disables CSP, our extension listens to the change and acts immediately.

Figure 4.10: Changing preference of NoScript extension.

4.4 Results and Analysis

We crafted prototypes of our attacks and evaluated their effects. The observer notifica-

tion collusion is evaluated on 300 web pages taken from different web domain categories:

banking, mailing, e-commerce domains, and domains that offer download credits. We

have collected 50 banking web sites registered in different countries. The Bank web-

sites are randomly selected from the list of top 10 banks for 10 different countries. The

other 250 websites from different domains are top 50 websites taken with respect to

Google ranking (taken from Jan-Feb, 2014). Due to security reasons, we cannot reveal

the name of the banks. The preference overriding is evaluated with five critical browser

configurations and three traditional security extensions.

Table 4.1: Actions Performed and Parameters taken in the Experiments.
Actions Performed on Web Pages

Banking
Domains

Mailing/e-commerce
Domains

Buy Credit
Domains

Scenario 1 Extract username, password Extract username, password Extract username, password

Scenario 2 Not Applicable
Modify transactions

Modify shopping address
Modify transaction amount

Modify username
Scenario 3 Not Applicable Add OTP/password field Add OTP/password field

Table 4.1 summarizes the actions performed on the web pages along with the parame-

ters extracted and manipulated for the attack scenarios. We have tested our proposed

colluding attack using three different attack scenarios. However, we have not applied

Chapter 4. Colluding Browser Extensions 70

scenarios 2 and 3 for Banking domains. Since these two scenarios modify/add fields

to the web page, we need a Internet banking account to login in a bank website and

facilitate Internet banking, which is not possible.

4.4.1 Evaluation of Collusion Techniques

For attack scenarios 1 and 3, we have taken five legitimate Firefox extensions individ-

ually from shopping and social category of Mozilla add-on database. These extension

incorporate functionalities desired by our attack scenarios like accessing information

from the web page, sending information over the network, etc. We embed the addi-

tional desired functionality in these extensions so that they can also collude with each

other. All these extensions are installed on different versions (3, 9, 12 and 25) of Firefox.

We then apply test case scenarios for selected web sites taken from three web domains

discussed above. Table 4.2 summarizes the experimental results for Object Collusion

attack. We have tested the attack using three different attack scenarios and found

following observations:

Table 4.2: Results for attack scenarios executed on web domains.

Banking
Domains

Mailing/e-commerce
Domains

Buy Credit
Domains

Success% Success% Success%
Scenario 1 19% 100% 100%
Scenario 2 Not Applicable 100% 100%
Scenario 3 Not Applicable 77% 80%

• Scenario 1 is 100% successful in mailing, e-commerce and download credit do-

main, whereas only a few bank websites allow the extensions capture credential

information. Our attack can capture username from banking login page, but the

password is hashed. In one-third of 50 banking sites we have tested, our attack

scenario can extract both username and password from bank login page.

• The second attack scenario is 100% favorable for all the web pages that we have

tested. Every website allowed our extension to modify the typed content on the

fly. This scenario is critical for every shopping and credit domains that are tested.

We have not applied this attack on banking domains.

Chapter 4. Colluding Browser Extensions 71

• The third attack scenario is successfully executed on 78% shopping domains and

80% credit procurement domains. Other domains did not either permit addi-

tions of extra field on the page, or suppressed subsequent processing if field was

successfully added. The web domains maintain session with every text field using

type=hidden for HTML input tag. When a new field is added to the web page, the

course is changed, and this effectively mitigates the attack. We have not applied

this attack on banking domains.

• This section demonstrates how misconfigured preferences can result in critical

browser attacks. We have selected five security relevant preferences of browser

and three popular browser security extensions: (1) noscript; (2) Web of trust; and

(3) adblock. We have implemented one extension, which can change the selected

preferences. Our extension is installed on different versions (3, 9, 12 and 25) of

Firefox. This extension modifies the selected preferences with insecure values and

for each preference we have evaluated browser security. Table 4.3 shows the five

critical browser preferences and preferences of three security extensions modified

by our extension.

4.4.2 Ramifications of Colluding Attacks

We have implemented our extensions in such a way that even a client side solution would

not be able to detect information and data leakage. We have tested our attacks against

four popular detection methods (i.e, VEX [56], SABRE [57], JSFLOW [92] and HMM

approach [94]). In this section, we present the brief analysis of these methods and discuss

how colluding attacks are effective against these solutions.

1. Colluding Attacks and VEX: VEX approach can detect (some of) the known

vulnerabilities in Firefox browser extensions using static information flow analysis.

In their analysis, they have checked the suspicious flow pattern from injectable

sources to executable sinks. Our extension contains either sensitive source or

sink but not both. Although, the legitimate functionality of an extension may

constitute part of such flows, but these partial flow are not detected by the current

framework of VEX.

Chapter 4. Colluding Browser Extensions 72

Table 4.3: Results showing browser security leaks using preferences.

Preference Risk after modifying preferences
Security relevant browser preferences

security.csp.enable enable/disable the content
security policy of browser

dom.disable open during load Allows pop-up windows
on browser if set to true

dom.popup allowed events Adding entries to this list
may allow unwanted pop-ups

extensions.update.url Adding malicious url using
this preference will change
extension update source

browser.safebrowsing.malware.enabled Do not download malware
& blacklists do not check
downloads if set to false

noscript extension
capability.policy.manoscript.sites Adding url to this preference will

bypass all the security checks
provided by noScript

adblock extension
extensions.adblockplus.whitelistschemes Using this preference an attacker can

add and remove whitelisting rules
WOT extension

weboftrust.norepsfor Adding malicious domain using
this preference will bypass the
malicious domains

VEX checks for vulnerable patterns in JavaScript extension on the basis of five

source to sink flows: out of these flows, our concern is only towards wrappedJSObject.

VEXmarks an object as vulnerable if the object is obtained using wrappedJSObject

calls in a method. The source locations are created using wrappedJSObject and

sink location is the method called by this object. In our attack, we have used

wrappedJSObject to wrap notification objects. VEX is able to determine that

the information has originated from a sensitive source from one extension while

in another extension the information flows to a sink. Since a single extension has

no suspicious flow and vulnerability, it will be passed as legitimate extensions by

VEX. Our colluding attacks are thus effective against VEX.

2. Colluding Attacks and SABRE: SABRE is based on the dynamic analysis of

object’s flow in JavaScript extensions. SABRE associates a label with each in-

memory JavaScript object in the browser, which determines whether the object

contains sensitive information. The label tracks the flow of sensitive informa-

tion and the flow of low-integrity information. SABRE only propagates labels

(objects), which are modified by the JavaScript extension and passed between

Chapter 4. Colluding Browser Extensions 73

browser subsystems within a single extension. It raises an alert if an object con-

taining sensitive information is accessed in an unsafe way. However, they have

not mentioned the object, which is outside extension’s scope, used by another

extension. The colluding attacks that we have implemented pass an object from

one extension to another extension. Due to this reason the SABRE framework

lets execution of colluding attacks.

3. Colluding Attacks and HMM: In [94], the authors present a model-based approach

for detecting vulnerable and malicious browser extensions using Hidden-Markov

Model (HMM). The authors have analyzed different types of browser extensions

(malicious, vulnerable and benign) based on the distinguishing features extracted

from these extensions while in operation. These features help determine the be-

havior of the extension and thereby detect its type automatically. The major

limitation of this work is the that they are classifying extensions on the basis of

a non-exhaustive malicious and vulnerable signatures and the method also ex-

cluded the objects wrapped in wrapper method, such as, wrappedJSObject. We

have implemented our extensions with benign behavior and used wrapper methods

and hence the above-discussed method is not able to categorize our extensions as

malicious or vulnerable.

4. Colluding Attacks and JSFlow: This approach is only partially related to our at-

tack domain. JSFlow is a security-enhanced JavaScript interpreter for fine-grained

tracking of information flow. The authors have implemented the information flow

policies for the full JavaScript language, as well as tracking information in the

presence of libraries, as provided by browser APIs. The JavaScript that the au-

thors have analyzed is the script embedded in the web applications. They have

not focused or discussed the JavaScript code in extensions. In absence of analysis

of JavaScript code in conjuction with extension privileges, the claimed policies

may not be the information policies for complete JavaScript language. Since we

have implemented attacks using two extensions, and the JavaScript code is more

privileged code, thus the policies discussed by JSFlow cannot be enforced on these

extensions.

Chapter 4. Colluding Browser Extensions 74

4.4.3 Mitigation Techniques

Solving the confinement problem, and in particular securing all possible covert channels

in a system, is known to be a difficult problem [101]. It is further more complex in

the case of browser extensions, where extra privileges given to browser and exposed API

features are key to user and developer adoption. Mitigation can be achieved either at the

design time (by reducing the privileges to sensitive APIs or by limiting communication

possibilities) or by analyzing static and dynamic properties of applications and their off-

line or at run-time interactions. In this section, we explore possible mitigation techniques

for the collusion attacks as discussed earlier.

Design Time Mitigation Techniques. There are number of techniques that could

be considered by browser and the developers of the extension:

1. Sandboxing. We explored SpiderMonkey, a JavaScript engine for Firefox browser

and found few weaknesses in handling the JavaScript objects. SpiderMonkey

creates a top-level object calledJSRuntime object that represents an instance of

the JavaScript engine. A program has only one JSRuntime, though it may have

many threads. The JSRuntime is the universe in which JavaScript objects live;

they can not be shared with other JSRuntimes. The JSContext is a child of the

JSRuntime.

A context can run scripts, contains the global object and the execution stack.

Once created, a context can be used any number of times for different scripts.

Objects may be shared among JSContexts within a JSRuntime. There is no fixed

association between an object and the context in which it is created. Since the

memory is shared among all extensions, the objects of one extension are accessible

to another extension. We suggest a sandbox environment for extensions so that

their memory spaces are isolated from each other, and any communication should

be through browser kernel. Sandboxing through virtualization shall mitigate such

attacks. Alternately, binding between object and its context can be strengthened

and violation of the binding is not allowed by default.

Few modern Web browser components run in a sandbox environment with re-

stricted privileges. Browser’s critical component, such as the rendering engine

runs in a sandbox with restricted privileges with no direct access to the local file

Chapter 4. Colluding Browser Extensions 75

system or other OS components. For example, in Google Chrome architecture,

rendering engine runs in a sandbox and has no direct access to the local file system.

Apart from Sandbox environment, the web browser provides isolation among web

programs. The browser provides single and shared space for all the extensions. In

some browsers, the extensions are isolated from other browsers components but

not from each other and share same address space. If each extension executes in its

own address space as in Chromium browser that provides separate address space

for each tab [102]. If the same policy is applied to the extensions, their objects are

also isolated from each other and cannot communicate directly to avoid colluding

attacks.

2. Limiting Privileges. When designing APIs or interfaces exposed to third-party

developers, designers should carefully consider the possibility that the API may

create a covert communication channel between extensions and browser. If any

overt or covert channel is found, its privileges should be controllable through the

browser configurations or policies. Preferably privileges assigned to any communi-

cation channel should be less than those of objects carrying sensitive information

to be protected. While transmitting contents of these objects across a communi-

cation channel, the privileges of the channel may be temporarily upgraded.

3. Limiting Channels. Communication channels constructed at browser applica-

tion level are dependent on the APIs exposed by the underlying operating system.

Careful design of permissions used to access data sources as well as data sharing

points (i.e., sharing of files or preferences, settings, memory, observer notifica-

tions) could be used for identifying extensions that require an excessive number

of permissions. In addition, some of these channels could be closed by remov-

ing unnecessary APIs after an analysis of the used and unused ones. This would

enable strict security while maintaining a reasonable amount of freedom for the

extension developers. Yet another way of achieving this is through encryption of

the sensitive data.

Extensions Analysis Techniques. There are number of techniques proposed in the

literature to analyze single extension that could be tuned to detect colluding communi-

cation among extensions:

Chapter 4. Colluding Browser Extensions 76

1. Black-box Analysis. One strategy in trying to detect collusion is to add a data

monitor between separate extensions on the browser. This technique would re-

move the need to detect covert channel by only monitoring data leakage from an

extension. In such a model, when data from one extension is used, the monitor

would store it and track the data sent to the colluding extension. While this ap-

proach seems promising, it is inherently limited: malicious extension can encrypt

or encode data in a way that it defeats monitoring. While it is clear that black-box

analysis may detect some trivial attempts of collusion, it clearly does not provide

a complete solution.

2. Improving client side solutions. There are number of offline extension analysis

solutions. But none addresses the collusion among extensions or detect covert

channel communication. We have analyzed four popular client side solutions,

VEX [56], SABRE [57], JSFLOW [92] and HMM [94] that are effective against

vulnerable and malicious extensions. We found that these solutions are meant for

analyzing an extension individually, and hence remain ineffective if a malicious

flow originates from two or more inter-communicating extensions. It is likely that

when colluding extensions are executed simultaneously on a device, they would

show a different behavior than when executed independently. For example, they

would detect each other’s presence and engage into communication over a covert

channel. To mitigate such attacks, behavior analysis could be used to detect such

a change of behavior.

4.5 Summary

In this chapter, we went through the concept of colluding browser extension for Firefox

that we have recently proposed in the preliminary version of this chapter. To the best

of our knowledge, this is a new concept related to security risks and exploits present

in Firefox’s extension model. We demonstrated the extension collusion attacks with

respect to extension communication over covert and overt channels. In particular, we

showed how two legitimate extensions can collude to achieve malicious goals and how

an individual malicious extension can mis-configure browser and another extensions

configurations. Our attacks are undetectable by existing known client side methods used

Chapter 4. Colluding Browser Extensions 77

for detecting malicious flow and vulnerability in extensions. We have demonstrated our

finding by targeting a malicious goal using two legitimate extensions on three critical

web domains; banking, online shopping, and websites that allow users to buy download

credits. We also provided a proof-of-concept explaining how multiple extensions can

collude with each other for compromising the browser for data leakage.

Chapter 5

sandFOX: Sandbox for Firefox

Browser

Browser functionalities can be widely extended by browser extensions. One of the key

features that makes browser extensions so powerful is that they run with “high” privi-

leges. As a consequence, a vulnerable or malicious extension might expose browser, and

operating system (OS) resources to possible attacks such as privilege escalation, infor-

mation stealing, and session hijacking. The resources are referred as browser as well as

OS components accessed through browser extension such as accessing information on

the web application, executing arbitrary processes, and even access files from a host file

system.

This chapter presents sandFOX (secure sandbox and isolated environment), a client-side

browser policies for constructing sandbox environment. sandFOX allows the browser ex-

tension to express fine-grained OS specific security policies that are enforced at runtime.

In particular, our proposed policies provide the protection to OS resources (e.g., host file

system, network and processes) from the browser attacks. We use Security-Enhanced

Linux (SELinux) to tune OS and build a sandbox that helps in reducing potential dam-

age from attacks on the OS resources. To show the practicality of sandFOX in a range

of settings, we compute the effectiveness of sandFOX for various browser attacks on

OS resources. We also show that sandFOX enabled browser imposes low overhead on

loading pages and utilizes negligible memory when running with sandbox environment.

78

Chapter 5. sandFOX: Sandbox for Firefox Browser 79

Contributions This chapter makes the following contributions.

1. We present the design of new sandbox environment called “sandFOX” for the

browsers on SELinux enabled Linux OS.

2. To the best of our knowledge, we are the first to enforce security policies on

OS resources accessed implicitly or explicitly by the browser. We are the first

to cope with compromised browser applications (plug-in or extension) while still

maintaining the security of browser and host OS resources.

3. We show how SELinux policies, as designed in Linux operating system, can be

useful for browser security.

4. We evaluate our sandFOX and security policies using malicious and critical re-

source eating extensions. We show how these extensions can attack if a browser

does not use sandFOX policies.

5.1 Problem

As the advent of web browser technologies, more and more new types of attacks has

evolved on the browser and operating system resources. The attacker initiate vari-

ous attacks on browser such as web-based attacks [66], side-channel attacks [103], and

extension-based attacks. The extension based attacks are most critical as they exploit

browser and OS resources. The threats against OS resources using browser extensions

are discussed by many researchers. These third-party extensions are used to enhance

the core functionality of the browser [18] and hence enjoy high privileges, sometimes

as high as those of the browser itself. The threats posed by these extensions are very

critical, for instance, an attacker can launch a malicious process to compromise an entire

system. In particular, Liverani [10] takes a more practical approach and demonstrate

examples of possible malicious actions induced by an adversary on Firefox extensions. In

our previous work [27], we have provided the proof-of-concept to show vulnerable points

in Firefox extensions system and shows various attack vector used by the attacker to

install and spread the JSEs.

Chapter 5. sandFOX: Sandbox for Firefox Browser 80

Browser provides thousands of free JSEs to customize and enhance the look and feel

of the browser. Browser renders JSEs to run with full chrome1 privileges including

access to browser components such as cookie manager, password manager, and access

to information present in a web page. While the ability to access such privileges within

browser and host machine OS, the hosting browser effectively opens itself up to attacks

and poor programming practices from every JavaScript library or API it uses. For

instance, a vulnerable or malicious extension might access /etc/password file to gain

root access in a Linux based host machine. Consequently, malicious and benign-but-

buggy JSEs are significant security threats in browser [24].

Efforts to provide security in this evolved model of web browsing have had limited

success. The Same Origin Policy (SOP) [19] is one security policy that most web browsers

implement. The SOP restricts the objects or scripts loaded from one origin (or domain)

to access objects and scripts from the other domain. However, the SOP is too restrictive

for use with browser extensions and plug-ins. The extensions privileges allow a malicious

extension to bypass SOP [27]. As a result, extension developers have been forced to

implement their security policies [104]. Current research efforts into more secure web

browsers help improve the security of browsers in the presence of browser extensions [56,

59, 60, 105]. But ensuring the protection of OS resources from browser extension is still

a daunting task.

Component isolation and restrictive access to resources can be used to address OS level

attack through browser. The new browser architectures for separating the browser

components from OS are proposed in [45, 46, 106, 107]. However, these more secure web

browsers are susceptible to serious attacks because all applications including extensions

share OS services, which the attackers can compromise. Also, the isolation forces the

extensions to loose functionality of accessing OS resources. Furthermore, all previously

published solutions require browser redesign.

