# LAYOUT AND COMPONENT SIZE OPTIMIZATION OF SEWER NETWORK USING SPANNING TREE AND MODIFIED PSO ALGORITHM

Ph.D. THESIS

by

## PRAVEEN KUMAR NAVIN

**ID: 2012RCE9012** 



DEPARTMENT OF CIVIL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR JAIPUR -302017, RAJASTHAN (INDIA) DECEMBER, 2017

# LAYOUT AND COMPONENT SIZE OPTIMIZATION OF SEWER NETWORK USING SPANNING TREE AND MODIFIED PSO ALGORITHM

### A THESIS

Submitted in partial fulfilment of the requirements for the award of the degree

of

#### **DOCTOR OF PHILOSOPHY**

in

## **CIVIL ENGINEERING**

by

## PRAVEEN KUMAR NAVIN

**ID: 2012RCE9012** 



DEPARTMENT OF CIVIL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR JAIPUR -302017, RAJASTHAN (INDIA) DECEMBER, 2017 @ Malaviya National Institute of Technology Jaipur - 2016 All Rights Reserved



# DEPARTMENT OF CIVIL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR, RAJASTHAN (INDIA)

# **CERTIFICATE**

This is to certify that the thesis entitled "Layout and Component size Optimization of Sewer Network using Spanning tree and Modified PSO Algorithm" which is being submitted by Praveen Kumar Navin (ID: 2012RCE9012) to the Malaviya National Institute of Technology Jaipur for the award of the degree of Doctor of Philosophy is a bonafide record of original research work carried out by him. He has worked under my guidance and supervision and has fulfilled the requirement for the submission of this thesis, which has reached the requisite standard.

(Prof. Y. P. Mathur)

Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, Jaipur – 302017, Rajasthan (India)

Date:



# DEPARTMENT OF CIVIL ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY JAIPUR, RAJASTHAN (INDIA)

# **CANDIDATE'S DECLARATION**

I hereby certify that the work which is being presented in the thesis entitled "**Layout** and Component size optimization of sewer network using Spanning tree and Modified PSO Algorithm" in partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy and submitted to the Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, is an authentic record of my own work carried out at Department of Civil Engineering during a period from July 20, 2012 to April 15, 2016 under the supervision of Dr. Y. P. Mathur, Professor, Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan (India).

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other Institute.

Date:

(Praveen Kumar Navin)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

(Prof. Y. P. Mathur) (Supervisor)

Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, Jaipur -302017, Rajasthan (India)

Date:

With great delight, I would like to express my deep sense of gratitude to my supervisor **Prof. Y. P. Mathur**, Civil Engineering Department, MNIT Jaipur, for his immeasurable inspiring guidance of each and every step during the course of this investigation as well as overall professional development. I am very grateful to him for guiding me how to conduct research and how to clearly and effectively present the work done. This thesis could not have attained its present form both in content and presentation without his active interest, direction and help.

I extend my deep sense of gratitude to **Prof. A. B. Gupta**, Director, MNIT Jaipur, for strengthening the research environment of institute by providing all necessary facilities to research scholars.

I express my gratitude to all faculty members; especially my DREC committee members **Prof. Gunwant Sharma, Prof. Sudhir Kumar,** and **Dr. Urmila Brighu** for providing valuable suggestions and words of encouragement. I am also thankful to **Prof. Gunwant Sharma**, HOD, Civil Engineering Department, for his valuable suggestions and keen support during the completion of my research work.

I am especially thankful to **Mr. Rajat Mathur** for his valuable help and unwavering support during my spanning tree algorithm development. I am also very thankful to my research colleagues for their fruitful discussion on various aspects during studies. I am also thankful to **Mr. Rajesh Saxena** for his help during my research work.

I am thankful to all my friends, colleagues and well wishers who, directly or indirectly assisted me in achieving the completion of my work.

I thank God for blessing me with loving, wonderful and caring parents. My gratitude to them cannot be expressed in words. A strong power has always been supporting me during the entire course of my research. I am sure this has been the force of the blessings of Parents, which never left me trapped in difficulties. It is their love, blessings, persistent motivation that has brought me up to this stage. I dedicate my words of expression to my father Shri. Mithileshwar Singh and my mother Smt. Madhuri Devi. I especially thank my wife, Nidhee, my son, Garvit for their hearty support, patience and loving participation in accomplishing this work, which would not have been possible otherwise.

Last but not the least, I express my special thanks and gratitude to my brothers and sisters and other relatives for providing me constant moral support, encouragement and cooperation during my education.

Praveen K. Navin

The optimal design of a sewerage system requires layout and component size optimization simultaneously. Layout and component size optimization of sewer network problem consists of many hydraulic constraints which are generally nonlinear and discrete; which creates a challenge even to the modern heuristic search methods. This study aims to introduce a method to solve the problem of layout and component size optimization of a sewer network.

An algorithm 'generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow CQ' is introduced to generate a predefined number of sewer layouts of a base sewer network in order of increasing length and these generated layouts are sorted in ascending order of total cumulative flow CQ. Each layout is optimized for component size optimization in this sequence. It has been found that the optimal sewer layout for total system optimization is one where the total cumulative flow has the minimal value.

The modified particle swarm optimization (MPSO) algorithm has been used to optimally determine the component sizes of the selected layouts. The proposed method for optimal layout and component size optimization is applied on three sewer networks (Sudarshanpura, Bajaran and Laxmangarh) design. The results are presented for optimal cost vs cumulative flow of the layouts. Further, results of MPSO have been compared with the original PSO algorithm. The results indicated that the layout having minimum CQ has the minimum total cost and the total cost of sewer layout generally increases with the CQ of a layout. It is also found that the proposed MPSO algorithm solution is better than the original PSO algorithm in all the layouts regarding minimum cost of the sewer network.

# Contents

|   | Co                                      | rtifice | ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ;        |
|---|-----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|   | Ca                                      | ndida   | are attain a state of the state | ï        |
|   | Acknowledgement<br>Abstract<br>Contents |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iii_iv   |
|   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V        |
|   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vi-viii  |
|   | Lis                                     | t of T  | Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ix       |
|   | List of Figures<br>Symbols              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x-xi     |
|   |                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xii-xiii |
|   | Ab                                      | brevi   | ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xiv-v    |
| 1 | In                                      | trodu   | iction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-3      |
|   | 1.1                                     | Gen     | ieral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |
|   | 1.2                                     | Nee     | d of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2        |
|   | 1.3                                     | Obj     | ectives of the Present Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3        |
|   | 1.4                                     | The     | sis Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3        |
| 2 | Li                                      | teratı  | ure Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-15     |
|   | 2.1                                     | Gen     | eral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4        |
|   | 2.2                                     | Opt     | imization Methods for Sewer System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        |
|   | 2.2                                     | 2.1     | Sewer component optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4        |
|   | 2.2                                     | 2.2     | Sewer layout optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11       |
|   | 2.2.3                                   |         | Sewer layout and component size optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13       |
| 3 | Se                                      | werag   | ge System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16-24    |
|   | 3.1                                     | Gen     | eral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16       |
|   | 3.2                                     | Pro     | minence of sewer systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16       |
|   | 3.3                                     | App     | purtenances of a sewer system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17       |
|   | 3.3                                     | 8.1     | Manholes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17       |
|   | 3.4                                     | Des     | ign Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18       |
|   | 3.4                                     | l.1     | Estimation of Design Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18       |

|   | 3.4.1   | 1.1 Design Period                               | 18    |
|---|---------|-------------------------------------------------|-------|
|   | 3.4.1   | 1.2 Population Forecast                         | 18    |
|   | 3.4.1   | 1.3 Per Capita Sewage Flow                      | 18    |
|   | 3.4.2   | Minimum Size of Circular Sewers                 | 19    |
|   | 3.4.3   | Flow in Circular Sewers                         | 19    |
|   | 3.4.3   | 3.1 Minimum Velocity for Avoiding Sedimentation | 19    |
|   | 3.4.3   | 3.2 Maximum Velocity                            | 20    |
|   | 3.4.4   | Slope of sewer                                  | 20    |
|   | 3.4.5   | Cover                                           | 21    |
|   | 3.4.6   | Hydraulics of Sewers                            | 21    |
|   | 3.4.7   | Invert Levels                                   | 23    |
|   | 3.4.8   | Earthwork                                       | 24    |
|   | 3.4.9   | Depth of Excavation                             | 24    |
| 4 | Metho   | dology                                          | 25-53 |
|   | 4.1 Ge  | eneral                                          | 25    |
|   | 4.1.1   | Basics of Graph Theory                          | 25    |
|   | 4.1.2   | Kruskal's algorithm                             | 26    |
|   | 4.1.3   | Algorithm                                       | 27    |
|   | 4.2 For | rmulation of optimal sewer design problem       | 30    |
|   | 4.2.1   | Design constraints:                             | 31    |
|   | 4.2.2   | Penalty Function                                | 32    |
|   | 4.3 Mo  | odified Particle Swarm Optimization             | 35    |
|   | 4.4 Ca  | se studies for Optimization of Sewer System     | 38    |
|   | 4.4.1   | Case Study 1: Elongated type Network            | 38    |
|   | 4.4.2   | Case Study II: Elongated type Network           | 42    |
|   | 4.4.3   | Case Study III: Cluster Type Network            | 46    |
|   | 4.4.4   | Input data of Program                           | 53    |

| 5 Results and Discussion |                                    | 54-111  |
|--------------------------|------------------------------------|---------|
| 5.1                      | Results of case Study I            | 54      |
| 5.2                      | Result of Case Study II            | 79      |
| 5.3                      | Result of Case study III           | 94      |
| 6 (                      | Conclusions                        | 112-113 |
| Refer                    | rences                             | 114-119 |
| Appe                     | endix A                            | 120-128 |
| Appe                     | endix B                            | 129-133 |
| List o                   | of Publications Out of Thesis Work | 134     |
| Bio-E                    | Data of the Author                 | 135     |

# List of Tables

| 3.1 Spacing of Manholes                                                        | 17  |
|--------------------------------------------------------------------------------|-----|
| 3.2 Values of Peak Factors                                                     | 19  |
| 3.3 Design Velocities in Gravity Sewers                                        | 20  |
| 3.4 Minimum Slopes in sewers                                                   | 21  |
| 4.1 Input Details for Network 1                                                | 28  |
| 4.2 Nodal Wastewater Contribution for Network 1                                | 29  |
| 4.3 Cost of Different Diameter Sewer Pipes                                     | 30  |
| 4.4 Earthwork Cost at Different Depths                                         | 30  |
| 4.5 Manhole Cost Detail                                                        | 31  |
| 4.6 Base Network Data for Network 2                                            | 40  |
| 4.7 Nodal Wastewater Flow Contribution and Ground Levels of Network 2          | 41  |
| 4.8 Base Network Data for Network 3                                            | 44  |
| 4.9 Nodal Wastewater Flow Contribution and Ground Levels of Network 3          | 45  |
| 4.10 Base Network Data for Network 4                                           | 48  |
| 4.11 Nodal Wastewater Flow Contribution and Ground Levels of Network 4         | 49  |
| 4.12 Commercially Available Diameters                                          | 53  |
| 4.13 Pre-specified Slopes                                                      | 53  |
| 5.1 Total Cumulative Discharge vs. Total Optimal Cost for Different Iterations |     |
| for Network 2                                                                  | 54  |
| 5.2 Sewer Layout Cost Details for Network 2                                    | 56  |
| 5.3 Characteristics of the Optimal Sewer Network Obtained by the Modified PSO  |     |
| for Network 2                                                                  | 74  |
| 5.4 Total Cumulative Discharge vs. Total optimal Cost at Different Iterations  |     |
| for network 3                                                                  | 79  |
| 5.5 Sewer Layout Cost Details for Network 3                                    | 81  |
| 5.6 Characteristics of the Optimal Sewer Network Obtained by the Modified PSO  |     |
| for Network 3                                                                  | 89  |
| 5.7 Total Cumulative Discharge vs. Total Optimal Cost at Different Iterations  |     |
| for network 4                                                                  | 94  |
| 5.8 Sewer Layout Cost Details for Network 4                                    | 96  |
| 5.9 Characteristics of the Optimal Sewer Network Obtained by the Modified PSO  |     |
| for Network 4                                                                  | 104 |

