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                                                        CHAPTER 1  

                                      

                                            INTRODUCTION 

1.1 Background 

With the advancement of new technologies and increasing global competition, today’s 

manufacturers are facing a strong pressure to produce the high-quality products which are 

expected to perform their intended functions for years or even decades without any failures or 

flaws. This implies that the increased need for up-front reliability tests on systems, subsystems, 

& components (which we generically refer to as “units”), during the design stage of the products. 

With the short product development times, reliability tests must be conducted within the severe 

time and cost constraints. Traditional life tests (where time to failure is the response) may give 

result in few or no failures within very long period of time, even when the covariates are 

accelerated (e.g., by testing at higher-than-usual stress levels). Thus it is highly difficult to assess 

the reliability or performance of the products using the traditional life tests that record the only 

failure time. For this reason, degradation tests can be highly beneficial in manufacturing 

industries to obtain the reliability information more quickly. 

 

For some products, the degradation response is the natural response. For example, for a 

luminescent light, degradation response may be the output of the light. Depending on the 

application, the degradation data may be available continuously or at some specific point of time 

where measurements are taken. With the degradation data, it is possible to make useful reliability 

predictions, even with the few or no failures. Direct observation of the physical degradation 

process or some closely related surrogate may also empower direct modeling of the physics-of-

failure mechanisms, providing more justification and the credibility for the reliability estimates 

and a firmer basis for the extrapolation modeling. 

 

Engineers usually increase levels of stresses or some other covariates (for example, temperature, 

voltage, humidity, or pressure) to the higher value than usual levels to accelerate the process of 

degradation. They expect that at the higher levels of applied stresses, the products will degrade 
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more quickly and that they can estimate lifetime or degradation rates at lower, at normal use 

conditions using extrapolations based on the physically reasonable statistical models.  

1.2 Concept of reliability 

Due to increasing complexity of modern engineering systems, the concept of reliability has 

become a very important factor in the design of the any systems .Reliability is one of the most 

important factor because product design needs to work effectively both theoretically as well as 

practically. Reliability can be viewed as a measure of the successful performance of the system.  

The importance of reliability of components and systems is also recognized at all the stages of 

daily life, ranging from the consumer products to the larger systems such as trains and airlines. 

(Rao et al.,1992 ) “Reliability is the probability of a device performing its intended function over 

a specified period of time and under the specified operating condition”    

The need of reliable products was very first felt in both the commercial and military sectors in 

early 1950s. Since then the enormous and remarkable progress has been made in the area of 

reliability engineering. Before 1950s, the focus was either on the quality control or on machine 

maintenance problems.  Before World War II reliability was intuitive in nature and basic concept 

of reliability aroused and gained importance during this time period. . Recently, due to increasing 

competition, complex product design and development, the use of increasingly popular 

manufacturing processes and equipments, particularly in the field of defense and the space 

technology, and increasing focus on customer satisfaction, the question of reliability has become 

a matter of interest. (Bhamare and Yadav, 2007) 

System safety and the reliability evaluations are the main factors to ensure smooth functioning of 

system operations .Reliability design was very first used in the air and space industry. Product 

quality includes two aspects which are the functions and ability to keep the functions working 

normally. Therefore, reliability is a part of the quality, improvement of Reliability is an essential 

way to increase the value of some products, such as aircraft engine. (Suiran and Yang, 2011). 

Reliability prediction based on the degradation modeling can be an effective method for 

evaluating the reliability of systems when observations of failures are very rare. The Current 

research shows that there has been an increasing interest in the application of degradation models 



3 
 

for reliability prediction. Moreover, it illustrates that the significant progress has been achieved 

in applications of degradation models in various industrial areas.(Gorijan.N et al., 2009) 

 

1.3 Research motivation 

 

Traditionally,  reliability  assessment of new products is based on  accelerated  life  tests  which  

record  failure  and  censoring times  of  products  subjected  to  elevated  stress or covariates.  

However, this approach may offer little help for highly reliable products. High  quality reliable 

products  are  designed  and  manufactured  to function  for  a sufficiently  long  time  before  

they  fail.  Hence,  it  is  a  great challenge  for  manufacturers  to  obtain  reliability  statistics  

such as  mean-time-to-failure  (MTTF)  with  only  a  relatively  short period  of time available  

for performing  internal  life  test. 

Although there are  helpful  techniques,  including  censoring,  and  accelerating a  products  

lifetime  by  testing  at  a  higher  level  of  stress, temperature etc. these  techniques  are  less  

effective  for  highly  reliable  products because  it  is more  difficult  to  obtain  sufficient  time-

to-failure data  for  estimating  their  lifetime  efficiently.  To  overcome  this problem,  

accelerated  degradation  testing  (ADT)  has  been proposed  as a means  to  predict performance 

for highly  reliable products.  Usually,  in  order  to  facilitate  observing  the  degradation  

phenomenon  or  shorten  the  degradation  experiment  under  normal  use condition,  it is  

practical  to gather  the  degradation data at  higher levels  of stress  and,  then,  carry  out the 

extrapolation in stress data for estimation of   reliability  under normal use conditions. Such an 

experiment is called an accelerated degradation test. 

Accelerated degradation test (ADT) is an alternative to accelerated life test (ALT) with censoring 

to estimate reliability without waiting for actual failures to occur. Thus, test time is greatly 

shortened. Degradation analysis often yields more accurate estimates than those obtained from 

life data analysis, especially when a test is highly censored. In an ADT, an accurate reliability 

estimation prediction demands an appropriate degradation model. 
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1.4 Research objective 

The research gaps presented in the form of prime focus area in the previous sections have been 

taken as motivational aspects to undertake the proposed study. The proposed study aims to 

develop a degradation model which can be useful in prediction of reliability .It also aims to 

incorporate into well established random models with their limitations and the study of proposed 

random drift model to ensure desired quality and reliability for predicting failure phenomenon or 

degradation behavior. Thus the ultimate goal of the study is the development of the random drift 

model with accelerated degradation test planning and demonstration of the proposed method 

through a numerical analysis. 

1. To develop a model for accelerated degradation test planning using Inverse Gaussian 

process for random drift. 

2. To develop an optimal plan for accelerated degradation test using proposed model. 

3. To perform a numerical analysis for proposed model and to compare the results. 

1.5 Research approach 

Research question 1: Is it possible to develop an optimal plan for accelerated degradation test 

using random drift model? 

Literature reveals that although there are quite large numbers of papers published in this field but 

most of them focus on the uniform data.  A very few of the researchers have emphasized on the 

randomness of the data. Since in real life situation data is more random so there is more 

requirements to work on the random data. Different type of model developed with the passage of 

time but no one model takes into consideration unit to unit variation. So it is required to propose 

a plan which takes into effects randomness of data. 

Research question 2: is it possible to combine inverse Gaussian and Weiner process for optimal 

ADT plan? 

Since in the Weiner process both the negative and positive drift occurs with the time and since 

degradation phenomenon is continuously increasing in nature we requires only positive drift. So 

obtained the above condition we combine Weiner process with inverse Gaussian process to take 

into account monotone path of the degradation behavior. 
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1.6 Structure of thesis 

The remainder of this thesis consists of 5 chapters. Chapter 2 presents a detailed review of the 

literature on the degradation. 

Chapter 3 discusses about the methodology used for this research work in a systematic and step 

by step manner. 

Chapter 4 Details out procedure for accelerated degradation test planning using inverse Gaussian 

process. 

Chapter 5 A case study for the optimal test planning of the developed random drift model.  

Chapter 6 concludes the thesis with final discussion including the future scope of the research 

work undertaken. 
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                                                          CHAPTER 2 

 

                                      LITERATURE REVIEW 

2.1 Introduction 

Degradation is the reduction in performance, reliability and life span of assets. Most assets 

degrade as they age or deteriorate due to some factors that are termed as covariates. Hence, 

reliability declines when assets degrade or deteriorate. Assets fail when their level of degradation 

reaches a specified failure threshold value. 

 

 

 

 

 

 

 

 

 

 

                                             Figure 2.1: The degradation process 

Degradation model in reliability analysis can be classified according to the figure given below: 

2.2 Normal degradation model  
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Normal degradation model can be classified into two type(normal degradation with stress factor 

and normal degradation without stress factor).while estimating the reliability of any component 

and the force(stress which resist the force) acting on the component is not taken into 

consideration then these models are called normal degradation model without stress factor. In 

these models reliability is estimated at a fixed stress level and if stress is taken into account then 

these are called normal degradation model with stress factor. 

 

                             Figure 2.2: degradation model in reliability engineering 

 

2.2.1 Normal degradation without stress factor 

These can be classified into different types (general degradation path model, linear/nonlinear 

regression model, random process model, time series model). 

2.2.1.1 General degradation path model 

 In the general degradation path model, the observed degradation path 𝑦 is an asset’s actual 

degradation path, a non-decreasing function of time that cannot be observed directly, plus 
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measurement error 𝜀. 𝐷 is called threshold which denotes the critical level for the degradation 

path above which failure is assumed to have occurred. 

 2.2.1.2 Random process model 

 The random process model fits degradation measure at each observation time with a specific 

distribution with time dependent parameter. 

 2.2.1.3 Linear/nonlinear regression degradation model 

 The nonlinear regression model with a straight-line regression model can be generalized to: 

                             𝑌𝑖 = ( , 𝜃 )+ 𝜀𝑖         𝑖 = 1,2, … , 𝑛 

Where, ( , 𝜃) explains a function of the vector of regression variables,𝑋, and the vector of 𝑝 

model parameters, 𝜃 =𝜃1 , 𝜃2 , … , 𝜃𝑝𝑇. A nonlinear regression model is the one in which at 

least one of its parameters appears nonlinearly. 

2.2.1.4 Time series model 

 Lu et al. (2001) proposed a technique to predict individual system performance reliability in 

real-time considering multiple modes of failure. This technique unlike conventional reliability 

modeling approaches, which yield statistical results that reflect reliability characteristics of the 

population, includes on-line multivariate monitoring and forecasting of selected performance 

measures and conditional performance reliability estimates. The performance measures across 

time are treated as multivariate time series. The state-space approach is used for modeling the 

multivariate time series. The predicted mean vectors and covariance matrix of performance 

measures are applied to estimate system reliability with respect to the conditional performance 

reliability. 

2.2.2 Normal degradation model with stress factor 

In these models stress have been taken as a one of the important factor for estimating the 

reliability of any product. These models are discussed below: 
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2.2.2.1 Stress-strength interference model 

 The Stress-Strength Interference (SSI) model is an early and still popular representation of asset 

reliability. In this model, there is random dispersion in the stress, 𝑌, which results from applied 

loads. The dispersion in the stress realized can be modeled by a distribution function (𝑦). And (𝑥) 

is random dispersion in inherent asset strength. 

2.2.2.2 Damage accumulation model 

 The conceptual nature of the cumulative damage/shock model and SSI model is quite 

noticeable. In the SSI model, stress is treated as constant and strength as variable. However, in 

the cumulative damage/shock model, the strength (damage threshold) is treated as a constant 

quantity, and the stress (damage) is a variable parameter. Cumulative damage/shock model is 

based on the cumulative damage theory for a degradation process exposed to discrete stresses 

(e.g. temperature cyclic and random shock) and also the state of process is assumed discrete. 

The cumulative damage/shock model is widely applied in the field of asset life prediction such 

as; fatigue failures in aircraft fuel age. 

 

 

2.3 Accelerated degradation test model 

Estimation of the failure-time distribution or long-term performance of the components of high-

reliability products is somewhat a difficult task. Most of the modern products are designed to 

operate without failure for years, decades or longer. Thus very few units will fail to function or 

degrade appreciably in a test of practical length at the normal use conditions. For example, the 

design and construction of a communications satellite may allow only eight months of testing 

components that are expected to be in service for 10 or 15 years. For such applications, 

Accelerated Tests (ATs) are used in manufacturing industries for assessing or demonstrating 

component and subsystem reliability, for certifying components, for detecting failure modes so 

that they can be corrected, for comparing different manufacturers, and so forth.(Meeker and 

Hamda,1995) and( Meeker and Escorber,2005) 
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            Figure 2.3: classification of acceleration methods (Adopted from Guangbin, 2007) 

Accelerated degradation models make inferences about predicting the reliability at normal 

conditions using degradation data obtained at accelerated stress or time conditions. In real-life 

situations and industrial applications, a degradation process may occur very slowly at the normal 

stress level as well as time-to-failure may be comparatively higher (Yang et al., 1998; Tang and 

Shang, 1995) Estimating the failure time distribution or long term performance of components of 

high reliability products is particularly difficult (Yang.G et al., 2002; Meeker and Lu Valle, 

1995). Therefore, in order to attain data quickly from a degradation test, it is often possible to use 

the accelerated life test (Shiau and Lin, 1999; Pham .H, 2006) .This test is applied by increasing 
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the level of acceleration variables, such as vibration amplitude, temperature load, voltage, 

pressure.  

 

However, the accelerated life test is rather a very costly approach and may take sufficiently 

longer time. Accelerated degradation models consist of: physics-based models and the statistics-

based models. Physics-based models are: Arrhenius model, Eyring model, and Inverse Power 

model. 

 Arrhenius model is used when the damaging mechanism is caused by temperature (especially 

for dielectrics, semi-conductors, battery cells, lubricant, plastic, etc). Eyring model is used for 

accelerated life tests with respect to the thermal and non-thermal variable. Inverse power model 

is widely used to analyze accelerated life test data of many electronic and mechanical 

components such as insulating fluids, capacitors, bearings, and spindles in order to estimate their 

service lives when acceleration operating parameters are non thermal (e.g. speed, load, corrosive 

medium and vibration amplitude, etc). This model describes the damaging rate under a constant 

stress. (Meeker and Escobar, 2006)  

 

Statisticians in manufacturing industries are often asked to become involved in planning or 

analyzing data from accelerated tests. At first glance, the statistics of accelerated testing appears 

to involve little more than regression analysis, perhaps with a few complicating factors, such as 

censored data. The very nature of ATs, however, always requires extrapolation in the 

accelerating variable(s) and often requires extrapolation in time. This implies critical importance 

of model choice. Relying on the common statistical practice of fitting curves to data can result in 

an inadequate model or even inappropriate results. Statisticians working on AT programs need to 

have awareness of general principles of AT modeling and current best practices. (Meeker and 

Escobar, 2006) 
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2.3.1 Types of accelerated test 

 

                  Figure 2.4: Types of accelerated tests (Modified from Meeker and Escobar, 2006) 

2.3.1.1 Quantitative versus Qualitative 

In reliability engineering, the term “accelerated test” is used to describe two completely different 

kind of useful, important tests that have completely different purposes. To distinguish between 

them, the terms “quantitative accelerated tests” and “qualitative accelerated tests” are being used. 

(Meeker and Escobar, 2006) 

 

A Quantitative accelerated tests functions   at combinations of higher than- usual levels of certain 

accelerating variables or covariates. The purpose of such a test is to obtain information about the 

failure-time distribution or degradation value at specified “use” levels of these variables. 