5.2 sandFOX: Proposed Sandbox

In this chapter, we propose a sandFOX policies, an OS based sandboxing environment

that isolates browser from the OS resources to ensure the protection from extension

1chrome is the entities making up the user interface of a specific application or extension

Chapter 5. sandFOX: Sandbox for Firefox Browser 81

based browser attacks. In particular, our security policies allow the extensions to achieve

the desired functionality in a restrictive sandboxed environment. In sandFOX, we use

SELinux policies to build OS-level sandboxing. SELinux allows to set policies on the

critical OS resources that are accessible via browser extensions. sandFOX provides a

clean separation between the highly privileged extensions and the OS resources, and it

also allows us to provide strong isolation guarantees to prevent threats from vulnerable

and malicious extensions. This chapter provides an threat model and proposed sandbox

environment for web browser. We first briefly discuss the threats model for Firefox

browser (Section 5.2.1). Section 5.2.2 briefly describes an overview of SELINUX in

Linux operating system. In Section 5.2.3, we discuss the sandbox environent for web

browsers.

5.2.1 Threat Model

Isolation in web browser varies from vendor to vendor. For example, Firefox browser

does not use isolated memory and runs on a single process model, whereas Chrome uses

isolated multi-process architecture that allows isolation among components. In addition,

the extensions can access and modify the stack of a random thread inside the process.

However, every browser uses high privileges extension that communications with the

OS resources. The vulnerable and malicious extensions in browser may lead to critical

attacks.

This chapter presents a threat model for Firefox browser because our analysis observed

that Firefox does not use any isolation between browser and OS resources, and hence an

extension with malicious intent is able to access OS resources. The property of browser

lacking isolation motivates us to drill down more into Firefox extension system. In this

section, we discuss security risk caused by Firefox extensions. Here are a few ways that

an attacker can still cause damage to more secure web browsers:

1. A compromised Ethernet driver can send sensitive HTTP data (e.g., passwords

or login cookies) to any remote host or change the HTTP response data before

routing it to the network stack.

2. A compromised storage module can modify or steal any browser related persistent

data.

Chapter 5. sandFOX: Sandbox for Firefox Browser 82

3. A compromised network stack can tamper with any network connection or send

sensitive HTTP data to an attacker.

4. A compromised process manager can launch any arbitrary process and script in

background with user notice.

To show the utility of our proposed sandFOX, we implement security policies to protect

three major OS resources.

1. We develop a flexible security policies that allow us to apply restriction in accessing

the entire host file system by the browser and extensions. Our policies deny an

extension to execute if it tries to access system configuration files and directories,

for example, /etc, /boot, /proc, etc. Our policies give extensions the flexibility to

access host file system while still maintaining the confidentiality and integrity of

critical files, even if an attacker compromises the host file system.

2. We protect processes running on host OS. Our policies deny if an extension ex-

ecutes an arbitrary process on the host OS. In particular, we restrict browser

process in accessing other OS processes or executing the new process from run-

ning browser application.

3. We restrict network access by the browser and extensions. In particular, our

policies restrict an extension to tamper with any network connection or send/re-

ceive sensitive HTTP data to/from a remote attacker location. For instance, we

restrict cross-origin network access and Unsecured port from being accessed by

the browser applications (extensions). However, our policy also gives extensions

the flexibility to establish network connection in same origin, i.e., extensions can

access, send or receive information over the network in the same domain.

The sandFOX policies does not address attacks that operate within modern browser

security policy, such as cross-site scripting [108], clickjacking [100], phishing [109] and

request forgery [67]. Our goal is to prevent system-level attacks in the web browser that

degrades the overall security of the browser and OS. For example, executing arbitrary

process through extensions may launch malware in the host OS. SandFOX prevents a

browser extension in executing new process and killing of running process. We assume

Chapter 5. sandFOX: Sandbox for Firefox Browser 83

that the techniques that secure web applications and provide protection against click-

jacking, phishing, cross-site scripting and other web application attacks are resistive and

trusted.

5.2.2 SELINUX Overview

The SELinux [110] mandatory access control system is designed to prevent an intruder

who has gained a foothold in the system from escalating privileges. SELinux pro-

vide the principle of least privilege to protect the system services such as BIND [111],

APACHE [112] and desktop applications such as web browsers. SELinux prevents the

compromise of entire system services and applications due to the compromise of a single

application. With the use of SELinux, the applications programs can be placed into in-

dividual sandboxes, isolating them from one another and from the underlying operating

system. Furthermore, SELinux protects the confidentiality and integrity of data that are

shared among applications. SELinux restricts users over how data may be manipulated.

The sensitive data can be restricted to policies from inadvertent sharing, modification,

or deletion.

SELinux provides two security mechanism to achieve a flexible security policy model:

type enforcement and role-based access control. In type enforcement model, the domains

are used to label running programs (processes), and types are used to label files and

other resources. This model protects the system from vulnerable applications that can

damage or destroy the system. Type enforcement operates by tagging each entity (such

as processes) and object (such as files and packets) in the system. SELinux defines

all the access and transition rights of every user, application, process, and file on the

system. For example, an application, attempts to access an object (for example, a file),

the policy enforcement server in the kernel checks the access vector cache (AVC). AVC is

where subject and object permissions are cached. If the decision cannot be made based

on data in the AVC, the request continues to the security server, which looks up the

security context of the application and the file in a matrix. Permission is then granted

or denied, with an avc: denied message detailed in /var/log/messages if permission is

denied.

Chapter 5. sandFOX: Sandbox for Firefox Browser 84

To further explore the SELinux policy model, let us consider an example of the password

management program (i.e, passwd). In Linux, the password program is trusted to read

and modify the shadow password file (/etc/shadow) where encrypted passwords are

stored. The password programs implement its internal security policies that allow any

Linux user except root to change only their password, whereas root can change any

password. In general, the program running as the root user (which has all access to

all files) has the potential to modify /etc/shadow. SELinux provides the strict policies

rules that enables only the password program (or similar trusted program) can access

the shadow file, regardless of the user running the program as root.

Under SELinux, all file systems, files, directories, devices, and processes have an associ-

ated security context. For files, SELinux stores a context label in the extended attributes

of the file system. The context contains additional information about a system object:

the SELinux user, their role, their type, and the security level. SELinux uses this context

information to control access to processes, Linux users, and files.

SELinux’s tighter access control can confine user and system programs to the minimum

amount of privilege they require to do their jobs. First, it can restrict privileged daemons.

So, if such a daemon is exploited, the attacker can perform only the operations that the

daemon is supposed to perform, thereby limiting his or her playing field. Second, an

unprivileged process, such as a browser, can only invoke calls that its supposed to,

thereby protecting the system from potential vulnerabilities in unused calls.

5.2.3 SandFOX Architecture

We present several scenarios demonstrating SELinux’s usefulness in the web browsers.

In particular, we show that the existing Firefox architecture is immune to extension-

based attacks and no security policy exists to protect the browser from these attacks.

sandFOX policies are designed using SELinux would reduce the damage it could cause

when exploited. Figure 5.1 illustrates the proposed sandFOX architecture. SELinux

policies are applied on both Linux OS and browser to create a secure and isolated layer

between the browser and operating system. The presence of this layer prevents an

attacker from unrestricted access of critical OS resources.

Chapter 5. sandFOX: Sandbox for Firefox Browser 85

Figure 5.1: The execution environment of a sandbox browser.

In this section, first, we discuss three OS resources that are exploitable by extensions in

current Firefox design; then we discuss the policies we implement with a focus on how

each policy improves the security of the browser.

1. Protecting Processes. Firefox browser contains several Cross-platform Compo-

nent Object Model (XPCOM) [12] interfaces that attackers might exploit to gain

additional privileges. Firefox provides the nsIProcess interface to run other ap-

plication from the third-party extension running in the browser. The nsIProcess

interface is cross-platform, which means it is capable of executing an application

in windows and Linux OS. If an attacker creates daemon to execute a malicious

script on a Linux shell, the script would mis-configure Linux services. For ex-

ample, let us consider a malicious shell script that modifies iptables [113] rules

to disable host machine firewall. The browser extension downloads the script in

/boot folder and then executes as a process. Once a malformed script exploits

iptables rules, it can disable existing firewall rules and append new rules, which

might result a security beach in victim OS.

1 <s c r i p t>

2 var l F i l e = Components . c l a s s e s [”@mozil la . org / f i l e / l o c a l ; 1 ”] .

c r e a t e I n s t an c e (Components . i n t e r f a c e s . n s ILo c a lF i l e) ;

3 var lPath = ”\boot\malware . sh” ;

4 l F i l e . initWithPath (lPath) ;

Chapter 5. sandFOX: Sandbox for Firefox Browser 86

5 var pro ce s s = Components . c l a s s e s [”@mozil la . org / pro ce s s / u t i l ; 1 ”] .

c r e a t e I n s t an c e (Components . i n t e r f a c e s . n s IP roce s s) ;

6 proce s s . i n i t (l F i l e) ;

7 proce s s . run (f a l s e , [’ \boot\malware . sh ’] , 1) ;

8 </s c r i p t>

Listing 5.1: JavaScript Code Snippet for remote code execution exploit.

Listing 5.1 illustrates the browser extension code snippet for remote code execution

by executing malware.sh script. The extension codes uses nsILocalFile interface

to set path of malware.sh script stored on host OS file system (lines 2-4). The

script will spawn a BASH shell on the victim’s desktop (Line 7). This way an

extension can access file system and invoke process on host OS.

2. Protecting File System. To preserve system integrity, we must prevent exten-

sions from writing to critical executables or altering configuration files. But even

read-only access should sometimes be prevented because some files might contain

confidential information (such as /etc/passwd file). Linux uses file permissions to

restrict access to files. However, a browser daemon running with root permissions

allows an extension to override the permissions of the files. Listing 5.2 illustrates

the browser extension code snippet for reading /etc/passwd file. The extension

uses nsIFile interface to create an instance of host OS file system (lines 1-3). A

file (/etc/passwd) is read using nsIFileInputStream interface (lines 5-8) .

1 var f i l e = Components . c l a s s e s [”@mozil la . org / f i l e /

d i r e c t o r y s e r v i c e ; 1 ”] .

2 g e tS e r v i c e (Components . i n t e r f a c e s .

n s IP r ope r t i e s) .

3 get (”ProfD” , Components . i n t e r f a c e s .

n s I F i l e) ;

4 f i l e . initWithPath (”\\\ e t c \passwd”) ;

5 var inputStream = Components . c l a s s e s [”@mozil la . org /network/ f i l e −
output−stream ; 1 ”] .

6 c r e a t e I n s t an c e (Components . i n t e r f a c e s . ns IFi l e InputStream) ;

7 inputStream . i n i t (f i l e 1 , −1, 0666 , 0) ;

8 inputStream . read (r e s u l t) ;

Listing 5.2: JavaScript Code Snippet for reading Linux file.

Chapter 5. sandFOX: Sandbox for Firefox Browser 87

The browser running under SELinux sandbox can limit a process’s access to files

even if it runs with the root permissions. For example, the init process does not

need to write to disk, and SELinux can ensure that it never will, even though it

runs as root. Applying access control on files in Firefox browser is particularly

necessary. We use the SELinux policies to control critical Linux files and allow

restrictive access to file system through the browser extension. The restricted poli-

cies protect system functionalities that Linux handles using files. Consequently,

policies that protect files can therefore also protect critical system resources and

services such as drivers, sockets, character devices, block devices, and directories.

3. Protecting Network Service. For every web browser to use Internet, the network

service is the most required and critical. However, browser extensions provide

APIs that allows an extension to make a cross-domain requests, and this violates

SOP. The extensions can bypass SOP to include external content from different

domains which leads to an attack. Extensions can use opened network ports,

network sockets, send information through port 25, perform redirection or permit

access to external resources.

1 //Change F i r e fox p r e f e r en c e s

2 var p r e f s = Components . c l a s s e s [’ @mozil la . org / pr e f e r ence s−s e r v i c e

; 1 ’] .

3 g e tS e r v i c e (Components . i n t e r f a c e s . nsIPrefBranch) ;

4 var headers = p r e f s . getCharPref (’ c o r s . headers ’) ;

5 // Cross domain c a l l s

6 var xhr = new XMLHttpRequest () ;

7 var u r l = ’ http : // a t ta cke r . com/ma l s c r ip t /hooks/ ’ ;

8 func t i on callOtherDomain () {
9 i f (xhr) {

10 xhr . open (’GET’ , ur l , t rue) ;

11 xhr . onreadystatechange = handler ;

12 xhr . send () ;

13 } }

Listing 5.3: JavaScript Code Snippet for making cross-domain calls.

Listing 5.3 illustrates the browser extension code snippet for making cross-domain

calls and violating SOP. In this extension, first we add cross-origin resource shar-

ing(CORS) [114] Access-Control-Allow-Origin & Access-Control-Allow-Method

Chapter 5. sandFOX: Sandbox for Firefox Browser 88

HTTP-headers to all responses before they are processed by the browser (Line 4).

This can be done by exploiting nsIPrefBrach XPCOM interface used to change

the Firefox preferences. The preferences setting allows us to bypass the SOP

and then using XMLHTTPRequest method (Line 6), the extension can make cross-

domain calls. For instance, an attacker can access information from the web page

and then send this information to attacker domain (lines 7-12).

The sandFOX enabled browser can limit network access initiated by the browser

components. Our policies allow only web access on http and https. The sandFOX

denies access to critical ports such as port 21, 25, which an attacker can use to

leak information from the web browser. In particular, with our proposed policies,

the browser extensions can not initiate any direct or indirect request on critical

ports.

5.2.4 Tuning OS

The first layer of security that we propose is tuning the operating system using SELinux

policies. The SELinux policies provides highly restrictive environment to the applica-

tions. In the restrictive environment applications like web browser loses some function-

alities and completely disallows to interact with OS resources, even root has limited

access. We configure the OS using SELinux policies so that the browser can achieve

its functionalities in restrictive environment. In particular, we define some system level

policies to limit the OS resources accessed by the web browser. For example, a policy

defines a domain user mozilla t and admin mozilla t for ordinary users and admin-

istration users respectively. In this way, user and admin would have different domains

for web browsing that is protected from each other.

We define role-based access control policies in which a role is assigned to a user, which is

an abstraction designed to make policy rules more concise. Roles are used to determine

which domains can be used. For example, user mozilla t would be associated with

role user t. To complete the separation, we would create separate file types for each

web browser domain and only allow the domains types “write” access to their respective

file types. The result would be that the web browser runs in a different domain with

different privileges.

Chapter 5. sandFOX: Sandbox for Firefox Browser 89

We enforce access controls to a limited number of processes that are believed to be

most likely to be the target of an attacker. The targeted processes run in their SELinux

domain, known as a confined domain, which restricts access to networks that an attacker

could exploit. If SELinux detects that a targeted process is trying to access resources

outside the confined domain, it denies access to those resources and logs the denial.

In particular, we apply policies on services that allows access to the remote location

using network service. For example, httpd, sendmail and ftp service, and processes that

run as root to perform tasks on behalf of users, such as passwd. These services, if not

controlled may be risky to web browser. For example, FFSniff extension can send web

page information to remote attacker using mail service on port 25. Enforcing our policies

restrict such dangerous extensions in executing privacy leakage attacks.

5.2.5 Using SELinux Sandbox

SELinux allows administrators or users to lock down tightly untrusted applications in a

sandbox where they use the OS resources in a restrictive environment. This is second

layer of defense that we provide to secure OS resources from browser attacks. This

sandbox restricts OS resources such as network and file system operations to avoid

threats. In particular, the sandbox provides an isolated environment that can be used

to protect a system while allowing it to run some untrusted binary. Our goal in this

chapter is to provide isolated sandbox to let the Firefox browser execute untrusted code

in a more secure manner. However, SELinux policies is not directly applicable to the

browser. A browser running in a sandbox is very restricted, and can not read or write to

any files and directories that are not explicitly allowed, and they also have no network

access. The browser is pretty useless without these services.

This chapter rewrites the SELinux policies and present virtual cage (sandFOX) in which

we can lock up Firefox browser. The browser running in sandFOX environment is able

to achieve required functionalities but in an isolated environment. However, our policies

allow Firefox to use OS resources in highly secured and restrictive environment. The

resulting solution is both intelligent and elegant.

Chapter 5. sandFOX: Sandbox for Firefox Browser 90

sandFOX Policies. The default SELinux sandbox is highly restrictive, and is irrelevant

for Firefox browser. To create the policies for the Firefox browser, we customize some

of SELinux policies.

1. File System Policies. Instead of allowing the application direct access to all

directories in a file system, the sandFOX allows access to tmp and home directory.

Each directory is assigned its own SELinux context, making it impossible for other

application to access browser information and browser application to access files

in other directories.

$sandbox−M −H home\ −T tmp\ firefox

2. Network Policies. Firefox is pretty useless without network access. Using

sandbox web t allows for web browsing.

$sandbox− t sandbox web t −i/home/anil/.mozilla −Xfirefox

The -t option in sandbox tells browser which SELinux context to use. The -i

/home/anil/.mozilla tells the sandbox to copy the contents of .mozilla direc-

tory into the sandbox. This should not have any sensitive information in it such as

stored passwords and cookies. The -X tells sandbox to launch an X sandbox, and

the firefox is the command to run. After this command, the Firefox would no

longer be able to connect to any other port except port 80, because sandbox web t

is only allowed to connect to http port t.

3. Process Policies. SELinux provides a finer-grained level of control over processes

in the Linux operating system. SELinux allow to define a security policy that

provides granular permissions for all processes executed and loaded by a local user

or root. We use these policies in our sandFOX environment to restrict browser in

handling Linux processes. Our policies enforce access controls to a processes that

are believed to be most likely to be the targets of an attack on the system. The

targeted processes run in their SELinux domain, known as a confined domain,

which restricts access to sensitive files such as passwd by an attacker process. If

SELinux detects that a targeted process is trying to access resources outside the

confined domain, it denies access to those resources and logs the denial.

Chapter 5. sandFOX: Sandbox for Firefox Browser 91

Our proposed SELinux policies for Firefox browser restricts only specific services and

run them in confined domains. Without our policy, a browser extension will run under

the context of the user that started it. So if the extension has malicious intent accesses a

applications that is running under the root user, the extension can do whatever it wants

root has all-encompassing rights on every file. For example, the browser extension that

listens to a network service is capable of sending information to the remote location can

send critical files to attackers location. However, our policy restricts such extension in

accessing critical files such as passwd. In particular, if an attack compromises network

process that is running in network domain, the sandFOX policy prevents an attacker in

accessing resources that are not in the network domain.