# List of Figures

| 3.1 Partially filled circular sewer                                                     | 22 |  |  |
|-----------------------------------------------------------------------------------------|----|--|--|
| 4.1 Base graph of Network 1                                                             | 28 |  |  |
| 4.2 Sequenced six layouts according to ascending order of <i>CQ</i> for Network 1       | 29 |  |  |
| 4.3 Base sewer network of Sudarshanpura (Network 2)                                     | 39 |  |  |
| 4.4 Base sewer network of Banjaran (Network 3)                                          | 43 |  |  |
| 4.5 Base sewer network of Nawalgarh (Network 4)                                         | 47 |  |  |
| 4.6 Sewer components optimization procedure using modified PSO algorithm                | 52 |  |  |
| 5.1 Total cumulative discharge vs. Optimal cost of layouts at 30 iterations for         |    |  |  |
| Network 2                                                                               | 55 |  |  |
| 5.2 Total cumulative discharges vs. Optimal cost of layouts at 60 iterations for        |    |  |  |
| Network 2                                                                               | 55 |  |  |
| 5.3 Total cumulative discharges vs. Optimal cost of layouts at 90 iterations for        |    |  |  |
| Network 2                                                                               | 56 |  |  |
| 5.4 Optimal sewer layout of Network 2, $CQ = 3639.13 \text{ l/s}$                       | 58 |  |  |
| 5.5 Alternative layout 1 of Network 2, $CQ = 3642.34 $ l/s                              | 59 |  |  |
| 5.6 Alternative layout 2 of Network 2, $CQ = 3644.56 $ l/s                              | 60 |  |  |
| 5.7 Alternative layout 3 of Network 2, $CQ = 3692.80 $ l/s                              | 61 |  |  |
| 5.8 Alternative layout 4 of Network 2, $CQ = 3724.24 $ l/s                              | 62 |  |  |
| 5.9 Alternative layout 5 of Network 2, $CQ = 4027.95 $ l/s                              | 63 |  |  |
| 5.10 Alternative layout 6 of Network 2, $CQ = 4252.10 $ l/s                             | 64 |  |  |
| 5.11 Alternative layout 7 of Network 2, $CQ = 4480.85 $ l/s                             | 65 |  |  |
| 5.12 Alternative layout 8 of Network 2, $CQ = 4676.69 $ l/s                             | 66 |  |  |
| 5.13 Alternative layout 9 of Network 2, $CQ = 4774.97 $ l/s                             | 67 |  |  |
| 5.14 Alternative layout 10 of Network 2, $CQ = 5130.95 $ l/s                            | 68 |  |  |
| 5.15 Alternative layout 11 of Network 2, $CQ = 5521.53 $ l/s                            | 69 |  |  |
| 5.16 Variation of the optimal cost with swarm sizes (at 30 iterations) for Network 2    | 70 |  |  |
| 5.17 Variation of the optimal cost with swarm sizes (at 60 iterations) for Network 2    | 71 |  |  |
| 5.18 Variation of the optimal cost with swarm sizes (at 90 iterations) for Network 2 71 |    |  |  |
| 5.19 Variation of the optimal cost with swarm sizes (at 30 iterations) for Network 2 72 |    |  |  |
| 5.20 Variation of the optimal cost with swarm sizes at different iterations, modified   | ļ  |  |  |
| PSO for Network 3                                                                       | 72 |  |  |

| 5.21 Total cumulative discharges vs. Optimal cost of layouts at 30 iterations for  |      |
|------------------------------------------------------------------------------------|------|
| Network 3                                                                          | 80   |
| 5.22 Total cumulative discharges vs. Optimal cost of layouts at 60 iterations for  |      |
| Network 3                                                                          | 80   |
| 5.23 Total cumulative discharges vs. Optimal cost of layouts at 90 iterations for  |      |
| Network 3                                                                          | 81   |
| 5.24 Optimal sewer layout of Network 3, $CQ = 1936.62 $ l/s                        | 83   |
| 5.25 Alternative layout 1 of Network 3, $CQ = 1936.80 $ l/s                        | 84   |
| 5.26 Variation of the optimal cost with swarm sizes (at 30 iterations) for Network | 3 85 |
| 5.27 Variation of the optimal cost with swarm sizes (at 60 iterations) for Network | 3 86 |
| 5.28 Variation of the optimal cost with swarm sizes (at 90 iterations) for Network | 3 86 |
| 5.29 Variation of the optimal cost with swarm sizes (at 120 iterations) for        |      |
| Network 3                                                                          | 87   |
| 5.30 Variation of the minimum total cost with swarm sizes at different iterations, |      |
| modified PSO for network 3                                                         | 87   |
| 5.31 Total cumulative discharges vs. Optimal cost of layouts at 30 iterations for  |      |
| Network 4                                                                          | 95   |
| 5.32 Total cumulative discharges vs. Optimal cost of layouts at 60 iterations for  |      |
| Network 4                                                                          | 95   |
| 5.33 Total cumulative discharges vs. Optimal cost of layouts at 90 iterations for  |      |
| Network 4                                                                          | 96   |
| 5.34 Optimal sewer layout of Network 4, $CQ = 782.305 $ l/s                        | 98   |
| 5.35 Alternative layout 1 of Network 4, $CQ = 783.575 $ l/s                        | 99   |
| 5.36 Variation of the optimal cost with swarm sizes (at 30 iterations) for         |      |
| Network 4                                                                          | 100  |
| 5.37 Variation of the optimal cost with swarm sizes (at 60 iterations) for         |      |
| Network 4                                                                          | 101  |
| 5.38 Variation of the optimal cost with swarm sizes (at 90 iterations) for         |      |
| Network 4                                                                          | 101  |
| 5.39 Variation of the optimal cost with swarm sizes (at 120 iterations) for        |      |
| Network 4                                                                          | 102  |
| 5.40 Variation of the minimum total cost with swarm sizes at different iterations, |      |
| modified PSO for Network 4                                                         | 102  |

| a                 | The cross section area while running partially full         |
|-------------------|-------------------------------------------------------------|
| Α                 | Area of flow in m <sup>2</sup>                              |
| С                 | Cost function of sewer network                              |
| CC                | Concrete cover (m)                                          |
| CD <sub>max</sub> | Maximum permissible cover depth                             |
| CD <sub>min</sub> | Minimum cover depth                                         |
| $CQ_j$            | Sum of cumulative flows in all links of the $j^{th}$ layout |
| d                 | Depth of flow                                               |
| D                 | Diameter of sewer pipe in m                                 |
| DEPTH_DS          | Downstream Depth in m                                       |
| DEPTH_US          | Upstream Depth in m                                         |
| d <sub>p</sub>    | Particle size in mm                                         |
| D <sub>p</sub>    | preceding sewers                                            |
| GRLDS             | Downstream ground level (m)                                 |
| GRLUS             | Upstream ground level (m)                                   |
| ILDS              | Downstream invert level (m)                                 |
| ILUS              | Upstream invert level (m)                                   |
| K                 | constant                                                    |
| $K_S$             | Dimensionless constant                                      |
| n                 | Manning's co-efficient of roughness                         |
| Ν                 | Total number of edges or links in the layout                |
| Р                 | Wetted perimeter (m)                                        |
| PC                | Total penalty cost                                          |

| PD                           | penalty due to depth                                              |
|------------------------------|-------------------------------------------------------------------|
| PF                           | Penalty factor                                                    |
| PV <sub>max</sub>            | Penalty due to maximum velocity                                   |
| $\mathrm{PV}_{\mathrm{min}}$ | Penalty due to minimum velocity                                   |
| Q                            | Discharge in m <sup>3</sup> /s                                    |
| q                            | Discharge while running partially full                            |
| $q_{ij}$                     | Flow in the i <sup>th</sup> link of the j <sup>th</sup> layout    |
| $q_{min}$                    | Minimum discharge in the link                                     |
| r                            | Hydraulic mean depth while running partially full                 |
| R                            | Hydraulic mean depth in m                                         |
| S                            | Slope of sewer in m/m                                             |
| $S_S$                        | Specific gravity of particle                                      |
| t                            | Pipe thickness                                                    |
| TC                           | Total cost of a sewer network                                     |
| v                            | Velocity of flow while running partially full                     |
| V                            | Velocity of flow in m/s                                           |
| V <sub>max</sub>             | Maximum permissible velocity                                      |
| $V_{min}$                    | Minimum permissible velocity                                      |
| θ                            | Central angle from the center of the section to the water surface |

- ACO Ant Colony Optimization
- ACOA Ant colony optimization algorithm
- BIE Bounded implicit enumeration
- CA Cellular automata
- CACOA Continuous Ant Colony Optimization Algorithm
- CA-GASiNO Cellular Automata and Genetic Algorithm for Sewer in Network Optimization
- CASiNO Cellular Automata for Sewers in Network Optimization
- CCACOA constrained Continuous Ant Colony Optimization Algorithms
- DDDP Discrete differential dynamic programming
- DP Dynamic Programming
- EPA Environmental Protection Agency
- ERW Earthworks
- GA Genetic Algorithms
- LGA Layout generation algorithm
- LP Linear Programming
- MIP Mixed integer programming
- MST Minimum spanning tree
- NLP Non-linear Programming
- NSGAII Non-dominated sorting genetic algorithm
- OGSDP Optimal Gravity Sewer Design Program
- PCACOA Partially constrained ant colony optimization algorithm
- PSO Particle Swarm Optimization

| QP     | Quadratic programing                                       |
|--------|------------------------------------------------------------|
| RCC    | Reinforced Cement Concrete                                 |
| SA     | Simulated annealing                                        |
| SSD    | Sanitary Sewer Design                                      |
| SSOM   | Sewer System Optimization Model                            |
| TGA    | Tree growing algorithm                                     |
| TS     | Tabu search                                                |
| UCACOA | Unconstrained continuous ant colony optimization algorithm |
| WWCS   | Wastewater collection system                               |

## 1.1 General

Sewer network has played a significant role in the development of human society by collecting wastewater for treatment and disposal. A sewer network collects wastewater from industrial, commercial and residential areas and transports to wastewater treatment plant. Sewerage systems have been used in urban environments since long time, and they are considered as an important part of the urban wastewater infrastructure. The earliest existence of sewerage system can be found in many ancient civilizations: 4000 BC in Mesopotamia (at present in Iraq) and 3000-2000 BC in Mohenjo-Daro (Presently in Pakistan). The Cloaca Maxima, the ancient drainage, built in the 6th century BC, to drain the 'Forum Romanum' is still in use (Butler and Davies, 2004). The modern concept of sewerage system evolved in the 19th century due to hygienic reasons. To avoid the hygienic problems, the sewerage system was constructed underground. The main issues of the urban sewerage system are to ensure a better public health, to protect natural water bodies from pollution and to provide a significant level of protection against urban flooding.

The cost of the sewerage system is a major fraction of the overall cost of wastewater disposal. Huge investment is required for construction and maintenance of these large scale sewer networks, and reduction of cost even by a few percent of the cost of these networks may result in substantial saving. Many researchers have focused on applying optimization techniques for obtaining cost effective designs of such networks in recent years. The optimization of sewer system design includes two sub problems:

- (i) Optimal sewer network layout determination and,
- (ii) Optimal design of sewer network components.

These two sub problems are strongly coupled and should be solved simultaneously for an optimal solution to the whole problem. Simultaneous sewer network layout and its component size optimization problem consist of many constraints which are nonlinear, discrete and sequential. The construction cost of a sewerage system can be considerably reduced if the sewer layout, pipe diameters, and pipe slopes are optimized. Determination of the optimal layout among a large number of alternatives is the first step in designing of a new sewer network. The sewer layout configuration is mainly dependent on the network size, location of the sewage treatment plant (i.e., outlet) and the topography of the area.

Sewer lines generally collect wastewater discharges gravitationally but sometimes depending on topography sewage pumping may be required. The designer depends on the topography of the area and follows natural ground slopes toward the outlet for sewer network layout. In steep areas, based on designer judgment, it is possible to select and design an economic sewer layout. In flat areas, there is no significant change in ground levels. As such many alternatives are there for the connectivity of the sewers and for the outlet position of the sewer network. The number of feasible layouts increases with the number of sewers. In such areas, designer judgment and experience are not sufficient to select and design the most economical sewer layout. For this reason, in such areas, it is necessary and cost effective to apply optimization techniques.

The design of a sewerage system involves the selection of an appropriate combination of sewer pipe diameters and slopes to ensure adequate capacity for peak flows and adequate self-cleansing velocity in the sewer.

In a conventional design process, designers typically use charts and thumb rules to select the diameter and calculate slope of sewers while designing sewer networks. Appropriate diameter and slope combinations are selected for all sewers (i.e., pipes) between manholes. Since there is a large range of sewer slopes, diameters and pipe material, designers can usually only evaluate a small number of alternative feasible solutions. The outcome of such a process depends to a large extent on the designer experience and efforts. It is practically almost impossible to incorporate all feasible design alternatives, and an optimal solution is not necessarily reached. Only using a computer oriented optimal designing procedure, may be a solution.

### **1.2** Need of the Study

Many researchers have applied optimization techniques to the sewer network design problem. Due to the complication of the problem, most of them have done either sewer layout determination or component sizing. Some researchers have focused on the optimization of component sizing and have ignored the impact of the layout on the component sizing. On the other hand, others have focused on the optimal layout determination and ignored the impact of the component sizing on the final solution. From the study of literature, it was observed that most of the researchers have focused on the problem of optimal component sizing while only a few researchers have focused on the problem of layout optimization and very few on the combined problem of layout and component size optimization of the sewer network.

## 1.3 Objectives of the Present Study

The present study has been taken keeping in mind the acknowledged gaps as discussed above. The objectives of this study are: sequenced

- (i) to develop a method for the generation of potential optimal alternative layouts,
- (ii) to develop a method of sequencing of these alternatives. This sequencing is to be used for optimising alternative layouts., and
- (iii) to optimize these alternative layouts in the order of their sequencing to get the most optimal solution.

#### **1.4 Thesis Organization**

This thesis is organized into several chapters. Chapter 1 discusses the background and objectives of the present study.

In Chapter 2, a comprehensive review of the literature on studies on the different methods used for the sewer network optimization problem is presented.

Chapter 3, provides a general description of the sewerage system components, introduction to sewer hydraulics and design considerations.

In Chapter 4, the methodology used for simultaneous determination of the layout and component size optimization of sewer network problem is presented.

In Chapter 5, results and discussions have been presented.

In Chapter 6, conclusions drawn based on the study have been presented.

## 2.1 General

The optimization of sewerage system has been a subject of considerable research since late 1960's. Numerous optimization techniques have been applied for sewer network optimization. A brief review of methods available in the literature related to sewer network optimization is presented in this chapter.

## 2.2 Optimization Methods for Sewer System

Optimal sewer design aims to minimize the network construction cost while ensuring a good system performance (Guo et al., 2008). Numerous optimization methods have been proposed to solve the sewer network problem. Due to the complexity of the problem, most of the existing researches are restricted to considering some simplified form of the problem. The literature survey has been divided in three sub sections. In the first one the papers which have considered only sewer system component size optimization without layout optimization have been reviewed. In the second one the papers which have considered only sewer system without sewer system component size optimization have been reviewed. In the third one the papers which have considered both sewer layout and component size optimization have been reviewed.

## 2.2.1 Sewer component optimization

Dajani and Hasit (1974) introduced mathematical programming models for the optimization of drainage networks. These mathematical models were based on two extensions of linear programming (i) separable-convex and (ii) mixed integer programming. The first model produced a continuous range of diameter and assumed full pipe flow, and the second model produced discrete pipe sizes and assumed partial flow. The minimum cost of the drainage system can be achieved by using both of these techniques with partially-full flow and commercially available diameters. The proposed methods were applied to design a seven-link drainage network. The result showed that, this solution required less computer time than those based on mixed-

integer programming. However, the requirement of long CPU (central processing unit) time and large memory hinders the method from the application to large scale network.