Generally failure modes of interest are known ahead of time, and there is some knowledge or 

prior data available that describes well the relationship between the failure mechanism and the 

accelerating variables (either based upon the physical/chemical theory or large amounts of 
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previous experience with similar tests) that can be used for identifying a model that can be used 

to justify the extrapolation. 

A Qualitative accelerated testing method tests units at higher-than-usual combinations of 

variables like temperature cycling and vibrations. Specific names of such tests include HALT 

(for highly accelerated life tests), STRIFE (stress-life) and EST (environmental stress testing). 

The basic purpose of such tests is to identify product weaknesses caused by flaws in the 

product’s design or manufacturing process. 

Nelson (1990), described such tests as “elephant tests” and brings into light some important 

issues related to Qualitative accelerated testing. 

 

Benefits and Drawbacks of Qualitative tests: 

Benefits 

  Increase reliability by revealing probable failure modes. 

 Provide valuable feedback in designing quantitative tests, and in many cases are a precursor       

to a quantitative test. 

Drawback: 

Do not quantify the reliability of the product at normal use conditions. 
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2.3.1.2 Methods of Acceleration 

 

 

 

     Figure 2.5: Types of acceleration, (Modified from Meeker and Escobar, 2006) 

 

(A)  Increase the use rate of the product 

 This method is suitable for the products that are ordinarily not in the continuous use. For 

example, the median life of a bearing of certain washing machine agitator is 12 years, based on 

an assumed usage rate of 8 loads per week. Now, if the machine is tested at the 112 loads per 

week (16 per day), the median life gets reduced to approx 10 months, under the assumption that 

the increased use rate does not change the cycles to the failure distribution. Also, because it is 

not essential to have all the units fail in a life test, useful reliability information can be obtained 

within few weeks instead of months. 

  

(B) Increase the intensity of the exposure to radiation:  

Different types of the radiations can lead to progressive degradation of product resulting in 

product failure. For example, organic materials (ranging from human skin to materials like 

epoxies and polyvinyl chloride or PVC) will degrade when they are exposed to the ultraviolet 

(UV) radiation. Electrical insulation exposed to the gamma rays in the nuclear power plants will 
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degrade more rapidly than other similar insulation in similar environments in absence of 

radiation. Modeling and acceleration of degradation processes by increasing the intensity of 

radiation is commonly performed in a manner that is similar to acceleration by increasing the 

usage rate.(Meeker and Escorber,1998) 

 

(C)  Increase the aging rate of the product: 

 Increasing the level of experimental variables like temperature or humidity can rapidly 

accelerate the chemical processes of certain failure mechanisms such as the chemical degradation 

(resulting in eventual weakening and failure) of an adhesive mechanical bond or the growth of a 

conducting filament across an insulator which may eventually cause a short circuit leading to the 

failure. 

 

(D)  Increase the level of stress:  

Covariates (e.g., amplitude in temperature cycling, voltage, or pressure) under which test units 

operate are enhance. A unit will fail when its strength drops below the applied stress. Thus a unit 

at a high stress value will generally fail more rapidly than it would have failed at low stress. 

(Meeker and Escobar, 2006) 

 

2.3.1.3 Types of Responses: 

 

(a) Accelerated Binary Tests (ABTs) 

The response in an ABT is purely binary in nature. That is, whether the product has failed or not 

is the only   reliability information we can obtain from the each unit in such test. 

 

(b) Accelerated Life Tests (ALTs) 

The response in an ALT is directly related to the lifetime of the product. Typically, ALT 

data are right-censored because the test is stopped before all the units fail. In other cases, 

the ALT response is an interval-censored because failures are discovered at particular 

inspection times. 
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(c) Accelerated Repeated Measures Degradation Tests (ARMDTs) 

 

 In an ARMDT, we measure degradation phenomenon on a sample of units at different points in 

time. In general, each unit provides several degradation measurements. The degradation response 

could be actual chemical or physical degradation or performance degradation (e.g., drop in 

power output). 

 

(d) Accelerated Destructive Degradation Tests (ADDTs) 

 An ADDT is similar to an ARMDT, the only difference is that the measurements are 

destructive, so one can obtain only one observation per test unit and it incurs relatively high cost. 

 

2.3.2 Statistical models for acceleration 

 Interpretation of accelerated test data often requires models that relate the covariates like 

temperature, voltage, pressure, size, etc. to time acceleration. To perform tests over some range 

of accelerating variables, one can fit a model to the data to show the effect that the variables have 

on the failure-causing processes. The general idea is to test at high levels of the accelerating 

variables or covariates to speed up failure processes and extrapolate to lower levels of the 

accelerating variables. For some situations, a physically reasonable statistical model may allow 

such extrapolation. Jensen (1995) and Klinger, Nakada and Menendez(1990) . 

 

2.3.2.1 Physical acceleration models 

 For failure mechanisms, one may have a model based on physical/chemical theory which 

describes the failure causing process over the range of the data and provides extrapolation to the 

use conditions. The relationship between the covariates and the actual failure mechanism is 

usually an extremely complicated task. Often, one has a simple model that properly describes the 

process. For example, failure may result from a complicated chemical process with many steps, 

but there may be one or few rate-limiting (or dominant) steps and a thorough understanding of 

this part of the process may provide a model that may be adequate for extrapolation purpose. 
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2.3.2.2 Empirical acceleration models 

When there is little understanding of the chemical or physical processes leading to failure, it may 

be impossible to develop a model based on physical/chemical theory. An empirical model may 

be the only alternative. An empirical model may provide an excellent fit to the available data, but 

provide improper extrapolations. In some situations there may be extensive empirical experience 

with particular combinations of variables and failure mechanisms and this experience may 

provide the needed justification for extrapolation to use conditions. 

 

Table 2.1:  Merits and limitations of model-based approaches 

 

Merits 

 

Limitations 

These approaches provide technically 

comprehensive method that has been used 

traditionally to understand failure mechanism 

 

These require specific mechanistic knowledge 

and theory relevant to monitored asset 

 

These approaches provide a means to calculate 

damage to critical components as function of 

operating conditions 

 

Model-based approaches need many 

assumptions about system and its operating 

conditions. 

These require less data than data driven 

approaches 

Physics-based   models require estimating the 

physical parameters. 

 

By integrating physical and stochastic 

modeling technique, the output model can be 

used for the evaluation of remaining useful 

component life. 

These models sometime do not practically fit 

since fault is often unique from question to 

question.  

Physics based models may be most suitable for 

the cost justified applications. 

 

It is hard to identify the problem without any 

interrupting operation. 
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Table 2.2: General application of various degradation models (Adopted from Gorjian et al., 

2009)         

 

 Model name Potential application 

1 General degradation path 

Model 

This model is suitable to fit the degradation observations by both linear and 

nonlinear regression models 

2 Random process model This model is suitable for reliability estimation with no assumption about 

degradation paths. 

This model is appropriate for multiple observations at certain time points. 

3 Linear and nonlinear 

regression models 

This model is more flexible than the above two models and is applied when 

observations are obtained at different time point. 

4 Mixture model This model provides extremely limited testing, thus further research is 

needed to analyze the properties of this model for modeling both soft and 

hard failures. 

5 Time series model This model is suitable for predicting individual system performance 

reliability with multiple performance measures in a dynamic environment. 

6 SSI model This model is appropriate for reliability estimation at random dispersion 

stress. 

 This model is applied in a situation that external loading is higher than item 

strength 

7 Cumulative damage/ shock 

Model 

This model is applied for a degradation process exposed to discrete stress. 

 The generalization of this model can be applied for continuous sample 

paths. 

9 Weiner process model This model is not suitable for modeling degradation which is monotone 

increasing; however, it can be effective to model the degradation process 

considering maintenance effects. 

10 Gamma process model This model is suitable for the stochastic modeling of monotonic and gradual 

degradation. 

This model can be applied to degradation process in maintenance 

optimization models. 

 

2.4 Accelerated Degradation Testing review 

To assess the reliability of newly designed products, engineers often resort to accelerated tests to 

shorten the life time of products, or hasten the degradation of their performance. During the test, 

the products are exposed to the harsh conditions, e.g., a combination of random vibration, higher 
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temperature, voltage, or pressure. The main purpose of such accelerated testing is to obtain the 

reliability information quickly so as to save time and money. 

 

Many new products are designed to be very reliable because of (a) rapid advancement in 

technology, (b) increasing customer expectations, and (c) enhanced global competition. For 

example, an electronic product may be considered as a complex system that comprises of many 

components. To maintain high reliability for the system, sub-system or components, we 

generally require that the individual components possess extremely high reliability. Traditional 

accelerated life test (ALT) methods are not suitable for such reliable products as extremely long 

test duration is required to yield the sufficient failures. On the other hand, we often observe that 

the failure of a product is associated with degradation of some quality characteristic (QC). 

Degradation of the product accumulates over time, and causes a failure when the degradation 

exceeds a failure threshold value. This threshold behavior naturally provides a linkage between 

the product degradation and reliability. (Meeker, 1998) 

  

The degradation is most often hastened under the severe stresses. So, we can use accelerated 

degradation tests (ADTs) to quickly obtain the degradation information. In a simple constant-

stress ADT experiment, a number of units are allocated to several stress levels, and the 

degradation levels of these units are measured, analyzed, and extrapolated to the failure threshold 

for predicting the life characteristics of interest under the use conditions. ADTs are able to 

greatly shorten the testing duration, and have gained much attention. There are two classes of 

models for ADT data. The first class is called general path models, proposed by (Lu and Meeker, 

1995). 

Some developments of models in this class can be found as in most of the literature degradation 

processes have been modeled by deterministic functions which lack robustness in specifications 

of the models. The stochastic models are used when the experimental data is lacking or when 

there is no prior knowledge about the product (Yu HF and Choao , 2002)  

  Shi and Meeker (2012) proposed Bayesian methods for ADDT planning under a class of non-

linear degradation model with one accelerating variable. The authors used Bayesian criterion for 

setting optimal plans using ADDT. Accelerated destructive degradation tests (ADDT’s) provides 

timely product reliability information in several practical applications. They provide quick 
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information of the failure data. The other classes of models are called stochastic process models, 

which capture the time-dependent structure of the degradation with respect to time. 

Two popular models are the Wiener process and the Gamma process. Tseng et al., (2000) 

proposed using step-stress accelerated degradation (SSADT) to assess the reliability of a light 

emitting diode by using the empirical regression method. The Optimal ADT settings were 

obtained by minimizing the estimated quantile of the product’s lifetime distribution subject to a 

constraint on the total cost. 

 Following the research, some SSADT models have been developed based on the assumptions of 

Wiener processes .Tang and Yang( 2004) proposed the means to predict the reliability of highly 

reliable product. They proposed the planning of ADT in which test stress was increased step by 

step ranging from lower stress value to higher stress value while conducting the test so that 

specimens are gradually conditioned to the stressed environment avoiding overstressing. Based 

on SSADT the model was developed and asymptotic variance was minimized for the minimum 

optimal plan. 

 Mao and Tsang( 2006) showed that ADT does not apply well for accessing the life distribution 

of a newly developed or the expensive product which has very few available test units. Thus to 

overcome this difficulty SSADT was proposed, however the problem relating to choose the 

optimal settings of variables was not discussed such as sample size, termination time etc. The 

authors used the typical stochastic diffusion process for modeling SSADT problems and 

developed an optimal plan by putting constraints on the total cost. It was demonstrated by using 

an example of LED data.  

Zhang and Jiang (2010) in their research used SSADT for estimating the reliability of the 

product most precisely.  The drifts Brownian motion was used  as  the degradation  model and  in  

order  to  minimize  the  mean square  error  (MSE)  for  predicting   the   reliability of the 

product,  the  test  plans  of  a  SSADT  that  under the  specified  total  test  time  and  sample  

size  are  optimized using a  Monte  Carlo  simulation  method. The advantage of SSADT over 

other degradation methods is that it provides best results even with small sample size and short 

test duration, thus it is most commonly used in practice. Some assumption used here as: 
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1) Degradation process  of  the  product  performance is  monotonic,  i.e. the degradation  

damage  is  not  able  to reverse. 

2)  Degradation mode remains the same under different varying stresses.  

3)  The  remaining  life  of  product  depends  only  on the  cumulative  fraction  of  the  damage  

that  has  happened and the current stress level,  but does not the  cumulative mode.  

4)  The degradation process of the product performance is described using the drift Brownian 

motion.  

5)  The dispersion of the drift Brownian motion remains constant. 

Chien and Tseng (2010) in his study used PSADT (Progressive Stress Accelerated Degradation 

Test) with a non-linear degradation path model..  Lifetime distribution of a product can be 

obtained analytically by the first passage time of its degradation path. Further, an exact 

relationship was developed between the lifetime distributions of the PSADT, and the 

conventional constant-stress degradation test (CSDT), which allowed extrapolating the lifetime 

distribution of the product under typical stress. Finally, the usage of the proposed model, and the 

efficiency of PSADT to reduce the product’s life testing time were demonstrated through the 

proposed research.  

Chen and Yuan, (2010)  introduce  proportional  degradation  hazards  model  (PDHM) .  The  

PDHM  is  established  with degradation  data, then  the  probability  density  function  and  

Likelihood function  of  the  model  are  derived,  and  maximum  likelihood estimate  (MLE)  

and  Newton-Raphson method were used for  estimation of   the  model  parameters.  According 

to  the relationship  between  failure  threshold  and  degradation measure,  the  reliability  model  

of  the  product  was established, with  which  the  reliability  was  assessed.  The authors  

demonstrated   and  validated  the processes by   assessing  the reliability  of  percent  increase  in  

resistance  over  time  of carbon-film  resistors. 

Zhang et al., (2011)  focused  on  the  statistical  analysis  of  ADT model with the assumption  

that  the  test  stresses  have  the  random  errors and  the  degradation  data  from  the  same  

subject  are  being correlated. A minimum distance estimation   method was being proposed.  

They compared the   proposed  estimation  method  with  the  traditional  ones  which  ignores  
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the  random  errors  of  test stresses  and  the  correlation  of  degradation  data  from  the  same 

sample  unit.  The  simulation  results  showed  that  the  minimum distance  estimation  method 

provides better  accuracy  in  the  sense  of MSE. 

 Shuen-Lin and Bei-Ying (2011) proposed  to build a planning procedure for ADDTs when the 

degradation model distribution may be lognormal or Weibull. This study provided evaluation of 

the bias and variance of the ML estimators of the distribution quantile when we use the wrong 

distribution as the working model. Test plans are evaluated under the criterion of minimizing the 

large-sample approximate mean square error (AMSE). This criterion helped practitioners in 

choosing an appropriate ADDT plan. Assumption used in the study was that Lognormal and 

Weibull distributions are often used to describe the distribution of product characteristics in life 

and degradation tests. Random effect variant of wiener process can be found as- Peng and Tseng 

(2009) proposed a general linear degradation path where unit to unit variation of all tests units 

can be considered simultaneously with time dependent structure in the degradation paths. 

Through the use of lifetime distribution model, mean-time –to –failure was calculated .By using 

profile likelihood approach, maximum likelihood estimators, products MTTF as well as 

confidence interval was derived for predicting the reliability of the product or component. 