5.3 Evaluation

This section presents the evaluation of sandFOX in the context of threats possessed by

the Firefox browser extensions. We also benchmark our sandFOX enabled browser on

web page load latency and memory footprint criterias.

All experiments were carried out on a Intel Core i5 CPU 650 @ 3.20GHz with 4 GB of

memory and a 250 GB serial ATA hard drive.The OS is Fedora 20, running the 64-bit

version of Linux Kernel 3.11.10. We use Firefox25 version to evaluate our proposed

policies. Section 5.3.1 evaluates the effectiveness of our proposed sandFOX using vulner-

able and malicious browser extensions. Section 5.3.2 evaluates the performance overhead

of sandFOX.

5.3.1 Security Analysis

To evaluate the sandFOX resilience to browser attacks, we execute several attacks on

Firefox browser. We have developed several extension with a malicious functionality of

accessing critical OS resources. Table 5.1 illustrates some example extension along with

their functionalities. Our proposed sandbox and isolation policies make many attacks

considerably more difficult and lessen the impact of the exploits. In particular, we exploit

major OS resources to show how sandFOX is effectively preventing compromise of these

resources from an attack. Our goal, when performing this experiment is only to verify

Chapter 5. sandFOX: Sandbox for Firefox Browser 92

that the browser does not allow a third-party extension to compromise OS resources.

We ensure that if such attack happens in a browser, the sandFOX policies deny access

to the OS resources and log an error.

Table 5.1: Extensions used in evaluating effectiveness of sandFOX.

Extension Name Resources Accessed Description

FFSniff Network, Web page information
Access information from web page and
send it over remote location on port 25.

Keylogger Web page information, File system
This extension first access the information
and create a file on host file system.

Password Stealer Network, Web page information
Access information from web page and send it
over remote location using network service.

FireFTP Network
FireFTP is a cross-platform FTP/SFTP client
for Mozilla Firefox which provides easy and
intuitive access to FTP/SFTP servers.

Myprocess Processes, File system
This extenstion first read file from host
file system and then execute it as a background
process.

Launcher Process Launcher can launch an arbitrary host process.

Facebook Like Network, Web page information
Facebook Like accesses logged in user Facebook
page information and send it some arbitrary
location.

Tweet Me Network, Web page information
Tweet Me can send any fake tweet or
modifies the current tweet send by logged
in twitter user.

BackProcess Process
BackProcess can launch an arbitrary host process
in background with user notice.

1. File System Attacks. In general, a web browser has an ability to access a host

OS file system to steal or manipulate critical information. The sandFOX enabled

browser reduces the severity of this class of attack significantly. Our sandFOX

enforce policies on host file system so that it can access limited files and directories

on the host file system and hence, there is less surface for an attacker to exploit

critical files. We implemented Password Stealer extension to test the attack on

host file system. Using password stealer, a user can read /etc/passwd file if the

extension runs without sandFOX browser. However, executing the same extension

in sandFOX enabled browser disallows a user to read passwd file. The attack fails

because our policies only allows user home and tmp directory to be accessible by

the browser and extensions.

2. Process Attacks. The sandFOX policies prohibit an extension or web application

to launch an arbitrary process on a host OS. In particular, the browser is enforc-

ing sandFOX policies that restrict browser to execute and create a process, and

Chapter 5. sandFOX: Sandbox for Firefox Browser 93

execute a shell script on a host OS. We develop a proof-of-concept extension that

allows the browser to execute a process, and run a script on Linux bash shell.

We find that the sandFOX enabled browser restricts browser to execute new pro-

cesses and scripts. This evaluation provides assurance that sandFOX policies are

effective in restricting processes to be invoked by the browser on a host OS.

3. Network Attacks. The network is the major service that a browser and extensions

require. However, open network service (without restrictions) allows an extension

to leak private information to outside world. Our proposed sandFOX enabled

browser enforce policies that restrict browser in accessing all network services.

Our policies restrict cross-domain request initiated by the extensions and web

applications. We test our policies using known FFSniff malware analyzed by

various researchers [56, 57, 115]. FFSniff sends the web page information to remote

location on port 25. On executing FFSniff on the sandFOX enabled browser, we

find that the browser is enforcing sandFOX policies, which denies access on port

25 by an extension. This evaluation provides assurance that sandFOX policies are

effective in restricting network services used by browser and its components.

4. Memory Attacks. Buffer overflow and code execution is one class of vulnerabilities

common to browsers and plugins. The sandFOX enabled browser reduces the

severity of this class of attack significantly. Our sandFOX policies limit or isolate

a compromised browser so that it can only interact with other browser components,

and prevent interaction with the OS resources. Protecting the OS resources from

an exploited browser is critical to providing security for the system and browser.

The modern OS provides sandboxing environment using a variety of techniques.

We use SELinux policies to restricts the access of OS resources. For example, if the

attack results in malicious code execution inside the browser, the browser enforce

sandFOX policies that restrict direct or indirect access to the OS resources.

5. Web Application Attacks. Our sandFOX policies do not provide protection for

clients from web application bugs, which could result in attacks such as cross-

site scripting or cross-site request forgery, clickjacking. Instead, our policies can

prevent the malicious script from making access to the local file system as well as

preventing network access outside of the sandFOX enabled the browser and cross-

domain network access. These policies can prevent the effects of some types of

Chapter 5. sandFOX: Sandbox for Firefox Browser 94

cross-site scripting attacks but does not prevent the vulnerable script from being

exploited.

5.3.2 Benchmarking of sandFOX

To evaluate the performance of web browser running with our proposed sandFOX poli-

cies, we measure page load times and memory footprint. Our goal when performing

these evaluations is only to verify that the browser does not introduce unreasonable

delays that are noticeable by the user.

1. Latency. To measure the latency introduced by sandFOX browser, we compare

the load times of a few common pages opened in sandFOX enabled browser with

that of without sandFOX browser. We divide the web pages on the basis of content

they load in web browser. We use five categories illustrated in Table 5.2. The web

sites considered in this experiment are popular web sites ranked by google.co.in.

The web websites consist of several components such as CSS, JavaScript, applets,

flash videos. We measure the load time of each web site using Firebug [116] Firefox

extension. Each page is loaded ten times in the browser, and the loading times

are averaged. The latency is dependent on the various parameters such as system

memory, CPU clock cycle, network load, and bandwidth.

Table 5.2: Averaged Load latencies for 50 web pages categories on the basis
on content. The latency illustrates the browser load with and without sandFOX

environment.

Web Page Web Sites Latency With Latency Without
Content Tested sandFOX sandFOX

(Seconds) (Seconds)
Flash Videos 50 3.55 2.86

Scripts 50 2.44 2.54
Frames 50 2.71 2.10
CSS 50 1.59 1.52

Only HTML 50 1.35 1.35

Our proposed sandFOX policies incur a negligible performance overhead on the

browser. We do not notice any major slowdowns in the browsing experience

during the evaluation. We observe that most of the pages tested, we see little

difference in the page load times; however, for the web pages without frames and

Chapter 5. sandFOX: Sandbox for Firefox Browser 95

flash videos loads noticeable faster than with frames and flash videos. We observe

some overhead in sandFOX enabled browser. However, despite these overheads,

the performance of the browser was not noticeably slower during normal web

browsing, even with JavaScript heavy web pages, such as Google maps and street

views.

2. Memory Usage. To measure the memory footprint of the browser running with

sandFOX policies, we load the browser and navigate to a single web page with no

plug-ins and extensions. We use the Gnome system monitor to measure memory

usage. Table 5.3 displays the comparable results when executing browser with

and without our proposed sandFOX.

We observed that our proposed sandFOX policies do not take much memory in

all categories of tested web pages. Loading normal web page such as google.co.in

in Firefox consumes around 108.8MB of memory without a sandFOX environ-

ment, whereas Firefox consumes around 109.8MB of memory when a web page is

loaded with sandFOX environment. These observations clearly suggests that our

sandFOX policies do not consume more memory.

Table 5.3: Memory Footprint of Firefox browser with and without sandFOX.

Web Page Web Sites Memory With Memory Without
Content Tested sandFOX sandFOX

(MB) (MB)
Flash Videos 50 154.9 153.1

Scripts 50 116.5 112.4
Frames 50 113.2 113.1
CSS 50 110.5 110.5

Only HTML 50 109.8 108.8

Limitations. Our sandFOX policies do not provide protection for clients from web

application bugs, which could result in attacks such as cross-site scripting or cross-site

request forgery, clickjacking. Instead, our policies can prevent the malicious script from

making access to the local file system as well as preventing network access outside of

the sandFOX enabled the browser and cross-domain network access. These policies can

prevent the effects of some types of cross-site scripting attacks but does not prevent the

vulnerable script from being exploited. Furthermore, the SELinux sandbox is a part of

Linux based operating system and hence our proposed sandFOX environment does not

support Windows operating system.

Chapter 5. sandFOX: Sandbox for Firefox Browser 96

5.4 Summary

This chapter presented sandFOX, a secure sandbox and isolated environment for Firefox

browser. Our sandFOX policies restrict an attacker in executing critical attacks on

operating system resources such as file system, network, process. Our proposed solution

does not modify existing Firefox browser and its components. Instead, it uses Security-

Enhanced Linux (SELinux) to build a sandbox that helps in reducing potential damage

from extension-based attacks on OS resources. Our proposed policies let a browser

application such as extensions and plug-in to access limited OS resources in the restrictive

environment, and hence do not affect the functionalities and user browsing experience.

We show the practicality of sandFOX in a range of settings, we compute the effectiveness

of sandFOX for various browser attacks. We also show that sandFOX enabled browser

imposes low overhead on loading web pages and utilizes negligible memory when running

with sandbox environment.

Chapter 6

Detection of Click-Hijacking in

Browser

Click Hijacking (Clickjacking) is emerging as a potential web-based threat on the In-

ternet. The prime objective of clickjacking is to steal information on user clicks. It

can be achieved by tricking the victim into clicking an element that is barely visible or

completely hidden. By stealing the victim’s clicks, an attacker could entice the victim

to perform an unintended action from which the attacker can benefit. These actions

include online money transactions, sharing malicious website links, initiate social net-

working links, etc.

This chapter presents an anatomy of advanced clickjacking attacks not yet reported in

the literature. We demonstrate that current defense techniques are ineffective to deal

with these sophisticated clickjacking attacks. Furthermore, these attacks are browser

agnostics. Subsequently, we develop a novel detection method for such attacks based

on the behavior (response) of a website active content against the user clicks (request).

In our experiments, we found that our method can detect advanced Scalable Vector

Graphics (SVG)-based attacks where most of the contemporary tools fail. We explore

and utilize various common and distinguishing characteristics of malicious and legitimate

web pages to build a behavioral model based on Finite State Automaton (FSA). We

evaluate our proposal with a sample set of 78000 web pages from various sources, and

1000 web pages involving clickjacking. Our results demonstrate that proposed solution

97

Chapter 6. Detection of Click-Hijacking in Browser 98

enjoys the good accuracy and a negligible percentage of false positives of 0.28% and zero

false negatives in distinguishing clickjacking and legitimate websites.

The contributions of this work are manifold:

1. Novel Clickjacking Attacks. We presents an anatomy of novel advanced click-

jacking attacks using visual effects caused by SVG images and filters. Further-

more, we present some alternative methods for achieving properties of clickjacking

attacks. Our proposed attacks defeat existing clickjacking attack detection tools.

2. Unified Behavioral Model. We present a behavioral clickjacking detection

approach based on the behavior (response) of websites against the user clicks

(request). We describe our model using the notion of Finite State Automaton

(FSA). The FSA is constructed for various request and response pairs to represent

various states belong to either clickjacking attack or legitimate scenario.

3. Implementation Framework. We present a prototype model consisting of four

modules: Query String Formation (QSF) module; Signature Generation module;

C-CHECK parser module; and Click Inspector module.

4. Experimental validation. We present a detailed experimental evaluation of

our system on real-world web pages. In our evaluation, we implemented different

variants of clickjacking attacks, which includes basic as well as new advanced

attacks. We tested our proposed solution on dataset of 78000 web pages taken

from different sources.

6.1 Problem

Clickjacking attack is an attack against users of web application in which a malicious

page is created by an attacker. The infected web page is designed in such a way that it

tricks a user into clicking on a page element. This click targets an action against victim

page that is hidden from the user. Sometimes, the clicked element overlaps or stacks with

an element on the victim page. With this technique, an attacker can “steal” user click to

target any website including authenticated website to perform malicious activities. For

example, an attacker can target social networking website, such as Facebook to trigger

Chapter 6. Detection of Click-Hijacking in Browser 99

“like” button without user’s notice, Twitter by posting unwanted messages, unsecure

banking websites by executing an online money transaction.

Clickjacking attack was first addressed by Robert Hansen and Jeremiah Grossman in a

talk at OWASP AppSec 2008 [117]. Some proof-of-concept for clickjacking examples that

have been made public were posted by security researchers, and by hackers [63, 117–119].

In particular, all these attacks have focused on clickjacking attacks that are caused from

transparent iframes and overlapped web elements. The Hyper Text Markup Language

(HTML) iframe element represents a nested browsing context, effectively embedding

another HTML page into the current page. There are other advanced methods that can

be used to steal user clicks from the browser. This chapter considers not only iframe

based clickjacking attacks, but also new methods of achieving clickjacking attacks. For

example, we consider Event bubbling, SVG-based attacks that achieve transparency and

overlapping using SVG filters.

Clickjacking attacks are fundamentally attacks on limitations of human perception. In

other words, any user interaction with web page elements should succeed only if the user

perceived, understood and made a conscious decision to take a particular action. In this

work, we develop a novel approach to detect clickjacking attack based on the behavior

(response) of websites against the user clicks (request). The key idea to observe the

essence of clickjacking attack is that the web page opened in a browser must have one

or more suspicious properties such an overlapping, transparency, stacking, DIV nesting

of elements. In particular, we propose several features to gather clickjacking symptoms,

which cannot be identified by the human eyes or perceived by the human mind, from a

website.

We examined a set of common and distinguishing functionalities that legitimate, and

malicious web pages can perform. We then identify static as well as dynamic features

from the web pages. The static features are taken when a page is downloaded or opened

in the web browser window. The dynamic features are taken on the basis of the observed

response of user clicks. These web page features are comprehensive and can be used to

derive a behavior model for a website and classify if it is susceptible to clickjacking.

Chapter 6. Detection of Click-Hijacking in Browser 100

6.2 Clickjacking Attacks

In this section, we briefly present a detailed description of various existing clickjacking

attack classes and the motivation behind our clickjacking attack detection approach.

Table 6.1 illustrates the broad categories of attacks considered in this chapter. These

attacks are further explained in Section 6.2.1 and Section 6.2.2.

Table 6.1: Illustration of existing and newly identified clickjacking attacks.

Attack ID Attack Type Source
a1 Click Stealing through Visual Perception Existing attack [65]
a2 Click Stealing through Keystrokes Existing attack [120]
a3 Click Stealing through Hidden Pointer Existing attack [65, 121]
a4 Click Stealing through CSS (Stacking Elements) Existing attack [69]
a5 Click Stealing through CSS (Pointer-event) Existing attack [69]
a6 Click Stealing through Element Movement Existing attack [65, 69]
a7 Violating Display Integrity Using SVG Filters Newly identified attack
a8 Clickjacking with SVG Clipping and Masking Newly identified attack
a9 Modifying User Interface using SVG filters Newly identified attack
a10 Enforcing Pointer-event Property through SVG Newly identified attack
a11 Enforcing Script Injection using SVG Filters Newly identified attack

6.2.1 Existing Clickjacking Attacks

We classify existing attack classes according to the behavior and appearance of the

browser window. The attack classes are as follows.

Click Stealing through Visual Perception (a1). A visual perception is how a

user sees a web page, before and after clicking an element. An attacker can compro-

mise a user’s visual perception to execute clickjacking attacks. Using frames/iframes,

an attacker can embed a cross-domain web page into the current web page. An attacker

entices the user to click on the malicious page, which has hidden target elements embed-

ded in iframe placed underneath a malicious page. When the user clicks on an element

on the upper page, the click will be routed to an element present on the underneath

page [65].

For example, let us consider the scenario illustrated in Figure 6.1. A Facebook page is

embedded into a malicious web page. A target element “Click Here” on the malicious

page is positioned exactly above the Facebook “like” button in such way that user can

Chapter 6. Detection of Click-Hijacking in Browser 101

not notice the presence of the latter. Once the user performs a click on a button labeled

“Click Here”, the click will also route to underneath page and also trigger Facebook

“like” button without user’s notice. Using this attack scenario, an attacker can like any

Facebook page on user’s behalf.

Figure 6.1: Illustration of clickjacking attack using frame overlays. In this
attack, a Facebook page is embed on a transparent iframe. Facebook “like”

button is shown with light colour in a figure to represent invisibility.

Click Stealing through Keystrokes (a2). This attack is called Strokejacking, as

in this case the keystrokes can be, in addition to clicks, also hijacked. This can be

achieved using social engineering tricks to capture keyboard events from text box placed

on attacker page, and at the same time applying these keystrokes to the underneath text

box on the victim page. In this way, an attacker can capture user input keystrokes. An

attacker can, then, inject a malicious script using user input keystrokes [120].

Click Stealing through Mouse Pointer Hiding (a3). In this case, the attacker

creates, and re-positions a fake cursor while hiding the original cursor. The fake cursor

is positioned in such a way, that when user points to a fake cursor on a link displayed

on the attacker page, the original cursor will point to a link on the victim page, which

an attacker wants to trigger [65, 121].

Click Stealing through CSS (Stacking Elements) (a4). Most browsers support

HTML/CSS styling attributes that allow an attacker to visually hide the target element

through an overlapping element. When a user clicks on the upper layer of overlapped

element, a click is also routed to lower layer element. For example, an attacker can

make the target element transparent by wrapping it in a DIV container [122] with a CSS

opacity value set to zero. This creates a stack of overlapped elements above the target

Chapter 6. Detection of Click-Hijacking in Browser 102

element by using z-index [123] property. When the victim user clicks on an upper

element, this click is actually routed to the lower element. In this way, an attacker can

trigger a malicious link placed with the lower element.