Mays and Yen (1975) developed a methodology for the optimal design of large storm sewer systems using dynamic programing (DP) and Discrete Differential Dynamic Programing (DDDP) approach. The sewer pipes were sized by using the Manning formula for gravity driven open channel flow. Full pipe flow was assumed at the design flow rate. A feasible solution or an initial trajectory was found by assuming an average slope for every link in the network. The sewer network was divided into equivalent serial subsystems, which were then solved in sequence. They applied the proposed methodology to a hypothetical storm sewer system and found that DDDP requires less computer time than DP, although it cannot guarantee global optimization.

Mays and Wenzel (1976) have updated the search algorithm previously proposed by Mays and Yen (1975). They presented two models for the optimal design of storm sewer systems, using DDDP. The first model considered the sewer network as a nonserial optimization problem in which the basic strategy was to decompose the converging branched system into equivalent serial subsystems for a solution. The second model considered the sewer network as a serial optimization problem. Results of an example using the serial approach were compared with those achieved by using an earlier non-serial DDDP approach. The comparison showed that serial DDDP approach was superior to the non-serial approach because of the ease of handling large systems with many levels of branching.

Gupta et al. (1976) developed a methodology to deal with depth and diameter optimization. The problem was to minimize a non-linear cost function subject to a set of non-linear constraints. They developed a non-linear algorithm based on Powell's method to optimize the design of wastewater collection systems. Each link was considered in sequence, and the objective function was minimized subject to six constraints. The algorithm required small computer memory and small time duration during optimization of a wastewater collection system.

Gupta et al. (1983) developed an optimization approach for the selection of optimal diameter and depth combinations for all links of a wastewater collection system (WWCS) by using DP. They used a modified Hazen-Williams hydraulic model under

partial-flow conditions. They considered a 10.7 km long wastewater collection system at Indian Institute of Technology, Bombay for optimal sewer design. The wastewater collection system considered 52 lines, 245 links, 224 ordinary manholes and 21 junction manholes. The proposed approach was applied to the WWCS, and the results were compared with conventional design. The cost of WWCS at IIT Bombay with proposed algorithm and conventional designs were estimated as Rs.  $1.6 \times 10^5$  and Rs.  $2.3 \times 10^5$  respectively. This optimization approach used a modified dynamic programming method that is only suitable for medium-sized networks and does not guarantee global optimality.

Nzewi et al. (1985) introduced an Optimal Gravity Sewer Design Program (OGSDP) to design a least-cost gravity sanitary sewer system. The OGSDP model obtained the least-cost design for gravity, non-looping sanitary sewerage system for a given set of design parameters, costs, and layout. The OGSDP determined an initial sewer system design using a heuristic procedure (called the Initial Solution Algorithm) and then improved the design using discrete dynamic programming (DDP) with successive approximations to obtain the final least-cost design. The proposed model was tested on a sample problem with 20 pipes. The design cost by using the Initial Solution Algorithm was  $$3.5 \times 10^5$ . By using optimization algorithm, the cost of this design was reduced to  $$3.3 \times 10^5$ .

Kulkarni and Khanna (1985) developed a Dynamic Programming optimization algorithm to find a global optimal solution for gravity-cum-pumped wastewater collection system (WWCS). A modified Hazen-William's hydraulic equation has been used in this DP-based approach. Application of DP to WWCS design has been plagued with problems of dimensionality. They tried to solve this problem with the concept of cost-effective feasible groups at junction manholes and a subdivision of the optimal design process. The proposed algorithm was applied to the design of two case studies. Results showed that, Internalization of intermediate pumping in WWCS has saved 7.75 - 28 % cost over complete gravity optimal systems in these case studies. In designing a WWCS consisting of 607 links and 291 junctions, the authors had to divide the network into three zones, which is an implicit indication of the computational difficulties in terms of time and storage encountered in DP-based sewer design approaches.

Walters (1985) applied DP for the least cost design of sewer network in which the positions of sewer junctions, slopes, and diameters of the sewers were considered as variables. The main restriction was that the general configuration of the sewer layout must be predetermined, i.e., the trunk sewer and its branches must first be defined. The method optimized the position of those manholes in plan that the designer selects as having some freedom of movement. It simultaneously optimized the pipe gradients and diameters. The proposed method was applied for the design of three storm sewer networks. The result showed that the construction cost of such networks was reduced by 4 % to 14 % on adaptation of this methodology, the cost would further reduced if more freedom of position for manhole is given in a network with higher flow rates.

The method proposed by Mays and Yen (1975), Mays and Wenzel (1976), Gupta et al. (1976), Gupta et al. (1983), Nzewi et al. (1985), Kulkarni and Khanna (1985), and Walters (1985) require long CPU (central processing unit) time and large memory requirement hinders these method from the application to large scale networks.

Desher and Davis (1986) introduced a heuristic program called Sanitary Sewer Design (SSD) to find the least cost design of a sanitary sewer network. The objective of SSD was to find the least cost design of a sewer network. The SSD program calculated pipe slopes, velocities, water depths, and invert elevations corresponding to input parameters (such as pipe lengths, diameters, ground elevations, flows, and design criteria). They applied SSD program to find the optimal design of a 3.25 mile sewer trunk line in Chapel Hill, N.C, USA. The results indicated that the cost can be reduced approximately 20-25% by maintaining a uniform progression of pipe sizes.

Elimam et al. (1989) developed a combined linear programming, diameter discretization and heuristic approach for the optimum design of large gravity sewer networks. It contained a non-linear convex function concerning pipe diameters and slopes, which was approached by piecewise linear sections. This approach used a modified Hazen-Williams hydraulic model at part-full flow conditions, along with a newly developed universal expression to determine the coefficient of roughness. The methodology was applied to the design of domestic wastewater network in the Wafra district of Kuwait. They concluded that the proposed method was able to design different hydraulic or structural factors for large sewer networks within a less CPU time.

Liang et al. (2000) introduced a procedure for designing a wastewater collection system. The purpose of the study was to minimize the overall cost of wastewater collection system. Many hydraulic constraints were incorporated within the modelling procedures. Genetic algorithm was applied to find good feasible pipeline networks. They applied their proposed procedure to the Changbin Coastal Industrial Park wastewater collection system in taiwan which resulted in cost savings of about 9 % as compared to traditional method.

Liang et al. (2004) implemented tabu search (TS) and genetic algorithms techniques to solve the sewer network optimization problem. The objective was to determine the optimal cost design for a given sewer network. In order to produce feasible solutions efficiently, an adaptive rule was generated for the GA and a dynamic strategy was developed for the TS technique. The proposed TS and GA techniques were tested against a case study and results were compared with the conventional methodology. They found that the optimal design using both GA and TS technique achieved a significant reduction in sewer network construction costs. Overall, the best GA and TS designs attained cost savings of 9 and 16 percent, respectively.

Guo et al. (2007) introduced an approach for sewer network design based on cellular automata (CA) principles, known as Cellular Automata for Sewers in Network Optimization (CASiNO). The objective was to minimize the capital cost and flooding within a sewer network. The pipe diameters of the storm sewer network were considered as the decision variables in the optimization problem. This approach is heuristic and generally relies on the main properties of CA: homogeneity, parallelism, and locality. They combined the CA optimizer with a sewer hydraulic simulator, the EPA Stormwater Management Model. At every optimization step the optimizer updates all decision variables simultaneously based on the hydraulic situation within every neighbourhood. The proposed CASiNO approach was tested against two case studies. They found that CASiNO approach obtained a near optimal solution in a less number of computational steps as compared to that of a genetic algorithm.

Weng and Liaw (2007) developed a Sewer System Optimization Model (SSOM) for optimal hydraulic designs of the urban sewer system. They used 0-1 mixed integer programming (MIP) for branched gravity sewer system hydraulic designs and the bounded implicit enumeration (BIE) algorithm for sewerage system optimization model (SSOM) development. The proposed model was tested against a case study, and the results were compared with the existing traditional design approach. It was found that the total construction cost for the Sewer System Optimization Model program was  $6.9 \times 10^7$  NT\$ and  $7.8 \times 10^7$  NT\$ for the traditional design approach.

Izquierdo et al. (2008) proposed PSO for optimal design of wastewater collection networks. The pipe diameters and slopes of the wastewater collection network were considered as the decision variables of the optimization problem. They considered slopes and depth of excavation as continuous variables, and pipe diameters as discrete variables. The proposed PSO technique was able to tackle simultaneously continuous and discrete variables. They applied PSO techniques on the cost function. The proposed technique was tested against a benchmark example, and the results were compared with those obtained by using dynamic programing (DP) to solve the same problem under the same conditions. The result showed that PSO techniques gave better result than dynamic programming.

Guo et al. (2008) proposed a hybrid optimization method GA-CASiNO (genetic algorithm and cellular automata for sewers in network optimization), which combined the genetic algorithm (GA) and cellular automata for sewers in network optimization (CASiNO). The objective of study was to minimization of flooding within a sewer network and of its capital cost. They combined CASiNO and the NSGA-II (non-dominated sorting genetic algorithm) together and executed them in two consecutive stages during the optimization. A localized approach CASiNO was applied in the first stage to obtain a set of preliminary solutions, which were then used to seed NSGA-II in the second stage. The proposed GA-CASiNO approach was tested against two case studies. They found that GA-CASiNO demonstrated better performance than traditional constrained NSGA-II with no extra computational cost.

Afshar (2010) introduced a Continuous Ant Colony Optimization Algorithm (CACOA) to optimal design of a sewer network. In this algorithm two alternative approaches (Continuous Ant Colony Optimization Algorithms, viz., CCACOA1 & CCACOA2) were implemented and applied to a storm sewer network. The nodal elevations of the sewer network were taken as the decision variables of the optimization problem. In the first algorithm (CCACOA1) which used an unconstrained approach, a Gaussian probability density function was used to represent the pheromone concentration over the allowable range of each decision variable. In

the second algorithm (CCACOA2) which used a constrained approach, known value of the elevation at a downstream node of a pipe was used to define new bounds on the elevation of the upstream node satisfying the explicit constraints on the pipe slopes. The applicability of the proposed approaches was tested against a benchmark text example, and the results were compared with the original unconstrained continuous ant colony optimization algorithm (UCACOA). The results showed considerable improvements in the performance of the CACOA regarding both quality and convergence characteristics of the final solutions.

Afshar et al. (2011) applied CA approach for the optimal design of sewer networks, with a fixed layout, in which both slopes and pipe diameter were determined optimally. The nodes of the sewer network were considered as the CA cells, with their elevations as the corresponding cell states. The neighbourhood of the cells was defined by the set of pipes connected to the cell under consideration. The CA updating rule was received by requiring that the network cost is minimized over the cell and neighbourhood. They applied the proposed approach against two benchmark problems, and the results were compared with other methods. They found that the CA approach results in a near optimal solution compared to the existing methods, with less computational effort.

Yeh et al. (2011) applied simulated annealing (SA) and tabu search (TS) approach for the optimization of sewer network designs. They applied their proposed approach to sewer network design of a central Taiwan township, which contains significantly diverse elevations. The result of optimal sewer designs form SA and TS approaches were compared with the original official design. The results indicated that original official design was found to violate the minimum flow-velocity requirements. TS and SA approaches achieved least-cost designs that also satisfied all the constraints of the design, but construction costs were slightly higher (by 3.2 % and 3.4 %, respectively) than the construction costs of the original design. They found that optimization performance of SA optimization approach was much more efficient and reliable than TS approach for sewer network problem.

Haghighi and Bakhshipour (2012) introduced an optimization model for sewer networks design. This model specially focused on handling the non-linear and discrete constraints of the problem. For this reason, they proposed an adaptive genetic algorithm for the optimal design of each chromosome, containing sewer diameters, slopes and pump indicators. The binary chromosomes were freely produced and then decoded to feasible design alternatives following a sequential design-analysis algorithm. The adaptive decoding strategy was set up based on the open channel hydraulics and sewer design criteria. All design criteria were systematically satisfied using the proposed method. A benchmark sewer network was designed using the proposed method. The results showed that this method aids the GA to perform the optimization more proficiently in terms of speed and accuracy.

Karovic and Mays (2014) developed a new optimization procedure for the minimum cost design of sewer systems for a pre-determined layout. The optimization procedure was developed within Microsoft Excel using simulated annealing techniques. The total cost of the sewer system that was determined with their proposed optimal design procedure was compared with the total cost of the system as determined from the conventional design approach. They applied simulated annealing optimizer to the design of the storm sewer network which resulted in a cost savings of about 7 %.

### 2.2.2 Sewer layout optimization

Liebman (1967) presented a heuristic method for sewer layout optimization, assuming the pipe diameters to be fixed. They obtained the best layout by a search procedure. At every step, one branch of the network was changed. The change was reserved if it resulted in a decrease in the total cost. The method suffered from several limitations, the most important one being that the network was never designed hydraulically. Liebman's heuristic model in designing the sewer network for a town (Pinarkent) with 312 nodes and 514 links indicated excessive computation time requirements. Therefore, the heuristic search method may prove useful only in small networks.

Tekeli and Belkaya (1986) developed a Layout Generation Algorithm (LGA) for generation of sanitary sewer layouts, using a standard shortest path algorithm. The optimal layout, in terms of least cost, required minimization of total excavation, for evaluating the shortest path from each manhole to the predetermined outlet. From the data available, three shortest path measures were formulated using the ground slopes and the horizontal portion of sewer lengths for every sewer. The hypothetical excavation measure, which requires every sewer to be laid at minimum cover depth and slope, yielded the minimum invert depths and excavations when the generated layouts were hydraulically designed. The result showed that the proposed algorithm generates optimal layout for networks with up to 70 manholes. The proposed algorithm required excessive computer memory or execution time. Hence, the algorithm can only be used with small networks.

Walters and Lohbeck (1993) applied GA for the optimal layout selection of a dendritic pipe network. The method assumed that the layout was generated from a directed base graph. This algorithm needed only limited memory requirement and computer facilities to design the layout of large non-linear flow networks. Results showed that, for small test networks, in comparison to an existing DP formulation, the GA has the advantage of significantly reduced memory requirements, but cannot guarantee to reach the optimal solution achieved by DP. Moreover, for big networks, no algorithm will guarantee to determine the global optimum; however, the GA gave near optimal solutions. They exhibited that the directed base graph considerably reduces the number of possible trees; nevertheless, it required great consideration when specifying the initial directions for satisfying the problem constraints.