 Zhou and Yao (2011) aimed at the multiple degradation problems. Analyzed the multiple 

competition failure problems based the system machine which characterization by many more 

weak links. For two states, independence and relevant, study the reliability assessment method 

based on degradation quantity distribution, establishes the implementing procedures and 

methods. Joint probability density and variance covariance matrix used in the research have 

complicated structure, large amount of calculation, for simplified the model and accuracy is 

needed for further optimization design work. At present the application based on performance 

degradation most used in device level. Such as LED, satellite components, Gas laser etc. 

Tang and Shu-Su (2008) instead of measuring the wiener degradation or performance process at 

predetermined time points to find the degradation of any process depicted the performance of the 

product in order to estimate the lifetime through the use of finding the first passage time of the 

process estimating the lifetime process over the certain non failure thresholds. Based on that 

minimum variance unbiased estimator was obtained for the estimation of the lifetime distribution 

function, maximum likelihood estimator was obtained for the reliability prediction. The 
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advantage of using this method was that it was useful for highly reliable product when their 

failure times were difficult to obtain. The proposed new estimator of lifetime distribution was 

more accurate than the standard and modified most likelihood estimator. Finally, the author used 

the light –emitting diode for the demonstration and validation of the proposed method. 

 Esary and Marshall (1973) studied the model for the life distribution of device, system or any 

component occurring randomly in time governed by the Poisson process. The life distribution of 

device subjected to shock is considered to be the function of the probabilities𝑃𝑘 of not surviving 

the first k shocks. Damage results into failure when it exceeds the threshold value. 

Bagdonavicius and Nikulin (2000) modeled the effect of covariates on the degradation process. 

Degradation models with covariates can be used to model reliability when the governing 

conditions are dynamic (Singpurwalla ,1995). Degradation models are useful when optimal 

values of covariates, maximizing the reliability of the products are required. Taking an example 

of light emitting diode, its degradation is characterized by the decreasing luminosity whereas the 

rate of degradation depends upon such factors as type of silver, coating, lens material. 

 Xiao Wang (2010) studied Weiner process with random effects for degradation data. He 

basically studied maximum likelihood inference on the class of wiener process with random 

effects for the degradation data .Degradation data with independent subjects with a wiener 

process and drift parameter as well as diffusion parameters are observed at different times. Unit –

to-unit variability is incorporated into the model by the random effects. The model was validated 

by the simulation method. The model was fitted to the bridge beam data and the goodness of fit 

was carried out. 

Noortwijk (2009) surveyed the application of gamma process in maintenance. Since the 

introduction of gamma process in reliability analysis in 1975, it is increasingly used for the 

modeling of stochastic deterioration for optimizing maintenance. They have been used for 

determining optimal inspection and for taking maintenance decisions. He demonstrated the use 

of gamma process as a probabilistic stress-strength model. He showed that the gamma process is 

most appropriate for the modeling of the monotonic and gradual deterioration. Using statistical 

techniques gamma process were satisfactorily fitted to real-life data on creep of concrete fatigue 

crack growth , corrosion of steel protected through coatings, and for the longitudinal leveling of 
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the railway tracks. Future scope involved the use of the gamma process for the entire system 

rather than for a component 

 Tseng and Balakrishnan (2009) proposed an optimal SSADT plan based on the assumption that 

the degradation path follows a Wiener process. The degradation model has been appropriately 

modeled by a gamma process which exhibits a monotone increasing pattern. In his study he 

introduced the SSADT model when the degradation path follows a gamma process. Now under 

the constraint that the total experimental cost should not exceed a pre-specified budget, the 

optimal settings such as sample size and termination time are obtained by minimizing the 

approximate variance of the estimated MTTF of the lifetime distribution for  the product or 

component. 

 Li and Liang (2013) proposed an evaluation method of step-down stress accelerated degradation 

modeling based on Gamma process. The degradation path was portrayed by a Gamma process. 

Then using the Gamma process characteristics the parameters were evaluated. The high 

reliability and long life characteristics of electronic products result in long degradation test time 

and lower efficiency. Traditional degradation test depends on prior information. This method 

greatly simplifies the procedure of statistical analysis. 

 Anthony Desmond (1985) studied the stochastic models of failure considering the random 

effects. The failure producing stress environment is modeled considering it to be a stochastic 

process. By making use of the path of these processes, the failure time distribution was obtained. 

This method is commonly used in modeling of fatigue crack growth .In his example he 

considered the effect of mechanical stress, and the failure mode was due to the metal fatigue. All 

these models used finally lead to the failure –time distribution belonging to Birnbaum-Saunders 

family. Birnbaum and Saunder (1969) derived a two-parameter life distribution model based on 

finding the number of cycles necessary to force a fatigue crack to grow past some threshold or 

critical value. 

Tang and Chang (1995) used Birnbaum –Saunder method for the evaluation of reliability of 

highly reliable products by using non-destructive accelerated degradation data. This method 

provides for the reliability testing without the labor of conventional life testing. It identifies the 

failure mechanism which degrades continuously. After identifying the degradation measure, 
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modules are subjected to the statistically designed accelerated experiment. The failure time is 

then determined by the first passage time of the underlying stochastic process .The author 

demonstrated the application of the NADD (non-destructive accelerated degradation data) 

through the case of power supply DC unit in which the DC output was used as a degradation 

measure. 

Although, ALT is widely used to quickly provide the life distribution of any product or to find 

the reliability at elevated stresses. The basic limitation with this method is that it results in very 

few failures and sometimes no failures at low stress levels. Thus Yang (2002) provided a method 

to estimate the life distribution by using the degradation data measurements. Since time to failure 

basically depends upon the critical values, life tests are accelerated by tightening the critical 

values and optimum test plan was chosen based on the degradation data by using MLE. 

Fergusan and Klass (1972) in his study described a simple way of presenting processes with 

independent increments having no Gaussian components and no fixed points of discontinuity. It 

is similar to the way Weiner described the Brownian motion process on the interval as a 

countable sum. The limitations of these processes were that they did not consider the random 

environment. 

Guo and Mettas (2007)  proposed design of experiments(DOE) method of using the degradation 

process together with the observed failure data to improve the reliability .The advantage of this 

process is that by using DOE, all the factors are classified into two types. Amplification factor 

whose effect on the degradation is known based on the knowledge of past experience. The other 

one is classified as the control factors, whose effect are not known prior to performing 

experimentation. They are realized using the linear regression. The advantage of the proposed 

method was that it can be used in the case where the degradation cannot be easily measure, 

especially under the accelerated degradation testing. It does not require regular degradation 

measurements.  

G.A. Whitmore (1986) introduced a family of Normal-gamma mixture of inverse –Gaussian 

distribution. For a Weiner diffusion process {W(t); t>0  with mean drift parameter δ and variance 

parameter λ , the first passage time possess inverse Gaussian distribution. Whitmore (1978) 

referred it as the defective inverse Gaussian distribution and its application was illustrated in 
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modeling employee service times (Whitmore 1979) and equipment failure ages under the 

conditions of low stresses (Whitmore,1983).The proper form has been used extensively in data 

analysis and statistical modeling in connection with duration phenomenon. 

Banarjee And Bhattacharya, (1974) presented a mixture in which δ and λ, followed a truncated 

normal distribution and a modified gamma distribution respectively. The major limitation of the 

mixture model was that it had complex mathematical form and was difficult to apply in real life 

problems. The future study should focus on dealing with simplified equations for solving real 

time application problems. 

Sanchez and Pan (2009) used as a tool for improving product design. In particular, when external 

stress factors are not constants in a product’s use environment, it is necessary to utilize ADT 

experiments to investigate the interaction between these stress factors and product design factors 

so that a robust design can be obtained. The authors have developed a methodology for achieving 

product robust design via ADTs. A degradation model was proposed that can be used for 

studying the effects of design and stress factors on degradation rate. Model parameter estimation 

is obtained by the maximum likelihood method and an optimization procedure. 

Jerald and Crowder (2008) focused on models where the multiple units are in use, considering 

variation across units in usage rates. Thus, considering random effect model they dealt with joint 

models for the recurrent event and the usage processes, which analyzed their relationship and 

worked for the prediction of their failure. Data on the automobile warranty claims was used to 

illustrate the proposed models and the estimation methodology. Xiaoyang and jiang (2009) 

showed that the Accelerated Life tests (ALT) used for evaluation of lifetime and predicting the 

reliability has certain drawbacks. It is rather difficult to obtain enough failure time data to satisfy 

the requirement of ALT because of high reliable property of the products. Thus, ADT was 

preferred in most of the researches. The authors first used drift Brownian motion to model a 

typical step-stress ADT (SSADT) problem. Then, according to competing failure rule, reliability 

model of the product was established. Under the constraint that the total experimental cost does 

not exceed a predetermined budget, our objective is to minimize the asymptotic variance for 

determining reliability model of product. 
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Xiaobing and Jinzhong (2011) established methods on reliability estimation and mechanism 

consistency test for accelerated degradation data. The integrated degradation model was 

established using the Arrhenius relationship, which is commonly used in reliability engineering. 

Now, the confidence interval of percentile lifetime is provided through Fisher information 

matrix. Via the effective usage of data under different accelerated stress levels, the accuracy of 

reliability estimation and lifetime prediction for product are improved. Additionally, a 

mechanism consistency test method was proposed which validated the integrated model. 

 Shuen-Lin and Bei-Ying (2011) in their study built a planning procedure for ADDTs when the 

degradation model distribution may be lognormal or Weibull. This study provides evaluation of 

the bias and variance of the ML estimators of the distribution quantile when we use the wrong 

distribution as the working model. Test plans are evaluated under the criterion of minimizing the 

large-sample approximate mean square error (AMSE). This criterion will help practitioners to 

choose an appropriate ADDT plan.  

Quan Sun and Huang (2012)   predicted reliability of products with high reliability and long life, 

the Step Stress Accelerated Degradation Test (SSADT) is commonly applied. With the 

motivation of predicting product reliability most precisely, this paper discusses degradation 

process of products using Birnbaum-Saunders model, and proposed an optimal design method of 

SSADT. In order to minimize the mean square error (MSE) of product operation reliability, the 

test plans of SSADT under specified total test cost by using Monte Carlo simulation. 

Hongliang Jia and Miao Cai (2013) proposed a multivariate system reliability estimation method 

based on step stress accelerated degradation testing. The method of step stress accelerated 

degradation testing (SSADT) was used to evaluate the reliability. The system reliability was 

calculated based on total probability theorem and Monte Carlo simulation. Method of step stress 

accelerated degradation testing (SSADT) is utilized to evaluate the reliability of LED luminaries. 

Man Ho ling and Kwok Tsui (2014) proposed accelerated degradation analysis that characterizes 

health and quality of the systems with monotonic and bounded degradation. The MLE are 

derived based on gamma process using the power link function for associating the covariates. 

For the illustration of the proposed model, numerical example involving light intensity of light 

emitting diodes (LED) was analyzed. 
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Zhi-Sheng and Min Xie (2014) investigated the semi-parametric inference of simple Gamma-

process model and examined the existence of random effects under semi-parametric scenario. 

The method is demonstrated using the fatigue-crack growth datasets. 

 Zhi-Sheng Ye and Min Xie (2014) proposed constant-stress accelerated degradation tests 

(ADT’s) planning when the underlying degradation follows inverse-Gaussian process. The 

authors first considered the optimal plan settings without considering the random effects. The 

mathematical model has been developed for the random volatility model. The mathematical 

modeling and the optimal plan settings for the random drift model when the underlying 

degradation follows inverse-Gaussian process have been proposed incorporating the random 

effects. 

Although the Wiener process and Gamma process have received intensive applications in 

degradation data analysis, it is obvious that the two models cannot handle all the degradation 

problems. Wang and Xu, (2010) in their study, proposed maximum likelihood estimation of a 

class of inverse Gaussian Process models for the degradation data. He incorporated both the 

heterogeneity factor and effect of covariates, thus including the random effect. The EM 

(Expected Maximization) algorithm was used to obtain the maximum likelihood estimators of 

the unknown parameters. The model was fitted to laser data. Failure time distributions in terms 

of degradation passages are calculated. He also found that neither models fits the Gas laser 

degradation data well. Recently proposed the IG process for degradation data, and investigated 

semi-parametric inference for this process. 

 Shen and Chan (2014) systematically investigated the IG process, and showed that, compared 

with the Gamma process the IG process has many superb properties when dealing with 

covariates and random effects. Therefore, this process can be an important method for 

degradation analysis. 

The purpose of this thesis is to investigate the planning of ADT experiments using the IG 

process. Here we use an IG process without random effects (random drift model) which is 

described in next chapter of thesis. 

The objective of ADT planning is to properly choose the stress levels, and the number of units 

allocated to each stress, to minimize the asymptotic variance of the -quantile under use 
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conditions. Parameter estimation for random drift model is discussed, based on which the 

asymptotic variance of the -quantile can be derived. Then the optimal stress levels and the 

allocation scheme can be obtained. In reality, it is not difficult to observe a unit-to unit difference 

within a product population due to some unobserved factors, such as variations in the raw 

materials. Such heterogeneity is often modeled by a random-effect term. Random- effect 

degradation models are believed to be more realistic in modeling product degradation, and such 

models have found more applications recently. 

 In addition, our data analysis also shows that the random volatility model fits the stress 

relaxation data well. Therefore, we believe that ADT planning for this random-effects model is 

meaningful. 

 

Table 2.3:  Summary of the accelerated degradation model 

Author 

name 

Year  Advantage  Limitation  Application  Future work  

Guo and 

Mettas 

2007 Can be used in the 

case where the 

degradation cannot be 

easily measured, 

especially under 

accelerated testing 

circumstances. 

Here noise effect is not 

considered 

fractional factorial 

design, Plackett – 

Burman design 

Develop model 

for soft failure 

using Weibull, 

Gumbel, and 

Birnbaum- 

Saunders 

distributions 

Peng and 

Tseng 

2010 The confidence 

interval 

obtained from the 

PSADT model is 

substantially wider 

than the 

true confidence 

interval 

Here degradation paths 

of all tested subjects 

are assumed to be 

observed with the same 

measurement 

time but in real 

observations are taken 

at different 

times, and/or some 

measurements are 

missing 

LED and other 

electronic 

component  

PSADT plan 

with a Gamma 

degradation 

model 
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Chen 

and 

Yuan 

2010 This method 

effectively apply to 

two kind of stress 

condition as 

temperature and 

current 

the logarithm of the 

Degradation hazard 

function is a linear 

function of the stress 

covariates. 

 

Highly reliable 

product 

 

Ma and 

Wang  

2011 the model 

provides an accurate 

tool to predict the 

reliability in the 

normal operating 

conditions by using 

the accelerated 

degradation data 

 Mechanism 

consistency test is 

done 

 

Sun and 

Feng 

2012 determine the optimal 

sample size, 

parameter 

measurement 

interval and 

measurement times of 

SSADT 

The test data obtained 

under different stress 

obeys the 

same distribution 

which not meet in real 

application 

Permanent magnet 

used in satellite 

and also in highly 

reliable product 

Product 

performance 

describe other 

than Bimbaum-

Saunders model 

Shi and 

Meeker 

2012 use a 

Bayesian criterion 

based on the 

estimation precision 

of a failure time 

distribution quantile 

at use conditions. 