Click Stealing through CSS (Pointer-event) (a5). In this attack class, an attacker

bypasses the click event from an upper element and then routes the same click event

to lower invisible target element positioned underneath it. The element can be made

unclickable by setting the property pointer-events:none [123]. A victim’s click would

then fall on the decoy and land on the (invisible) target element.

Click Stealing through Element Movement (a6). In “Frame Overlay” class, an

element is positioned exactly above the framed page element. This can be circumvented

with element randomization [69], and thus a new class of attack is required to successfully

deploy frame overlay attack. In this class, a hidden element will move along with the

mouse movement. So wherever the user clicks, it triggers an event that may route to

the victim page.

Motivation. Clickjacking is a serious threat in Internet domain [63, 117–119]. Our work

is motivated by the fact that new variants of clickjacking attacks are not addressed in

the literature. The previous published work has only focused on detecting the click-

jacking attacks caused by hidden iframes or hidden mouse cursor. In this chapter, we

present new attack variants using SVG filters, for which detection technique has not

been developed. These attacks are an alternative way of achieving clickjacking without

getting caught by existing defense mechanism. These limitations in existing clickjacking

attack detection techniques motivate us to develop a new detection approach. Our novel

detection approach can efficiently and effectively detect advanced clickjacking attacks in

websites.

6.2.2 New SVG-based Clickjacking Attacks

In the attacks described in Section 6.2.1, the attacker has mainly adopted CSS style

for hiding and overlapping iframes and other web page elements to hijack user clicks.

This section presents some novel methods to create clickjacking attacks (a7-a11) that

are beyond using iframes and CSS styles. We will discuss some novel attacks based on

visual effects produced using SVG [124]. To demonstrate our attack, we use an attack

Chapter 6. Detection of Click-Hijacking in Browser 103

scenario illustrated in a Figure 6.2. The attack scenario that we have taken is based on

a fake pop-up window, which entices the user to perform some set of clicks (or events),

and at the same time these clicks are hijacked by an attacker.

Figure 6.2: Attack Scenario for SVG based clickjacking Attacks.

Violating Display Integrity using SVG Filters (a7). SVG filters provide a way

to make an object transparent through <opacity-value> attribute whose value ranges

from 0.0 to 1.0. The object with opacity-value set to unity makes transparent and with

the value set to zero makes a fully opaque object. Another way to make SVG draw-

ing objects as well HTML content transparent is using CSS properties. CSS provides

opacity attribute value, ranging from 0 to 1 to make HTML object transparent.

We find the new alternative ways to make HTML elements transparent. This can be

achieved by applying SVG filter primitives with special values or by applying a series

of filter effects. This technique can be used to bypass current clickjacking detection

methods where only CSS opacity value of of HTML object is checked, i.e., opacity=0.

SVG filters are like image processing filters used to apply effects to SVG images like a

blur, dilation, erosion, etc. A filter effect consists of a series of graphics operations that

are applied to a given source to produce a modified graphical result. The result of a

filter effect is rendered to the target browser instead of the original source graphic.

Table 6.2 illustrates the list of filter primitives that can be used to produce transparent

objects when applied on HTML document or SVG objects. The list contains set of filter

primitives. Any combination of those filter primitive result into a transparent object.

Table 6.2 consists of four columns, filter name, value, image, and iframe. The Filter

Chapter 6. Detection of Click-Hijacking in Browser 104

name is a filter primitive to be used in filter effect; value is a set of special attribute-

value pair that makes object fully transparent when the filter effect is applied to it.

Image and iframe are the objects on which filter effects are applied to test transparency

and result is quoted as Yes or No.

Table 6.2: Transparency alternatives using SVG filters.

Filter Name Filter Effect Image iframe
feFlood Flood-opacity=0 Yes No
feTurbulance baseFrequency <= 0.0009 Yes No
feGaussianBlur stdDeviation >= 200 Yes Yes
feConvolveMatrix kernelMatrix=0 preserveAlpha=“false” Yes Yes
feColorMatrix Type=luminaceToAlpha Yes No

Style=color-interpolation-Filters:sRGB
Type=matrix values=0 Yes Yes

feComponentTransfer <feFuncA Type=Table TableValues=0 / > Yes Yes
<feFuncA Type=Discrete TableValues=0 / > Yes Yes
<feFuncA Type=Linear slope=0 intercept=0 / > Yes Yes
<feFuncA Type=Gamma Offset=0 exponent=0 / > Yes Yes

Understanding the Attack. Figure 6.3 depicts a frame in our attack, which uses alterna-

tive transparency technique. In this attack scenario, a malicious page conducts a survey

of current government having two input buttons. To conduct this survey, a user must

click on Yes or No button and then user submits the survey. This malicious page may

also contain a hidden and transparent Facebook “like” button placed exactly under-

neath the two buttons. To perform clickjacking attack, an attacker entices a user to

click either Yes or No button on the page.

When the user clicks on either of the buttons, a malicious page will steal this click

and transfer it to Facebook “like” button placed underneath the clicked button. The

complete attack steps are illustrated in Figure 6.3.

Embedding link into SVG image (a8). The SVG <a> element can be used to embed

links into SVG images. SVG links work just like HTML links. A URL link can be

embedded into any image or shape such as circle, rectangle. To achieve this feature, the

attacker puts the SVG shape that is to be used as link between the <a> and tags. A

clickjacking page may contain such link to bypass detection technique that takes HTML

<a> tag as a clickable element for the analysis. An example code snippet for created

SVG image as a link is illustrated in Listing 6.1. Here, a Facebook “like” button link is

embedded into the SVG image.

Chapter 6. Detection of Click-Hijacking in Browser 105

(i.)

(ii.)

(iii.)

Figure 6.3: Workflow for our advanced transparency attack using SVG filters.
At first, (i) displays the normal working when user clicks “Yes” button, (ii)
When the user clicks on Yes button a Facebook “like” button is clicked, (iii)
When the user clicks on “No” button, still Facebook “like” button is clicked.

1 <svg>

2 <a x l i nk : h r e f=”http ://www. facebook . com/ p lug in s / l i k e . php? h r e f=https%3A

%2F%2Fdeve loper s . facebook . com%2Fdocs%2Fplug ins%2F&width&layout=

standard&act i on=l i k e&show faces=true&share=true ” &he ight=80 ta r g e t

=” top ”>

3 // Embed Facebook l i k e URL into SVG image

4 </svg>

Listing 6.1: SVG code to embed Facebook “like” URL into an SVG image.

Understanding the Attack. SVG <a> elements greatly simplify clickjacking attacks as

they can be applied on cross domain content like iframe. Let us consider the attack

scenario illustrated in Figure 6.1. In this scenario, an iframe is placed underneath “Click

Here” button. These elements are rendered in such a way that “Click Here” button is

positioned exactly above Facebook “like” button opened in iframe. An attacker now

entices the victim user to click on “Click Here” button to achieve clickjacking.

Chapter 6. Detection of Click-Hijacking in Browser 106

The current scenario page can be developed using basic CSS and HTML features. Here,

we develop this page using SVG clipping [125, 126]. Listing 6.2, shows the code in which

Facebook “like” URL is embedded into SVG image. This SVG image is placed below

“Click Here” button. Furthermore, this SVG image can be embedded into website using

iframe (shown in Listing 2).

1 <i f r ame s r c=” facebook . svg” width=”200” he ight=”200” >

Listing 6.2: SVG image embed using iframe.

In this attack scenario, an attacker have used SVG image, which entices user to initiate

click on Facebook “like” button. Since clickjacking prevention techniques check for

invisibility or transparency in a website, this attack involving SVG images is difficult to

detect as they can use any shape that is visible to user.

Modifying User Interface using SVG Filters (a9). SVG filters are used to give

visual effects to SVG images. We observe that certain SVG filters when applied on

object changes it spatially. It may either increase or decrease the size of the object.

Here object refers to either SVG image object or HTML element as SVG effects can be

applied on either. This property is very crucial in terms of clickjacking attack in case

if newly increased area is still a part of regular user interface but does not responds

to mouse events (user clicks). This increased and inactive area can be used to hide

malicious link. When user clicks on increased area of element, the click is routed to

malicious link.

We applied SVG effect on “submit” button of Figure 6.2. The shadow rectangle is a

newly formed object as a result of filter effects that modify web User Interface (UI) as

shown in Figure 6.4. From a user’s perspective, the “submit” button object with shadow

effect is a single object but as it is produced by filter effect, it may or may not be a

single object, which solely depends on filter effect.

We have observed two scenarios with SVG filter effect: (i) in the first scenario, the

shadow portion of button does not respond to user clicks, i.e., mouse events but still

is part of the object; (ii) in the second scenario, it responds to mouse events, i.e.,

the dummy shadow button works like original button. This technique is used to hide

malicious links on the dummy object created by filter effect. This can be made more

sophisticated by switching control between two objects (original and dummy).

Chapter 6. Detection of Click-Hijacking in Browser 107

Figure 6.4: SVG filter effects modifies web User Interface.

Understanding the Attack. Figure 6.2 depicts an attack scenario in which a fake pop-up

is being displayed to user. An attacker wants the user to fill all the details and then

click on “submit” button or click on “skip this” link. Using this scenario and SVG filter

effects, we have created two clickjacking attacks, which steal user click when user click

“submit” button or even when user does not click “submit” button.

Figure 6.4 illustrates the more expanded version of our first attack scenario shown in

Figure 6.2. In this scenario, the attack is successful only when user clicks desired portion

of “submit” button. Here, we applied morphological filters dilation effect on “submit”

button, which increases size of object spatially and modifies current web user interface.

The extra space added by filter dilation extends all visual boundaries of the original

object except response to user events. Hence, the user can not differentiate the object

as two different entities. The region enclosed in dotted rectangle is original object

whereas the solid line rectangle is an enlarged version. Underneath this extra space, we

place a Facebook “like” button, which is not visible to the user.

When user clicks on “submit” button, it initiates a Facebook “like” button placed under-

neath enlarged portion of “submit” button. This way an attacker can initiate clickjacking

without completely overlapping an element beneath “submit” button. This attack is not

detectable by the earlier detection techniques as attacker page does not use any CSS

property to either hide or overlap elements.

Enforcing Pointer-event Property through SVG (a10). Pointer-event property

allows control of the behavior of graphic element before it becomes the target of mouse

events. A victim’s click would then fall through the decoy and land on the (invisible)

target element.

CSS defines eleven pointer-events attributes applicable to HTML and SVG objects,

out of which only two are applicable to regular HTML content and other are for SVG

objects. The pointer-events properties applied on HTML object includes auto, none.

Chapter 6. Detection of Click-Hijacking in Browser 108

The value auto is referred to when the pointer-event value is not specified and implies

a regular behavior of clickable element on mouse events. Pointer-event property none

is used to disable the target element from responding to mouse events like click, state

and cursor actions, etc. In past, the authors have presented the use of pointer-events

applied on HTML elements to invoke clickjacking attacks. Here, we present new methods

of using pointer-events by applying its properties on SVG graphics objects.

SVG graphics objects can also use eight pointer-events properties. For example, SVG

defines each object with pointer-events property as fill and stroke where fill refers

to interior part of object and stroke refers to edges. Pointer events on the SVG objects

can be handled separately using fill or stroke property. For example, if we create SVG

based button through rectangle, the button can only be the target of a mouse event when

the pointer is over the interior (i.e., fill) of the button. In case of stroke property, the

button can only be the target of a mouse event when the pointer is over the perimeter.

Figure 6.5 illustrates the fill and stroke property applied on SVG based “submit” button.

We have tested the ways to make SVG objects either partially or fully transparent to

facilitate clickjacking attacks. We have extended this approach of clickjacking attack

technique where attacker have many options to disable clickable graphics element to

facilitate clickjacking attack through SVG. Attackers need to use SVG based web pages

in order to steal user clicks. The attack technique bypasses traditional clickjacking

defense technique where pointer-event attribute is statically analyzed against value none

and hence, the new ways of disabling clickable elements using SVG effective clickjacking

attack.

Figure 6.5: Illustration of the fill and stroke property applied on SVG based
“submit” button.

Chapter 6. Detection of Click-Hijacking in Browser 109

Understanding the Attack. Attackers use pointer-events properties on SVG based ob-

jects to form clickjacking attacks. Figure 6.2 shows the attack scenario in which attacker

expects user to click on “skip this” link but the click is still transferred to “submit” but-

ton. The attackers page includes two layers created using nested DIV tag one overlapped

on another. A top layer consists of “skip this” link while inner layer consists of “submit”

button.

The specified clickable (i.e., “skip this”) link is disabled by using pointer events as

discussed above. When user clicks on this link the click will actually respond to its

descendant inner layer, i.e., “submit” button. In this way attacker can steal user click

using pointer-event property of CSS.

6.3 Proposed Clickjacking Detection

Our proposed approach is shown in Figure 6.6. We generate signatures of known click-

jacking attacks using 1000 web pages susceptible to clickjacking attack. The pages are

based on knowledge gained from the literature, basic clickjacking attacks described in

the literature, attack classes describe in Section 6.2.1, and newly identified attack tech-

niques describe in Section 6.2.2. We improve the state of the art in clickjacking attack

by adding new attack classes to attack signature. Our dataset of 1000 legitimate pages

consists of popular web pages that do not contain any advertisement, pop-ups, hidden

iframes, and transparent elements.

We explore and utilize various common and distinguishing characteristics (features) from

the dataset of known attack, and legitimate web pages. These characteristics are, then,

used to build a behavioral model based on Finite State Automaton (FSA). We generate

three alerts for a web page, legitimate, clickjacking warning and clickjacking attack alert.

We use several heuristics to assist a test to decide, based on their behavior, whether the

web page is clickjacking warning or Clickjacking attack. We define three alerts as follows.

1. Clickjacking Attack Alert. If the sequence of states (representing behavior)

matches with the attack signature, it is labeled as clickjacking attack. Labeling

a web page as malicious indicates we identified harmful behavior such as clicking

Chapter 6. Detection of Click-Hijacking in Browser 110

Figure 6.6: Proposed Approach.

of unknown source lead to cross-domain communication, execution of arbitrary

hidden scripts, redirection of hidden mouse cursor etc.

2. Clickjacking Warning Alert. Our model also generates clickjacking warning,

which indicates the presence of potentially harmful actions or exposing the user

to new risks, but these risks may or may not represent clickjacking actions.

3. Legitimate Behavior. If we do not find any suspicious behavior, we label the

web page as legitimate.

The experimental evaluation shows that our approach is feasible in practice. Also, our

solution enjoys good accuracy and a negligible percentage of false positives (0.2%) in

distinguishing clickjacking and legitimate websites. Moreover, our approach can de-

tect novel advanced SVG-based attacks that many contemporary tools currently fail to

detect.

Chapter 6. Detection of Click-Hijacking in Browser 111

6.3.1 Extracting Relevant Clickjacking Features

We have discussed sophisticated clickjacking attacks in Section 6.2.2 that are difficult to

detect and analyze using existing approaches. Thus, we need a new robust approach to

detect advance clickjacking attacks. Furthermore, new approach must handle accurately

the dynamic features extracted from a web page, and should not require reconfiguration

when new HTML tag is exploited for Click hijacking. Our approach relies on compre-

hensive dynamic and static analysis of the web pages.

Our model extracts only relevant features from a web page opened in a browser. A web

page consists of HTML tags with their attributes and values associated with them. In

particular, our relevant features consists of the values assigned to Relevant HTML Tags

(RHT), such as, iframes, frame, div, span, a, input, form, p, button, img, SVG, and

other clickable HTML elements for discovering the symptoms of clickjacking attack in

a website. In addition to that, we are interested in text or objects that generate a click

event when clicked.

To measure the significance of a feature in detecting clickjacking, we use dataset of

1000 web pages susceptible to known clickjacking attack and 1000 legitimate web pages.

We perform an analysis to differentiate the feature values extracted from these two

datasets. After this analysis, we come out with thirteen relevant features. In particular,

the relevant features extracted from a web page characterizes the normal or hijacked

click event (e.g., the instantiation of an hidden and overlapped link, the redirection

of hidden mouse cursor, or the activation of malicious script with hijacked click, etc.)

occurring during the interpretation of JavaScript and HTML code of a web page. In the

following, we describe the relevant features used by our model.

Features we have use in our proposed approach can be categorised as:

1. Visual context of the web page.

2. Overlays in the web page.

3. Mouse pointer based features.

4. HTML and JavaScript based features.

5. Domain and Redirection Features.

Chapter 6. Detection of Click-Hijacking in Browser 112

In following subsections, we shall be discussing each categories in detail.

Visual context of the web page We include five features that characterize this kind

of activity.

Feature 1: Visibility of the web page elements. We record the visibility of all HTML

tags and elements present in a web page. The feature value can be obtained by checking

CSS visibility property that is set to hidden.

Feature 2: Opacity of the web page elements. We record the opacity value of every

page elements present on a web page. A web page can use CSS opacity value to 0 to

hide page elements. Moreover, smart attacker sometimes partially hide the elements to

avoid detection. This can be achieved by setting opacity value in range of .2 to .1.

Aim is that an element is barely visible and not visually perceptible by the user.

Feature 3: Clipping with SVG. We record the SVG tags along with their values used

for clipping a region of the web page. The clickjacking page may be created by joining

the clipped region of web pages that are taken from either same or different domain

(discussed in Section 6.2.2, Attack a8). In contrast, legitimate website do not contain

the clipped elements from different domains. We identify the clippath [124] to record

the clipping region in a web page.

Feature 4: Manipulation of UI Elements. We record parameters involved in the UI

manipulation. This can be done by increasing the clickable area and hiding the link

below increased clickable region (discussed in Section 6.2.2, Attack a9).

Feature 5: Moving web page elements. We record the web page elements that move

with a mouse cursor. This may cause the timing attacks. For example, an attacker

could move the target element (via CSS position properties) on top of a decoy button

shortly after the victim hovers the cursor over the decoy, in anticipation of the click. We

identify the moving elements in a web page with two step as follow: (i) first we record

the coordinates of all the clickable elements present on the web page; (ii) then, we find

the elements whose position changes after mouse movement and user click.

Overlays features in Web Pages We extract a feature that is indicative of the overlay

and overlapping web page elements.

Feature 6: overlapping. The overlapped elements can be used by an attacker to confuse

victim user, and circumvent detection tool. Some detection tools check only hidden/-

transparent properties as their primary features in detecting clickjacking attack. But an

Chapter 6. Detection of Click-Hijacking in Browser 113

attacker can use overlays to overlap web page elements underneath other elements. We

record the overlapped elements that are clickable.