Walters and Smith (1995) described a model for the optimal layout selection for a network with a tree structure. The model was based on genetic algorithm and tree growing algorithm. Unlike the previous work (Walters and Lohbeck 1993), this method was excerpted the optimum layout from an undirected base network.

Afshar and Mariño (2006) applied an ant colony optimization algorithm to the optimal layout determination of tree networks. Two different formulations were applied to represent the layout optimization problem of tree networks. In the first formulation, every link of the base graph was considered as the decision point of the problem. The ants were then required to choose from two options (viz., one and zero) at every decision point, where the zero option denoted the no pipe available for the link. The first formulation required a huge search space by the infeasible solutions. In the second formulation, the network nodes were taken as the decision points of the problem. In which the ants were required to choose any of the available links which were provided by a tree-growing algorithm. The second formulation required a very less search space compared to the first algorithm. The performances of the proposed approaches were tested against three benchmark examples. The results showed that the second formulation gives a better solution in comparison to other global optimization methods.

Haghighi (2013) developed a loop-by-loop cutting algorithm to generate feasible sewer layouts from the base graph. All constraints of the sewer layout sub-problem were systematically handled by using this algorithm. They defined a non-linear objective function to find the optimum layout by using genetic algorithm. After the determination of optimal layout, a discrete differential dynamic programming model was applied to optimize the network components. The proposed approach was applied to a case study from the literature. They found that the loop-by-loop cutting algorithm was more useful for the design of urban drainage systems in flat areas.

Haghighi and Bakhshipour (2015) introduced a procedure for designing the layout of sewer networks considering their reliability. They proposed a reliability criterion, in which loop-by-loop cutting algorithm used for the layout generation and then optimized using simulated annealing approach. The best sewer layout with the maximum reliability signifies an optimum layout in which clogging in a sewer has the least effect on its upstream lines. A case study was solved using the proposed procedure. Then, sewer specifications of the obtained layout were optimally designed by applying the discrete differential dynamic programming (DDDP) method. It was concluded that more reliable layouts lead to more expensive designs.

### 2.2.3 Sewer layout and component size optimization

Argaman et al. (1973) addressed the simultaneous optimization of layout and design of sewerage network. They developed a technique for the selection of the least cost combination of layout pipes, diameters, and slopes. The optimal solution was obtained by using dynamic programming. The major simplifying assumption was that for each pipe of the network the direction of flow was fixed in advance. Therefore, the method was only suitable where the natural topology is inclined in the direction to the outlet only. The main shortcoming of the method is the need for large computer space and long computation time, as the dimensions of the network increase. These restrictive requirements are inherent in the dynamic programming technique, and cannot be avoided unless a different approach is adopted.

Li and Matthew (1990) used the searching direction method for optimal layout determination and a DDDP for the optimal diameters, slopes and on-line pumps determination of a given layout. The result showed that the proposed method produced a satisfactory optimal layout as compared to shortest path spanning tree method or the existing design, although there was still no guarantee that the optimum layout was the global optimal layout.

Botrous et al. (2000) developed a computer program for the design of wastewater collection network. The program was divided into two subprograms (i) searches for the optimal layout of the network considering the excavation volume and (ii) optimal hydraulic design of all links in the layout. They applied DP technique to optimally compute pipe slopes, velocities, and invert elevations. It was applied to a real case 850 m link; the result showed capital cost savings up to 10 % as compared to the manual design. The problem with this methodology was only minimum excavation volume which may not optimal layout for total problem. Further DP technique was used which requires large computer space and long CPU time.

Diogo and Graveto (2006) exploited the specific restrictions of the layout design problem and introduced a deterministic model for small to medium systems. Deterministic model determined the optimal layout of a sewer network with respect to objective (i.e., cost) function. In this work infeasible trees were systematically evaded, and the optimal network is finally determined by means of a simple cost-effective comparison of all solutions having optimized design. For large dimension networks, where it was clearly impossible to achieve an optimal solution with full enumeration, they used a simulated annealing (SA) optimization model.

Moeini and Afshar (2012) used the ant algorithm to solve the layout and size optimization problem of a sewer network. Tree growing algorithm (TGA) was applied to find feasible tree-like layouts out of the base network, and an ant colony optimization algorithm (ACOA) was applied to optimally find the pipe diameters of the selected layout. They proposed two different approaches and their performances were checked against a hypothetical problem. In the first approach, ACOA was applied in a conventional manner for find optimal pipe sizes determination and an

adhoc engineering concept for the feasible layout determination. In the second approach, ACOA equipped with TGA was applied to simultaneously find the layout and pipe sizes of the network. The proposed approaches were applied to solve three test examples of different scales. They found that the ACOA–TGA approach produced better results for the problem of layout and size determination of sewer networks. This method is only suitable to a very ideal case where the ground elevation is inclined in only one way to the wastewater treatment plant. Furthermore, this method would have trouble, when applied to practical cases.

The topic of optimal sewer network design has been studied since the concept was first proposed in the mid-1960s. Due to the complication of the problem, most of the existing researches in the field are carried out on either sewer layout optimization or optimal component sizing.

During literature survey, it was observed that for the optimal design of sewer network as a whole, the first step is to generate alternate layouts and then sewerage system components need to be optimized for such layouts. As the number of alternate layouts is very large a methodology needs to be developed to sequence them, and sewerage system components are then to be optimized for these alternate layouts as per their sequencing. This was the missing link in the literature and was the motivation for the present study.

## 3.1 General

A general description of the system, its components, and design considerations are presented in the following paragraphs.

#### **3.2 Prominence of sewer systems**

The sewer system is required because of the interaction between human activity and the natural water cycle (Butler and Davies 2004). These interactions are:

- (i) the abstraction of water from natural cycle to provide water supply for human life, and
- (ii) the covering of land with impermeable surfaces that divert rainwater away from the local natural system of drainage.

The earliest existence and use of sewerage systems can be traced back; some archaeological discovering proves that underground sewers existed since ancient civilizations such as Indus Valley civilization etc. In Rome, the first sewers were built between 800 BC to 735 BC.

Sewerage systems at that time were mainly used to drain water from the streets during rainfall. The importance of sewerage system for disposal of human waste and other domestic wastes was not recognised until the mid-19<sup>th</sup> century. In Europe and the Americas, this recognition came after a series of deadly cholera epidemics (such as the one in early 1800s in London and Paris) due to filthy water (such as water used in flushing toilets and kitchen water) flowing from houses and building into the streets and surrounding areas that polluted sources of freshwater. This led to the awareness of the importance of carrying filthy water away from houses and buildings, treating it before discharging it into the point of disposal (i.e., rivers, streams). A detailed historical description of the use and development of sewer systems since the ancient times has been presented by Schladweiler (2015).

Wastewater, if not drained suitably, can cause water pollution and create health risks. Meanwhile, stormwater, if not drained suitably, has the potential of causing flooding leading to potentially disastrous damages and further health risks. Therefore, sewer systems are considered as an important part of the urban infrastructure.

### **3.3** Appurtenances of a sewer system

The structures and devices, which are constructed at suitable intervals along the sewer line to help its efficient operation and maintenance, are called sewer appurtenances. In the present work, cost of manholes has been included in the Cost function, and a brief description of the same is presented in section 3.3.1.

#### 3.3.1 Manholes

The manhole is a masonry or R.C.C. (Reinforced Cement Concrete) chamber constructed at suitable intervals along the sewer lines for providing access to the sewer for the purpose of inspection, testing, cleaning and maintenance of sewer. These are provided at every bend, junction, changing the direction or alignment, change of gradient or change of the diameter of the sewer. The sewer line between the two manholes is laid straight with uniform gradient. For straight sewer line manholes are provided at regular intervals depending upon the diameter of the sewer. For sewers which are to be cleaned manually or sewers which cannot be entered for cleaning or inspection, the maximum spacing between the manholes recommended is 30 m (Manual on sewerage and sewage treatment Systems, 2013). In trunk or main gravity sewers with no house service connections, the manual on sewerage and sewage treatment systems (2013) specifies manhole spacing as given in table 3.1.

| Table 3.1 | Spacing | of Manholes |
|-----------|---------|-------------|
|-----------|---------|-------------|

| Sewer Diameter<br>(mm)       | 600 or less | 1000 or less | 1500 or less | 1650 or<br>more |
|------------------------------|-------------|--------------|--------------|-----------------|
| Maximum Manhole<br>Space (m) | 75          | 100          | 150          | 200             |

Source: Manual on sewerage and sewage treatment Systems (2013)

#### 3.4 Design Considerations

Many design and construction factors need to be considered in the design of sewerage system. The manual on sewerage and sewage treatment systems (2013) gives recommendations and guidelines on these factors based on practical considerations. Some of the basic factors used in the present work are briefly discussed below.

### 3.4.1 Estimation of Design Flow

#### 3.4.1.1 Design Period

The length of time up to which the capacity of a sewerage system will be adequate is referred to as its design period. A design period of 30 years (excluding the construction period) is normally considered for sewers.

#### 3.4.1.2 Population Forecast

The design of the sewer system is based on the projected population of the city or town at the end of the design period. The appropriate method of population forecast, consistent with the growth pattern of the town is to be used for population forecast.

#### 3.4.1.3 Per Capita Sewage Flow

Although the whole spent water of a community should normally contribute to the total flow in a sanitary sewer, a small portion may be lost through evaporation, seepage into the ground, leakage, etc. In arid regions, mean sewage flows may be as low as 40% of water consumption while for an intensely developed area, flows may be as high as 90% (Manual on Sewerage and Sewage Treatment Systems 2013). Generally, 80% of the water supply may be expected to reach the sewers unless there is data available to the contrary.

The flow in sewers varies considerably from hour to hour and seasonally. For the purpose of hydraulic design estimated peak flows are adopted. The peak factor or the ratio of maximum to average flows depends upon the contributory population as given in Table 3.2.
| Contributory Population | Peak Factors |
|-------------------------|--------------|
| Up to 20,000            | 3            |
| 20,001 to 50,000        | 2.5          |
| 50,001 to 7,50,000      | 2.25         |
| Above 7,50,001          | 2            |

Table 3.2 Values of Peak Factors

Source: Manual On Sewerage And Sewage Treatment Systems (2013)

# 3.4.2 Minimum Size of Circular Sewers

The minimum diameter may be adopted as 200 mm for cities having a present population of over 1 lakh. Nevertheless, depending on growth potential in certain areas, even 150 mm diameter can also be considered. However, in towns having a present population of less than 1 lakh, the minimum diameter of 150 mm shall be adopted.

## 3.4.3 Flow in Circular Sewers

#### 3.4.3.1 Minimum Velocity for Avoiding Sedimentation

The flow velocity in the sewers should be such that the suspended solid materials in sewage do not get deposited at the bottom of the sewer. In the design of sewerage system it is ensure that the self-cleansing velocity is achieved at least ones in a day so that any suspended solid settled during low velocity in the sewers are washed away when this velocity is achieved. To ensure that the deposition of suspended solids does not take place, self-cleansing velocities using Shield's formula is considered in the design of sewers.

$$V = \frac{1}{n} \left[ R^{\frac{1}{6}} \sqrt{K_s \left( S_s - 1 \right) d_p} \right]$$
(3.1)

Where, n = Manning's co-efficient, R = Hydraulic mean radius in m,  $K_S$  = Dimensionless constant with a value of about 0.04 to start motion of granular particles and about 0.8 for adequate self-cleansing of sewers, S<sub>S</sub> is Specific gravity of particle and  $d_p$  is Particle size in mm. The Shield's formula indicates that the velocity required

to transport material in sewers is generally dependent on the particle size and specific gravity and slightly dependent on the shape of the sewer and depth of flow. The specific gravity of grit is usually in the range of 2.4 to 2.65. Gravity sewers shall be designed for the velocities, as given in the Table 3.3.

| No | Criteria                               | Value   |
|----|----------------------------------------|---------|
| Ι  | Minimum velocity at initial peak flow  | 0.6 m/s |
| 2  | Minimum velocity at ultimate peak flow | 0.8 m/s |
| 3  | Maximum velocity                       | 3 m/s   |

Table 3.3 Design Velocities in Gravity Sewers

Source: Manual On Sewerage And Sewage Treatment Systems (2013)

In India the sewerage system is design for 30 years. Initial peak flow refers to the peak flow corresponding to the start of the design period, whereas the ultimate peak flow refers to the peak flow at the end of the design period.

## 3.4.3.2 Maximum Velocity

Just as it is essential to provide a minimum velocity of flow of sewage (self-cleansing velocity) in sewers to avoid its clogging, it is also essential that the velocity of flow of sewage in sewers should not be excessive to cause erosion or scouring of its inner surface. At higher flow velocities beyond permissible limit erosion or scouring will be caused due to the abrasive action of harder materials such as sand, gravel and other gritty, present in sewage and this will damage the inner surface of the sewer. Therefore, the maximum velocity shall be limited to 3 m/s.

## 3.4.4 Slope of sewer

Pipe slope must be sufficient to provide the required minimum velocity and depth of cover on the pipe. The minimum slopes recommended for adoption are given in table 3.4.

| Sewer Size | Minimum    | Slope   | Sewer Size | Minimum Slope |         |  |
|------------|------------|---------|------------|---------------|---------|--|
| (mm)       | As percent | As 1 in | (mm)       | As percent    | As 1 in |  |
| 150        | 0.60       | 170     | 375        | 0.15          | 670     |  |
| 200        | 0.40       | 250     | 450        | 0.12          | 830     |  |
| 250        | 0.28       | 360     | ≥ 525      | 0.10          | 1000    |  |
| 300        | 0.22       | 450     |            |               |         |  |

Table 3.4 Minimum Slopes in sewers

Source: Manual on sewerage and sewage treatment Systems (2013)

## 3.4.5 Cover

In the case of sewerage system, standard design practice is to provide a minimum cover of 1m at the starting point. The minimum cover depth for sewers is provided to protect against imposed loads mainly vehicle loads, and to allow sufficient fall on house connections.