Here only one 

accelerating variable is 

considered for 

estimation as 

temperature 

It used to formally 

incorporate prior 

information into 

estimation 

and test planning, 

providing test 

plans with better 

statistical 

precision 

Develop ADDT 

planning for 

complicated 

degradation 

model such as 

models with 

multiple 

accelerating 

variables or 

nonlinear 

relationships 

between 

degradation and 

time 

Ye and 

Chen  

2013 the class of IG 

processes has similar 

 this conclude real 

world condition 

applications of 

the IG 
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properties to the 

Gamma process, but 

is much more exible. 

process in burn-

in tests, 

accelerated 

degradation tests, 

preventive 

maintenance 

scheduling 

and remaining 

useful life 

prediction are  

require extensive 

investigations 

Li and 

Liang  

2013 Gamma process based 

modeling used to 

simplify the statistic 

analysis methods and 

step-down stress test 

in improving the 

efficiency of 

accelerated 

degradation test 

 it can be applied 

into a variety of 

electronic 

products that the 

performance 

degradation 

processes 

can be described 

by Gamma 

process 

 

Hu and 

Lee 

2014 the optimum plan is a 

simple plan using 

only the minimum 

and maximum stress 

levels under many 

commonly-used 

optimization criteria 

Here considered that 

there is upper stress 

bound below which the 

failure mode is same as 

under normal stress 

level the applied stress 

should not 

be too high so that the 

underlying failure 

mechanism may 

become different 

For highly reliable 

product as LED 

etc 

Develop a robust 

SSADT plan so 

that it could 

provide 

reasonable 

efficiency to 

many objective 

of interest. 

Ye and 

Chen  

2014 An 

advantage of 

constant-stress ADT 

is that we can check 

Here assume 

that the degradation 

rate parameter is an 

increasing function 

to give optimal 

accelerating test 

planning 

The optimal 

ADT plan for 

random drift and 

drift-volatility 
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the assumed 

stress-degradation 

relationship by 

separately estimating 

the parameters under 

each stress level 

of the stress. Due to 

this legitimate 

assumption because 

degradation is most 

often hastened under 

severe working 

conditions 

can also be 

developed  
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                                                         CHAPTER 3 

                   RESEARCH METHODOLOGY 

3.1 Introduction  

Generally any research start with collection of particulars from the existing literature to get 

equipped with the latest development in the area of research. This helped us in building a 

theoretically background needed to propose a new research hypothesis. This hypothesis is then 

tested on the suitable platform, and the results are evaluated to prove the proposed work as a 

distribution in the concerned area. The main purpose of this chapter is to give an overview of 

research methodology used in this research in order to the research question and fulfill the 

research objectives. 

3.2 Proposed methodology 

Literature reveals that very few efforts have been made to develop an accelerated model for 

capturing the randomness of the product. Usually, degradation models are formulated to predict 

the reliability and future life of the product. Very few researchers have tried to consider the 

randomness of the degradation phenomenon considering the unit to unit variation or 

heterogeneity into account. Researchers have developed random volatility model which had 

certain limitations that it does not consider the variation in the data. This has motivated this study 

to develop a random drift accelerated degradation model which can be very useful in prediction 

of the reliability. 
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                                       Figure 3.1: Outline of research methodology 

3.2.1 Select the model 

First step is to select the model on which we want to work. After going through the no. of 

research papers we have concluded that we have to select the random drift model for the 

optimization. This model has certain advantage compared to other models being referred in the 

same paper. This model takes into consideration unit to unit change since material properties 

vary from unit to unit. So this model will become an effective model for consideration in the 

future. 

3.2.2 Statistical inference 

In statistical inference we select the no of units to be tested and the value of the stress level and 

no of level at which the test is to be conducted. Then next step is to develop the log-likelihood 

function. And by taking the double derivative we find the elements of the fisher information 

matrix. And we also find the value of the estimated parameters by using the E-M (expected 

maximization) theorem. Now by putting the values of these estimators into the fisher matrix the 

elements of the matrix are calculated finally. 

ADT planning for 
random process model

1.Select model

2.Statistical inference

3.Optimal ADT 
planning

4.Conclusion
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3.2.3 Optimal ADT planning 

In this part of the research we estimate the quantile function. Then by using the fisher matrix and 

quantile function we find the asymptotic variance. Then optimize this asymptotic variance with 

the given time interval, no of units available and the no of stress levels available. Then optimize 

the variance function   and the Q-Q quantile curve for the random drift models are plotted. 

3.2.4 Conclusion 

After optimizing the variance function we obtain how many units are to be tested at which stress 

level. And compare it with the simple IG process and also conclude how model presented in the 

thesis is better in comparison to previous model. And also future work can be described. 
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                                                      CHAPTER 4 

        OPTIMUM TEST PLANNING FOR RANDOM DRIFT MODEL 

4.1 Introduction  

Any component degrades with the passage of time. No of data has been collected with respect to 

time. These data show some properties if plotted with respect to time and give some useful 

information for the optimal setting of the no of units and stress level. These different type models 

are Weiner process and the Inverse Gaussian process are discussed below:   

4.1.1Wiener Process as a Degradation Model 

A Wiener process {𝑋(𝑡), t ≥ 0} has the following three defining properties (Karlin and Taylor, 

1975). 

 

(a). Every increment 𝑋(𝑡𝑖) − 𝑋(𝑡𝑖−1) for a time interval (𝑡𝑖−1, 𝑡𝑖) is normally distributed with 

mean μ (𝑡𝑖 − 𝑡𝑖−1) and variance λ (𝑡𝑖 − 𝑡𝑖−1)where λ> 0 is a fixed variance parameter and μ is a 

fixed drift parameter. 

 

(b). The increments for any set of disjoint time intervals are independent random variables 

having the distributions described in property 1. 

 

(c).     𝑋(0) = 0. 

 

A Wiener process is a homogeneous process and has a continuous sample path with probability 

one. The increments  𝑋(𝑡𝑖) − 𝑋(𝑡𝑖−1)  are independent of the past evolution of the process, that 

is, 

 

P[𝑋(𝑡𝑖) ≤ 𝑥𝑖│𝑋(𝑡0) = 𝑥0, 𝑋(𝑡1) = 𝑥1, 𝑋(𝑡2) = 𝑥2, . . , 𝑋(𝑡𝑖−1) = 𝑥𝑖−1] 

 

                                =P[𝑋(𝑡𝑖) ≤ 𝑥𝑖│𝑋(𝑡𝑖−1) = 𝑥𝑖−1],              𝑖 = 1,2, …… , 𝑛, 

 



37 
 

For any 0= 𝑡0 < 𝑡1 < 𝑡3 < 𝑡4 < 𝑡𝑛 

 

Given condition 𝑋(0)  = 0, the probability density function of X (t) at t> 0 is the normal density 

function  

 

     𝜙(x; t) =
1

√2л𝜆𝑡
exp (−

(𝑥−𝜇𝑡)2

2𝜆𝑡
)                                                          (4.1) 

 

Under the same condition, the joint PDF. of 𝑋(𝑡1), 𝑋(𝑡2), … . , 𝑋(𝑡𝑛), 0 < 𝑡1 < 𝑡2 < ⋯ . 𝑡𝑛, 𝑖𝑠 

 

f(𝑥1, 𝑥2, … . , 𝑥𝑛) =𝜙(𝑥1; 𝑡1) 𝜙(𝑥2 − 𝑥1;  𝑡2 − 𝑡1)… . 𝜙(𝑥𝑛 − 𝑥𝑛−1;  𝑡𝑛 − 𝑡𝑛−1) 

 

A Wiener process, {𝑋 (t)}, is taken as the basic model of a degradation process. It is assumed 

that each item has its own degradation process which is independent of the others (for a given set 

of covariates). Items having the same design are assumed to have the same drift and variance 

parameters unless indicated otherwise. An item fails when its degradation process reaches a 

specified critical level for the first time. This critical level is referred to as a barrier and is 

denoted by a. The lifetime of the item corresponds to the first passage time, S, of the Wiener 

process to the barrier. 

 

Wiener processes have been widely applied in both engineering and business situations. Many 

physical phenomena are described by the Wiener processes. The matter of whether a Wiener 

process is a suitable model for degradation processes, however, deserves a few comments on it. 

 

Often, the degradation processes are monotonies, that is, degradation proceeds in only one 

direction, as in a wear-out process for example. The application of a Wiener process to this- kind 

of degradation process is the only approximate. However, when observed closely, the levels of 

many degradation processes vary bi-directionally over time as, for example, with the gain of a 

transistor or the extent of propagation delay. Other stochastic processes, such as the gamma 

processes, may be considered if it is essential to represent degradation by a strictly monotonies 

process. (Lu et al.,1995) 
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In this thesis, it is assumed that the degradation process of interest is a continuous process and, in 

many applications, this is a valid assumption. Where a degradation process is discrete and an 

approximation is not permitted, another type of stochastic process, such as a discrete-state 

Markov process, may also be considered. 

 

A Wiener process is a time homogeneous process but not all degradation processes have this 

property. For example, in reliability engineering, acceleration tests are often used to obtain 

lifetime and the degradation data in a relatively short period of time. The stresses applied in these 

tests may be increased during the course of the testing in order to bring about rapid failure. 

Because the degradation parameters change as the stress level increases, the degradation process 

becomes time heterogeneous. As a second example, the physical mechanism that governs the 

deterioration may tend to accelerate or decelerate degradation, as in crack propagation for 

instance, producing time heterogeneity.  

 

Modeling a degradation process by a Wiener process implies that degradation process, given its 

current state, evolves to a future state independently of its past behavior. This is referred to as its 

Markov property. While the Markov property is a valid assumption in many applications, it does 

not always hold. 

 

4.1.2 Simple Inverse Gaussian process 

 

An inverse Gaussian process {𝑌(t); t ≥0 } with mean function Ʌ(t) and scale parameter λ has the 

following properties: 

 

(i) Y(t) has independent increments: for every pair of disjoint intervals (t1 ,t2 ) ,(t3 ,t4) with 

𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 , the random variables Y( 𝑡2) − 𝑌(𝑡1)   and Y( 𝑡4) − 𝑌(𝑡3)  are 

independent 

(ii) Each increment Y(t)-Y(s) has an inverse Gaussian distribution IG(ΔɅ(t), λ ΔɅ(𝑡)2 ) 

where ΔɅ=Ʌ(t)-Ʌ(s) and the PDF of an inverse Gaussian distribution random 

variable IG(μ, λ) with mean μ and variance 
𝜇3

𝜆
 (Chikkara and Folks, 1989) is  
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                             ʄ(𝑥; 𝜇, 𝜆) = √
𝜆

2л
𝑥−

3

2exp (−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
)    x>0                                  (4.2) 

 

(iii) Y(0)=0 with probability one 

 

When the amount of degradation reaches a pre-specified critical level D, failure 

occurs. Let T=Inf{t:Y(t)=D} denote the failure time. Since the inverse Gaussian 

process has a monotone path, the failure time distribution by 

 

P(T<t)= P(Y(t)>D)= 1-G(𝐷;  Ʌ(𝑡), 𝜆 Ʌ(𝑡)2) 

 

                                =Ф[√
𝜆

𝐷
(Ʌ(𝑡) − 𝐷)] − 𝑒2𝜆Ʌ(𝑡)Ф[−√

𝜆

𝐷
(Ʌ(𝑡) + 𝐷)]               (4.3) 

 

Where G (.; Ʌ, λ) is the cumulative distribution function (CDF) of IG(Ʌ, λ) and Ф is 

the standard normal cdf. From above equation we can write the CDF of the failure 

time distribution as 

                          𝐻𝜆(𝑡) = Ф[√
𝜆

𝐷
(𝑡 − 𝐷)] − 𝑒2𝜆𝑡Ф[−√

𝜆

𝐷
(𝑡 + 𝐷)]                         (4.4) 

 

It is an increasing function. Thus, within this class of models, there is a one to one 

relationship between  Ʌ(𝑡) and the cdf of the failure time distribution 𝐻𝜆Ʌ(𝑡) for a 

fixed scale parameter λ. 

 

(iv) ʄ(𝑥; 𝜇, 𝜆) = √
𝜆

2л
𝑥−

3

2exp (−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
)                                                    (4.5) 

 

Where μ>0 and λ>0 the parameter μ is the mean of the distribution and λ is a scale 

parameter. (Tweedie) gives three form of above pdf, which he obtained by replacing 

the set of parameters (μ, λ) by (∝, λ) or (μ, 𝜙), or (𝜙, λ) using the relationship given 

by  
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                             μ=
𝜆

𝜙
= (2 ∝)

−1

2                                                                 (4.6) 

Each of these forms was found useful by him in his investigation of Brownian motion 

for the colloid particles in a Turoila  electrophoretic cell. Both μ and λ are of the same 

physical dimensions as the random variable X itself; but the parameter 𝜙=
𝜆

𝜇
  is 

invariant under a scale transformation of X as can be seen from the following 

relationship:  

   

          𝑓(𝑥;  𝜇, 𝜆) = 𝜇−1𝑓 (
𝑥

𝜇
; 1, 𝜙) = 𝜆−1𝑓 (

𝑥

𝜆
;  𝜙, 1)                                             (4.7) 

 

The probability density can be numerically computed using any of the three forms in 

above equation as shown above the cumulative distribution function depends 

essentially on only two variables, which might be taken as 
𝑥

𝜇
 and 𝜙. According, the 

case μ=1 for the (μ, 𝜙) parametric form of above equation could be adopted as a 

standard form. This has also been obtained as a limiting form of the distribution of the 

sample size in a Wald’s sequential probability ratio test and is sometimes referred to 

as the standard Wald’s distribution. 

 

The shape of the distribution depends on 𝜙 only; hence 𝜙 is the shape parameter. The 

inverse Gaussian density function represents a wide class of distribution, ranging 

from a highly skewed distribution to a symmetrical one as 𝜙 varies from 0 to ∞. The 

density curves shown in figures 2.1 and 2.2 illustrate this property. 

 

These curves are obtained by specifying μ=1 and varying λ or 𝜙 in the figure 1 and 

by specifying λ=1 and varying μ or 𝜙 in fig 2. 

 

The density function is un-imodal, with its mode at  
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                                  μ [(1 +
9

4𝜙2
)

1

2
−

3

2𝜙
]                                                 (4.8) 

 

 

      Application of Inverse Gaussian distribution (Chikkara and Folks, 1989) 

 

1. The first passage time of Brownian motion is distributed as inverse Gaussian, it is logical 

to use it as a life time model. It is useful in studying the life testing and reliability of a 

product, device or subcomponent. 

2. Inverse Gaussian process is useful as a repair time model. 

3. Besides the field of reliability, the inverse Gaussian distribution has been used in a wide 

range of applications which includes many diverse fields such as cardiology, hydrology, 

demography, linguistic and finance. 

4. Other applications involving skewed distributions of wind energy and agricultural fields. 
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                 Figure 4.1: Inverse Gaussian Probability density function curve   

 

To predict the reliability of newly developed product engineers adopt accelerated tests in order to 

shorten the life of the product or accelerate the degradation of their performance. During this test 

the products are exposed to extreme conditions such as combination of random vibrations, 

increases temperature, voltage or pressure.  