Mouse Pointer based features We extract the following feature to record the cursor

and pointer characteristics.

Feature 7: Hidden mouse pointer. We monitor the CSS cursor:none property after

loading of web page to discover a hidden mouse cursor. In addition, we also monitor the

APIs used in JavaScript code of web page that programmatically hide genuine cursor

and draw a fake cursor on a web page. Another variant of cursor manipulation involves

the duplicating the cursor. The attacker takes following two steps to execute clickjacking

attack:

1. First, the attacker does not hide the genuine cursor; instead, he positions a trans-

parent cursor look alike image on top of a genuine cursor, which a victim user

does not notice.

2. In second step, the attacker draws a fake cursor on a web page, which when points

to the button, the genuine cursor points to target element.

We record this attack activity by monitoring the JavaScript code that defines the image

movement with the mouse movement.

HTML and JavaScript based features A click might result in an execution of

JavaScript code embedded into a web page. Such scripts can result in clickjacking

and/or serious attacks such as XSS attacks [108]. We include four features that charac-

terize HTML and JavaScript properties.

Feature 8: Hidden links with Pointer-events. We monitor CSS pointer-events prop-

erty to explore visually hidden target elements (discussed in sections 6.2.1 and 6.2.2,

attacks a5 and a10). We extract this feature in a 2-step fashion: (i) first, we extract all

the overlapped elements (fully or partially) from web page through x and y coordinates

of x-axis, y-axis and checking CSS z-index value [123]; (ii) in next step, we check if

CSS pointer-event property is set to auto and none value.

Feature 9: Event bubbling and capturing. We monitor the web page elements that are

nested within each other. For example, DIV tags can be nested to initiate event bub-

bling and event capturing [127] on target element. An attacker can make target element

Chapter 6. Detection of Click-Hijacking in Browser 114

transparent by wrapping it in one of nested DIV container by setting CSS opacity value

to zero, and keeping other DIV contents visible. In this, the handler of the parent (top

DIV) works even if the child (nested DIV) is clicked and vice versa.

A hidden link wrapped into nested DIV may send some forge request to server leading

to CSRF attack [67]. This new set of clickjacking attack is called bubblejacking attack.

We record this activity by collecting information on nesting of DIV tags. In addition,

we also record parent and child DIV tags from the nested DIV tags.

Feature 10: Stacking elements with z-index. Every Browser support HTML/CSS

styling attributes that not only allows an attacker to visually hide the target element,

but also allows it to route mouse events to it. For example, an attacker can make the

target element transparent by wrapping it in a DIV container, and set CSS opacity value

to zero. It then creates a stacking of overlapped elements under the target element by us-

ing a lower CSS z-index [123], and lure victim user to click on stacked elements. When

victim user clicks on an upper element, the click also routes to the lower element(s),

which may initiate hidden malicious event or click on link hidden underneath the lower

elements.

Feature 11: Script injection with SVG. SVG tags allows an alternative way to inject

script into website (discussed in Section 6.2.2). In our analysis, we record all these

alternative script tags.

Domain and Redirection Sometimes, an attacker master page is not vulnerable to

clickjacking attack but a page may contain a link that redirects master page to new page

in (same or different domain), which indeed is vulnerable to XSS [108], phishing [128],

CSRF [67], etc. For example, open redirects found on attacker master page is liable

to be exploited by phishers to create a link to their site. We extract the following two

features related to the page redirection.

Feature 12: Redirection to same domain. This feature indicates that on applying click

event on a web page, a page is redirected to another page in the same domain. The new

page there has no hyperlink to visit to the previous suspected domain.

Feature 13: Redirection to other domain. This feature indicates that on applying click

event on a web page, a page is redirected to new page in different domain (or third

party domain). The new page contains different SSL signature attributes compared to

the previous page.

Chapter 6. Detection of Click-Hijacking in Browser 115

Table 6.3: List of behavior expressed from extracted relevant features.

Notation Features Description
φ1 Features 1 & 2 Describes the visibility of web page elements.
φ2 Features 6 Check overlapping of elements on a web page.

φ3 Feature 7
Check if a web page contains hidden/duplicate mouse
cursor.

φ4 Feature 8
Check if elements on web page is using pointer-event

property.

φ5 Features 4 & 5
Check if any modification in user interface on moving
mouse cursor or clicking.

φ6 Feature 3
Check for clipped web page elements incorporate by
SVG filters.

φ7 Feature 11
Check if <script> tag (including alternative SVG
script tags) is used with any hidden element.

φ8 Features 9 & 10 Check for nested and stacked web page elements.

φ9 Features 12 & 13
Check if clickable element on click redirects page to
same or other domain.

Discussion. We use the thirteen features that are introduced in this section to char-

acterize the properties of a web page. This gives us a comprehensive picture of the

clickjacking behavior exhibited in a web page. We observe that our features can be

classified into two categories: (i) static features, and (ii) dynamic features.

The values for static features can be obtained by analyzing the source code of the web

page. These include following features.

1. The features from visual context category that characterizing the visibility, opacity

of a website elements and clipped content of a web page (features 1, 2, and 3).

2. One feature from the mouse pointer category, which characterize the mouse cursor

on a website (Feature 7).

3. The features from HTML and JavaScript based category (features 8, 9, 10, and

11).

For dynamic features whose values are obtained after a web page is rendered in browser

window. Once the page is opened in the browser window, based on the position and

behavior of the rendered elements, the values of dynamic features are obtained. These

include following features.

Chapter 6. Detection of Click-Hijacking in Browser 116

1. Two features from visual context category features that characterizes the move-

ment and user interface manipulation in web sites (features 4 and 5).

2. The overlay feature (Feature 6) that characterizes the overlapping of elements.

3. The domain and redirection features (features 12 and 13).

In our model, we define nine behavioral properties to encapsulate characteristics of a

web page. We group some of the features to represent one behavioral property. For

example, features 1 and 2 define the visibility of elements in website. This can be

achieved using different HTML and CSS properties. So we combine these two features

to create one description, which represent the visual context of an element (denoted as

φ1). Table 6.3 shows nine behavioral properties derived from the feature set used in our

model. For example, in the fifth row, the features are combined to represent, a behavior,

which is user interface modification behavior. However, in the fourth row, we use feature

itself as a behavioral property because this is the only way to achieve the corresponding

functionality.

6.4 Behavior Model and Testing

In this section, we first introduce the proposed behavior model in terms of response the

user clicks will get from the web-based programs (or websites) in Section 6.4.1. We then

define some heuristics criteria to verify clickjacking and legitimate sites in Section 6.4.2

and Section 6.4.3. Section 6.4.4 shows a relationship between a number of clickjacking

attack types and heuristics.

6.4.1 Web Pages Behavior Model

We use Finite State Automaton (FSA) [129] notion to describe a program’s behavior.

FSA is developed on the basis of known symptoms of clickjacking and legitimate websites

with respect to request (user click) and the response after clicking on suspected clickable

elements present on a website. In particular, we observe the static and dynamic features

to determine the characteristics of a response page.

Chapter 6. Detection of Click-Hijacking in Browser 117

Figure 6.7: State diagram representing behaviors of clickjacking and legiti-
mate websites.

A FSA is denoted by 〈Σ, S, S0, δ, F 〉, where Σ is a finite set of inputs, S is a non-empty

but finite set of states, S0 ⊂ S is the initial state, δ is the state transition function,

and F is a set of final states. Figure 6.7 shows the state transition diagram of the FSA

model that contains seventeen states from S0 to S16, where S0 being the initial state.

We consider request and response that are of interest in respect of our model. Table 6.4

enumerates the requests. If a page open in browser from initial URL does not contain any

hidden clickable element (request α0), then the next state is considered as S1. However,

if the opened page contains non-hidden clickable elements, and on applying click on

such clickable element downloads a new page that contains hidden clickable elements

(request α1), then the next state is considered as S2. F is the final state which belongs

to S3, S4, · · · , S16. Here, a state implies a web page rendered by a browser. To avoid the

state explosion problem, we consider the behavior observed from the content of a web

page as a single state.

Table 6.4: Relevant requests applied on the websites.

Request ID Description

α0

Web page open from initial URL in
browser window.

α1

Clicking of suspected clickable element on
website.

Chapter 6. Detection of Click-Hijacking in Browser 118

We denote inputs of the FSA as a interesting requests (denoted as α0 and α1) and

corresponding responses (denoted as β0 to β15), which are discussed in detail in Table 6.5.

A website is clickjacking or legitimate, if it can reach from an initial state to one of the

final states. Some of the final states are legitimate (S3, S12, S13, S15), whereas others

are producing clickjacking attacks (S4, S5, S6, S7, S8, S9, S10 , S11, S14, S16). Figure 6.7

presents the state diagram of our FSA after removal of infeasible states.

A state transition occurs for a given request and the corresponding response. A transition

is labeled as request, response pair in the figure. For example, [α1, β1] implies that given

the request α1, the response is β1. We summarize interesting responses in Table 6.5.

We observed 61 possible responses with respect to the nine behavioral features discussed

in Table 6.3. However, in Figure 6.7, we only use sixteen interesting responses (denoted

as β0 − β15). The rest other combinations are either infeasible or not related to attack

cases, and we do not include these in the FSA. Table 6.5 illustrated sixteen interesting

response states, the symbol ! represents that a feature is not present in a web page. For

example, the first row (β0 response state) represents that no relevant feature is present

on a web page. The third row (β2 response state) represents that following features are

present in a web page (i.e., hidden elements are present, overlapping elements present,

hidden/duplicate mouse cursor is not present, pointer-event property is associated with

elements, moving elements are not present, no clipping using SVG filters, no script

embedded into hidden element, no nested elements, and their is response redirection

to other domain). So, the β2 state represents a behavior, which may results into the

attacks such as a5, a6 (discussed in Section 6.2.1).

The model provides us the flexibility to detect clickjacking websites that might steal

user clicks. A clickjacking website might follow only a subset of the FSA. Moreover, the

model differentiates a clickjacking and legitimate website. To test the effectiveness of

our FSA, we define several heuristics based on the related work, and proof-of-concept

for clickjacking attack to identify whether a website is clickjacking or legitimate. We

develop request and response heuristics in the next section.

Chapter 6. Detection of Click-Hijacking in Browser 119

Table 6.5: Relevant responses gathered from the dataset websites.

Response ID Relevant Response States
β0 !(φ1φ2φ3φ4φ5φ6φ7φ8φ9)
β1 (φ1) + !(φ2φ3φ4φ5φ6φ7φ8φ9)
β2 (φ1φ2φ4φ9) + !(φ3φ5φ6φ7φ8)
β3 (φ1φ2φ3φ9) + !(φ4φ5φ6φ7φ8)
β4 (φ1φ3φ9) + !(φ2φ4φ5φ6φ7φ8)
β5 (φ1φ4φ8φ9) + !(φ2φ3φ5φ6φ7)
β6 (φ1φ4φ7) + !(φ2φ3φ5φ6φ8)
β7 (φ1φ6φ9) + !(φ2φ3φ4φ5φ7φ8)
β8 (φ1φ5φ9) + !(φ2φ3φ4φ6φ7φ8)
β9 (φ1φ7) + !(φ2φ3φ4φ5φ6φ8φ9)
β10 (φ2φ4φ9) + !(φ1φ3φ5φ6φ7φ8)
β11 (φ2φ3φ4φ9) + !(φ1φ5φ6φ7φ8)
β12 (φ1φ8) + !(φ2φ3φ4φ5φ6φ7φ9)
β13 (φ1) + !(φ2φ3φ4φ5φ6φ7φ8φ9)
β14 (φ8) + !(φ1φ2φ3φ4φ5φ6φ7φ9)
β15 (φ2) + !(φ1φ3φ4φ5φ6φ7φ8φ9)

6.4.2 Request Heuristics

We developed the set of heuristics based on related work, primarily [69, 72, 118, 130].

Our approach utilizes ad-hoc heuristics to determine the class of an attack when certain

types of click stealing events are detected. The selection of which heuristics to apply

as well as how each is applied is influenced by the type and parameters of the event

detected. Our system currently incorporates heuristics for existing, and SVG-based ad-

vanced clickjacking attack classes defined in Section 6.2.2. Our heuristics are as follows:

1. Hidden iframes/DIVs (H1). This heuristic criterion checks whether a web

page contains hidden clickable elements or overlapped on hidden iframes. We use

features 1, 2, and 7 to implement this heuristics. This heuristic returns click-

jacking if it finds the clickable element position exactly above the target element

on hidden iframe. Many clickjacking attacks use this characteristics to steal user

clicks. A legitimate website may have hidden elements but these are generally

not overlapped with other elements. This observation motivates us to define a

heuristic based on the presence of overlapped and hidden elements.

2. Hidden pointers (H2). This heuristic criterion is satisfied, if a web page has

duplicate mouse pointer, and a hidden clickable elements. The duplicate mouse

Chapter 6. Detection of Click-Hijacking in Browser 120

cursor is aligned with original one either hidden or transparent in such a way

that when user points duplicate cursor on clickable element on attacker page, the

original cursor points to target element on hidden iframe. A legitimate website is

not likely contain hidden mouse cursor pointing to hidden element. In contrast,

a clickjacking website may contain a duplicate mouse cursor pointing to hidden

elements. This heuristic can be applied by obtaining values from features 1, 2,

and 6.

3. Pointer-events (H3). This heuristic criterion checks whether the clickable ele-

ments on a web page are responding to mouse/touch events and whether or not

the cursor is visible. A clickjacking page often use this feature to execute malicious

scripts on a victim browser. This heuristic requires obtaining values from features

1, 2 and 8.

4. Nested Divs (H4). This heuristic criterion is satisfied, if a web page contains

nested DIV tags either overlapping on each other or hidden. A malicious web

page may use nested DIV tags to initiate malicious link through event bubbling

and capturing [127]. Application of this heuristic requires obtaining values from

features 1, 2, 9 and 10.

5. Visible but overlapped elements (H5). Clickjacking websites sometimes do

not hide iframes or clickable elements, instead the element overlaps on a tar-

get element in an unnoticeable manner. We developed a heuristics that checks

overlapping of clickable elements as well as click transfer that is achieved using

pointer-event. This will create an attack scenario similar to the one discussing

in heuristic H3. The only difference is that in this scenario the elements are visi-

ble. In addition, heuristic also checks the response of a click, i.e., on clicking the

element the resultant page is in same domain or different domain. This heuristic

can be determined by obtaining values from features 6, 7, and 10.

6. Moving elements (H6). Clickjacking websites sometimes contain hidden ele-

ments that move with a mouse cursor. Using this functionality, wherever an user

clicks, an attacker is able to capture it. We developed a heuristics that for any

hidden moving button inside iframe, or DIV containers present on a web page.

A clickjacking website may use these container to hide a target button. Values

obtained from features 1, 2, and 5 are needed for this heuristics.

Chapter 6. Detection of Click-Hijacking in Browser 121

7. Other hidden elements (H7). Clickjacking websites rarely contain hidden

elements other than iframes or DIV. On the other hand, a legitimate website may

contains other hidden elements for website functionality. This heuristics checks

whether a hidden element present on website is iframe/DIV or any other element.

Values obtained from features 1 and 2 are needed for this heuristics.

6.4.3 Response Heuristics

1. Hidden Script (H8). This heuristic criterion checks whether a clickable element

invokes any script on clicking. A legitimate page may contain scripts but these

may not hide behind clickable element. This heuristic returns clickjacking if it

finds the clickable element hiding any script. Many clickjacking attacks use this

characteristics to initiate XSS or CSFR attacks on websites. We use features 1,

2, and 11 to implement this heuristics.

2. Domain redirection (H9). This heuristic criterion checks whether a web page,

on clicking a clickable element, generates any traffic from other domain. We

use features 12 and 13 to implement this heuristics. This heuristic is useful to

detect clickjacking in websites that results in response from domain other that the

current working domain. However, this feature may also be present in legitimate

websites, so we apply this heuristic in conjunction with other heuristics to detect

clickjacking.

Table 6.6: Clickjacking attack type and corresponding heuristics applied to
detect an attack.

Attack ID Attack Type Heuristic
a1 Click Stealing through Visual Perception H1 ∨ H2 ∨ H3 ∨ H9
a2 Click Stealing through Keystrokes H1 ∨ H5 ∨ H9
a3 Click Stealing through Pointer H1 ∨ H2 ∨ H9
a4 Click Stealing through CSS (Stacking Elements) H4 ∨ H5
a5 Click Stealing through CSS (Pointer-event) H1 ∨ H3 ∨ H5 ∨ H9
a6 Click Stealing through Element Movement H1∨ H6 ∨ H7 ∨ H9
a7 Violating Display Integrity Using SVG Filters H1 ∨ H2 ∨ H3 ∨ H9
a8 Clickjacking with SVG Clipping and Masking H1∨ H3 ∨ H5 ∨ H9
a9 Modifying User Interface using SVG filters H1 ∨ H3 ∨ H5 ∨ H9
a10 Enforcing Pointer-event Property through SVG H3 ∨ H5 ∨ H9
a11 Enforcing Script Injection using SVG Filters H1 ∨ H8

Relation between attacks and heuristics. In this section, we describe how request

and response based heuristics can be applied to discover clickjacking. A summary of

Chapter 6. Detection of Click-Hijacking in Browser 122

some example attack types and corresponding heuristics (request and response) is shown

in Table 6.6. We have given a detailed description of these attack types in Section 6.2.2.

Our heuristics can detect some advanced clickjacking attacks that are achieved using

SVG images and filters. For example, SVG uses an alternative way to embed the script

into websites, which may inject malicious script on the victim machine. This attack may

result in XSS attack through clickjacking.

The detection techniques for checking malicious script only check scripts that use HTML

script tag. This limitation led our new SVG-based advanced attacks to bypass detection

techniques. We have denoted this attack type as a11. Our proposed model can detect

SVG based scripting tags to restrict any script injection on a victim machine. The

request heuristic H1 and response heuristic H8 allow discovering the attack.