## 3.4.6 Hydraulics of Sewers

The circular sewers may run either full or partially full conditions. When sewers run full, the hydraulic elements are as described below:

# i. Area

$$A = \frac{\pi D^2}{4} \tag{3.2}$$

Where,  $A = area of flow in m^2$ 

D = diameter of sewer pipe in m

## ii. Hydraulic Mean Radius

$$R = \frac{A}{P} = \frac{D}{4} \tag{3.3}$$

Where, *P* is wetted perimeter (m).

$$P = \pi D \tag{3.4}$$

## iii. Velocity of Flow (Manning's equation)

$$V = \frac{1}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$$
(3.5)

Where,

V = velocity of flow in m/s, S = slope of sewer in m/m,

n = Manning's coefficient of roughness

## iv. Discharge

$$Q = AV \tag{3.6}$$

Where,  $Q = \text{discharge in } \text{m}^3/\text{s}$ 



Figure 3.1 Partially filled circular sewer

Figure 3.1 shows a circular sewer running partially full. Let D be the internal diameter of the sewer, d be the depth of flow, and  $\theta$  be the central angle in degrees.

## v. Theta $(\theta)$

Saatci (1990) gave an expression for computing the value of  $\theta$  directly by using the values of D, Q, and S.

$$\theta = \frac{3\pi}{2}\sqrt{1 - \sqrt{1 - \sqrt{\pi K}}} \tag{3.7}$$

Where, *K* is a constant, and calculated values of  $\theta$  as in radian.

This expression based on regression analysis is valid for  $\theta$  within the range of 0 to 265 degrees.

The value of *K* is calculated by following equation:

$$K = Q.n.D^{-8/3}S^{-1/2} \tag{3.8}$$

Equation 3.7 should be applied for *K* values less than  $1/\pi = 0.318$  (which corresponds to  $\theta = 265^{\circ}$ , d/D = 0.838).

# vi. Depth Ratio

$$\frac{d}{D} = \frac{1}{2} \times \left(1 - \cos\frac{\theta}{2}\right) \tag{3.9}$$

Where, d is the depth of flow.

## vii. Hydraulic Mean Radius (HMR)

$$r = \frac{D}{4} \left( \frac{\theta - \sin \theta}{\theta} \right) \tag{3.10}$$

#### viii. Area of Cross Section

$$a = \frac{D^2}{8} \left(\theta - \sin\theta\right) \tag{3.11}$$

Where, a = flow area while running partially full.

## 3.4.7 Invert Levels

The invert level is the interior bottom level of a sewer pipe. The upstream and downstream invert levels are calculated by following equations:

$$ILUS = GRLUS - cover - D - t$$
(3.12)

ILDS = ILUS - 
$$\left\{ \text{Pipe length} \times \left( \frac{1}{\text{slope}} \right) \right\}$$
 (3.13)

Where,

ILUS = upstream invert level (m),

ILDS = downstream invert level (m),

GRLUS = upstream ground level (m),

t = pipe thickness, and slope is expressed as 1 in n.

# 3.4.8 Earthwork

Earthwork (ERW) for the trench is calculated by the following equation:

$$ERW = Length \times Width \times Depth$$
(3.14)

Where, Width = Pipe Diameter (m) +  $(2 \times 0.25 \text{ m})$ 

# **3.4.9** Depth of Excavation

Depth of excavation (DEP\_EX) is calculated by the following formula:

$$DEP_EX = \left(\frac{DEPTH_US + DEPTH_DS}{2}\right) + CC$$
(3.15)

Where,

Upstream Depth in m (DEPTH\_US) = GRLUS – ILUS,

Downstream Depth in m (DEPTH\_DS) = GRLDS – ILDS,

GRLDS = downstream ground level (m),

CC = Concrete bedding (m).

## 4.1 General

As discussed in the previous chapter, sewer network design, and its optimization problem is divided into two sub-problems:

(i) Selection of optimal sewer layout, and

(ii) The design of optimal size of sewer network components.

The sewer layout is mainly dependent on the location of the sewage treatment plant (outlet), the topography of the area and the network size. Selection of the good layouts among a large number of alternatives is the initial step in designing a new sewerage system.

# 4.1.1 Basics of Graph Theory

The sewer layout is a graph with specific properties. Therefore, it is necessary to review some basic definitions and principles of the graphs (Clark and Holton 1995; Deo 2005; Sörensen and Janssens 2005; Fournier 2009; Biswas et al. 2012):

- i. Graph: An undirected graph G = (V, E) consists of a set of vertices V ( $V = v_1$ ,  $v_2$ , ...,  $v_n$ ) and another set of edges E ( $E = e_1, e_2, ..., e_m$ ), such that each edge  $e_{ij}$  is identified with an unordered pair ( $v_i$ ,  $v_j$ ) of vertices.
- ii. Tree: A graph G is called a tree if it is a connected acyclic graph. In acyclic graph there is one and only one path between any pair of vertices.
- iii. Weighted Graph: A weighted graph is a graph G in which each edge e is assigned a real number w(e) called the weight of the edge.
- iv. Spanning Tree: A spanning tree of a graph *G* is a tree containing all vertices of a graph G.
- v. Minimum spanning tree (MST): A spanning tree with the minimum total weight in a weighted graph is called a minimum spanning tree.

The layout of a sewer system is a sub graph extracted from a predefined base graph of city or town drainage system. In a base graph (network), all possible locations of manholes (vertices) and sewer lines (edges or links) are identified and this graph is a connected cyclic graph. With respect to the urban street configurations, topology, barriers, locations of the outlets, an undirected base graph can be drawn. Nevertheless, for generating a feasible layout from a base graph two basic constraints must be met are: (i) no cycle is accepted in layout in other words, it should be tree and (ii) all manholes (vertices) must be involved in the layout (spanning tree).

There are number of greedy algorithms for finding a minimum spanning tree (MST) of an undirected, weighted graph G and Kruskal's algorithm is well known among them.

## 4.1.2 Kruskal's algorithm

Kruskal's algorithm is one of the optimized ways to determine the minimum spanning tree in a connected graph. The basic steps to determine the minimum spanning tree in this process are as follows (Clark and Holton 1995).

- Step1: Choose  $e_1$  an edge of graph G, Such that  $w(e_1)$  is minimum, and  $e_1$  is not a loop.
- Step 2: If edge  $e_1, e_2, \ldots, e_i$  have been chosen, then choose an edge  $e_{i+1}$  not already chosen, such that:
  - i. The induced sub graph  $G[\{e_1, \ldots, e_{i+1}\}]$  is acyclic and
  - ii.  $w(e_{i+1})$  is minimum (Subject to Condition (i))

Step 3: If G has n vertices, stop after n-1 edges have been chosen else Repeat Step2.

Each sewer line constitutes the edge with weight equal to it's length. Minimum spanning tree represents the minimum length layout of a base sewer network (graph). The minimum length sewer layout (MST) does not guarantee to give an optimal solution of the sewer system. Therefore, sewer layout optimization problem needs to generate many sewer layouts from a predetermined base network. Hence, an algorithm 'Generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow CQ' is proposed to find a

predefined number of spanning trees of a graph (base sewer network) in order of increasing total cumulative discharge CQ (Kapoor and Ramesh, 1995; Kapoor and Ramesh, 2000; Yamada et al., 2010; Naskar et al., 2010).

# 4.1.3 Algorithm: Generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow *CQ*

The algorithm is based on the assumption that a base sewer network (graph) including all possible edges of the network is given i.e., locations of manholes have been identified. In this algorithm, initially a predefined number of spanning trees of a graph are generated in order of increasing total weight (length). Total cumulative flow (*CQ*) is then calculated for all generated layouts (spanning tree), and finally these layouts are sequenced in ascending order of *CQ*. The equation 4.1 is used to calculate total cumulative flow (CQ<sub>j</sub>) of j<sup>th</sup> layout:

$$CQ_{j} = \sum_{i=1}^{i=N} q_{ij}$$
(4.1)

Where, N = the total number of links in the j<sup>th</sup> layout,  $q_{ij} =$  flow in the i<sup>th</sup> link of the j<sup>th</sup> layout, and  $CQ_j$  is the sum of cumulative flows in all links of the j<sup>th</sup> layout.

The 'Generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow CQ' algorithm is formulated by using the following steps:

- Feeding input, number of spanning trees to be generated (NST), number of nodes (i.e., manholes) m, number of links n, nodal connectivity, link lengths (i.e., weight), nodal flow contribution, and sink node number.
- 2. Finding the MST from a given graph (base network) using Kruskal's algorithm
- 3. Calculating the remaining (NST-1) number of spanning trees in order of increasing weight by elementary tree transformation technique.
- 4. Calculating discharges (flows) in the links for each spanning tree.
- 5. Calculating the total cumulative flow CQ for each spanning tree.

- 6. Arranging the spanning trees in order of increasing CQ.
- 7. Getting output, Generated spanning trees in ascending order of CQ.

The detail programming of the above algorithm is given in Appendix A. The proposed algorithm is tested against a test example (Network 1). The first example that has been considered is a simple network, which is shown in Figure 4.1. The Network 1 consists of 6 manholes (nodes or vertices) and 10 links (edges), the outlet is located at the Manhole Number 3. Input details; link number, nodal connectivity and the edge length of the Network 1 are given in Table 4.1; and nodal wastewater contributions are given in Table 4.2.



Figure 4.1 Base graph of Network 1

| Link No. | Nodal Co | onnectivity | Length |
|----------|----------|-------------|--------|
| 1        | 0        | 1           | 19     |
| 2        | 1        | 2           | 20     |
| 3        | 1        | 3           | 18     |
| 4        | 2        | 3           | 13     |
| 5        | 2        | 0           | 21     |
| 6        | 2        | 4           | 12     |
| 7        | 3        | 4           | 10     |
| 8        | 4        | 5           | 14     |
| 9        | 4        | 0           | 17     |
| 10       | 5        | 3           | 10     |

Table 4.1 Input Details for Network 1

 Table 4.2 Nodal Wastewater Contribution for Network 1

| Node No.                   | 0  | 1  | 2  | 3 | 4  | 5  |
|----------------------------|----|----|----|---|----|----|
| Flow Contribution<br>(l/s) | 20 | 15 | 18 | 0 | 17 | 14 |

The algorithm 'Generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow CQ' is applied to Network 1. The sequenced six layouts of the Network 1 in order of increasing CQ are shown in Figure 4.2 (a to f). Flow in each pipe is mentioned in Figure 4.2 (a to f). CQ is calculated by using equation 4.1 for all layouts.



Figure 4.2 Sequenced six layouts according to ascending order of CQ for Network 1

## 4.2 Formulation of optimal sewer design problem

The cost of the sewer system without pumping mainly depends upon sewer diameters, excavation depths, and manhole construction.

(i) The cost of sewer: It includes the cost of their transportation, lowering & laying in trenches, aligning & jointing of pipes. Table 4.3 gives the cost of RCC NP4 class sewer pipes.

| Diameter (mm) | Cost (Rs.) per m |
|---------------|------------------|
| 200           | 518              |
| 250           | 724              |
| 300           | 973              |
| 350           | 1600             |
| 400           | 1850             |
| 450           | 2150             |
| 500           | 2520             |
| 600           | 3400             |

 Table 4.3 Cost of Different Diameter Sewer Pipes

Source: RUIDP Schedule of Rates (2013)

(ii) The cost of Earthwork: The cost of earthwork for sewer line includes the cost of trench excavation, dressing of sides, ramming of bottoms, getting out the excavated material, refilling after laying pipe and disposal of surplus excavated material. Table 4.4 gives the cost of earthwork for the sewer line at different depths.

Table 4.4 Earthwork Cost at Different Depths

| Depth (m)  | Cost (Rs.) per $m^3$ |
|------------|----------------------|
| < 1.5      | 203.00               |
| 1.5 to 3.0 | 233.50               |
| 3.0 to 4.5 | 299.00               |
| 4.5 to 6.0 | 405.00               |

Source: RUIDP Schedule of Rates (2013)

(iii) The cost of Manhole: The cost of a manhole depends on its depth and the diameter of the manhole and material of construction. Table 4.5 gives the cost of the manholes at different depths.

| Depth (m)    | Internal Diameter<br>(m) | Cost (Rs.) |
|--------------|--------------------------|------------|
| < 0.90       | 0.90                     | 11800      |
| 0.90 to 1.70 | 1.20                     | 23100      |
| 1.70 to 2.60 | 1.50                     | 40000      |
| 2.60 to 3.60 | 1.50                     | 54600      |
| 3.60 to 4.60 | 1.50                     | 69200      |
| 4.60 to 5.10 | 1.50                     | 77500      |
| 5.10 to 6.10 | 1.50                     | 95800      |

 Table 4.5 Manhole Cost Detail

Source: RUIDP Schedule of Rates (2013)

Total Cost: The total cost  $(TC_i)$  of  $i^{th}$  link is,

 $TC_i = (\text{cost of sewer})_i + (\text{cost of manhole})_i + (\text{cost of earthwork})_i$  (4.2)

#### 4.2.1 Design constraints:

For a given layout, a feasible sewer design is defined as a set of pipe diameters, slopes and excavation depths which satisfies all the constraints. Constraints of sewer network design are:

(i) Sewer cover depth: It is necessary to provide a minimum cover depth  $(CD_{min})$  for protection of sewer from vehicular load to avoid damage to the sewer line and providing adequate fall for house sewer connections. Further, in order to reduce the cost of the sewer line laying and overburden load, cover depth should be less than maximum permissible cover depth  $(CD_{max})$ .

$$CD_{min} \le CD_i \le CD_{max}$$
  $\forall i = 1, 2, ..., N$  (4.3)

Where,  $CD_i$  = average cover depth of the i<sup>th</sup> sewer link. The minimum cover depth of 0.9 m and maximum cover depth of 5.0 m has been adopted in the present study.

(ii) Sewer flow velocity: In each sewer flow velocity must be greater than the minimum permissible velocity  $(V_{min})$  to prevent the deposit of solids in the sewers and less than the maximum permissible velocity  $(V_{max})$  to prevent sewer scouring.

$$\mathbf{V}_{\min} \le \mathbf{V}_{i} \le \mathbf{V}_{\max} \qquad \forall \ i = 1, 2, \dots, N$$
(4.4)

Where,  $V_i =$  flow velocity in the i<sup>th</sup> sewer link. The minimum permissible velocity of 0.6 m/s and maximum permissible velocity of 3.0 m/s has been adopted in the present study.

