

CERTIFICATE

This is to certify that the dissertation entitled "An accelerated degradation test planning using inverse Gaussian process for reliability prediction" being submitted by Areesha Nafees (2013PIE5141) is a bonafide work carried out by her under my supervision and guidance, and hence approved for submission to the Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur in fulfillment of the requirements for the award of the degree of Master of Technology (M.Tech.) in Industrial Engineering. The matter embodied in this dissertation report has not been submitted anywhere else for award of any other degree or diploma.

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR

JAIPUR - 302017 (RAJASTHAN), INDIA

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this dissertation entitled "An accelerated degradation test planning using inverse Gaussian process for reliability prediction" in partial fulfilment of the requirements for the award of the degree of Master of Technology (M.Tech.) in Industrial Engineering, and submitted to the Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur is an authentic record of my own work carried out by me during a period of one year from July 2014 to June 2015 under the guidance and supervision of Prof. Rakesh Jain of the Department of Mechanical Engineering, Malaviya National Institute of Technology Jaipur.

The matter presented in this dissertation embodies the results of my own work and has not been submitted anywhere else for award of any other degree or diploma.

Areesha Nafees (2013PIE5141)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Prof. Rakesh Jain Supervisor

Place: Jaipur Dated: June 2015 6/13/2015

originality report - project report - Copy.docx.html

Plagiarism Detector - Originality Report

Plagiarism Detector Project: [http://plagiarism-detector.com] Application core verrsion: 600

This report is generated by the Plagiarism Detector Demo version!

- 1. Partial plagrism detector
- 2. Some important result are

excluded no

3. External file processing

Originality report details: Generation Time and Date: Document Name: Document Location Document Words Count:	6/13/2015 5:04:57 PM project report - Copy.docx : C:\Users\sonu\Desktop\project report - Copy.docx 16048

Plagiarism Detection Chart:

(original (93.00%) Referenced 0% / Linked 0% Original - 93% / 7% - Plagiarism

ACKNOWLEDGEMENT

With great delight, I acknowledge my indebted thanks to my guide and mentor **Prof. Rakesh Jain** who has always been a source of inspiration and encouragement for me. His stimulated guidance and unwavering support always motivated me to reach out for, and achieve higher levels of excellence. This dissertation could not have attained its present form, both in content and presentation without his active interest, direction and help. I am grateful to him for keeping trust in me in all circumstances. I thank him for being big-hearted with any amateurish mistakes of mine.

I express my sincere gratitude to **Prof. A.P.S Rathore, Prof. Gopal Agrawal, Prof. G.S. Dangayach, Prof. Awadhesh Bhardwaj, Dr. M.L. Mittal, Dr. Gunjan Soni** and **Dr. M.L. Meena** for their support and guidance throughout the course of study at MNIT Jaipur.

I am extremely thankful to all the professors of Mechanical Engineering Department for providing me with their valuable time and inputs since the inception of my studies at MNIT Jaipur. I extend my deep sense of gratitude to them for their cooperation and sharing their immense pool of knowledge.

I highly acknowledge and duly appreciate the support extended by my seniors, colleaguesfriends and juniors at various industries for assistance with the collection of data for my research work..

I am thankful to my senior research scholars at MNIT Jaipur for their support and guidance. I extend my heartiest thanks to my colleagues-friends for their help & support in accomplishment of this work during my stay at MNIT Jaipur.

Finally I thank almighty God, my parents **Mr Nafees Mohd** and **Mrs. Shaheen Rahman** for their continuous support, encouragement and blessings.

Areesha Nafees

ABSTRACT

Throughout the history of modern engineering, failures of systems have been observed in every field of engineering .Due to increasing complexity of modern engineering systems, the concept of reliability has gained importance in overall system design. Reliability of a system or component is not achieved accidentally it is to be incorporated into the system or component. It needs to be addressed at all stages of the product or system development including design, manufacturing, testing and maintenance phases. In order to express the reliability of a system in quantitative terms, it is necessary to develop model of the overall system and components and realize its performance under real operating conditions.

Different models and methods have developed for the reliability analysis of a system or diagnosis of a fault. It includes various statistical methods for data analysis as well as reliability analysis such as diagram-based models, analytical methods, physics-of-failure and fuzzy logic-based reliability tools and techniques that have molded the emergence of the reliability engineering discipline.

The degradation models are getting increasing importance for highly reliable products where generating failure data through life testing is time consuming and incurs high cost. Further, the increasing pressure to reduce development time and cost does not permit reliability tests to go on continuously. Therefore, these models are based on the premise that a system performance characteristic is satisfactory if and only if its tolerance remain within the requirement level (i.e. failure occurs when something is normally working but not well enough). If failure is defined in terms of a specified level of degradation, a degradation model defines a particular time-to-failure distribution. Interestingly, many failure mechanisms can be traced through an underlying degradation process. When it is possible to measure degradation, such measures often provide more reliable information than failure-time data for the purpose of assessing and improving reliability of a product.

Therefore, for some very highly reliable products, due to time constraint, one can resort to an accelerated (or elevated stress) degradation process to gather the required information about degradation behavior. The IG process models have been shown to be an important family in degradation analysis.

In this study we have worked upon optimal constant-stress accelerated degradation tests (ADTs) planning when the underlying degradation follows the inverse Gaussian (IG) process. We considered ADT planning for the IG process with random effects. Asymptotic variance of the estimate of a lower quantile was derived, and the objective of the planning was to minimize the variance by properly choosing the testing stresses as the accelerated parameter, and the number of samples allocated to each stress. We then applied the IG process to fit the stress relaxation data of a component, and use the developed methods to help with the optimal ADT design.