Comparing our approach with other clickjacking detection techniques. Ta-

ble 6.7 shows a mapping between clickjacking attack types and defense techniques dis-

cussed in the literature. We compare our approach with other clickjacking defense

techniques with respect to attack types (a1 to a11) discussed in Section 6.2.1 and Sec-

tion 6.2.2. It should be noted that making an iframe nearly or completely invisible is

the basic attack type for clickjacking (denoted in Table 6.7 as a1). It is obvious that

disabling JavaScript can solve most of clickjacking attack types [69, 130], although it

negatively affects the access to available functionalities. Also, the basic frame busting,

HTTP Header or HEAD-based solutions are not adequate when dealing with clickjack-

ing attacks. The new advanced and alternate methods of producing clickjacking attacks

are discussed in Section 6.2.2 using SVG filter are not detectable or addressed by any of

the previous methods. In contrast, the proposed approach can detect advanced attack

types without affecting user experience.

6.5 Implementation and Evaluation

Our detection model, is implemented to defend websites against clickjacking attacks.

The implementation details of our approach is as follows.

Chapter 6. Detection of Click-Hijacking in Browser 123

Table 6.7: Comparison of clickjacking attacks and prevention techniques.

Attack Types
Detection
Techniques

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

Frame busting [73]
√ × × × × × × × × × ×

HTTP Header [131]
√ × × × × × × × × × ×

Proclick [132]
√ √ √ √ √ √ × × × × ×

HEAD Element [133]
√ × × × × × × × × × ×

Confirmation/randomization [69]
√ √ × × × × × × × × ×

Clicksafe [134]
√ × √ × × × × × × × ×

Blocking of mouse click [135]
√ √ × × × × × × × × ×

Detection of overlapping
clickable element [72]

√ √ × × × × × × × × ×
Incontext [69]

√ √ √ √ √ √ × × × × ×
Disabling JavaScript [136] × √ √ × × √ × × × × √

Nepomnyashy et al. [131]
√ × × × × × × × × × ×

NoScript (ClearClick) [70]
√ √ √ √ √ √ × × × × ×

ClickIDS [72]
√ √ √ √ √ √ × × × × ×

Our approach
√ √ √ √ √ √ √ √ √ √ √

1. The first module is called Query Pattern (QP) module. It consists of two sub-

modules: (i) feature extraction module called EXTRACTOR module that is im-

plemented as a browser plug-in to extract relevant features from a web page and;

(ii) QP module generates query pattern from the relevant features.

2. The second module is a signature generation unit, which generates the attack

signatures for clickjacking attacks.

3. The third module is C-CHECK parser, which parses query pattern to check symp-

toms of clickjacking attacks.

4. The fourth module is Click inspector, which categorizes the websites under con-

sideration into clickjacking or legitimate websites based on the heuristics defined

in Sections 6.4.2 and 6.4.2 .

We have implemented an extension, which is installed on a Firefox browser (any version).

For a web page, EXTRACTOR module fetches all the features (discussed in Section

6.3.1) with the attribute values. QP module then generates the query pattern, which

is, then, input to C-CHECK parser module. C-CHECK parses all the query patterns

by checking them with attack signatures. The final output is given to click inspector,

which generates an appropriate alert for a website based on heuristic rules. Following is

a description of each module.

Chapter 6. Detection of Click-Hijacking in Browser 124

The QP Module. The QP module has an EXTRACTOR plug-in that extracts the

relevant features with values from the website. The web pages that are to be scanned

for analysis consists of HTML tags, but we are only interested in the RHTs. We identify

the values associated with them these RHT using EXTRACTOR (plug-in) installed on

a browser. The reason of using browser extension is that it can get access to browser

internals, such as, Document Object Model (DOM) [13], which stores entire information

of a website opened in the browser.

1. Attributes Extraction Technique. Every element in a web page is represented

in the form of a DOM tree, which can be read or captured using JavaScript

APIs. The DOM tree stores all elements, such as input fields, images, paragraphs,

frames, links of a web page. In a DOM tree, the element and attribute nodes

are represented as HTML tag and parameter values respectively. RHT values are

extracted directly using JavaScript, or JQuery [137] APIs from the source code of

a website. We encode RHT as a bit vector in which a it represents a given feature

value 0(1) representing absence (presence) of the feature.

The values for features 1, 2, 7, 8 and 10 are extracted from the respective CSS

styles associated with a given RHT. To check for the presence of values Feature 5,

we generate automatic clicks at different positions on the page and notice changes

in invisible or barely visible elements coordinates after every click. This is done

using JavaScript APIs. Feature 6 value is determined by extracting coordinates

(top, left, right, bottom) for each element positioned on a web page, and comparing

it with the coordinates of all other elements. In this way, we can determine two

overlapping elements on a website. The values for features 3 and 11 is taken from

source code enclosed within SVG tag.

2. QP Module. The QP module contains the implementation of the logic and de-

scription of symptoms of clickjacking attack that need to be checked for matching

with attack signatures. The obtained behavior (defined in Table 6.3) derived from

feature values are processed to build QP, i.e.,QP → {φ1, φ2, · · · , φ12}, , where
φ1 · · ·φ12 represents set of behavior discussed in Table 6.3. This QP is given as in-

put to a parser unit where it is checked against the attack signatures for detecting

clickjacking attacks.

Chapter 6. Detection of Click-Hijacking in Browser 125

Signature Generation Unit. This unit comprises of a set of known attack signatures

derived from websites susceptible to clickjacking attack. More precisely, these signatures

are built from the relevant features that check if the conditions required for a successful

clickjacking attack are met. In our experience, the information collected with relevant

features in our clickjacking attack classes are often sufficient to generate automatically

high-quality signatures for our detection model.

Signature Database. In this model, the attack signatures are created using relevant

feature values extracted from various attack classes. We use dataset of 1000 known attack

web pages containing symptoms of clickjacking attack. Our signature database consists

of the feature values obtained from these test sample web pages. Our model checks every

new web page against the signatures for inspecting characteristics of clickjacking attack.

In particular, the attack signature provides the description for all RHTs that we have

selected for our model and represents the possibility of an attack. Each attack class

has a separate signature, which contains the suitable discriminating attribute values for

separating the suspicious and attack web pages from the legitimate web pages.

6.5.1 Experimental Setup

To test the effectiveness of our solution, we first build the effective signatures from

various instances of clickjacking attacks. Thus, the base of our solution lies in building

accurate attack signatures for RHTs. Our method raises an alert if properties of HTML

tags present in a web page resembles with the properties of clickjacking web page.

We conducted four experiments to assess the performance of our proposed method. In

the first experiment, we examined the symptoms of basic clickjacking attack features in

web pages. In the second experiment, we examined advanced clickjacking attack features

in web pages. In the third experiment, we examined the effectiveness of our proposed

features in the adaptation of detecting clickjacking attacks on websites. In the fourth

experiment, we evaluated the impact of clickjacking attack in different categories of web

domains. We used two metrics to evaluate each approach. True positives (correctly

labeling a clickjacking site as clickjacking and False positives (incorrectly labeling a

legitimate site as clickjacking..

Chapter 6. Detection of Click-Hijacking in Browser 126

Dataset Preparation. We first created 1000 web pages susceptible to clickjacking

attack. The pages are based on knowledge gained from the literature, basic clickjacking

attacks described in the literature, attack classes described in Section 6.2.1, and newly

identified attack techniques described in Section 6.2.2. In all cases, our detection system

correctly raises clickjacking attacks. We also prepared a dataset of 1000 legitimate pages

consists of popular web pages that do not contain any advertisement, pop-ups, hidden

iframes, and transparent elements.

Furthermore, we have collect thousands of real-world websites. We have combined dif-

ferent sources to obtained list of URLs that a normal user experiences in his everyday

web browsing. We choose 78000 legitimate websites that are representative of what an

average user may encounter in his/her everyday web browsing experience. In particular,

we included the top 20000 most popular websites published by Alexa [138], and 40000

websites results from the ad-hoc queries on popular search engines. In particular, we

queried Google and Yahoo with various combinations of terms such as porn, advertise-

ment, free download, free iphone/ipod, torrent, warez, online game, free music and free

movies. We ran each query in different languages including English, Chinese, Urdu,

German, Russian, and Turkish. We downloaded top 500 URL names from each query to

collect around 40000 URL lists. Moreover, to increase the chances of finding attacks, we

also included sources that were more likely to contain malicious content. We take down

10000 websites from malwaredomains.com [139], and 8000 websites of phishing URLs

published by PhishTank [140].

We executed our experiments simultaneously on five Windows virtual machines for 20

days. We have visited 78000 unique domain web pages, out of which around 11.64% of

pages are unreachable or not found. The remaining 68920 web pages were scanned with

our proposed system. We use Chrome (versions v18.0.1025.168 and v30.0.1599.66) and

Firefox (versions 14.0, 20.0 and 24.0) browsers on five virtual machines. The reason of

using different browser and versions is to show that these attacks are browser agnostic.

6.5.2 Evaluation of clickjacking features

In this experiment, we examined the symptoms of clickjacking attacks by evaluating

proposed prominent features in the websites collected by our data set. The goal of

Chapter 6. Detection of Click-Hijacking in Browser 127

this experiment was to understand the impact or nature of clickjacking attack in these

categories. We used an EXTRACTOR (browser extension) that we developed to gather

values associated with prominent features. EXTRACTOR takes a list of URLs, loads

each URL into a web browser and store feature values in MYSQL database for analysis.

Table 6.8 illustrates the presence of relevant features or attributes in the visited websites.

We can see that only 33% of Alexa top 20000 are protected by framebusting, and only

9.8% of web pages are protected in other categories. Thus, server-side protection is low,

and an attacker can frame these pages to execute the clickjacking attack. We found

that 34.63% hidden clickable elements, 7.9% hidden iframes/frames, and 2.1% hidden

DIVs elements were present in the total visited pages including Alexa top 20000. These

results show that the web pages from different web domain categories are vulnerable to

clickjacking attack.

Table 6.8: Relavant features in visited web pages.

Page Properties Reachable Alexa
Web Pages Top
(48920) (20000)

X-Frame Protection 9.8% 33%
iframe Usage 65% 47.93%
Hidden iframes 9.94% 4.4%
Overlapped Elements 43.71% 39.99%
Movable Elements 4.03% 1.22%
Nested DIVs 7.09% 4.78%
Hidden DIVs 2.5% 1.76%
Hidden Textbox 3.49% 0.61%
Hidden Cursor 0.02% 1.62%
Pointer-event Usage 7.09% 2.05%
z-index Usage 9.01% 6.71%
Hidden Cross-Domain Links 18.39% 12.73%
Hidden Clickable Links 34.71% 34.49%

6.5.3 Evaluation of advanced clickjacking features

In this experiment, we examined the symptoms of advanced clickjacking attacks (dis-

cussed in Section 6.2.2) by evaluating proposed prominent features in the websites col-

lected by our data set. The goal of this experiment was to understand the impact or

nature of novel clickjacking attack in these categories. We use the same method as of

Experiment 1 to gather feature values and analyze them for detecting clickjacking.

Chapter 6. Detection of Click-Hijacking in Browser 128

Table 6.9 illustrates the presence of novel features in the visited websites. The results

show that 6% of total visited websites uses SVG based images and filters, whereas only

1% of Alexa top 20000 websites uses this features. We have also observed that websites

in both the categories uses an alternative method to hide web page elements, use SVG

based method to embed scripts, embed links in SVG images, etc. The detail results are

illustrated in Table 6.9.

Table 6.9: Newly identified advance (SVG-based) relevant features in visited
web pages.

Page Properties Reachable Alexa
using SVG Web Pages Top

(48920) (20000)
SVG usage in wild 6% 1%
Transparency using SVG 1.8% 0.6%
Link embedding using SVG 0.5% 0%
Pointer-event using SVG 0.8% 0.2%
Using script using SVG 0.3 % 0.7%

6.5.4 Evaluation of clickjacking attack using proposed fea-

tures

In this experiment, we evaluated how effective our adaptation of clickjacking features

was in detecting clickjacking attack sites. Here, we assessed four different conditions:

1. Basic features: These features consisted of hidden/transparent iframes and hid-

den/duplicate mouse pointer. These features can detect only basic clickjacking

attacks.

2. Proposed static features: These features are discussed in Section 6.3.1. Here,

we show how effective are these features in detecting clickjacking attacks other

than basic clickjacking.

3. Proposed static and dynamic features: Dynamic features are also discussed

in Section 6.3.1. We combine static and dynamic features to detect more advanced

clickjacking attacks. Besides, combining both features reduces false positives.

4. Combining static, dynamic features and Heuristics: We combine static and

dynamic features with heuristics to detect more advanced clickjacking attacks.

Chapter 6. Detection of Click-Hijacking in Browser 129

We tested these features for detecting clickjacking by visiting 1000 websites that are

tainted with clickjacking attack and thousands of legitimate URLs from different cat-

egories. To test these three feature sets, we collected 1000 clickjacking websites from

different sources. We combined different sources to obtain an initial list of URLs, such

as, proof-of-concept examples published on the Internet; our own implementation of

different variants of web pages that contained clickjacking attack; and few URLs from

malwaredomains.com.

We used a Firefox extension that we developed to gather our results. Our extension

takes a list of URLs from the data set we prepared, loads each URL into a web browser

pre-installed as a browser extension. The browser was customized for being suitable for

running in the background, enabling automated grabbing of URLs from the list.

Figure 6.8 illustrates the detection results. In comparing basic features with our pro-

posed static and dynamic features, we can see that basic clickjacking features are not

able to detect all clickjacking attacks types discussed in Section 6.2.2. The percentage

of true positives with basic features is low (90%). The percentage of false positives with

basic features are very high (29.22%). The basic features label a website as clickjacking

on the basis of hidden elements or hidden mouse cursor that may be used in legitimate

websites also. On the other hand if we use our proposed static features, the true positives

are 91% and false positives are 14%. Because high false positives with static features

is because these features do not monitor the response to clicks. It only checks whether

a web page contains symptoms of clickjacking on the basis of feature values obtained

from website source code. The percentage true positive and false positive when static

features are used with dynamic features is 92.22% and 7% respectively. Since dynamic

features analyze the response of a click, the percentage of false positives on combining

static and dynamic features is reduced to 7%.

To further reduce the false positives, we developed a suite of heuristics and ran another

study to determine the best way of combining these heuristics to reduce false positives

while not significantly impacting true positives. The heuristics are described in Sections

6.4.2 and 6.4.3. In comparing static + dynamic features to static + dynamic features

+ heuristics, we can see that using the heuristics with our proposed features can signif-

icantly reduce the false positives percentage (from 7% to 0.28%). Moreover, there is an

improvement of true positive percentage (from 92.22% to 98.78%). This improvement of

Chapter 6. Detection of Click-Hijacking in Browser 130

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

%

Basic Features
Static Features

(S + D) Features
(S + D) Features + Heuristics

True Positive False Positive

Figure 6.8: True positive and false positive metrics on applying basic, static
+ dynamic (S + D) features, static + dynamic (S + D) features + heuristics

on websites.

accuracy is due to adding heuristics derived from clickjacking attack examples presented

in published work as proof-of-concept. Thus, the static + dynamic features + heuristics

seems to be the best method for detecting clickjacking websites.

6.5.5 Clickjacking impact on web ecosystem

In our efforts to understand how clickjacking attack impacts various categories of web-

sites, we conducted this experiment in three phases.

1. Phase-I. In this phase, we first apply our detection model to separate suspicious

websites from legitimate working (or reachable) websites. The legitimate websites

do not contain any symptoms of clickjacking attack, whereas suspicious websites

are further explored for clickjacking warning and attack alerts. Table 6.10 illus-

trates, for each dataset category, the number of legitimate and suspicious websites.

Table 6.10: Impact of clickjacking attack for each dataset.

Web Visited Alexa Malicious Phishing
Pages URLs URLs URLs URLs

(40000) (20000) (10000) (8000)
Reachable 35192 20000 9529 4199
Legitimate 33114 19468 6747 3177
Suspicious 2078 532 2782 989

Chapter 6. Detection of Click-Hijacking in Browser 131

2. Phase-II. In this phase, we further explore suspicious websites for clickjacking

attacks. If a suspicious website does not satisfy any heuristics, our detection

model generates a warning alert. In case, suspicious website satisfies one of the

heuristics, our detection model generates an attack alert. Figure 6.9 illustrates,

for suspicious URLs from all datasets, the percentage of warning and attack alerts

generated by our model. It has been found that for suspicious URLs present in

four datasets, our model generated 90.86% of warning alerts. The reason for

such response is because the fact that the web pages designed for promoting

advertisement contains hidden iframes, which targets social networking websites

to promote their brands on social networks. It proves that the web page developers

use hidden, or transparent content to confuse or to steal user clicks. Furthermore,

we found that 9.1% of websites are prone to clickjacking attacks. These websites

include both traditional, and advanced clickjacking attacks.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

%

Suspicious URLs
Suspicious Alexa URLs

Suspicious Malicious URLs
Suspicious Phishing URLs

Warning Alerts Attack Alerts

Figure 6.9: Breakdown of the warning and attack percentage for warning and
Attack alerts % for suspicious web pages.

3. Phase-III. In this phase, we compute the number of false positives produced

by our detection model. We reported the percentage of false positives for every

dataset. The Experiment 4 shows, on applying heuristics, how our detection model

reduces the number of false positives. Table 6.11 illustrates, for each dataset

category, the number of false positives produces by our detection model. The

results indicate that our approach not only detects new advanced clickjacking

attacks, but also results in negligible false positives.

Discussion. Our study has found that even a legitimate looking website would some-

times handle compromising the browser with the clickjacking attack. The interesting

Chapter 6. Detection of Click-Hijacking in Browser 132

Table 6.11: Illustration of False Positives (FP).

Metric Visited Alexa Malicious Phishing
URLs URLs URLs URLs
(40000) (20000) (10000) (8000)

FP (%) 0.29 0.19 0.18 0.58

point in this analysis is that even a single click on the malicious page can cause a seri-

ous privacy breach. The victim is completely unaware of the click thief sitting in their

browsers and do not know that their clicks are at risk of conducting unwanted business.

We have seen the evidence that this attack mostly target social networking, mailing

websites, and sometimes unsecured bank transactions.

1. False Positives. Our results show that around 0.28% of the alerts raised by our

experiments are the false alarms. The false alarms generated by our solution is

because few legitimate web pages often use hidden iframes or divs. In particular,

most of the false alarms were generated by pop-ups that dynamically appear in

response to particular events, or by advertisement banners that are placed on top

of a scrollable page. In both cases, the content of the advertisement was visible

to the user, but it confuses our detection method. The advertisement banner

can contain clickable elements either overlapped with other clickable elements or

enclosed within nested DIVs.