(iii) Flow depth ratio: wastewater depth ratio of the sewer should be less than 0.8.

$$\frac{d_i}{D_i} \le 0.8$$
  $\forall i = 1, 2, ..., N$  (4.5)

Where,  $D_i$  = diameter of i<sup>th</sup> sewer and  $d_i$  = sewage flow depth in i<sup>th</sup> sewer at peak flow.

(iv) Sewer diameters: The diameter of a sewer should not be less than the minimum prescribed size  $(D_{min})$ . The minimum diameter of 0.2 m has been adopted in the present study.

$$\mathbf{D}_{\min} - \mathbf{D}_{i} \le 0 \qquad \forall \ i = 1, 2, \dots, N \tag{4.6}$$

(v) Progressive sewer diameters: The diameter of  $i^{th}$  sewer  $(D_i)$  should not be less than the maximum diameter of immediately preceding sewers  $(D_p)$ 

$$\mathbf{D}_{\mathbf{p}} - \mathbf{D}_{\mathbf{i}} \le 0 \qquad \forall \mathbf{i} = 1, 2, \dots, \mathbf{N}$$

$$(4.7)$$

## 4.2.2 Penalty Function

The Penalty function technique is used for converting the constrained optimization problem to an unconstrained optimization problem. The penalty function has some penalty factor (PF), which puts the relative weight on the penalty when a constraint is violated. In present study penalty cost (PC) is imposed on violation of maximum cover depth constraint, minimum and maximum velocity constraints. Other constraints are satisfied while selecting the sewer components.

(i) **Penalty due to depth of sewer:** If the average cover depth in a particular link is greater than the maximum permissible cover depth, the penalty is imposed.

If 
$$CD_{max} - CD_i < 0$$

Penalty factor (PFCD<sub>max</sub>) =  $1 \times 10^8$ 

Else PFCD<sub>max</sub> = 0

$$PD_{i} = PFCD_{\max} \times (CD_{i} - CD_{\max})$$
(4.8)

Where,  $PD_i$  = penalty due to depth for  $i^{th}$  link.

(ii) **Penalty due to minimum velocity in sewer:** If in a particular sewer velocity is less than minimum permissible velocity and discharge is more  $Q_{min}$ , penalty cost needs to be added.

If 
$$Q_i \ge Q_{min}$$
 and  $V_i - V_{min} < 0$   
Penalty factor (PFV<sub>min</sub>) = 1 × 10<sup>8</sup>  
Else PFV<sub>min</sub> = 0

$$(PV_{\min})_i = PFV_{\min} \times (V_{\min} - V_i) \tag{4.9}$$

Where,  $(PV_{min})_i$  = penalty due to minimum velocity for i<sup>th</sup> link;  $Q_i$  = discharge at partial flow condition at peak flow in the i<sup>th</sup> sewer link; and  $Q_{min}$  = minimum discharge below which penalty for minimum velocity would not be imposed. In the present study  $Q_{min}$  has been taken as 0.0014 m<sup>3</sup>/s.

The minimum velocity criteria have been checked only if the discharge in the link is greater than the 0.0014 m<sup>3</sup>/s. For a 200 mm diameter pipe (the minimum diameter used in the problem) with a discharge of 0.0014 m<sup>3</sup>/s self-cleansing velocity of 0.6 m/s can only be achieved at a slope of 1 in 60. It is obvious that for discharge less than the 0.0014 m<sup>3</sup>/s, a slope steeper than 1 in 60 would be required to get the self-cleansing velocity. Since in field condition it is very difficult to provide a slope steeper than 1 in 60 from the sewer depth considerations, the penalty has not been imposed for violation of minimum velocity constraints if the discharge is less than the  $0.0014 \text{ m}^3/\text{s}$ . Necessary flushing arrangements need to be provided in this condition.

(iii) **Penalty due to maximum velocity:** If in a particular sewer, the velocity is more than the maximum permissible velocity, penalty cost needs to be added.

If 
$$V_{max} - V_i < 0$$

Penalty factor (PFV<sub>max</sub>) =  $1 \times 10^8$ 

Else PFV<sub>max</sub> = 0  

$$(PV_{max})_i = PFV_{max} \times (V_i - V_{max})$$
 (4.10)

Where  $(PV_{max})_i$  = penalty due to maximum velocity for  $i^{th}$  link.

Total penalty cost: The total penalty cost (PC<sub>i</sub>) of i<sup>th</sup> link would be,

$$PC_{i} = (PD)_{i} + (PV_{\min})_{i} + (PV_{\max})_{i}$$
(4.11)

**The objective function of the present problem:** The problem of optimization of a sewer network with N number of links, without any pumping station may be expressed as:

Minimize 
$$C = \sum_{i=1}^{N} (TC_i + PC_i)$$
(4.12)

Where,

C = cost function of sewer network,

N = total number of sewer pipes (links),

 $TC_i$  = total cost of a sewer network for the i<sup>th</sup> link, and

 $PC_i$  = penalty cost for the i<sup>th</sup> link.

#### 4.3 Modified Particle Swarm Optimization

An evolutionary algorithm, Particle Swarm Optimization was introduced by Kennedy and Eberhart (1995). In PSO, each problem solution is a bird of the flock and is referred to as a particle. In PSO algorithm, the birds having individual and social behaviour and mutually coordinate their movement towards a destination (Izquierdo et al., 2008; Shi and Russell, 1998; Montalvo et al., 2008).

PSO has some common evolutionary computational features, such as (a) initialization with a population (swarm) of random solutions, (b) updating positions in search of optima and (c) with some specific strategy particles evolution through the problem space (Izquierdo et al., 2008; Jin et al., 2007).

Particles start their movement in the first iteration randomly. Then they try to find the optimum solutions through a method that can be described as follows (Ostadrahimi et al., 2012; Mu et al., 2009; Al-kazemi and Mohan, 2002; Voss, 2003; Montalvo et al., 2010).

The current position of the i<sup>th</sup> particle in the d-dimension at t<sup>th</sup> iteration is denoted as:

$$x_i(t) = \{x_{i1}(t), x_{i2}(t), \dots, x_{id}(t)\}$$
(4.13)

Best position reached so far by the particle is where best value of the fitness function has been achieved by the particle and is denoted by,

$$x_{i\_best}(t) = \{x_{i1\_best}(t), x_{i2\_best}(t), \dots, x_{id\_best}(t)\}$$
(4.14)

Its current velocity is given by,

$$v_i(t) = \{v_{i1}(t), v_{i2}(t), \dots, v_{id}(t)\}$$
(4.15)

The velocity updates of the particles are given by the following equation:

$$v_i(t+1) = \omega(t).v_i(t) + c_1(t).r_1\{x_{i\_best}(t) - x_i(t)\} + c_2(t).r_2\{x_{g\_best}(t) - x_i(t)\}$$
(4.16)

The location updates of the particles are given by the following equation:

$$x_i(t+1) = x_i(t) + v_i(t+1)$$
(4.17)

Where, i = 1, 2, ..., P (P = total number of particles in the swarm); t = 1, 2, ..., T (T = total number of iterations or time intervals). In each time interval, the particle's velocity  $v_i(t)$  changes the position of the particle. The best position of each particle up to time t is  $x_{i\_best}(t)$  and the best position of a particle among all particles (from 1 to P) up to time t is  $x_{g\_best}(t)$ . The previous velocity  $v_i(t)$  is biased with inertia  $\omega(t)$ , and the other parts are biased with two acceleration coefficients  $c_1(t)$  and  $c_2(t)$ . Random numbers  $r_1$  and  $r_2$  are uniformly distributed between 0 to 1 (Ostadrahimi et al., 2012).

The inertia weights at each time interval  $\omega(t)$  and acceleration coefficients at each time interval  $c_1(t)$  &  $c_2(t)$  are updated with the following equations:

$$\omega(t) = \omega_{\max} - \frac{\omega_{\max} - \omega_{\min}}{T} \times t \tag{4.18}$$

$$c_1(t) = c_{1max} - \frac{c_{1max} - c_{1min}}{T} \times t$$
 (4.19)

$$c_{2}(t) = c_{2max} - \frac{c_{2max} - c_{2min}}{T} \times t$$
(4.20)

Where,  $\omega_{max}$  and  $\omega_{min}$  are the maximum and minimum inertia weights, and their values have been taken as 0.7 and 0.2, respectively in the present problem;  $c_{1max}$  and  $c_{2max}$  are the maximum accelerations, and their values have been taken as 2.  $c_{1min}$  and  $c_{2min}$  are the minimum accelerations, and their values have been taken as 0.5.

Particle's velocity in each dimension is limited to minimum and maximum velocities (Montalvo et al., 2010):

$$v_{\min} \le v_i \le v_{\max} \tag{4.21}$$

Particle's velocity is a very important parameter. The value of  $v_{max}$  and  $v_{min}$  must be selected so that the search space is explored fully.  $v_{max}$  is generally set to about 10-20% of the range of the variable in each dimension (Eberhart and Shi 1998).  $v_{min}$  is generally considered to avoid stagnancy of the particles exploration of a new solution space.

These adjustable parameters ( $v_{max}$ ,  $v_{min}$ ,  $\omega_{max}$ ,  $\omega_{min}$ ,  $c_1$ , and  $c_2$ ) need to be adjusted by trial and error, according to the sensitivity of the problem. These parameters, number of iteration and number of particles affects the final solution. Generally, the searching process is terminated after a specified number of iterations or when the best result of the objective function remains unchanged for a specific number of consecutive iterations. In the modified PSO methodology adjustable parameters change in each time interval, whereas in original PSO they remain fixed throughout the optimization process. The modified PSO methodology is as follows:

- 1. Initialize the particle swarm by randomly assigning initial velocity and position to each particle.
- 2. Calculate the fitness function for each particle.
- 3. For each particle, update its best position reached so far  $x_{i\_best}(t)$ , if its current position is better than its earlier best one.
- 4. Update the globally best particle position of the swarm that has the best fitness value among the particles and set its index as g and its position at  $x_{g\_best}(t)$ .
- 5. Calculate velocities of all the particles for new time interval using equation (4.16).
- 6. Update the new positions of each particle using equation (4.17).
- 7. If the problem involves discrete variables, the new position needs to be changed to discrete position in each dimension by selecting the nearest discrete position in that dimension.
- If the stopping criterion is met output the result given by the x<sub>g\_best</sub> and stop else repeat steps 2–7.

The modified PSO methodology deals with both continuous and discrete variables, as required for the optimal design of sewer networks.

#### 4.4 Case studies for Optimization of Sewer System

In India rainfall days are very limited and rainfall mainly takes place in Monsoon season (June to September). There are few rainy days during winter (December and January). As such the drainage system adopted in India is Separate system consisting of Stormwater drainage and Sewerage network. In the present work only Sewerage network optimization has been considered.

Three sewer networks (two elongated, and one clustered type network) have been considered for implementation of the algorithm 'Generation of a predefined number of spanning tree in order of increasing weights and sequencing them in ascending order of total cumulative flow CQ' and modified PSO. All three networks collect only domestic wastewater from the residential colony through gravity.

#### 4.4.1 Case Study 1: Elongated type Network

The Base Network 2 (Sudarshanpura sewer network, Jaipur, India) as shown in Figure 4.3 consists of 105 nodes (i.e., manholes), 116 links (i.e., sewer pipes), and STP is located at Node Number 0. Details of Network 2 like link number, nodal connectivity and their lengths are given in Table 4.6. Nodal wastewater flow contribution and ground level of Network 2 are given in Table 4.7.



Figure 4.3 Base sewer network of Sudarshanpura (Network 2)