 

The main purpose of performing such test is to gather reliability information quickly or to save 

time as well as money. The degradation process is most often hastened under several stresses 

therefore we can use accelerated degradation test (ADT) to quickly obtain degradation 

phenomenon. In a simple constant stress ADT experiment no of units are allocated to several 

stress level and the degradation level of these units are measured, analyzed, and extrapolated to 

the failure threshold so as to estimate the life characteristics of interest under use conditions. 

Lambda 
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ADTs are able to greatly shorten the testing duration, and have attracted much attention. These 

are two classes of models for ADT data. 

 

4.2 Inverse Gaussian process with random effects 

Random effects are needed in Inverse Gaussian process to account for unexplained 

heterogeneous degradation rates within the product population. By linking to the Weiner process 

this investigates different options to incorporate the random effects in the IG process model. 

Consider the wiener process W(x) =μ x +λ B(x) where μ>0 is the drift parameter and λ>0 is the 

volatility parameter and B(x) is the standard Brownian motion. Given a fix threshold Ʌ>0, it is 

well known that the first passage time 𝑇𝐴 =inf{𝑥 > 0│𝑊(𝑥) ≥ Ʌ} follows IG  (
Ʌ

𝜇
,
Ʌ2

𝜆2
) . going 

one step further, we consider a series of the thresholds Ʌ(t) indexed by t with Ʌ(0)=0 and Ʌ(t) 

increasing in t, and define the first passage time process Y(t)= 𝑇Ʌ(𝑡). It is easily verified that the 

induced {𝑌(𝑡); 𝑡 > 0} is an IG process with the mean function 
Ʌ(𝑡)

𝜇
 and variance function 

Ʌ(𝑡)

𝜆2
 by 

virtue of the stationary and independent increment property of the Wiener process W(x). 

 

The inverse relation between the IG and the Wiener processes motivates investigation of the IG 

process from a new perspective. Existing results on the Wiener processes can lend support to the 

development of IG process model with the random effects. The random effect model is described 

below 

4.2.1 Random volatility model 

Consider a Wiener process W(x) = 𝜇−1𝑥 + 𝜆
−1

2 𝐵(𝑥)  with the induced IG process .other way of 

introducing unit-specific random effects is to assume that each unit possess a distinct realization 

of the volatility parameter. Accordingly volatility parameter in the Inverse Gaussian process is 

random. With the random volatility parameter in the Inverse Gaussian process all units have the 

same mean degradation path, although they will have different variance functions. The Inverse 

Gaussian process with random volatility parameter was originally proposed by Wang and 

Xu(2010) 
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Shortcoming of random volatility model 

It is uncommon to use the volatility parameter to control heterogeneity in the Weiner process 

thus application of random volatility model is limited. Thus random drift model was proposed 

which overcome shortcoming of random volatility model. 

 

4.2.2 Random drift model 

Consider a Weiner process W(x) = 𝜇−1𝑥 + 𝜆
−1

2 𝐵(𝑥) with the induced IG process 𝑌(t)~ IG(μɅ(t), 

λɅ2(𝑡). A common practice to incorporate random effect in Wiener process is to let the drift 

parameter 𝜇−1 vary randomly across units (Crowder and Lawless 2007; Peng and Tseng 2009). 

An effective way to incorporate random effect in the IG process is to let μ be a random variable. 

To avoid the negative values of μ (Whitmore 1986) and ensure mathematical tractability, we 

assume 𝜇−1 follows a truncated normal distribution TN (𝜔, 𝑘−2), 𝑘 > 0 with PDF 

 

                             g(𝜇−1;  𝜔, 𝑘−2) =
𝑘.𝜙[𝑘( 𝜇−1−𝜔)]

1−Ф(−𝑘𝜔)
          μ>0                                   (4.9) 

 

Where (.) is the standard normal PDF. 

 

In a degradation test, if the degradation of the ith testing unit is observed at time 𝑡𝑖𝑜 < 𝑡𝑖1 < ⋯ .<

𝑡𝑖𝑛𝑖  with observations 𝑌𝑖 ( 𝑡𝑖𝑗), 𝑗 = 0,1,2, … . , 𝑛𝑖   the joint PDF of  𝑌𝑖 = [𝑌𝑖(𝑡𝑖1),

𝑌𝑖(𝑡𝑖2),… . 𝑌𝑖(𝑡𝑖𝑛𝑖) ] is computed by first conditioning on the random drift parameter 𝜇𝑖 and then 

marginalizing it, which yields the following equation 

 

𝑓𝐼𝐺(𝑌𝑖) =
1−𝜙(−�̃�𝑖�̃�𝑖)

1−𝜙(−𝑘𝜔)

𝑘

�̃�𝑖
∏ √

𝜆𝛬𝑖𝑗
2

2л𝑦𝑖𝑗
3

𝑛𝑖
𝑗=1

𝑘�̃�
2
�̃�𝑖

2−𝑘2𝜔2

2
− 𝜆∑

𝛬𝑖𝑗
2

2𝑦𝑖𝑗

𝑛𝑖
𝑗=1           (4.10) 

 

Where 𝑦𝑖𝑗=𝑌𝑖(𝑡𝑖𝑗) − 𝑌𝑖(𝑡𝑖𝑗−1) is the observed increment 𝛬𝑖𝑗 = Ʌ(𝑡𝑖𝑗) − Ʌ(𝑡𝑖𝑗−1)  
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�̃�𝑖𝑗 = √𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗) + 𝑘2                                                                            (4.11) 

 

�̃�𝑖𝑗 =
[𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2 exp(∝0+∝1𝑥𝑗)]

�̃�𝑖𝑗
2                                                               (4.12) 

            

�̃�𝑖𝑗 =
[𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2 exp(∝0+∝1𝑥𝑗)]

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

                                                              (4.13) 

 

When the degradation path of N units are observed, the likelihood function is simply given by 

                               

                                                       ∏ 𝑓𝐼𝐺(𝑌𝑖)
𝑁
𝑖=1                                                          (4.14) 

 

 

Now we have to taking the log of above function. 

 

                                                   Log (∏ 𝑓
𝐼𝐺
(𝑌𝑖)𝑁

𝑖=1 )                                                             (4.15) 

 

Then the log-likelihood function is given by 

 

 

       l(𝜃)=∑ ∑ [𝑙𝑛
𝑘

�̃�𝑖𝑗
+
�̃�𝑖𝑗

2
�̃�𝑖𝑗

2−𝑘2exp (2∝0+2∝1𝑥𝑗)

2
+
1

2
∑ [ln(𝜆𝜕𝛬𝑖𝑗𝑘) −
𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1

𝜆𝛬𝑖𝑗𝑘
2

𝑦𝑖𝑗𝑘
]]                                                                                                                 (4.16)  
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l(𝜃)= ∑ ∑

[
 
 
 
 

𝑙𝑛
𝑘

√𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2

+
𝑁𝑗

𝑖=1

𝐽
𝑗=1

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2 exp(∝0+∝1𝑥𝑗))
2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 −𝑘2 exp(2∝0+2∝1𝑥𝑗)

2
+

1

2
∑ (ln(𝜆𝜕𝛬𝑖𝑗𝑘) −
𝐾𝑗

𝐾=1

𝜆𝛬𝑖𝑗𝑘
2

𝑦𝑖𝑗𝑘
)

]
 
 
 
 

 

 

l(𝜃)= ∑ ∑

[
 
 
 

𝑙𝑛
𝑘

√𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2

+
𝑁𝑗
𝑖=1

𝐽
𝑗=1

(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2 exp(∝0+∝1𝑥𝑗))

2

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2

−𝑘2 exp(2∝0+2∝1𝑥𝑗)

2
+
1

2
∑ (ln(𝜆𝜕𝛬𝑖𝑗𝑘) −

𝜆𝛬𝑖𝑗𝑘
2

𝑦𝑖𝑗𝑘
)

𝐾𝑗
𝐾=1

]
 
 
 

                                                            

(4.17) 

The log likelihood function up to a constant can be expressed by the above equation. 

 

Where 𝜃 is a parameter vector including, ∝0  ,∝1 , 𝜆, 𝛽, 𝑎𝑛𝑑 𝑘 . 

 

4.3 ADT settings and assumption 

Let total N number of units is put into test. Suppose 𝑆0 be the usage stress 𝑆𝐻 be the maximum 

allowable stress. To collect the degradation data timely we allocate these units J stress level 𝑆1 <
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𝑆2 < ⋯……… < 𝑆𝐽  with 𝑆0 < 𝑆1  and 𝑆𝐽 = 𝑆𝐻   consider 𝑁𝑗  units to be allocated to jth stress 

level.  j=1, 2, 3, ….. J. The degradation of these units is effected by the stress. Here, we have 

assumed   𝜇𝑖= h(s), and λ is constant over s, where h(s) is a link function reflecting the effect of 

the stress on the degradation process. Due to the above assumption the degradation speed and 

drift changes with the stress (recall that the respective mean or variance for the random drift 𝑌(𝑡) 

are 𝜇𝑖 Ʌ(t) and 𝜇𝑖
3Ʌ(𝑡)/𝜆   which agree with the our daily assumption of the physical 

characteristic of the product). 

 

Another alternative is that λ=h(s) while μ is constant which is not valid for random drift model 

since μ is changing from unit to unit. 

For simplicity and without loss of generality, the additional assumptions are made as follows: 

(a) The measurement time interval, and the number of measurement 𝐾𝑗 under the j-th stress 

level, where j =1,2,………J, are pre-determined. 

(b)  The link function follows one of the following acceleration relations: 

 

                       Power law relations h(s) = 𝜉0. 𝑠
∝ 

 

                      Arrhenius relation h(s) = 𝜉0. 𝑒
−∝

𝑠  

  

                     Exponential relation h(s) = 𝜉0. 𝑒
∝𝑠 

 

In real time applications the time allowed for the test is often given by manager and time 

intervals at which the units are measured are predetermined because of the working time of 

experimenters. Thus, we assume   that   𝜏𝑗   and 𝐾𝑗 are given. In our model we treat these two 

variables as decision variables, and then we optimally determine their values. 

When the assumed stress-degradation relation i.e., is correct we can use a two-stress ADT, i.e., 

J=2 in our model. But, in this minimum variance plan we are unable to check the validity of the 

assumed stress-degradation relationship. 
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Thus we prefer to use three-stress ADT planning taking J=3 to check the validity of the assumed 

model. In our settings, the purpose of ADT planning is to optimally determine the stress levels 

(𝑆𝑗), and the number of samples for each stress level (𝑁𝑗) are o be investigated in our proposed 

work. 

 

4.4 Normalizing the stress 

We standardize the stress levels depending on the acceleration relationship of the stress on the 

rate of degradation as follows: 

                                𝑥𝑗 =
𝑙𝑛𝑠𝑗−𝑙𝑛𝑠0

𝑙𝑛𝑠𝐻−𝑙𝑛𝑠0
       For the power law relation 

 

                                𝑥𝑗 =

1

𝑠0
−
1

𝑠𝑗
1

𝑠0
−
1

𝑠𝐻

             For the Arrhenius relation 

                          𝑥𝑗 =
𝑠𝑗−𝑠0

𝑠𝐻−𝑠0
              For the exponential relation 

From the above standardization, it is readily seen that 𝑥0 =0,  𝑥𝑗 = 1, and 0 <𝑥𝑗 ≤ 1 for 

j=1,2….,J. then  

 

ℎ(𝑥) = exp (∝0+∝1 𝑥𝑗) 

ℎ(𝑥) = 𝑒𝑥𝑝 [𝑙𝑛𝜉0 −
∝

𝑆0
+∝ (

1

𝑠0
−
1

𝑆
) ] 

ℎ(𝑥) = 𝑒𝑥𝑝 [𝑙𝑛𝜉0−
∝
𝑠
] 
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ℎ(𝑥) = 𝜉0. 𝑒
−
∝
𝑠  

𝑙𝑛ℎ(𝑥) = 𝑙𝑛𝜉0−
∝
𝑠

 

                                  𝜔𝑗= exp(∝0+∝1 𝑥𝑗)                                                           (4.18) 

Where  

∝0= 𝑙𝑛𝜉0 −
∝

𝑠0
    ,   ∝1=∝ (

1
𝑠0
− 1
𝑠𝐻
)   For the Arrhenius function 

∝0= 𝑙𝑛𝜉0+∝ 𝑙𝑛𝑠0  , ∝1=∝ (𝑙𝑛𝑠𝐻− 𝑙𝑛𝑠0)  For the power law function 

∝0= 𝑙𝑛𝜉0+∝ 𝑠0    ,  ∝1=∝ (𝑠𝐻−𝑠0)      For the exponential function 

4.5 Statistical inference 

We suppose that the i-th unit under the j-th stress level is measured at time 𝑡𝑖𝑗𝑘 =k𝜏𝑗       with 

observations 𝑌𝑖𝑗  ( 𝑡𝑖𝑗𝑘 ), k=0,1,……..,𝑘𝑗   . Let 𝑦𝑖𝑗𝑘  =𝑌𝑖𝑗  (𝑡𝑖𝑗𝑘) − 𝑌𝑖𝑗  (𝑡𝑖𝑗,𝑘−1) be the observed 

increments, and Ʌ𝑖𝑗𝑘 = Ʌ(𝑡𝑖𝑗𝑘) − Ʌ(𝑡𝑖𝑗,𝑘−1). Now, the log-likelihood function up to a constant 

can be expressed by the equation above 1. The Fisher information matrix I(θ)  for the element 

∝0, ∝1, 𝑘, 𝜔, Ʌ(. ) can be developed as below. We assume nonlinear function for Ʌ(. ), i.e., 

Ʌ(t)= 𝑡𝛽 and then θ=(k, 𝜔, ∝0, ∝1, β)’ detailed expression for the elements along with the Fisher 

information matrix can be found below 

The elements of the fisher information matrix can be developed as follows: 

 

𝜕𝑙(𝜃)

𝜕𝜔𝑗
 =∑ ∑ [0 +

1

2
{
2(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔𝑗)𝑘
2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

− 2𝑘2𝜔𝑗} +
1

2
∑ (0 − 0)
𝐾𝑗
𝐾=1 ]

𝑁𝑗
𝑖=1

𝐽
𝑗=1      
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𝜕𝑙(𝜃)

𝜕𝜔𝑗
 =∑ ∑ [

1

2
{
2(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔𝑗)𝑘
2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

− 2𝑘2𝜔𝑗}]
𝑁𝑗
𝑖=1

𝐽
𝑗=1  

 

𝜕𝑙(𝜃)

𝜕𝜔𝑗
= ∑ ∑ [

𝑘2(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔𝑗)

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2

− 𝑘2𝜔𝑗]
𝑁𝑗
𝑖=1

𝐽
𝑗=1                                                     (4.19)                                     

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
=∑∑[(

−𝑘2(0 + 𝑘2)

𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2
− 𝑘2)]

𝑁𝑗

𝑖=1

𝐽

𝑗=1

 

 