Nevertheless, note that by combining the static and dynamic features along with

heuristics, greatly reduces the number of false positives. For example, if some

legitimate web page contains hidden iframe it cannot be called a clickjacking attack

page. But, if the same page is having hidden elements wrapped into anchor <a>

tag, and overlapped with iframe then it might result in a clickjacking attack.

2. False Negatives. To estimate the false negative reported by our detection model,

we analyzed 1000 malicious pages dataset build from various source. In particular,

we have designed a set malicious websites on our own to mimic clickjacking attacks.

We developed websites containing attack payloads a0 − a11. We also collected

malicious web pages that reported clickjacking attacks. We apply our detection

model on malicious page dataset. After analysis, we found that our detection

model successfully detected clickjacking attacks in all malicious web pages and

had nil false negative.

Chapter 6. Detection of Click-Hijacking in Browser 133

6.6 Summary

In this chapter, we have identified new variants of clickjacking attacks using SVG-based

filters and images. We demonstrated that current clickjacking detection techniques fail to

discover these newly identified variants of clickjacking attacks. We analyze to emphasize

that there is a requirement for improved detection within the browser to defend against

emerging threats originated from CSS, SVG and iframes based clickjacking attacks.

On the basis of our experimental analysis, we proposed a novel approach for the detec-

tion and analysis of clickjacking attacks including advanced SVG-based attacks. The

approach has been illustrated using the behavioral model in term of Finite State Au-

tomaton (FSA) to analyze different behaviors (responses) with respect to user clicks

(requests) on the web pages. We evaluate our proposed method with a sample set of

78000 web pages including both malicious and legitimate web pages. The results of the

evaluation illustrate that our approach not only detect novel SVG-based clickjacking

attacks, but also results in negligible false positives of 0.28% and nil false negative. Fi-

nally, we show that current clickjacking attack detection tools and techniques are not

able to provide a complete solution against newly identified variants of clickjacking at-

tacks. Also, our detection model provides an improved solution against all types of

clickjacking attacks. In the following chapter, we conclude this thesis by summarizing

the goals and findings and by providing directions for future work.

Chapter 7

Conclusions and Future work

Browser attacks over the years have stormed the Internet world with so many malicious

activities. It provides an unauthorized access, damage or disruption of the user informa-

tion within or outside the browser. The appearance of various browser attacks executed

on web browser causes real challenges to Internet user in protecting their information

from an attacker. This thesis is aimed at addressing the issues raised with browser

extensions and misjudged user clicks (Click-Hijacking).

7.1 Browser Extensions

Currently available browser extensions provide array of features enhance the look and

feel of the browser, and web applications. For this reason, browser extensions enjoy

widespread popularity among the users. Moreover, Browser renders extensions to run

with full browser privileges, including access to browser components such as browser

DOM, cookie manager, password manager and elements or information present in a

web page. In addition, browser extensions can access OS resources such as file system,

network services, and process system. However, as we have discussed in Chapter 3, the

high privilege of browser extension scripts can be a pitfall, this may place the browser

under risk of information breach, privilege escalation attacks, etc. We have shown how

the current JavaScript security policy, i.e., the Same Origin Policy is not adequate for

mitigating this problem.

134

Chapter 7. Conclusions and Future work 135

To address issue arises from the malicious information flow among critical operating re-

sources, we propose a static analysis model for analyzing suspicious flows in JavaScript-

based browser extension (JSE). Our model detects potentially insecure information flows

within the sensitive source to sensitive sink resources. In particular, it helps to inves-

tigate the suspicious flow in JSEs before installing them onto the browser. Our ob-

servations found that the suspicious flows in JSEs can be due to the unprotected and

privileged access to critical resources. The experiments demonstrate that BEAM can

detect critical flows even in some benign extensions, which closely resemble malicious

flow and can be critical to the browser security. In the next chapter, we discuss novel

attack techniques using colluding browser extensions.

To alert the browser research community, we identified new browser attacks that circum-

vent all detection mechanisms proposed yet for browser extensions. We demonstrated

the extension collusion attacks with respect to extension communication over covert and

overt channels. In particular, we showed how two legitimate extensions can collude to

achieve malicious goals and how an individual malicious extension can mis-configure

browser and another extensions configurations. Our attacks are undetectable by ex-

isting known client side methods used for detecting malicious flow and vulnerability

in extensions. We have demonstrated our finding by targeting a malicious goal using

two legitimate extensions on three critical web domains; banking, online shopping, and

websites that allow users to buy download credits. We also provided a proof-of-concept

explaining how multiple extensions can collude with each other for compromising the

browser for data leakage.

We observed that detecting a malicious flow in an extension is a partial protection against

extension-based attacks. Consequently, we propose a sandbox and isolated environment

to protect operating system resources from such attacks. Our sandFOX policies restrict

an attacker in executing critical attacks on operating system resources such as file sys-

tem, network, process. Our proposed solution does not modify existing Firefox browser

and its components. Instead, it uses Security-Enhanced Linux (SELinux) to build a

sandbox that helps in reducing potential damage from extension-based attacks on OS

resources. Our proposed policies let a browser application such as extensions and plug-in

to access limited OS resources in the restrictive environment, and hence do not affect

the functionalities and user browsing experience. We show the practicality of sandFOX

in a range of settings, we compute the effectiveness of sandFOX for various browser

Chapter 7. Conclusions and Future work 136

attacks. We also show that sandFOX enabled browser imposes low overhead on loading

web pages and utilizes negligible memory when running with sandbox environment.

7.2 Click-Hijacking in Browser

To understand the attacks targeting clicks of a user, we study new classes of clickjacking

attacks in web browser. We find that most of the attacks against users of web appli-

cation are caused by exploiting the fact that human visual system may not perceive

minor changes caused due to blurring or filters used in image processing. We have

identified new variants of clickjacking attacks using SVG-based filters and images. We

demonstrated that current clickjacking detection techniques fail to discover these newly

identified variants of clickjacking attacks. We analyze to emphasize that there is a re-

quirement for improved detection within the browser to defend against emerging threats

originated from CSS, SVG and iframes based clickjacking attacks.

On the basis of our experimental analysis, we proposed a novel approach for the detec-

tion and analysis of clickjacking attacks including advanced SVG-based attacks. The

approach has been illustrated using the behavioral model in term of Finite State Au-

tomaton (FSA) to analyze different behaviors (responses) with respect to user clicks

(requests) on the web pages. We evaluate our proposed method with a sample set of

78000 web pages including both malicious and legitimate web pages. The results of the

evaluation illustrate that our approach not only detect novel SVG-based clickjacking

attacks, but also results in negligible false positives of 0.28% and nil false negative. Fi-

nally, we show that current clickjacking attack detection tools and techniques are not

able to provide a complete solution against newly identified variants of clickjacking at-

tacks. Also, our detection model provides an improved solution against all types of

clickjacking attacks.

7.3 Future Work

The work of this thesis has raised more queries and opened vistas for the future. We

would like to expand our defense system for browser extensions by incorporating to

Chapter 7. Conclusions and Future work 137

measure the attack surface or attack opportunities. Intention of this study would be

based on identifying over privileged browser extension and providing a solution that can

reduce the attack surface of the browser extension.

In the present state of these we have only suggested possible mitigation techniques for

newly identify collusion extension-based attacks. Thus, we would like to implement

these techniques and improve the browser against colluding attacks. Also, we hope that

Firefox and other browsers will consider these issues and come with a secured policy to

provide users a secure browsing environment.

For misjudged user click in browser, we would like to extend the proposed technique to

improve the detection of other variants of clickjacking attacks. In addition, we plan to

implement a browser extension that is able to use the characterization learned by our

approach to proactively block clickjacking attacks in real-time.

Publications

A. Journal Publications

[J-1] Anil Saini, Manoj Singh Gaur and Vijay Laxmi., “Review of Man-in-the-Browser

Attacks using Security Attack Scenarios”, in International Journal of Advances in

Computer Networks and Its Security, ISSN (Online): 2250-3757, 2013.

[J-2] Anil Saini, Manoj Singh Gaur, Vijay Laxmi, Mauro Conti., “You Click, I Steal:

Analyzing and Detecting Click Hijacking Attacks in Web Pages”, in Springer

Journal of Information Security. Communicated

[J-3] Anil Saini, Manoj Singh Gaur, Vijay Laxmi, Mauro Conti, Muttukrishnan Ra-

jarajan., “Detecting Threats in Browser Extensions via Semantic Analysis”, in

Springer Journal of Information Security. Communicated

[J-4] Anil Saini, Manoj Singh Gaur, Vijay Laxmi, Mauro Conti., “Colluding Browser

Extension Attack on User Privacy and its Implication for Web Browsers”, in

Elsevier Computer and Security. Communicated

B. Conference Publications

[C-1] Anil Saini, Manoj Singh Gaur and Vijay Laxmi., “Review of Man-in-the-Browser

Attacks using Security Attack Scenarios”, in proceeding of ICSEE, 2013, UACEE

publications, New-Delhi.

[C-2] Anil Saini, Manoj Singh Gaur and Vijay Laxmi., “Modeling Clickjacking Attacks”,

Poster- SIS-SNDA-2013 at BITS-Pilani, Hyderabad Campus.

138

139

[C-3] Anil Saini, Manoj Singh Gaur, Vijay Laxmi., “The Darker Side of Firefox Exten-

sions”, Proceedings of the 6th International Conference on Security of Information

and Networks. ACM, 2013.

[C-4] Anil Saini, Manoj Singh Gaur, Vijay Laxmi, Mauro Conti., “Privacy Leakage

Attacks in Browsers by Colluding Extensions.” ICISS-2014, Springer International

Publishing, 2014. 257-276.

[C-5] Anil Saini, Manoj Singh Gaur, Vijay Laxmi., “Colluding Browser Extensions:

A Threat to Banking Domains”, in 4th Doctoral Colloquium (IDC), IDRBT,

Hyderabad, 2014.

[C-6] Anil Saini, Manoj Singh Gaur, Vijay Laxmi., “sandFOX: Secure Sandboxed and

Isolated Environment for Firefox Browser”, International Conference on Security

of Information and Networks. ACM, 2015. Communicated

C. Book Chapter

[B-1] Anil Saini, Manoj Singh Gaur, Vijay Laxmi., “A Taxonomy of Browser Attacks.”,

Book-Chapter: Handbook of Research on Digital Crime, Cyberspace Security, and

Information Assurance, IGI-Global (2014), 291-313.

Bibliography

[1] Van Lam Le, Ian Welch, Xiaoying Gao, and Peter Komisarczuk. Anatomy of

drive-by download attack. In Proceedings of the Eleventh Australasian Information

Security Conference - Volume 138, AISC ’13, pages 49–58, 2013.

[2] Eric L Howes. The anatomy of a ’drive-by-download’, 2004.

[3] Philippe Beaucamps, Daniel Reynaud, and France Loria-Nancy. Malicious firefox

extensions. In Symp. Sur La Securite Des Technologies De LInformation Et Des

Communications, 2008.

[4] Jiangang Wang, Xiaohong Li, Xuhui Liu, Xinshu Dong, Junjie Wang, Zhenkai

Liang, and Zhiyong Feng. An empirical study of dangerous behaviors in firefox

extensions. In Information Security, pages 188–203. Springer, 2012.

[5] Alan Grosskurth and Michael W Godfrey. A reference architecture for web

browsers. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE

International Conference on, pages 661–664. IEEE, 2005.

[6] Marin Silić, Jakov Krolo, and Goran Delač. Security vulnerabilities in modern

web browser architecture. In MIPRO, 2010 Proceedings of the 33rd International

Convention, pages 1240–1245. IEEE, 2010.

[7] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The security archi-

tecture of the chromium browser, 2008.

[8] Andy Zeigler. Ie8 and loosely-coupled ie (lcie), 2011.

[9] Ahmed Obied and Reda Alhajj. Fraudulent and malicious sites on the web. Applied

intelligence, 30(2):112–120, 2009.

140

141

[10] R. S. Liverani and N. Freeman. Abusing firefox extensions. In Defcon17, 2009.

[11] Mike Ter Louw, Jin Soon Lim, and VN Venkatakrishnan. Extensible web browser

security. In Detection of Intrusions and Malware, and Vulnerability Assessment,

pages 1–19. Springer, 2007.

[12] XPCOM. Xpcom interface, 2014. https://developer.mozilla.org/en-US/docs/XUL/Tutorial/

[13] Document object model. https://developer.mozilla.org/en/docs/DOM.

[14] Chris Grier, Shuo Tang, and Samuel T King. Designing and implementing the op

and op2 web browsers. ACM Transactions on the Web (TWEB), 5(2):11, 2011.

[15] Elias Athanasopoulos, Vasilis Pappas, and Evangelos P Markatos. Code-injection

attacks in browsers supporting policies. In Proceedings of the 2nd Workshop on

Web 2.0 Security & Privacy (W2SP), 2009.

[16] Hossain Shahriar and Mohammad Zulkernine. Mitigating program security vul-

nerabilities: Approaches and challenges. ACM Computing Surveys (CSUR), 44

(3):11, 2012.

[17] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege escalation.

In USENIX Security, volume 3, 2003.

[18] Mozilla developer network-extensions. https://developer.mozilla.org/en/docs/Extensions.

[19] Michal Zalewski. Browser security handbook. Google Code, 2010.

[20] Extensions. Technologies used in developing extensions, 2014.

https://developer.mozilla.org/en-US/docs/Firefox_addons_developer_guide/.

[21] Sara Williams and Charlie Kindel. The component object model: A technical

overview. Technical report, Microsoft Technical Report, 1994.

[22] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. Pro-

tecting browsers from extension vulnerabilities. Technical report, 2009.

[23] Deg Caraig. Firefox add-on spies on google search results, 2009.

[24] Security issue on amo, 2014

. http://blog.mozilla.com/addons/2010/02/04/please-read-security-issue-on-amo/.

https://developer.mozilla.org/en-US/docs/XUL/Tutorial/
https://developer.mozilla.org/en/docs/DOM
https://developer.mozilla.org/en/docs/Extensions
https://developer.mozilla.org/en-US/docs/Firefox_addons_developer_guide/
http://blog.mozilla.com/addons/2010/02/04/please-read-security-issue-on-amo/

142

[25] XPConnect, 2014. https://developer.mozilla.org/en/docs/XPConnect.

[26] XUL. Xul overlays, 2014. https://developer.mozilla.org/en-US/docs/XUL_Overlays.

[27] Anil Saini, Manoj Singh Gaur, and Vijay Laxmi. The darker side of firefox exten-

sion. In Proceedings of the 6th International Conference on Security of Information

and Networks, SIN ’13, pages 316–320. ACM, 2013.

[28] A. Barth. Severity guidelines for security issues. The Chromium Project.

http://dev.chromium.org/developers/severity-guidelines.

[29] L. Adamski. Security severity ratings. MozillaWiki. URL

https://wiki.mozilla.org/Security_Severity_Ratings.

[30] N. Freeman and R. S. Liverani. Exploiting cross context script-

ing vulnerabilities in firefox. Security-assesment.com, 2010.

http://www.security-assessment.com/files/documents/whitepapers/Exploiting

Cross Context Scripting vulnerabilities in Firefox.pdf.

[31] R. S. Liverani. Cross context scripting with firefox. Security-assesment.com, 2010.

http://www.security-assessment.com/files/whitepapers/

bfCross Context Scripting with Firefox.pdf.

[32] David M Martin Jr, Richard M Smith, Michael Brittain, Ivan Fetch, and Hailin

Wu. The privacy practices of web browser extensions. Communications of the

ACM, 44(2):45–50, 2001.

[33] Adrienne Porter Felt. A survey of firefox extension api use. 2009.

[34] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome extensions:

Threat analysis and countermeasures. In Network and Distributed System Security

Symposium (NDSS), 2012.

[35] Seyed Hossein Ahmadinejad and Philip WL Fong. Unintended disclosure of in-

formation: Inference attacks by third-party extensions to social network systems.

Computers & Security, 44:75–91, 2014.

[36] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, Vern Paxson, Dhilung Kirat, Giancarlo De Maio, Yan Shoshitaishvili,

https://developer.mozilla.org/en/docs/XPConnect
https://developer.mozilla.org/en-US/docs/XUL_Overlays
http://dev.chromium.org/developers/severity-guidelines
https://wiki.mozilla.org/Security_Severity_Ratings
http://www.security-assessment.com/files/documents/whitepapers/Exploiting
http://www.security-assessment.com/files/whitepapers/

143

Gianluca Stringhini, et al. Hulk: eliciting malicious behavior in browser exten-

sions. In Proceedings of the 23rd USENIX conference on Security Symposium,

pages 641–654. USENIX Association, 2014.

[37] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. Anal-

ysis of the communication between colluding applications on modern smartphones.

In Proceedings of the 28th Annual Computer Security Applications Conference,

ACSAC ’12, pages 51–60, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-

1312-4.

[38] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyzing

inter-application communication in android. In Proceedings of the 9th international

conference on Mobile systems, applications, and services, pages 239–252. ACM,

2011.

[39] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.

Privilege escalation attacks on android. In Information Security, pages 346–360.

Springer, 2011.

[40] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza

Sadeghi, and Bhargava Shastry. Towards taming privilege-escalation attacks on

android. In NDSS, 2012.

[41] Shuo Chen, David Ross, and Yi-Min Wang. An analysis of browser domain-

isolation bugs and a light-weight transparent defense mechanism. In Proceedings

of the 14th ACM conference on Computer and communications security, pages

2–11. ACM, 2007.

[42] Chris Karlof, Umesh Shankar, J Doug Tygar, and David Wagner. Dynamic pharm-

ing attacks and locked same-origin policies for web browsers. In Proceedings of the

14th ACM conference on Computer and communications security, pages 58–71.

ACM, 2007.

[43] Collin Jackson, Andrew Bortz, Dan Boneh, and John C Mitchell. Protecting

browser state from web privacy attacks. In Proceedings of the 15th international

conference on World Wide Web, pages 737–744. ACM, 2006.

144

[44] Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and Wouter

Joosen. Monkey-in-the-browser: Malware and vulnerabilities in augmented brows-

ing script markets. In Proceedings of the 9th ACM symposium on Information,

computer and communications security, pages 525–530. ACM, 2014.