| Pipe/<br>Link<br>No. | No<br>Conne | dal<br>ectivity | Length<br>(m) | Pipe/<br>Link<br>No | No<br>Conne | dal<br>ctivity | Length (m) | Pipe/<br>Link<br>No. | No<br>Conne | dal<br>ctivity | Length (m) |
|----------------------|-------------|-----------------|---------------|---------------------|-------------|----------------|------------|----------------------|-------------|----------------|------------|
| 1                    | 0           | 1               | 30            | 40                  | 36          | 37             | 16         | 79                   | 72          | 73             | 30         |
| 2                    | 1           | 2               | 23            | 41                  | 37          | 38             | 30         | 80                   | 73          | 68             | 30         |
| 3                    | 2           | 3               | 23            | 42                  | 38          | 39             | 30         | 81                   | 68          | 69             | 26         |
| 4                    | 3           | 4               | 10            | 43                  | 39          | 40             | 14         | 82                   | 69          | 70             | 26         |
| 5                    | 4           | 5               | 30            | 44                  | 40          | 28             | 30         | 83                   | 70          | 71             | 26         |
| 6                    | 5           | 6               | 30            | 45                  | 14          | 41             | 30         | 84                   | 71          | 74             | 34         |
| 7                    | 6           | 11              | 30            | 46                  | 41          | 42             | 30         | 85                   | 74          | 75             | 76         |
| 8                    | 1           | 7               | 9             | 47                  | 42          | 43             | 11         | 86                   | 74          | 76             | 38         |
| 9                    | 7           | 8               | 30            | 48                  | 43          | 44             | 30         | 87                   | 76          | 77             | 38         |
| 10                   | 8           | 9               | 30            | 49                  | 43          | 45             | 20         | 88                   | 77          | 78             | 13         |
| 11                   | 9           | 10              | 20            | 50                  | 45          | 46             | 20         | 89                   | 78          | 79             | 31         |
| 12                   | 10          | 11              | 30            | 51                  | 46          | 48             | 30         | 90                   | 79          | 80             | 31         |
| 13                   | 11          | 12              | 20            | 52                  | 48          | 30             | 24         | 91                   | 80          | 81             | 10         |
| 14                   | 12          | 19              | 30            | 53                  | 46          | 47             | 26         | 92                   | 81          | 82             | 30         |
| 15                   | 3           | 13              | 30            | 54                  | 47          | 49             | 26         | 93                   | 82          | 83             | 30         |
| 16                   | 13          | 14              | 30            | 55                  | 49          | 51             | 72         | 94                   | 83          | 84             | 30         |
| 17                   | 14          | 15              | 30            | 56                  | 49          | 50             | 30         | 95                   | 84          | 85             | 30         |
| 18                   | 15          | 16              | 30            | 57                  | 50          | 52             | 30         | 96                   | 85          | 86             | 30         |
| 19                   | 16          | 17              | 30            | 58                  | 52          | 54             | 30         | 97                   | 86          | 87             | 30         |
| 20                   | 17          | 18              | 30            | 59                  | 54          | 36             | 24         | 98                   | 87          | 88             | 30         |
| 21                   | 18          | 19              | 12            | 60                  | 52          | 53             | 30         | 99                   | 88          | 89             | 30         |
| 22                   | 19          | 20              | 18            | 61                  | 53          | 55             | 20         | 100                  | 78          | 90             | 33         |
| 23                   | 20          | 21              | 30            | 62                  | 55          | 59             | 30         | 101                  | 90          | 91             | 33         |
| 24                   | 21          | 22              | 30            | 63                  | 59          | 38             | 30         | 102                  | 91          | 92             | 33         |
| 25                   | 22          | 23              | 30            | 64                  | 55          | 56             | 25         | 103                  | 92          | 93             | 36         |
| 26                   | 23          | 24              | 30            | 65                  | 56          | 57             | 8          | 104                  | 92          | 94             | 30         |
| 27                   | 24          | 25              | 30            | 66                  | 57          | 60             | 32         | 105                  | 94          | 95             | 26         |
| 28                   | 25          | 26              | 27            | 67                  | 60          | 39             | 32         | 106                  | 95          | 96             | 30         |
| 29                   | 26          | 27              | 30            | 68                  | 57          | 58             | 33         | 107                  | 96          | 97             | 30         |
| 30                   | 27          | 28              | 30            | 69                  | 58          | 61             | 143        | 108                  | 97          | 98             | 30         |
| 31                   | 17          | 29              | 30            | 70                  | 58          | 62             | 24         | 109                  | 98          | 99             | 30         |
| 32                   | 29          | 30              | 22            | 71                  | 62          | 63             | 33         | 110                  | 99          | 100            | 30         |
| 33                   | 30          | 31              | 30            | 72                  | 63          | 64             | 33         | 111                  | 100         | 101            | 30         |
| 34                   | 31          | 32              | 30            | 73                  | 64          | 71             | 33         | 112                  | 101         | 102            | 30         |
| 35                   | 32          | 33              | 30            | 74                  | 53          | 65             | 30         | 113                  | 102         | 89             | 30         |
| 36                   | 33          | 34              | 18            | 75                  | 65          | 66             | 30         | 114                  | 80          | 103            | 27         |
| 37                   | 34          | 35              | 30            | 76                  | 66          | 67             | 22         | 115                  | 103         | 104            | 27         |
| 38                   | 35          | 25              | 12            | 77                  | 67          | 68             | 22         | 116                  | 104         | 95             | 27         |
| 39                   | 34          | 36              | 7             | 78                  | 56          | 72             | 21         | -                    |             | -              |            |

**Table 4.6** Base Network Data for Network 2

| Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) |
|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|
| 0           | 0.000                         | 90.745                 | 35          | 0.38                          | 95.540                 | 70          | 0.33                          | 97.525                 |
| 1           | 0.380                         | 91.085                 | 36          | 0.09                          | 95.555                 | 71          | 0.51                          | 97.610                 |
| 2           | 0.292                         | 92.455                 | 37          | 0.20                          | 95.650                 | 72          | 0.57                          | 96.925                 |
| 3           | 0.292                         | 93.120                 | 38          | 0.57                          | 96.030                 | 73          | 0.57                          | 97.050                 |
| 4           | 0.127                         | 93.185                 | 39          | 0.18                          | 96.335                 | 74          | 0.43                          | 97.775                 |
| 5           | 0.380                         | 93.245                 | 40          | 0.38                          | 96.105                 | 75          | 0.96                          | 97.970                 |
| 6           | 0.380                         | 93.340                 | 41          | 0.38                          | 94.550                 | 76          | 0.48                          | 97.820                 |
| 7           | 0.114                         | 91.350                 | 42          | 0.38                          | 95.635                 | 77          | 0.48                          | 97.885                 |
| 8           | 0.380                         | 92.435                 | 43          | 0.14                          | 95.775                 | 78          | 0.17                          | 97.820                 |
| 9           | 0.254                         | 93.135                 | 44          | 0.38                          | 96.265                 | 79          | 0.39                          | 98.115                 |
| 10          | 0.444                         | 93.185                 | 45          | 0.25                          | 95.530                 | 80          | 0.39                          | 98.205                 |
| 11          | 0.570                         | 93.345                 | 46          | 0.44                          | 95.255                 | 81          | 0.13                          | 98.270                 |
| 12          | 0.254                         | 94.135                 | 47          | 0.33                          | 95.625                 | 82          | 0.38                          | 98.385                 |
| 13          | 0.380                         | 93.425                 | 48          | 0.51                          | 95.250                 | 83          | 0.38                          | 98.435                 |
| 14          | 0.380                         | 93.795                 | 49          | 0.33                          | 96.040                 | 84          | 0.38                          | 98.610                 |
| 15          | 0.380                         | 93.820                 | 50          | 0.38                          | 96.115                 | 85          | 0.38                          | 98.680                 |
| 16          | 0.380                         | 93.855                 | 51          | 0.91                          | 96.445                 | 86          | 0.38                          | 99.045                 |
| 17          | 0.570                         | 93.990                 | 52          | 0.57                          | 96.340                 | 87          | 0.38                          | 99.225                 |
| 18          | 0.342                         | 94.050                 | 53          | 0.38                          | 96.625                 | 88          | 0.38                          | 99.240                 |
| 19          | 0.380                         | 94.245                 | 54          | 0.51                          | 95.950                 | 89          | 50.38                         | 99.305                 |
| 20          | 0.228                         | 94.310                 | 55          | 0.44                          | 96.555                 | 90          | 0.42                          | 98.125                 |
| 21          | 0.380                         | 94.425                 | 56          | 0.32                          | 96.790                 | 91          | 0.84                          | 98.235                 |
| 22          | 0.380                         | 94.550                 | 57          | 0.32                          | 96.885                 | 92          | 0.38                          | 98.450                 |
| 23          | 0.380                         | 94.625                 | 58          | 0.42                          | 96.970                 | 93          | 0.46                          | 98.475                 |
| 24          | 0.380                         | 94.815                 | 59          | 0.57                          | 96.435                 | 94          | 0.33                          | 98.400                 |
| 25          | 0.380                         | 94.955                 | 60          | 0.61                          | 96.565                 | 95          | 0.34                          | 98.395                 |
| 26          | 0.342                         | 94.450                 | 61          | 51.80                         | 95.865                 | 96          | 0.38                          | 98.430                 |
| 27          | 0.380                         | 94.125                 | 62          | 0.30                          | 97.240                 | 97          | 0.38                          | 98.545                 |
| 28          | 0.380                         | 94.855                 | 63          | 0.42                          | 97.345                 | 98          | 0.38                          | 98.685                 |
| 29          | 0.380                         | 94.150                 | 64          | 0.67                          | 97.605                 | 99          | 0.38                          | 98.750                 |
| 30          | 0.279                         | 94.400                 | 65          | 0.38                          | 96.765                 | 100         | 0.38                          | 98.810                 |
| 31          | 0.380                         | 94.750                 | 66          | 0.38                          | 96.915                 | 101         | 0.38                          | 98.875                 |
| 32          | 0.380                         | 95.115                 | 67          | 0.28                          | 96.955                 | 102         | 0.76                          | 98.980                 |
| 33          | 0.380                         | 95.350                 | 68          | 0.28                          | 97.100                 | 103         | 0.34                          | 98.260                 |
| 34          | 0.418                         | 95.500                 | 69          | 0.36                          | 97.320                 | 104         | 0.34                          | 98.325                 |

**Table 4.7** Nodal Wastewater Flow Contribution and Ground Levels of Network 2

# 4.4.2 Case Study II: Elongated type Network

The Base Network 3 (Banjaran sewer network, Laxmangarh, Rajasthan, India) as shown in Figure 4.4 consists of 105 nodes, 128 links, and STP is located at Node Number 0. Details of Network 3 like link number, nodal connectivity and their lengths are given in Table 4.8. Nodal wastewater flow contribution and ground level of Network 3 are given in Table 4.9.



Figure 4.4 Base sewer network of Banjaran (Network 3)

| Pipe/<br>Link<br>No. | N<br>Conn | odal<br>ectivity | Length (m) | Pipe/<br>Link<br>No. | No<br>Conne | dal<br>ctivity | Length (m) | Pipe/<br>Link<br>No | No<br>Conne | dal<br>ectivity | Length<br>(m) |
|----------------------|-----------|------------------|------------|----------------------|-------------|----------------|------------|---------------------|-------------|-----------------|---------------|
| 1                    | 1         | 2                | 30         | 44                   | 39          | 41             | 28         | 87                  | 70          | 48              | 36            |
| 2                    | 2         | 3                | 30         | 45                   | 40          | 27             | 29         | 88                  | 71          | 47              | 36            |
| 3                    | 3         | 4                | 30         | 46                   | 41          | 34             | 28         | 89                  | 72          | 73              | 30            |
| 4                    | 3         | 19               | 30         | 47                   | 42          | 43             | 30         | 90                  | 73          | 74              | 17            |
| 5                    | 4         | 5                | 30         | 48                   | 43          | 26             | 38         | 91                  | 74          | 75              | 35            |
| 6                    | 5         | 6                | 30         | 49                   | 44          | 45             | 10         | 92                  | 74          | 80              | 35            |
| 7                    | 6         | 104              | 30         | 50                   | 45          | 46             | 27         | 93                  | 75          | 76              | 30            |
| 8                    | 7         | 8                | 28         | 51                   | 46          | 47             | 35         | 94                  | 76          | 77              | 30            |
| 9                    | 7         | 38               | 38         | 52                   | 47          | 48             | 35         | 95                  | 76          | 82              | 35            |
| 10                   | 8         | 9                | 28         | 53                   | 48          | 49             | 37         | 96                  | 77          | 1               | 28            |
| 11                   | 9         | 10               | 30         | 54                   | 49          | 50             | 35         | 97                  | 78          | 79              | 30            |
| 12                   | 9         | 35               | 37         | 55                   | 50          | 51             | 34         | 98                  | 79          | 80              | 17            |
| 13                   | 10        | 11               | 22         | 56                   | 51          | 52             | 30         | 99                  | 80          | 81              | 35            |
| 14                   | 11        | 12               | 30         | 57                   | 52          | 53             | 35         | 100                 | 80          | 85              | 34            |
| 15                   | 12        | 13               | 21         | 58                   | 53          | 54             | 30         | 101                 | 81          | 82              | 30            |
| 16                   | 13        | 14               | 30         | 59                   | 54          | 55             | 30         | 102                 | 82          | 87              | 33            |
| 17                   | 14        | 15               | 30         | 60                   | 55          | 56             | 15         | 103                 | 83          | 84              | 30            |
| 18                   | 15        | 16               | 28         | 61                   | 56          | 57             | 30         | 104                 | 84          | 85              | 17            |
| 19                   | 16        | 17               | 30         | 62                   | 57          | 58             | 30         | 105                 | 85          | 86              | 35            |
| 20                   | 17        | 18               | 30         | 63                   | 58          | 59             | 30         | 106                 | 85          | 90              | 35            |
| 21                   | 18        | 0                | 26         | 64                   | 59          | 23             | 34         | 107                 | 86          | 87              | 30            |
| 22                   | 19        | 20               | 12         | 65                   | 60          | 61             | 30         | 108                 | 87          | 92              | 34            |
| 23                   | 20        | 21               | 30         | 66                   | 60          | 62             | 34         | 109                 | 88          | 89              | 30            |
| 24                   | 21        | 22               | 30         | 67                   | 60          | 72             | 30         | 110                 | 89          | 90              | 18            |
| 25                   | 22        | 23               | 35         | 68                   | 61          | 44             | 36         | 111                 | 90          | 91              | 35            |
| 26                   | 23        | 24               | 30         | 69                   | 62          | 63             | 30         | 112                 | 90          | 96              | 36            |
| 27                   | 24        | 25               | 30         | 70                   | 62          | 64             | 34         | 113                 | 91          | 92              | 30            |
| 28                   | 25        | 26               | 32         | 71                   | 62          | 78             | 30         | 114                 | 92          | 93              | 30            |
| 29                   | 26        | 27               | 32         | 72                   | 63          | 46             | 36         | 115                 | 93          | 20              | 29            |
| 30                   | 27        | 28               | 30         | 73                   | 64          | 65             | 35         | 116                 | 94          | 95              | 30            |
| 31                   | 28        | 29               | 25         | 74                   | 64          | 71             | 30         | 117                 | 95          | 96              | 16            |
| 32                   | 29        | 30               | 30         | 75                   | 64          | 83             | 30         | 118                 | 96          | 97              | 34            |
| 33                   | 30        | 31               | 30         | 76                   | 65          | 66             | 36         | 119                 | 96          | 101             | 34            |
| 34                   | 31        | 32               | 30         | 77                   | 65          | 70             | 30         | 120                 | 97          | 98              | 30            |
| 35                   | 32        | 16               | 20         | 78                   | 65          | 88             | 30         | 121                 | 98          | 92              | 36            |
| 36                   | 35        | 34               | 27         | 79                   | 66          | 67             | 34         | 122                 | 99          | 100             | 30            |
| 37                   | 34        | 33               | 30         | 80                   | 66          | 69             | 30         | 123                 | 100         | 101             | 26            |
| 38                   | 33        | 29               | 18         | 81                   | 66          | 94             | 30         | 124                 | 101         | 102             | 33            |
| 39                   | 36        | 35               | 28         | 82                   | 67          | 53             | 24         | 125                 | 101         | 56              | 29            |
| 40                   | 36        | 38               | 28         | 83                   | 67          | 68             | 30         | 126                 | 102         | 103             | 30            |
| 41                   | 37        | 38               | 20         | 84                   | 67          | 99             | 30         | 127                 | 103         | 98              | 34            |
| 42                   | 38        | 39               | 24         | 85                   | 68          | 50             | 36         | 128                 | 104         | 7               | 7             |
| 43                   | 39        | 40               | 30         | 86                   | 69          | 49             | 36         |                     |             |                 |               |