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
=∑∑[(

𝑘4 − 𝑘4 − 𝑘2 (𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗))

𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2

)]

𝑁𝑗

𝑖=1

𝐽

𝑗=1

 

 

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2 = ∑ ∑ (

−𝑘2𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2
)

𝑁𝑗
𝑖=1

𝐽
𝑗=1                                                         (4.20)                                     

𝜕𝑙(𝜃)

𝜕𝑘
= ∑ ∑

[
 
 
 
 

(

 
 1

𝑘

√𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗
)+𝑘2

√𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2−𝑘

2𝑘

2√𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗
)+𝑘2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

)

 
 
+

𝑁𝑗
𝑖=1

𝐽
𝑗=1

1

2
{(

2(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔𝑗)𝑘𝜔−(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔𝑗)

2
(0+2𝑘)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 ) − 2𝑘𝜔𝑗

2} + 0

]
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𝜕𝑙(𝜃)

𝜕𝑘

=∑∑

[
 
 
 

(

 
√𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘

2

(𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2)
{
 

 (𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2) − 𝑘2

√𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2

}
 

 

)

 

𝑁𝑗

𝑖=1

𝐽

𝑗=1

+
1

2
{(
(𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘

2) (𝜆𝛬 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2𝜔𝑗) 2𝑘𝜔 − (𝜆𝛬 (𝑡𝑖𝑗𝐾𝑗) + 𝑘

2𝜔𝑗)
2

2𝑘

(𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘
2)
2 ) − 2𝑘𝜔𝑗

2}

]
 
 
 

 

𝜕𝑙(𝜃)

𝜕𝑘
  = ∑ ∑ [

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
+

𝑁𝑗
𝑖=1

𝐽
𝑗=1

(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔𝑗){(2𝑘𝜔𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗))+2𝑘

3𝜔𝑗−𝑘𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)−𝑘
3𝜔𝑗}

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 − 𝑘𝜔𝑗

2]      (4.21) 

 

 

 

𝜕2𝑙(𝜃)

𝜕𝑘2
= ∑ ∑ [(

−2𝑘𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2) +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2
{2𝜔𝑗𝜆

2𝛬(𝑡𝑖𝑗𝐾𝑗)𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+6𝑘
2𝜔𝑗

2𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+6𝑘
2𝜔𝑗−𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)−3𝑘

2𝜔𝑗}

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
4 +
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3𝑘3+4𝑘𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔𝑗)(2𝑘𝜔𝑗𝜆)𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+2𝑘

3𝜔𝑗−𝑘𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)−𝑘
3𝜔𝑗

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
4 −

𝜔𝑗
2]                                                                                                      (4.22) 

𝜕𝑙(𝜃)

𝜕𝜆
= ∑ ∑

[
 
 
 
 

1
𝑘

√𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗
)+𝑘2

 −
𝑘

2
(𝜆𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) + 𝑘

2)
−
3

2
. 𝑌𝑖𝑗 (𝑡𝑖𝑗𝐾𝑗) +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

1

2
{
2(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

2)(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔𝑗)𝛬(𝑡𝑖𝑗𝐾𝑗)−(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔𝑗)
2
𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 } +

1

2
∑ (

1

𝜆Ʌ𝑖𝑗𝑘
2 Ʌ𝑖𝑗𝑘

2 −
Ʌ𝑖𝑗𝑘

2

𝑦𝑖𝑗𝑘
)

𝐾𝑗
𝐾=1

]
 
 
 
 

 
𝜕𝑙(𝜃)

𝜕𝜆
= ∑ ∑ [

−1

2

𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
+

𝑁𝑗
𝑖=1

𝐽
𝑗=1

1

2
{
(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔𝑗)(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)2𝛬(𝑡𝑖𝑗𝐾𝑗)−𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 } 2 +

1

2
∑ (

1

𝜆
−
𝛬𝑖𝑗𝑘

2

𝑦𝑖𝑗𝑘
)

𝐾𝑗
𝐾=1 ]                                                                                                 (4.23) 

𝜕2𝑙(𝜃)

𝜕𝜆2
= ∑ ∑ [

1

2

𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗).𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)2

+
𝑁𝑗
𝑖=1

𝐽
𝑗=1

1

2
{
2𝛬(𝑡𝑖𝑗𝐾𝑗)(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

2)𝛬(𝑡𝑖𝑗𝐾𝑗)−(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔)𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)2

} −
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{
(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

2)
2
𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)𝛬(𝑡𝑖𝑗𝐾𝑗)−(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔)(2𝜆𝑌𝑖𝑗
2(𝑡𝑖𝑗𝐾𝑗)+2𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)𝑘

2)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)4

} +

1

2
∑ (

−1

𝜆2
− 0)

𝐾𝑗
𝐾=1 ]  

 

𝜕2𝑙(𝜃)

𝜕𝜆2
= ∑ ∑ [

𝑌𝑖𝑗
2(𝑡𝑖𝑗𝐾𝑗)

2(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)2
+

𝑁𝐽
𝑖=1

𝐽
𝑗=1

1

2
{
2𝛬2(𝑡𝑖𝑗𝐾𝑗)(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

2)−𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)2

} −

{
𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)𝛬(𝑡𝑖𝑗𝐾𝑗)(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

2)2−2(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔)(𝜆𝑌𝑖𝑗

2(𝑡𝑖𝑗𝐾𝑗)+(𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)4

} +

1

2
∑ −

1

𝜆2

𝐾𝐽
𝐾=1 ]                                                                                                         (4.24) 

𝜕𝑙(𝜃)

𝜕𝛽
= ∑ ∑ [0 +

1

2
{
2(𝜆𝛬𝑖𝑗𝑘+𝑘

2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
 𝜆
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
− 0} +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

1

2
∑ {

1

𝜆Ʌ𝑖𝑗𝑘
2 2𝜆𝛬𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
−

2𝜆𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
}

𝐾𝑗
𝐾=1 ]  

 

𝜕𝑙(𝜃)

𝜕𝛽
= ∑ ∑ [{𝜆

(𝜆𝛬𝑖𝑗𝑘+𝑘
2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
} +

1

2
∑ (

2

𝛬𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
−
2𝜆𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)

𝐾𝑗
𝐾=1 ]

𝑁𝑗
𝑖=1

𝐽
𝑗=1   

𝜕𝑙(𝜃)

𝜕𝛽
= ∑ ∑ [(

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
{
𝜆(𝜆𝛬𝑖𝑗𝑘+𝑘

2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
}) + ∑ (

1

𝛬𝑖𝑗𝑘
−
2𝜆𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘
)
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽

𝐾𝑗
𝐾=1 ]

𝑁𝑗
𝑖=1

𝐽
𝑗=1         (4.25) 
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𝜕2𝑙(𝜃)

𝜕𝛽2
= ∑ ∑ [{

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽

𝜆(𝜆
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
+0)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
+ (

𝜆(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘
2𝜔)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
)
𝜕2𝛬𝑖𝑗𝑘

𝜕𝛽2
} +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

∑ {
𝜕2𝛬𝑖𝑗𝑘

𝜕𝛽2
(
1

𝛬𝑖𝑗𝑘
−
2𝜆𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘
) + (−

1

Ʌ𝑖𝑗𝑘
2

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
−

2𝜆

𝑦𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
}

𝐾𝑗
𝐾=1 ]  

𝜕2𝑙(𝜃)

𝜕𝛽2
= ∑ ∑ [{

𝜆2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
(
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)
2

+ (
𝜆(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
)
𝜕2𝛬𝑖𝑗𝑘

𝜕𝛽2
} +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

∑ {
𝜕2𝛬𝑖𝑗𝑘

𝜕𝛽2
(
1

𝛬𝑖𝑗𝑘
−
2𝜆𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘
) + (−

1

Ʌ𝑖𝑗𝑘
2 −

2𝜆

𝑦𝑖𝑗𝑘
) (

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)
2

}
𝐾𝑗
𝐾=1 ]  

𝜕2𝑙(𝜃)

𝜕𝛽2
= ∑ ∑

[
 
 
 
 

(

 
 
𝜆(

𝜕𝛬(𝑡𝑖𝑗𝐾𝑗
)

𝜕𝛽
)

2

+
𝜕2𝛬(𝑡𝑖𝑗𝐾𝑗

)

𝜕𝛽2
(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔)

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2

)

 
 
+

𝑁𝑗
𝑖=1

𝐽
𝑗=1

∑ {(
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)
2

(−
1

𝛬𝑖𝑗𝑘
2 −

2𝜆

𝑦𝑖𝑗𝑘
) +

𝜕2𝛬𝑖𝑗𝑘

𝜕𝛽2
(
1

𝛬𝑖𝑗𝑘
−
2𝜆𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘
)}

𝐾𝑗
𝐾=1

]
 
 
 
 

                                                                                

(4.26) 

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽
  = ∑ ∑

[
 
 
 
 (𝜆

𝜕𝛬(𝑡𝑖𝑗𝐾𝑗
)

𝜕𝛽
){(2𝑘𝜔𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗))+2𝑘

3𝜔𝑗−𝑘𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)−𝑘
3𝜔𝑗}

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 −

𝑁𝑗
𝑖=1

𝐽
𝑗=1

𝑘𝜆
𝜕𝛬(𝑡𝑖𝑗𝐾𝑗

)

𝜕𝛽

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)

]
 
 
 
 

                                                                                                        (4.27) 
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𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
= ∑ [𝑥𝑗 exp(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ exp(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
𝑥𝑗]

𝐽
𝑗=1   

 

𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
= ∑ 𝑥𝑗exp (∝0

𝐽
𝑗=1 +∝1 𝑥𝑗)(

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+
𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
)                                             (4.28) 

𝜕2𝑙(𝜃)

𝜕∝0
2
= ∑ [𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ 𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2 ]

𝐽
𝑗=1   

 

𝜕2𝑙(𝜃)

𝜕∝0
2
= ∑ exp(∝0+∝1 𝑥𝑗) [

𝜕𝑙(𝜃)

𝜕𝜔𝑗

𝐽
𝑗=1 +

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
]                                                    (4.29)  

𝜕2𝑙(𝜃)

𝜕 ∝1
2
=∑[𝑥𝑗𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ 𝑥𝑗𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
]

𝐽

𝑗=1

 

𝜕2𝑙(𝜃)

𝜕∝1
2
= ∑ 𝑥𝑗

2exp (∝0
𝐽
𝑖=1 +∝1 𝑥𝑗)[

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+
𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
]                                              (4.30)   

  
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽
= ∑ [exp(∝0+∝1 𝑥𝑗) .

𝜕2𝑙(𝜃)

𝜕𝜔𝑗𝜕𝛽

𝐽
𝑗=1 ]                                                            (4.31) 

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽
= ∑ 𝑥𝑗exp (∝0+∝1 𝑥𝑗

𝐽
𝑖=1 )

𝜕2𝑙(𝜃)

𝜕𝜔𝑗𝜕𝛽
                                                              (4.32) 

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽
= ∑ ∑ [

1

2
{
2(2𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)

𝜕𝛬(𝑡𝑖𝑗𝐾𝑗)

𝜕𝛽
+𝑘2𝜔

𝜕𝛬(𝑡𝑖𝑗𝐾𝑗)

𝜕𝛽
)

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2

−
𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)𝜆

𝜕𝛬(𝑡𝑖𝑗𝐾𝑗)

𝜕𝛽

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2} +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

1

2
∑ (−

2𝛬𝑖𝑗𝑘

𝑦𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)

𝐾𝑗
𝐾=1 ]                                                                         (4.33) 
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𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝜔𝑗
= ∑ ∑ [

1

2
(

2𝛬(𝑡𝑖𝑗𝐾𝑗)𝑘
2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
−

𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)𝑘
2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2)]

𝑁𝑗
𝑖=1

𝐽
𝑗=1                                 (4.34) 

 

𝜕2𝑙(𝜃)

𝜕𝜆𝜕∝0
= ∑ exp(∝0+∝1 𝑥𝑗)

𝐽
𝑗=1

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝜔𝑗
                                                                   

(4.35) 

 

𝜕2𝑙(𝜃)

𝜕𝜆𝜕∝1
= ∑ 𝑥𝑗

𝐽
𝑗=1 exp(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝜔𝑗
                                                               

(4.36) 

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜔𝑗
= ∑ ∑ [

(2𝑘𝜆2𝛬(𝑡𝑖𝑗𝐾𝑗)𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+4𝑘
3𝜔𝑗𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

3)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 − 2𝑘𝜔𝑗]

𝑁𝑗
𝑖=1

𝐽
𝑗=1     

                                                                                                                                                  (4.37) 

              
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆
= ∑ ∑ [(

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)−𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
2 ) +

𝑁𝑗
𝑖=1

𝐽
𝑗=1

(
(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘

2)
4
{4𝑘𝜔𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+2𝑘

3𝜔𝑗
2𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)−𝑘𝛬(𝑡𝑖𝑗𝐾𝑗)}

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
4 ) −

(
{(𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2𝜔)2𝑘𝜔𝑗𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
3𝜔𝑗−𝑘𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)}(2𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)

2
+2𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)𝑘

2)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗)+𝑘
2)
4 )]     (4.38) 
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𝜕2𝑙(𝜃)

𝜕𝑘𝜕∝0
= ∑ exp(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜔𝑗

𝐽
𝑗=1                                                                    (4.39)             

 

𝜕2𝑙(𝜃)

𝜕𝑘𝜕∝1
= ∑ 𝑥𝑗

𝐽
𝑗=1 exp(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜔𝑗
                                                              (4.40) 

𝜕𝑙(𝜃)

𝜕∝0
= ∑ exp(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗

𝐽
𝑗=1                                                                       (4.41)  

𝜕𝑙(𝜃)

𝜕∝1
= ∑ 𝑥𝑗 exp(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗

𝐽
𝑗=1                                                                   (4.42) 

And then the fisher information matrix can be developed as given below: 

. 

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0
2 ] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝑘
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝜆
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1
2 ] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝑘
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝜆
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝑘
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝑘
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝐾2
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝜆
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝜆
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝜆2
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕𝛽2
]

                      

                                                                                                                             (4.43) 

The log-likelihood function can be maximized to obtain maximum likelihood estimator MLEs. 

The direct maximization of log-likelihood function gives equations which are computationally 

difficult to solve. Under the truncated normal distribution, direct maximization of the likelihood 

function often yields a solution far away from the MLE.   

In the following we use the EM algorithm (Dempster, Laird, and Rubin, 1977). Expectation–

maximization (EM) algorithm is an iterative method for finding the maximum likelihood 

estimates of parameters in statistical models, where the model depends on unobserved latent 
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variables The It is used to find (locally) the maximum likelihood parameters of a statistical 

model in cases where the equations cannot be solved directly. Typically these models 

involve latent variables in addition to the unknown parameters and known data observations. 

That is, either there are missing values among the data, or the model can be formulated more 

simply by assuming the existence of the additional unobserved data points. For example, a 

mixture model can be described more simply by assuming that each observed data point has a 

corresponding unobserved data point, or latent variable, specifying the mixture component that 

each data point belongs to. 

The EM iteration alternates between performing an expectation (E) step, which creates a function 

for the expectation of the log-likelihood evaluated using the current estimate for the parameters, 

and maximization (M) step, which computes the parameters maximizing the expected log-

likelihood found on the E step. These parameter-estimates are then used to determine the 

distribution of the latent variables in the next E step. 