[45] Chris Grier, Shuo Tang, and Samuel T King. Designing and implementing the op

and op2 web browsers. ACM Transactions on the Web (TWEB), 5(2):11, 2011.

[46] Richard S Cox, Jacob Gorm Hansen, Steven D Gribble, and Henry M Levy. A

safety-oriented platform for web applications. In Security and Privacy, 2006 IEEE

Symposium on, pages 15–pp. IEEE, 2006.

[47] Sotiris Ioannidis and Steven Michael Bellovin. Building a secure web browser.

2001.

[48] Helen J Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and

communication abstractions for web browsers in mashupos. In ACM SIGOPS

Operating Systems Review, volume 41, pages 1–16. ACM, 2007.

[49] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, and Sachiko

Yoshihama. Smash: secure component model for cross-domain mashups on un-

modified browsers. In Proceedings of the 17th international conference on World

Wide Web, pages 535–544. ACM, 2008.

[50] Shun-Wen Hsiao, Yeali S. Sun, and Meng Chang Chen. A secure proxy-based

cross-domain communication for web mashups. J. Web Eng., 12(3-4):291–316,

July 2013.

[51] VMware. Vmware, inc. browser appliance virtual machine., 2005.

http://www.vmware.com/vmtn/vm/browserapp.html.

[52] GreenBorder. Green border technologies. greenborder desktop dmz solutions.,

2005. http://www.greenborder.com.

[53] Poul-Henning Kamp and Robert NM Watson. Jails: Confining the omnipotent

root. In Proceedings of the 2nd International SANE Conference, volume 43, page

116, 2000.

http://www.vmware.com/vmtn/vm/browserapp.html
http://www.greenborder.com

145

[54] Zhuowei Li, XiaoFeng Wang, and Jong Youl Choi. Spyshield: Preserving privacy

from spy add-ons. In Proceedings of the 10th International Conference on Recent

Advances in Intrusion Detection, RAID’07, pages 296–316. Springer-Verlag, 2007.

[55] D. Esposito. Browser helper objects: The browser the way you want it. Microsoft

Corporation.

[56] Sruthi Bandhakavi, Nandit Tiku, Wyatt Pittman, Samuel T. King, P. Madhusu-

dan, and Marianne Winslett. Vetting browser extensions for security vulnerabili-

ties with vex. Commun. ACM, 54(9):91–99, September 2011.

[57] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in javascript-

based browser extensions. In Proceedings of the 2009 Annual Computer Security

Applications Conference, ACSAC ’09, pages 382–391, 2009.

[58] K. Onarlioglu, M. Battal, W. Robertson, and E. Kirda. Securing legacy firefox

extensions with sentinel. In Proceedings of the 10th International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),

pages 122–138. Springer, 2013.

[59] Hossain Shahriar, Komminist Weldemariam, Mohammad Zulkernine, and

Thibaud Lutellier. Effective detection of vulnerable and malicious browser ex-

tensions. Computers & Security, 47:66–84, 2014.

[60] Vladan Djeric and Ashvin Goel. Securing script-based extensibility in web browsers.

University of Toronto, 2010.

[61] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy. Ver-

ified security for browser extensions. In Security and Privacy (SP), 2011 IEEE

Symposium on, pages 115–130. IEEE, 2011.

[62] Mozilla foundation, 2013. https://bugzilla.mozilla.org/show_bug.cgi?id=154957.

[63] Robert Hansen and Jeremiah Grossman. Clickjacking, 2008.

[64] Adam Barth, Collin Jackson, and John C Mitchell. Securing frame communication

in browsers. Communications of the ACM, 52(6):83–91, 2009.

[65] Mark Zalewski. Dealing with ui redress vulnerabilities inherent to the current web,

2009.

https://bugzilla.mozilla.org/show_bug.cgi?id=154957

146

[66] Collin Jackson, Andrew Bortz, Dan Boneh, and John C Mitchell. Protecting

browser state from web privacy attacks. In Proceedings of the 15th international

conference on World Wide Web, pages 737–744. ACM, 2006.

[67] Philippe De Ryck, Lieven Desmet, Frank Piessens, and Martin Johns. Attacks

on the browsers requests. In Primer on Client-Side Web Security, pages 57–68.

Springer, 2014.

[68] Helen Meyer. Want security? see what hacker does with a cookie ”. Computers

& Security, 16(2), 1997.

[69] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang, Stuart Schecter, and

Collin Jackson. Clickjacking: Attacks and defenses. In USENIX Security Sympo-

sium, pages 413–428, 2012.

[70] G Maone. Noscript. A Firefox Extension, 2009.

[71] Krzysztof Kotowicz. Cursorjacking again, 2012.

http://blog.kotowicz.net/2012/01/

cursorjacking-again.html.

[72] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide Balzarotti, and Christopher

Kruegel. A solution for the automated detection of clickjacking attacks. In Proceed-

ings of the 5th ACM Symposium on Information, Computer and Communications

Security, pages 135–144. ACM, 2010.

[73] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. Busting frame

busting: a study of clickjacking vulnerabilities at popular sites. IEEE Oakland

Web, 2:6, 2010.

[74] David Ross and Tobias Gondrom. Http header field x-frame-options, 2013.

[75] XSS Filter Evasion Cheat Sheet. Retrieved june 20, 2013 from the open web

application security project: https://www. owasp. org/index. php, 2013.

[76] Antonio Ruiz-Mart́ınez. A survey on solutions and main free tools for privacy

enhancing web communications. Journal of Network and Computer Applications,

35(5):1473–1492, 2012.

[77] Philipp Ghring. Concepts against man-in-the-browser attacks, 2006.

http://blog.kotowicz.net/2012/01/

147

[78] Gaya K Jayasinghe, J Shane Culpepper, and Peter Bertok. Efficient and effec-

tive realtime prediction of drive-by download attacks. Journal of Network and

Computer Applications, 38:135–149, 2014.

[79] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis

of drive-by-download attacks and malicious javascript code. In Proceedings of the

19th international conference on World wide web, pages 281–290. ACM, 2010.

[80] Common Vulnerability (CVE-2007-3743) Exposures. Mitre corporation, 2007.

[81] Common Vulnerability (CVE-2008-3360) Exposures. Mitre corporation, 2008.

[82] Anil Saini, Manoj Singh Gaur, Vijay Laxmi, Tuahar Singhal, and Mauro Conti.

Privacy leakage attack in browser using colluding extensions. In Information Sys-

tems Security - 10th International Conference, ICISS, Hyderabad, India. Proceed-

ings. Springer, 2014.

[83] Using data tainting for security. Netscape Navigator 3.0.

http://www.aisystech.com/resources/adv-topic.htm.

[84] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and Richard

Kemmerer. Behavior-based spyware detection. In Usenix Security, volume 6,

2006.

[85] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Xiaodong

Song. Dynamic spyware analysis. In USENIX annual technical conference, pages

233–246, 2007.

[86] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome extensions:

Threat analysis and countermeasures. In NDSS, 2012.

[87] N Hoque, Monowar H Bhuyan, Ram Charan Baishya, DK Bhattacharyya, and

Jugal K Kalita. Network attacks: Taxonomy, tools and systems. Journal of

Network and Computer Applications, 40:307–324, 2014.

[88] T. Parr. The definitive ANTLR reference: building domain-specific languages.

Pragmatic.

[89] Ecmascript language specification. http://www.antlr3.org/grammar/list.html.

http://www.aisystech.com/resources/adv- topic.htm
http://www.antlr3.org/grammar/list.html

148

[90] Helen J Wang, Chris Grier, Alexander Moshchuk, Samuel T King, Piali Choud-

hury, and Herman Venter. The multi-principal os construction of the gazelle web

browser. In USENIX Security Symposium, volume 28, 2009.

[91] Mauro Conti, Arbnor Hasani, and Bruno Crispo. Virtual private social networks

and a facebook implementation. ACM Transactions on the Web (TWEB), 7(3):

14, 2013.

[92] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. Jsflow:

Tracking information flow in javascript and its apis. In Proceedings of the 29th

Annual ACM Symposium on Applied Computing, SAC ’14, pages 1663–1671, New

York, NY, USA, 2014. ACM.

[93] Anton Barua, Mohammad Zulkernine, and Komminist Weldemariam. Protecting

web browser extensions from javascript injection attacks. In Engineering of Com-

plex Computer Systems (ICECCS), 2013 18th International Conference on, pages

188–197. IEEE, 2013.

[94] Hossain Shahriar, Komminist Weldemariam, Mohammad Zulkernine, and

Thibaud Lutellier. Effective detection of vulnerable and malicious browser ex-

tensions. Computers & Security, 47:66–84, 2014.

[95] Swarup Chandra, Zhiqiang Lin, Ashish Kundu, and Latifur Khan. Towards a

systematic study of the covert channel attacks in smartphones. Technical report,

Tech. Report, University of Texas at Dallas, 2014.

[96] Claudio Marforio, Aurélien Francillon, Srdjan Capkun, Srdjan Capkun, and Srdjan

Capkun. Application collusion attack on the permission-based security model and

its implications for modern smartphone systems. Department of Computer Science,

ETH Zurich, 2011.

[97] Google Chrome. sendmessage. [Online]. Available:

https://developer.chrome.com/extensions/messaging, .

[98] Google Chrome. Message passing. [Online]. Available:

https://developer.chrome.com/extensions/runtime, .

[99] Jeff Walden. Implement html5s crossdocument messaging api (postmessage),

2007–2008.

149

[100] Devdatta Akhawe, Warren He, Zhiwei Li, Reza Moazzezi, and Dawn Song. Click-

jacking revisited a perceptual view of ui security. BlackHat USA, August, 2013.

[101] Steven B Lipner. A comment on the confinement problem. In ACM SIGOPS

Operating Systems Review, volume 9, pages 192–196. ACM, 1975.

[102] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The security archi-

tecture of the chromium browser, 2008.

[103] Chester Rebeiro, Debdeep Mukhopadhyay, and Sarani Bhattacharya. An introduc-

tion to timing attacks. In Timing Channels in Cryptography, pages 1–11. Springer,

2015.

[104] Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. Pro-

tecting browsers from extension vulnerabilities. In NDSS. Citeseer, 2010.

[105] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-

vanni Vigna, Vern Paxson, Dhilung Kirat, Giancarlo De Maio, Yan Shoshitaishvili,

Gianluca Stringhini, et al. Hulk: eliciting malicious behavior in browser exten-

sions. In Proceedings of the 23rd USENIX Security Symposium, pages 641–654,

2014.

[106] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The security archi-

tecture of the chromium browser, 2008.

[107] Helen J Wang, Chris Grier, Alexander Moshchuk, Samuel T King, Piali Choud-

hury, and Herman Venter. The multi-principal os construction of the gazelle web

browser. In USENIX security symposium, volume 28, 2009.

[108] Ulfar Erlingsson, V Benjamin Livshits, and Yinglian Xie. End-to-end web appli-

cation security. In HotOS, 2007.

[109] Jason Hong. The state of phishing attacks. Communications of the ACM, 55(1):

74–81, 2012.

[110] Sven Vermeulen. SELinux Cookbook. Packt Publishing Ltd, 2014.

[111] Douglas Brian Terry, Mark Painter, David W Riggle, and Songian Zhou. The

berkeley internet name domain server. University of California, 1984.

150

[112] Mohammed J Kabir. Apache Server Bible. IDG Books Worldwide, Inc., 1998.

[113] Oskar Andreasson. Iptables tutorial, 2006, 2011.

[114] Anne van Kesteren et al. Cross-origin resource sharing. W3C Working Draft

WD-cors-20100727, 2010.

[115] Hao Zhang, William Banick, Danfeng Yao, and Naren Ramakrishnan. User

intention-based traffic dependence analysis for anomaly detection. In Security

and Privacy Workshops (SPW), 2012 IEEE Symposium on, pages 104–112. IEEE,

2012.

[116] Chandan Luthra and Deepak Mittal. Firebug 1.5: Editing, Debugging, and Mon-

itoring Web Pages. Packt Publishing Ltd, 2010.

[117] Jeremiah Grossman. Clickjacking-owasp appsec talk, 2008.

[118] Marcus Niemietz. Ui redressing: Attacks and countermeasures revisited. in CON-

Fidence, 2011, 2011.

[119] Paul Stone. Next generation clickjacking. BlackHat Europe, 2010.

[120] Michal Zalewski. Strokejacking, 2010. http://seclists.org/fulldisclosure/2010/Mar/232.

[121] E Bordi. Proof of concept-cursorjacking, 2010.

[122] Refsnes Data. Html5 introduction, 2013.

[123] Patrick Lynch and Sarah Horton. Yale c/aim web style guide. Yale Center for

Advanced Instructional Media.[Online], 1997.

[124] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. Scalable vector graphics (SVG)

1.0 specification. iuniverse, 2000.

[125] J David Eisenberg. SVG Essentials: Producing Scalable Vector Graphics with

XML. ” O’Reilly Media, Inc.”, 2002.

[126] Andrew Watt. SVG unleashed. Pearson Education, 2002.

[127] Benjamin S Lerner, Matthew J Carroll, Dan P Kimmel, Hannah Quay-De

La Vallee, and Shriram Krishnamurthi. Modeling and reasoning about dom events.

http://seclists.org/fulldisclosure/2010/Mar/232

151

In Proceedings of the 3rd USENIX conference on Web Application Development,

pages 1–1. USENIX Association, 2012.

[128] SH Kim, SH Lee, and SH Jin. Active phishing attack and its countermeasures.

Electronics and Telecommunications Trends, 28(3), 2013.

[129] Martin Kay and Ron Kaplan. Finite-state automata.

[130] Sebastian Lekies, Mario Heiderich, Dennis Appelt, Thorsten Holz, and Martin

Johns. On the fragility and limitations of current browser-provided clickjacking

protection schemes. In WOOT, pages 53–63, 2012.

[131] Michael Nepomnyashy. Protecting applications against clickjacking with f5 ltm.

SANS Institute InfoSec Reading Room, 2013.

[132] Hossain Shahriar, Vamshee Krishna Devendran, and Hisham Haddad. Proclick: a

framework for testing clickjacking attacks in web applications. In Proceedings of

the 6th International Conference on Security of Information and Networks, pages

144–151. ACM, 2013.

[133] G Aharonovsky. Malicious camera spying using clickjacking, 2008.

[134] Jawwad A Shamsi, Sufian Hameed, Waleed Rahman, Farooq Zuberi, Kaiser Altaf,

and Ammar Amjad. Clicksafe: Providing security against clickjacking attacks.

In High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International

Symposium on, pages 206–210. IEEE, 2014.

[135] Clickjacking defense cheatsheet, 2014. https://www.owasp.org/index.php/

Clickjacking Defense Cheat Sheet.

[136] F Aboukhadijeh. How to: Spy on the webcams of your website visitors, 2011.

[137] Bear Bibeault and Yehuda Kats. jQuery in Action. Dreamtech Press, 2008.

[138] Alexa internet, inc. alexa - top sites by category, 2014.

http://www.alexa.com/topsites/category/Top/.

[139] Malware domain list, 2014. http://www.malwaredomainlist.com/.

[140] Phishtank domain list, 2014. http://www.phishtank.com/.

https://www.owasp.org/index.php/
http://www.alexa.com/topsites/category/Top/
http://www.malwaredomainlist.com/
http://www.phishtank.com/

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions of Thesis
	1.4 Thesis Organization

	2 Browser Attacks and Countermeasures: An Overview
	2.1 The Browser Ecosystem
	2.2 Browser-based Attacks
	2.3 Taxonomy of Browser-based Attacks
	2.4 Extending Browser Functionality
	2.4.1 Privilege Escalation Attacks through Extensions
	2.4.2 Firefox Extension System
	2.4.3 Security Risks with XPCOM Interfaces

	2.5 Extension-based Attacks in Browser
	2.6 Incorporating Security in Browser Design
	2.7 Security against Browser Extensions
	2.8 Hardening Browser Clicks against Clickjacking Attacks
	2.9 Summary

	3 Malicious Flows in Browser Extensions
	3.1 Problem
	3.2 Threat Model
	3.2.1 Attack Scope and Target

	3.3 Proposed Approach: BEAM
	3.3.1 Transforming JSE Code
	3.3.2 Tracking Information Flow
	3.3.3 An Example

	3.4 Implementation and Evaluation
	3.4.1 Evaluation Methodology
	3.4.2 Limitations

	3.5 Summary

	4 Colluding Browser Extensions
	4.1 Problem
	4.1.1 Colluding extensions in browser

	4.2 Threat Model
	4.2.1 Covert Channel Collusion
	4.2.2 Overt Channel Collusion

	4.3 Instantiation of Colluding Attacks
	4.3.1 Attack Technique: Intercepting Observer Notifications
	4.3.2 Attack Technique: Source to Sink Notifications
	4.3.3 Altering Preferences
	4.3.4 Observing Preferences

	4.4 Results and Analysis
	4.4.1 Evaluation of Collusion Techniques
	4.4.2 Ramifications of Colluding Attacks
	4.4.3 Mitigation Techniques

	4.5 Summary

	5 sandFOX: Sandbox for Firefox Browser
	5.1 Problem
	5.2 sandFOX: Proposed Sandbox
	5.2.1 Threat Model
	5.2.2 SELINUX Overview
	5.2.3 SandFOX Architecture
	5.2.4 Tuning OS
	5.2.5 Using SELinux Sandbox

	5.3 Evaluation
	5.3.1 Security Analysis
	5.3.2 Benchmarking of sandFOX

	5.4 Summary

	6 Detection of Click-Hijacking in Browser
	6.1 Problem
	6.2 Clickjacking Attacks
	6.2.1 Existing Clickjacking Attacks
	6.2.2 New SVG-based Clickjacking Attacks

	6.3 Proposed Clickjacking Detection
	6.3.1 Extracting Relevant Clickjacking Features

	6.4 Behavior Model and Testing
	6.4.1 Web Pages Behavior Model
	6.4.2 Request Heuristics
	6.4.3 Response Heuristics

	6.5 Implementation and Evaluation
	6.5.1 Experimental Setup
	6.5.2 Evaluation of clickjacking features
	6.5.3 Evaluation of advanced clickjacking features
	6.5.4 Evaluation of clickjacking attack using proposed features
	6.5.5 Clickjacking impact on web ecosystem

	6.6 Summary

	7 Conclusions and Future work
	7.1 Browser Extensions
	7.2 Click-Hijacking in Browser
	7.3 Future Work

	Bibliography