Acknowledgement	iv
Abstract	v
LIST OF FIGURES	x
LIST OF TABLES	xi
1.0 Introduction	1
1.1 Background	1
1.2 Concept of reliability	2
1.3 Research motivation	3
1.4 Research objectives	4
1.5 Research approach	4
1.6 Structure of thesis	5
Chapter -2	6
Literature review	6
2.1 Introduction	6
2.2 Normal degradation model	6
2.2.1 Normal degradation without stress factor	7
2.2.1.1 General degradation path model	7
2.2.1.2 Random process model	8
2.2.1.3 Linear/nonlinear regression degradation model	8
2.2.1.4 Time series model	8
2.2.2 Normal degradation model with stress factor.	8
2.2.2.1 Stress-strength interference model	8

2.2.2.2 Damage accumulation model	9
2.3 Accelerated degradation test model	9
2.3.1 Types of accelerated test	12
2.3.1.1 Quantitative versus Qualitative	12
2.3.1.2 Methods of Acceleration	13
2.3.1.3 Types of responses	15
2.3.2 Statistical models for acceleration	16
2.3.2.1 Physical acceleration models	16
2.3.2.2 Empirical acceleration models	16
2.4 Accelerated degradation testing review	
Chapter 3	
Research Methodology	
3.1 Introduction	
3.2 Proposed methodology	
3.2.1 Select the model	
3.2.2 Statistical inference	
3.2.3 Optimal ADT planning	
3.2.4 Conclusion.	
Chapter 4	
Optimal test planning for random drift model	
4.1 Introduction	
4.1.1 Wiener Process as a Degradation Model	
4.1.2 Simple Inverse Gaussian process	
4.2 Inverse Gaussian process with random effects	43
4.2.1 Random volatility model	43

4.2.2 Random drifts model	44
4.3 ADT settings and assumption	46
4.4 Normalizing the stress	48
4.5 Statistical inference	49
4.5.1 EM algorithm for parameter estimation	
4.5.1.1 EM algorithm for random drift model	59
4.6 Optimal ADT planning	
Chapter 5	66
Numerical analysis	67
5.1 Introduction	67
5.2 Numerical analysis	67
5.3 Conclusion	80
Chapter 6	82
Summary and future work	
6.1 Summary	82
6.2 Future work	83
References	

LIST OF FIGURES

Figure 2.1: The degradation process	6
Figure 2.2: Degradation model in reliability engineering	7
Figure 2.3: Classification of acceleration methods	10
Figure 2.4: Types of accelerated test	
Figure 2.5: Types of acceleration	14
Figure 3.1: Outline of research methodology	
Figure 4.1: Inverse Gaussian Probability density function curve	
Figure 4.2: Flow chart for optimal plan	
Figure 5.1: Degradation in unit with temperature	69
Figure 5.2: For 65°C regression fit	71
Figure 5.3: For 85°C regression fit	71
Figure 5.4: For 100°C	72
Figure 5.5: PDF of inverse Gaussian at 65 degree	73
Figure 5.6: CDF of inverse Gaussian at 65 degree	73
Figure 5.7: PDF of inverse Gaussian at 85 degree	74
Figure 5.8: CDF of inverse Gaussian at 85 degree	74
Figure 5.9: PDF of invers Gaussian at 100 degree	75
Figure 5.10: CDF of inverse Gaussian at 100 degree	75
Figure 5.11: PDF of inverse Gaussian for combile all level	76
Figure 5.12: CDF of inverse Gaussian for combine all level	76
Figure 5.13:Q-Q plot for simple model	77
Figure 5.14: Q-Q plot for random model	77

LIST OF TABLES

Table2.1 Merits and limitation of model based approaches	12
Table2.2: General application of various degrdation model	17
Table 2.3: Summary of accelerated degradation model.	29
Table 5.1: Stress relaxation data under the temperature level	67
Table5.2:Measurement time under three temperature	68
Table 5.3: Optimization table for random drift model	79
Table 5.4: Optimzation table for simple IG process.	79

ACRONYMS AND ABBREVIATIONS

ADT	Accelerated degradation testing
SSADT	Step stress accelerated degradation testing
ARDMT	Accelerated Repeated degradation Measure Test
PSADT	Progressive Stress Accelerated Degradation Tests
ADDT	Accelerated destructive degradation measure tests
PDF	Probability density function
CDF	Cumulative distribution function
IG	Inverse Gaussian
MLE	Maximum Likelihood Estimate
EM	Expected maximization
ALT	Accelerated Life Tests
ABT	Accelerated Binary Test
MTTF	Mean time-to-failure
MSE	Mean Square Error

NOTATIONS

Y(t)	Product degradation path
T_D	Product lifetime
D	Degradation threshold
IG(a,b)	The inverse Gaussian distribution
θ	The true parameter
ξ_p	p-quantile of the failure time under use condition
Ν	Sample size
J	Number of stress level
K_j	Number of measurement under the j-th stress level
$ au_j$	Measurement time interval under the j-th stress level
$I(\theta)$	Fisher information matrix
$\Phi(.), \phi(.)$	Standard normal CDF and PDF
Avar(.)	Asymptotic variance
$x_j, j =$	Stress value of the j-th stress level
1,, <i>J</i>	
$N_j, j=$ N	umber of units allocated to x_j