4.5.1 EM algorithm for parameter estimation 

For simplicity we consider parametric Ʌ (t) in this part. We denote 𝑡𝑖𝑘   , k=0,1,1,…𝑘𝑗. As the 

observation time of the degradation path I, for i=1,2,…….N. Consequently we, denote the 

degradation increment as   𝑦𝑖𝑗𝑘 = 𝑌𝑖(𝑡𝑖𝑗𝑘) − 𝑌𝑖(𝑡𝑖𝑗𝑘−1)  and the increment of the shape function 

as    Ʌ𝑖𝑗𝑘 = Ʌ(𝑡𝑖𝑗𝑘) − Ʌ (𝑡𝑖𝑗𝑘−1 ) .The shape function has unknown parameter p. In the EM 

framework, Y={ 𝑦𝑖𝑗𝑘,   𝑖 = 1,2…𝑁,   𝑗 = 1,… 𝐽, 𝑘 = 1……𝐾𝑗}   is the observed data, and the 

realization of the random parameters in each degradation path are considered as random data.  

4.5.1.1 EM algorithm for random drift model 

In the random drift model, we denote μ= {𝜇1, 𝜇2, … , 𝜇𝑁  as the unobserved random effects 

realization .Given the complete data including Y and μ, log-likelihood (up to a constant) can be 

expressed as 

E(lθ)=∑ ∑ ∑ [
𝑙𝑛𝜆

2
−
𝜆

2
(𝑣𝑖𝑗𝑦𝑖𝑗𝑘 − 2𝑢𝑖𝑗𝛬𝑖𝑗𝑘 +

𝛬𝑖𝑗𝑘
2

2𝑦𝑖𝑗
) +

𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1

𝑙𝑛𝛬𝑖𝑗𝑘]+∑ ∑ [𝑙𝑛𝑘 − ln(1 − 𝜙(−𝜔𝑘) −
𝑘2

2
(𝑣𝑖𝑗 − 2𝑢𝑖𝑗𝜔 +𝜔

2)]
𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

             (4.44) 



59 
 

The unknown parameters in l(θ) in the shape function λ, p and 𝜔, k of the random effects 

distribution . We use Θ to denote all the parameters. And  𝛩𝑘 denotes  the estimated parameters 

at the  𝑘𝑡ℎ iteration.    

In the E-step, we want to compute the expectation of    given the observed data and the current 

estimated parameters. In particular we need E(𝜇𝑖
−1│𝑌, 𝛩𝑘)     and    E(𝜇𝑖

−2│𝑌, 𝛩𝑘)      . We 

know that   �̃�𝑖𝑗 = √𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝐾𝑗) + 𝑘(𝑘)
2  follows truncated normal distribution with parameter            

and     �̃�𝑖𝑗 =
[𝜆𝛬(𝑡𝑖𝑗𝐾𝑗)+𝑘

2 exp(∝0+∝1𝑥𝑗)]

�̃�𝑖𝑗
2 . 

 Therefore, we have  

𝑢𝑖𝑗 = �̃�𝑖𝑗 +
𝜙(−�̃�𝑖𝑗�̃�𝑖𝑗)

[1−ɸ(−�̃�𝑖𝑗�̃�𝑖𝑗)]�̃�𝑖𝑗
                                                                              (4.45) 

 

𝑣𝑖𝑗 = �̃�𝑖𝑗
2 + 2�̃�𝑖𝑗

𝜙(−�̃�𝑖𝑗�̃�𝑖𝑗)

[1−ɸ(−�̃�𝑖𝑗�̃�𝑖𝑗)]�̃�𝑖𝑗
+ [1 −

�̃�𝑖𝑗�̃�𝑖𝑗𝜙(−�̃�𝑖𝑗�̃�𝑖𝑗)

[1−ɸ(−�̃�𝑖𝑗�̃�𝑖𝑗)]
]

1

�̃�𝑖𝑗
2           (4.46) 

Where  �̃�𝑖𝑗 , �̃�𝑖𝑗     are updated at each iteration k.  

 

E(lθ)=∑ ∑ ∑ [
𝑙𝑛𝜆

2
−
𝜆

2
(𝑣𝑖𝑗𝑌𝑖𝑗𝑘 − 2𝑢𝑖𝑗𝛬𝑖𝑗𝑘 +

𝛬𝑖𝑗𝑘
2

2𝑦𝑖𝑗
) +

𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1

𝑙𝑛𝛬𝑖𝑗𝑘]+∑ ∑ [𝑙𝑛𝑘 − ln(1 − 𝜙(−𝜔𝑗𝑘) −
𝑘2

2
(𝑣𝑖𝑗 − 2𝑢𝑖𝑗𝜔𝑗 +𝜔𝑗

2)]
𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

         (4.47) 

Where the first step only depends on λ, p and the second term only depends on 𝜔, k. Therefore, 

in the M-step, we can find the updated parameter estimates separately. In particular from the first 

term, we can obtain  𝜆𝑘+1 , 𝑝(𝑘+1)  by solving 
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For first part differentiating with respect to λ and 𝛬𝑖𝑗𝐾 

Differentiating with respect to   λ 

∑ ∑ ∑ [
1

2𝜆
−
1

2
(𝑣𝑖𝑗𝑌𝑖𝑗𝐾 − 2𝑢𝑖𝑗𝛬𝑖𝑗𝐾 + 

𝛬𝑖𝑗𝐾
2

𝑦𝑖𝑗𝐾
)]

𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1 =0 

 

∑ 𝐾𝑗
1

2𝜆

𝑁𝑗
𝑖=1

=∑ ∑ ∑ [
1

2
(𝑣𝑖𝑗𝑌𝑖𝑗𝐾 − 2𝑢𝑖𝑗𝛬𝑖𝑗𝐾 + 

𝛬𝑖𝑗𝐾
2

𝑦𝑖𝑗𝐾
)]

𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1   

1

𝜆
=
∑ ∑ ∑ [𝑣𝑖𝑗𝑌𝑖𝑗𝐾−2𝑢𝑖𝑗𝛬𝑖𝑗𝐾+ 

𝛬𝑖𝑗𝐾
2

𝑦𝑖𝑗𝐾
]

𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1

∑ 𝐾𝑗
𝑁𝑗
𝑖=1

                                              (4.48) 

Now differentiating with respect to  𝛬𝑖𝑗𝑘 and putting it equal to zero we get the value of 

estimator𝛬𝑖𝑗𝑘  as follows 

∑∑∑[𝛬𝑖𝑗𝑘′
1

𝛬𝑖𝑗𝑘
+
𝑢𝑖𝑗
𝜆
𝛬𝑖𝑗𝑘′ − 𝜆𝛬𝑖𝑗𝑘𝛬𝑖𝑗𝑘′

1

𝑦𝑖𝑗𝐾
] = 0

𝐾𝑗

𝐾=1

𝑁𝑗

𝑖=1

𝐽

𝑗=1

 

 

∑ ∑ ∑ [
𝜕𝛬𝑖𝑗𝑘

𝜕𝛽

1

𝛬𝑖𝑗𝑘
+
𝑢𝑖𝑗

𝜆

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
− 𝜆𝛬𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽

1

𝑦𝑖𝑗𝐾
] = 0

𝐾𝑗
𝐾=1

𝑁𝑗
𝑖=1

𝐽
𝑗=1                (4.49) 

 

Now, by using the second part of the logarithmic function l(θ); 

Differentiating with respect to k and (-k𝜔) 

First differentiating with respect to k 
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1

𝑘
− 𝑘(𝑣𝑖𝑗 − 2𝑢𝑖𝑗ωj +ωj) = 0 

1

𝑘2
= ∑ ∑ [

𝑣𝑖𝑗−𝑢𝑖𝑗ωj

𝑁𝑗
]

𝑁𝑗
𝑖=1

𝐽
𝑗=1                                                                            (4.50) 

Now differentiating with respect to (−𝜔𝑗𝑘) 

0-
1

1−ɸ(−𝜔𝑗𝑘)
. −𝜙(−𝜔𝑗𝑘).−𝑘 −

𝑘2

2
(−2𝑢𝑖𝑗 + 2𝜔)=0 

 

 -
𝜙(−𝜔𝑗𝑘)

1−ɸ(−𝜔𝑗𝑘)
= 𝑘(−𝑢𝑖𝑗 + 𝜔)  

 

𝜙(−𝜔𝑗𝑘)

1 − ɸ(−𝜔𝑗𝑘)
= 𝑘(𝑢𝑖𝑗 −𝜔) 

𝜙(−𝜔𝑗𝑘) =  𝑘(𝑢𝑖𝑗 −𝜔)[1 − ɸ(−𝜔𝑗𝑘)] 

𝑁𝑗𝜙(−𝜔𝑗𝑘) = (∑ ∑ (𝑢𝑖𝑗 −𝜔𝑗𝑁𝑗)
𝑁𝑗
𝑖=1

𝐽
𝑗=1 )𝑘[1 − ɸ(−𝜔𝑗𝑘)]                                 (4.51) 

Equation 4.44 is divided into two parts. First part contains the elements of λ and β and the second 

part contains k and 𝜔 of the truncated normal distributions. Then we have separately optimized 

both the parts to find the value of the estimator in an iterative manner. 

4.6 Optimal ADT planning 

An ADT experiment is characterized by the total number of test units available, the number of 

stress levels used in the test, as well as the stress value of each level, the allocation scheme of the 

testing units to each stress level, the test duration, and the measurement time interval. Following 

the assumptions, we have assumed that the number of units, the test duration, and the 
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measurement time interval are already provided. Therefore, the objective of the ADT planning is 

to determine the optimal stress levels, as well as the proportion of units allocated to each level 

based on some optimization criterion. Usually, we are concerned with a small quantile (𝜉𝑝) of 

the time to failure under normal use conditions. Therefore, our objective here is to minimize 

Avar(𝜉𝑝) the asymptotic variance of 𝜉𝑝. 

For the simple inverse Gaussian process p-quantile is given as 

𝜉𝑝 = Ʌ
−1 [

μ

4𝜆
 (𝑧𝑝 +√𝑧𝑝

2 +
4𝐷𝜆

𝜇2
)

2

]                                                                    (4.52) 

Where μ is the mean of the process λ is the scale parameter of the process. 𝑧𝑝 is the standard 

normal p-quantile and Ʌ−1 is inverse function of Ʌ(.) . 

Since for the random drift model mean and variance is specified as  𝜇𝑖 Ʌ(t) and 𝜇𝑖
3Ʌ(𝑡)/𝜆  . To 

compute the distribution of first passage time to failure threshold D, we use the normal 

distribution to approximate then the CDF of 𝑇𝐷 is given by  

                                                       𝐹𝑇𝐷(𝑡) = 𝐹𝑧𝑝 [
𝜇𝑖 Ʌ(t)−D

√𝜇𝑖
3Ʌ(𝑡)/𝜆

]                            (4.53) 

Where  𝑧𝑝 is the standard normal p-quantile 

When Ʌ (t)= 𝑡𝛽  the p-quantile  (𝜉𝑝) under the specified condition for random drift can be 

described as below: 

𝜉𝑝 = [
exp (∝0+∝1𝑥𝑗)

4𝜆
 (𝑧𝑝 +√𝑧𝑝

2 + 4𝐷𝜆exp −2(∝0+∝1 𝑥𝑗))
2

]

1

𝛽

                      (4.54)   

The estimate of 𝜉𝑝 can be obtained by substituting the MLE of θ into the equation (3.54). The 

asymptotic variance of 𝜉𝑝 can be obtained based on the delta method as 

                              Avar(𝜉𝑝)= (∇𝜉𝑝)’ 𝐼
−1(𝜃) (∇𝜉𝑝)                                                    (4.55) 

Where  ∇𝜉𝑝   is the first derivative of 𝜉𝑝with respect to the θ, which is given by  



63 
 

∇𝜉𝑝 = (
𝜕𝜉𝑝

𝜕∝0
,
𝜕𝜉𝑝

𝜕∝1
,
𝜕𝜉𝑝

𝜕𝑘
,
 𝜕𝜉𝑝

𝜕𝜆
,
𝜕𝜉𝑝

𝜕𝛽
 ) ′                                                             (4.56) 

The element of ∇𝜉𝑝 can be derived as below: 

𝜕𝜉𝑝

𝜕∝0
=

1

2𝛽
(
1

4
(√

exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

√
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
))

2

𝛽
−1

[
1

2
√
exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

1

2
(
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
)

−1

2
(
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 −

4𝐷

exp (∝0+∝1𝑥𝑗)
)]      (4.57) 

 

𝜕𝜉𝑝

𝜕∝1
=

1

2𝛽
(
1

4
(√

exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

√
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
))

2

𝛽
−1

[
1

2
𝑥𝑗√

exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

1

2
(
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
)

−1

2
(
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2𝑥𝑗 −

4𝐷

exp (∝0+∝1𝑥𝑗)
𝑥𝑗)]  

                                                                                                             (4.58) 

 

𝜕𝜉𝑝

𝜕𝑘
= 0                                                                                                                            (4.59) 
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 𝜕𝜉𝑝

𝜕𝜆
=

1

2𝛽
(
1

4
(√

exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

√
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
))

2

𝛽
−1

[
1

2𝜆
√
exp (∝0+∝1𝑥𝑗)

𝜆

1

2
(
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
)

−1

2
(−

exp (∝0+∝1𝑥𝑗)

𝜆2
𝑧𝑝
2)]                          (4.60) 

𝜕𝜉𝑝

𝜕𝛽
=

−2

𝛽2
(
1

4
(√

exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

√
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
))(

1

4
(√

exp (∝0+∝1𝑥𝑗)

𝜆
 𝑧𝑝 +

√
exp (∝0+∝1𝑥𝑗)

𝜆
𝑧𝑝
2 +

4𝐷

exp (∝0+∝1𝑥𝑗)
))

2

𝛽

                                                                (4.61) 

With the asymptotic variance in hand, the optimization problem can be formulated as follows 

Minimize      Avar(𝜉𝑝) 

Subjected to  0≤ 𝑥𝑗 ≪ 1, 𝑗 = 1,2,… . , 𝐽 

                    𝑥𝑀 = 𝑥𝐻  and  𝑥0 ≤ 𝑥𝑗 ≤ 𝑥𝐻 , 𝑗 = 1,2,… . , 𝐽 

                   ∑ 𝑁𝑗
𝐽
𝑗=1 = 𝑁, 

                  0<𝑁𝑗 ≤ 𝑁, 𝑗 = 1,2,… . , 𝐽                                                                   (4.62) 

To solve the above mixed integer programming problem, some software package such as Mat lab 

can be used. 
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                                Figure 4.2: Flow chart for optimal plan 

       Start 

Develop a log-likelihood for random drift 

model 

Determine the vectors of log-likelihood 

function using EM algorithm 

Estimate the elements of fisher 

information matrix 

Determine the p-quantile of the proposed 

model 

Determine the asymptotic variance and 

minimize it for optimal planning 

 

Numerical analysis of developed random 

drift model for stress relaxation data 

Comparison of the developed model with 

the simple inverse Gaussian model without 

random effects 

         End 
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                                                            CHAPTER 5 

                        NUMERICAL ANALYSIS 

5.1 Introduction  

In the preceding sections we described techniques for degradation analysis at single stress level, 

which may be a use stress level or an elevated level. In many situations, testing a sample at a use 

stress level yields a small amount of degradation in a reasonable length of time. Insufficient 

degradation inevitably provides biased reliability estimates. To overcome this problem, as in 

accelerated life testing, two or more groups of test units are subjected to higher-than-use stress 

levels. The degradation data so obtained are extrapolated to estimate the reliability at a use stress 

level. In this section we present methods for accelerated degradation analysis. 

5.2 Numerical example 

The stress relaxation data in (G.Yang et al., 2007) (example 8.7 pp.351) are used here to 

illustrate the proposed procedure. The stress relaxation is the loss of stress in a component 

subjected to a constant strain over the time. E.g. The contact of electrical connectors often fails 

due to the excessive stress relaxation. The electrical connector is said to have failed if the stress 

relaxation exceed 30%, i.e., D=30. Data are collected under three temperature levels: 65℃ , 85℃ 

, 100℃ . The time interval between measurements is tabulated in table no. 5.1. The 7th point of 

the second unit under 65℃ (labeled blank in (Yang et al., 2007) to preserve the monotone 

behavior of the stress relaxation. Table 3 lists the measurement approaches under each 

temperature level.  

Table 5.1: Stress relaxation data under the temperature level (G.Yang, 2007) 

Temperature I.D Stress loss 

 

65℃ 

1 2.12, 2.7, 3.52, 4.25, 5.55, 6.12, 6.75, 7.22, 7.68, 8.46, 9.46  

2 2.29, 3.24, 4.16, 4.86, 5.74, 6.85, 0, 7.4, 8.14, 9.25, 10.55 

 

3 2.4, 3.61, 4.35, 5.09, 5.5, 7.03, 8.24, 8.81, 9.629, 10.27, 11.11 
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4 2.31, 3.48, 5.51, 6.2, 7.31, 7.96, 8.57, 9.07, 10.46, 11.48, 12.31 

 

5 3.14, 4.33, 5.92, 7.22, 8.14, 9.07, 9.44, 10.09, 11.2, 12.77, 13.51 

 

6 3.59, 5.55, 5.92, 7.68, 8.61, 10.37, 11.11, 12.22, 13.51, 14.16, 15 

 

85℃ 7 2.77, 4.62, 5.83, 6.66, 8.05, 10.61, 11.2, 11.98, 13.33, 15.64 

 

8 3.88, 4.37, 6.29, 7.77, 9.16, 9.9, 10.37, 12.77, 14.72, 16.8 

 

9 3.18, 4.53, 6.94, 8.14, 8.79, 10.09, 11.11, 14.72, 16.47, 18.66 

 

10 3.61, 4.37, 6.29, 7.87, 9.35, 11.48, 12.4, 13.7, 15.37, 18.51 

 

11 3.42, 4.25, 7.31, 8.61, 10.18, 12.03, 13.7, 15.27, 17.22, 19.25 

 

12 5.27, 5.92, 8.05, 9.81, 12.4, 13.24, 15.83, 17.59, 20.09, 23.51 

 

100℃ 13 4.25, 5.18, 8.33, 9.53, 11.48, 13.14, 15.55, 16.94, 18.05, 19.44 

 

14 4.81, 6.16, 7.68, 9.25, 10.37, 12.4, 15, 16.2, 18.24, 20.09 

 

15 5.09, 7.03, 8.33, 10.37, 12.22, 14.35, 16.11, 18.7, 19.72, 21.66 

 

16 4.81, 7.5, 9.16, 10.55, 13.51, 15.55, 16.57, 19.07, 20.27, 22.24 

 

17 5.64, 6.57, 8.61, 12.5, 14.44, 16.57, 18.7, 21.2, 22.59, 24.07 
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18 4.72, 8.14, 10.18, 12.4, 15.09, 17.22, 19.16, 21.57, 24.35, 26.2 

 

 

          Table 5.2: Measurement time under three temperature (G.Yang, 2007) 

Temperature  Measurement time epochs (in hours) 

65℃ 108,  241, 534, 839, 1074, 1350, 1637, 1890, 2178, 2513, 2810 

85℃ 46, 108, 212, 408, 632, 764, 1011, 1333, 1517, 2586 

100℃ 46, 108, 212, 344, 446, 626, 829, 1005, 1218 

 

 

                                   Figure 5.1: Degradation in unit with temperature 

 Above figure shows the variation of degradation for each unit with the time. In the figure from 

lower end to upper end shows the degradation behavior of unit 1 to 18.  
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G.Yang (2007) Regression is used to fit each degradation path, and extrapolated to the failure 

threshold to obtain the pseudo failure time for each unit. He then used the lognormal distribution 

to fit the pseudo failure times under each temperature level, and link the Arrhenius relationship 

to link the failure time distribution. Here we used the stochastic approach. In keeping with 

G.Yang (2007), we use the normal use stress is 𝑠0 is 40℃ , the highest allowable stress 𝑠𝐻 is 

100℃ and the transformed stress is 

                                𝑥𝑗 =

1

𝑠0
−
1

𝑠𝑗
1

𝑠0
−
1

𝑠𝐻

 

For 65℃            𝑥1= 0.641 

 For 85℃           𝑥2= 0.8823 

For 100℃          𝑥3= 1 

 The mean degradation path is given by direct averaging over the sample under each stress level. 

First we take the direct average of one stress level at a particular time interval. By using this we 

provide the regression fit of all the data points. It shows how the average data varies with the 

measurement time interval. 
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                     Figure5.2:   For 65℃ regression fit 

 

 

                            Figure 5.3: For 85℃ regression fit 
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The inverse Gaussian process is used to fit the data for each stress level and also for combining 

the degradation data. The standard normal PDF and CDF for each stress level is given below: 

For 65℃ the standard PDF and CDF curve is given below: 
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               Figure 5.5: PDF for inverse Gaussian at 65 degree 

 

              Figure 5.6: CDF for inverse Gaussian at 65 degree 
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                         Figure 5.7: PDF for inverse Gaussian at 85 degree 

 

 

                         Figure 5.8: CDF for inverse Gaussian at 85 degree 
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For 100℃ PDF and CDF of inverse Gaussian 

 

                 Figure 5.9: PDF for inverse Gaussian at 100 degree C 

  

Figure 5.10: CDF for inverse Gaussian at 100 degree C 
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Combine plot for all stress level PDF and CDF of inverse Gaussian: 

 

                      Figure 5.11: PDF for inverse Gaussian for combine all level 

 

 

                    Figure 5.12: CDF for inverse Gaussian for combine all level 
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                     Figure 5.13: Q-Q plot for simple model 

 

               Figure 5.14: Q-Q plot for random process model 
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The estimated parameters for the random drift model are: 

∝0= −2.423 

∝1= 2.3932 

𝑘 = 2.1954 

𝜆 = 0.7307 

𝛽 = 0.53 

The maximum log likelihood value is -192 since the log likelihood value is more compare to the 

simple model (-222) so this model provides a better fit.  

In addition, G.Yang(2007) proposed using the Q-Q plot to test the goodness-of-fit. The Q-Q plot 

is given in Fig. 5.13.  As can be seen from the Q-Q plot, there seems to be one outlier in the data. 

Except for this outlier, the Q-Q plot tends to be satisfactory. The outlier may be attributed to a 

random effect, and is incorporated into the analysis. The Q-Q plot for random effect is given in 

figure 5.14. Figure shows that simple model is also acceptable. 

In the following, we will determine the optimal ADT plans based on both models. 

Suppose 10 units are available for the ADT test. In the ADT, we set  𝜏𝑗=24, and 𝐾𝑗 = 14for all 

j=1,2,….J. This setting means that we measure the degradation level once every day, and the test 

lasts two weeks. Our planning involves selecting the stress level, (𝑥1, 𝑥2, … , 𝑥𝐽−1) , and the 

proportion of samples allocated to each testing level, (𝑁1, 𝑁2, … . 𝑁𝐽−1) . Consider a two-level 

ADT plan. Suppose we are interested in minimizing the asymptotic variance of B10, the 0.1-

quantile of the failure time distribution at use conditions. Solving the optimization problem 

equation (4.63) when J=2 yields the optimal ADT design. 

The elements of fisher matrix by solving through mat lab are: 

[
 
 
 
 
−1.363 × 108 −1.063 × 108 −1.6345 × 109 −20.08 × 108 −1.36 × 105

−1.03 × 108 −8.7208 × 107 −1.2830 × 109 −15.7626 × 108 −1.067 × 108

−1.63454 × 109 −1.2830 × 109 −6.986 × 109 −8.235 × 1012 1.448 × 109

−20.08 × 108 −15.7626 × 108 −8.235 × 1012 −4.9076 × 109 −1.46 × 107

−1.36 × 105 −1.067 × 108 1.448 × 109 −1.46 × 107 5.55 × 107 ]
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Minimize (50*((1442898714464025*n*((1000*exp((5983*n)/2500 - 

2423/1000))/753)^(1/2))/2251799813685248 - (120*n*exp(2423/1000 - (5983*n)/2500)…. 

Subjected to: 

                         0≤ 𝑥𝑗 ≤ 1  𝑗 = 1,2 

                     𝑁1+𝑁2 = 10 

                   0< 𝑁𝑗 ≤ 10  𝑗 = 1,2 

Table 5.3: Optimization table for random drift model 

Process 𝑥1 𝑥2 𝑁1 𝑁2 Std(𝜉𝑝) 

Random drift 

model 

0 1 1 9 4352 

 

 The optimal ADT design is shown in the above table. It is interesting to observe that optimal 

lower stress value is 0. This result is true because the degradation under the normal use condition 

is fast enough so that the error caused by extrapolation to the failure threshold is small, even if 

we test the unit under use conditions. 

Comparison to simple IG process model: 

Table 5.4: Optimization table for simple IG process 

Process 𝑥1 𝑥1 𝑁1 𝑁2 Std(𝜉𝑝) 

Simple IG 

process 

0 1 8 2 16604 

(Ye and Chan,2014) 
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5.3 Conclusion 

This thesis has investigated the optimal constant stress ADT plan based on the inverse Gaussian 

process. The objective is to minimize the asymptotic variance of the p-quantile under the use 

condition by properly specifying the stress levels. The inverse Gaussian process with the random 

effect is considered in this thesis. Random drift model is considered for investigation. Here we 

assume that random drift parameter 𝜇𝑖 is variable with unit to unit since there is change in 

material properties from unit to unit. This assumption is a legitimate assumption because 

degradation is most often hastened under severe working conditions. We applied the IG process 

model to fit the stress-relaxation data of a component, and used the methods developed here to 

help with the ADT planning. 

This study has considered the constant-stress ADT planning. An advantage of the constant-stress 

ADT is that we can check the assumed stress-degradation relationship by separately estimating 

the parameters under each stress level. When the number of samples available for testing is 

extremely small, SSADT can be a good choice, as long as it is believed that the stress-

degradation acceleration relation is correct. MLEs of the model parameters and the asymptotic 

variance of the -quantile can be derived similar to the procedures presented in this thesis.  

This model is more useful in comparison to simple IG process and random volatility model. 

Since the maximum value of log-likelihood function obtained is more compared to other two 

models. And also it takes into account unit to unit variation (due to the change of properties of 

material at an lower or molecular level or due to some defects in the material) since here value of 

drift parameter is changing with unit.  

The no of units required at higher stress level is more due to the random effect compared to the 

simple IG process. And at lower stress level no of units required is less (since random change 

occurs in the degradation) compare to the simple IG process. And the standard value of 

asymptotic variance is also less compare to the simple IG process it indicates that here variation 

at different stress level in degradation is less comparatively. 

The Q-Q quantile curve also shows that random drift model provides a better fits for the random 

degradation data since maximum probability value lies on the line compare to the simple IG 

process in which more no of point lies outlier. 
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Thus by this thesis we can conclude that random drift model is a good choice for the 

manufacture to select no of optimum units at an optimum stress level for acceleration 

degradation testing. This model can be easily used in various types of industries as electronic, 

aerospace, to test different type of electronic component. 

And this model is very useful tool of Gas-Laser degradation testing and also to study the 

degradation behavior of other components or system. 
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                                           CHAPTER 6 

                             SUMMARY AND FUTURE SCOPE 

6.1 SUMMARY 

In the present scenario of highly competitive world every industry wants to develop highly 

reliable product. So there is need to test the units for reliability. Different methods are developed 

with the time to test the product. But in the electronic industry accelerated degradation test gets 

more utility compared to the other methods. Since company produces large sample of similar 

products so there is need to test the product in short duration. So accelerated degradation test is 

more suitable and effective for studying the degradation behavior since in this testing we 

increase the value of stress to fail the component quickly and collect the degradation data for 

predicting the reliability of the product. Accelerating degradation tool has become highly popular 

throughout the world in different type of industry as electronic, aerospace, and electrical. 

Different type of accelerating degradation models have developed with the time and can be used 

in different types of situations. However, it has become necessary for the manager to test how 

many no of units should be tested at a particular stress level so that the cost of testing is less. 

SSADT method has been developed by considering various criterion required such  as robustness 

of design, optimality of design, tightened the value of constrained etc. While considering Gas-

Laser problem gamma process does not provide best results. So, inverse Gaussian process is used 

for the optimization of no of units and stress value. 

Inverse Gaussian use different type of models as simple IG process and IG process with random 

effect as-random drift model, random volatility model and random drift- volatility model. In the 

present thesis we have considered random drift model for the study since this model takes into 

effect unit to unit variation of the sample of product. While random volatility model does not 

consider this factor so random drift model is more useful compared to the simple IG process and 

random volatility model. 

So the proposed model provides estimation of the no of units required for optimum stress level 

by minimizing the value of asymptotic variance. Fisher information matrix is a useful tool for 

estimating value of vectors used for finding the asymptotic variance. A number of researchers 
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are working presently on the acceleration degradation testing and different types of criterion 

have been considered from time to time. So many research objectives have emerged as the 

competition increases so that more optimal solutions can be found. 

Thus acceleration degradation testing has become very popular and a wide area for the future 

research. Since every day new challenge arises in the industry. To face different situations it has 

become necessary to develop new methods from time to time.  In the present thesis random drift 

model is used which can be used in number of industries where products are developed in lots to 

find the optimum stress level and the optimum value of units. 

6.2 Future work 

The random drift model considers the unit to unit variation while performing the optimization of 

the stress level with the no of units. Except it there are few things which can be considered in the 

future as 

1. The sensitivity analysis of the model can be done to know how the asymptotic variance 

varies on changing the value of different parameters ∝0 , ∝1 , 𝜆, 𝑘 etc. By performing the 

sensitivity analysis a range can be found for each parameter. 

2. Similar procedure can be developed for random drift-volatility model for the optimization 

of no of unit with the stress value. 

3. Sensitivity analysis for random drift-volatility model can be done in future. 

4. Validation of the above model can be done though simulation methods in the future 

studies. 
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