 Table 4.8 Base Network Data for Network 3

| Node<br>No. | Flow<br>contribution<br>(1/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) |
|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|
| 0           | 0.000                         | 329.345                | 35          | 0.054                         | 330.003                | 70          | 0.108                         | 331.407                |
| 1           | 6.102                         | 331.608                | 36          | 0.165                         | 330.421                | 71          | 0.108                         | 331.958                |
| 2           | 0.090                         | 331.670                | 37          | 0.059                         | 330.005                | 72          | 0.090                         | 332.134                |
| 3           | 0.180                         | 331.205                | 38          | 0.073                         | 329.735                | 73          | 0.049                         | 332.064                |
| 4           | 0.090                         | 330.812                | 39          | 0.172                         | 329.325                | 74          | 0.850                         | 331.325                |
| 5           | 0.090                         | 330.705                | 40          | 0.088                         | 329.151                | 75          | 0.090                         | 331.625                |
| 6           | 0.090                         | 330.036                | 41          | 0.082                         | 334.580                | 76          | 0.195                         | 332.503                |
| 7           | 1.246                         | 330.003                | 42          | 0.090                         | 330.074                | 77          | 0.083                         | 332.870                |
| 8           | 0.082                         | 330.327                | 43          | 0.113                         | 329.638                | 78          | 0.090                         | 332.075                |
| 9           | 0.202                         | 329.563                | 44          | 5.208                         | 331.775                | 79          | 0.050                         | 331.556                |
| 10          | 0.067                         | 329.605                | 45          | 0.794                         | 331.726                | 80          | 0.207                         | 331.634                |
| 11          | 7.055                         | 328.796                | 46          | 0.103                         | 331.624                | 81          | 0.090                         | 331.721                |
| 12          | 0.064                         | 328.370                | 47          | 0.105                         | 331.421                | 82          | 0.099                         | 332.775                |
| 13          | 0.090                         | 328.125                | 48          | 0.110                         | 331.192                | 83          | 0.090                         | 332.096                |
| 14          | 0.090                         | 327.825                | 49          | 0.103                         | 330.655                | 84          | 0.049                         | 331.250                |
| 15          | 0.084                         | 328.007                | 50          | 0.102                         | 330.510                | 85          | 0.210                         | 331.300                |
| 16          | 0.090                         | 328.457                | 51          | 61.881                        | 330.597                | 86          | 0.090                         | 331.166                |
| 17          | 0.090                         | 328.991                | 52          | 0.105                         | 330.885                | 87          | 0.102                         | 331.341                |
| 18          | 0.079                         | 329.216                | 53          | 0.090                         | 330.898                | 88          | 0.090                         | 331.617                |
| 19          | 0.035                         | 331.178                | 54          | 0.090                         | 330.637                | 89          | 0.054                         | 330.972                |
| 20          | 0.090                         | 331.134                | 55          | 0.046                         | 330.600                | 90          | 0.212                         | 330.717                |
| 21          | 0.090                         | 330.975                | 56          | 0.090                         | 330.467                | 91          | 0.090                         | 330.721                |
| 22          | 0.105                         | 330.793                | 57          | 0.090                         | 330.196                | 92          | 0.090                         | 330.882                |
| 23          | 0.090                         | 330.704                | 58          | 0.090                         | 330.511                | 93          | 0.087                         | 331.159                |
| 24          | 0.090                         | 330.714                | 59          | 0.102                         | 330.659                | 94          | 0.090                         | 331.068                |
| 25          | 0.097                         | 330.500                | 60          | 0.282                         | 332.214                | 95          | 0.049                         | 331.144                |
| 26          | 0.097                         | 329.840                | 61          | 0.108                         | 332.352                | 96          | 0.204                         | 330.735                |
| 27          | 0.090                         | 329.253                | 62          | 0.282                         | 332.365                | 97          | 0.090                         | 330.804                |
| 28          | 0.076                         | 329.354                | 63          | 0.108                         | 332.064                | 98          | 0.108                         | 330.897                |
| 29          | 0.090                         | 330.077                | 64          | 0.284                         | 331.882                | 99          | 0.090                         | 330.532                |
| 30          | 0.090                         | 330.086                | 65          | 0.287                         | 331.540                | 100         | 0.079                         | 330.592                |
| 31          | 0.090                         | 329.513                | 66          | 0.283                         | 331.166                | 101         | 0.187                         | 330.550                |
| 32          | 0.059                         | 328.669                | 67          | 0.252                         | 330.736                | 102         | 0.090                         | 330.620                |
| 33          | 0.080                         | 330.294                | 68          | 0.108                         | 330.880                | 103         | 0.102                         | 330.725                |
| 34          | 0.090                         | 330.163                | 69          | 0.108                         | 331.147                | 104         | 0.019                         | 330.004                |

**Table 4.9** Nodal Wastewater Flow Contribution and Ground Levels of Network 3

# 4.4.3 Case Study III: Cluster Type Network

The Base Network 4 (Nawalgarh sewer network, Nawalgarh, Rajasthan, India) as shown in Figure 4.5 consists of 166 nodes, 181 links, and STP is located at Node Number 0. Details of Network 4 like link number, nodal connectivity and their lengths are given in Table 4.10. Nodal wastewater flow contribution and ground level of Network 4 are given in Table 4.11.



**Figure 4.5** Base sewer network of Nawalgarh (Network 4)

| Pipe/<br>Link<br>No. | No<br>Conne | odal<br>ectivity | Length<br>(m) | Pipe/<br>Link<br>No | N<br>Conn | odal<br>ectivity | Length (m) | Pipe/<br>Link<br>No | No<br>Conne | dal<br>ctivity | Length<br>(m) |
|----------------------|-------------|------------------|---------------|---------------------|-----------|------------------|------------|---------------------|-------------|----------------|---------------|
| 1                    | 1           | 2                | 35            | 62                  | 58        | 32               | 44         | 123                 | 113         | 114            | 30            |
| 2                    | 1           | 46               | 35            | 63                  | 59        | 60               | 30         | 124                 | 114         | 96             | 21            |
| 3                    | 2           | 3                | 30            | 64                  | 60        | 64               | 21         | 125                 | 115         | 116            | 30            |
| 4                    | 3           | 4                | 30            | 65                  | 61        | 62               | 30         | 126                 | 116         | 117            | 15            |
| 5                    | 4           | 5                | 30            | 66                  | 62        | 63               | 30         | 127                 | 117         | 118            | 30            |
| 6                    | 5           | 6                | 30            | 67                  | 63        | 64               | 17         | 128                 | 118         | 119            | 30            |
| 7                    | 6           | 7                | 30            | 68                  | 64        | 65               | 30         | 129                 | 119         | 121            | 30            |
| 8                    | 6           | 14               | 29            | 69                  | 64        | 73               | 18         | 130                 | 119         | 123            | 28            |
| 9                    | 7           | 8                | 30            | 70                  | 65        | 66               | 27         | 131                 | 120         | 119            | 37            |
| 10                   | 8           | 9                | 13            | 71                  | 66        | 67               | 30         | 132                 | 121         | 122            | 30            |
| 11                   | 9           | 10               | 30            | 72                  | 66        | 89               | 23         | 133                 | 122         | 111            | 13            |
| 12                   | 10          | 11               | 30            | 73                  | 67        | 68               | 30         | 134                 | 123         | 125            | 27            |
| 13                   | 11          | 12               | 30            | 74                  | 68        | 69               | 20         | 135                 | 124         | 123            | 39            |
| 14                   | 12          | 13               | 18            | 75                  | 69        | 70               | 30         | 136                 | 125         | 126            | 30            |
| 15                   | 13          | 29               | 30            | 76                  | 69        | 84               | 26         | 137                 | 125         | 130            | 30            |
| 16                   | 14          | 15               | 30            | 77                  | 70        | 52               | 17         | 138                 | 126         | 127            | 30            |
| 17                   | 15          | 16               | 30            | 78                  | 71        | 72               | 30         | 139                 | 127         | 128            | 30            |
| 18                   | 16          | 17               | 30            | 79                  | 72        | 66               | 33         | 140                 | 128         | 129            | 30            |
| 19                   | 17          | 18               | 30            | 80                  | 73        | 77               | 30         | 141                 | 129         | 99             | 22            |
| 20                   | 18          | 13               | 11            | 81                  | 74        | 75               | 30         | 142                 | 130         | 131            | 18            |
| 21                   | 19          | 20               | 30            | 82                  | 75        | 76               | 30         | 143                 | 131         | 132            | 30            |
| 22                   | 20          | 10               | 17            | 83                  | 76        | 77               | 20         | 144                 | 131         | 164            | 8             |
| 23                   | 21          | 22               | 30            | 84                  | 77        | 78               | 5          | 145                 | 132         | 133            | 30            |
| 24                   | 22          | 23               | 30            | 85                  | 78        | 79               | 30         | 146                 | 133         | 134            | 23            |
| 25                   | 23          | 24               | 30            | 86                  | 78        | 92               | 30         | 147                 | 134         | 135            | 26            |
| 26                   | 24          | 25               | 30            | 87                  | 79        | 80               | 13         | 148                 | 134         | 159            | 30            |
| 27                   | 25          | 26               | 30            | 88                  | 80        | 81               | 29         | 149                 | 135         | 136            | 14            |
| 28                   | 26          | 11               | 15            | 89                  | 80        | 107              | 12         | 150                 | 136         | 137            | 30            |
| 29                   | 27          | 28               | 30            | 90                  | 81        | 82               | 30         | 151                 | 137         | 138            | 30            |
| 30                   | 28          | 9                | 17            | 91                  | 82        | 83               | 26         | 152                 | 138         | 139            | 30            |
| 31                   | 29          | 30               | 30            | 92                  | 83        | 84               | 22         | 153                 | 139         | 87             | 30            |
| 32                   | 30          | 31               | 30            | 93                  | 84        | 85               | 30         | 154                 | 140         | 54             | 3             |
| 33                   | 31          | 32               | 30            | 94                  | 85        | 86               | 30         | 155                 | 141         | 142            | 30            |
| 34                   | 32          | 33               | 30            | 95                  | 86        | 87               | 22         | 156                 | 142         | 143            | 30            |
| 35                   | 33          | 34               | 21            | 96                  | 87        | 88               | 26         | 157                 | 143         | 165            | 30            |
| 36                   | 34          | 35               | 30            | 97                  | 88        | 140              | 30         | 158                 | 143         | 158            | 35            |
| 37                   | 35          | 36               | 33            | 98                  | 89        | 80               | 30         | 159                 | 144         | 145            | 34            |
| 38                   | 36          | 37               | 33            | 99                  | 90        | 91               | 30         | 160                 | 145         | 146            | 34            |
| 39                   | 37          | 38               | 30            | 100                 | 91        | 92               | 13         | 161                 | 146         | 147            | 14            |
| 40                   | 38          | 39               | 30            | 101                 | 92        | 97               | 30         | 162                 | 147         | 148            | 30            |
| 41                   | 39          | 0                | 15            | 102                 | 93        | 94               | 30         | 163                 | 148         | 149            | 30            |

 Table 4.10 Base Network Data for Network 4

|   | Pipe/<br>Link<br>No | No<br>Conne | odal<br>ectivity | Length<br>(m) | Pipe/<br>Link<br>No | No<br>Conne | dal<br>ctivity | Length<br>(m) | Pipe/<br>Link<br>No | No<br>Conne | dal<br>ctivity | Length (m) |
|---|---------------------|-------------|------------------|---------------|---------------------|-------------|----------------|---------------|---------------------|-------------|----------------|------------|
| - | 42                  | 40          | 41               | 30            | 103                 | 94          | 95             | 30            | 164                 | 149         | 139            | 30         |
|   | 43                  | 41          | 42               | 30            | 104                 | 95          | 96             | 25            | 165                 | 150         | 135            | 31         |
|   | 44                  | 42          | 37               | 30            | 105                 | 96          | 98             | 30            | 166                 | 151         | 152            | 30         |
|   | 45                  | 43          | 44               | 30            | 106                 | 97          | 96             | 11            | 167                 | 151         | 153            | 30         |
|   | 46                  | 44          | 45               | 30            | 107                 | 98          | 99             | 16            | 168                 | 152         | 143            | 19         |
|   | 47                  | 45          | 36               | 22            | 108                 | 99          | 100            | 30            | 169                 | 153         | 154            | 13         |
|   | 48                  | 46          | 47               | 30            | 109                 | 100         | 101            | 30            | 170                 | 154         | 155            | 30         |
|   | 49                  | 47          | 48               | 30            | 110                 | 101         | 102            | 30            | 171                 | 155         | 144            | 28         |
|   | 50                  | 47          | 59               | 30            | 111                 | 101         | 150            | 12            | 172                 | 156         | 157            | 30         |
|   | 51                  | 48          | 49               | 30            | 112                 | 102         | 103            | 28            | 173                 | 157         | 158            | 31         |
|   | 52                  | 49          | 50               | 30            | 113                 | 103         | 83             | 27            | 174                 | 158         | 145            | 35         |
|   | 53                  | 49          | 72               | 34            | 114                 | 104         | 105            | 30            | 175                 | 159         | 160            | 30         |
|   | 54                  | 50          | 51               | 30            | 115                 | 105         | 103            | 20            | 176                 | 160         | 146            | 30         |
|   | 55                  | 51          | 52               | 30            | 116                 | 106         | 103            | 26            | 177                 | 161         | 162            | 30         |
|   | 56                  | 52          | 163              | 6             | 117                 | 107         | 108            | 30            | 178                 | 162         | 101            | 20         |
|   | 57                  | 53          | 54               | 30            | 118                 | 108         | 99             | 30            | 179                 | 163         | 53             | 30         |
|   | 58                  | 54          | 55               | 30            | 119                 | 109         | 110            | 30            | 180                 | 164         | 141            | 30         |
|   | 59                  | 55          | 56               | 30            | 120                 | 110         | 111            | 16            | 181                 | 165         | 144            | 8          |
|   | 60                  | 56          | 57               | 12            | 121                 | 111         | 112            | 7             |                     |             |                |            |
| _ | 61                  | 57          | 39               | 22            | 122                 | 112         | 113            | 30            |                     |             |                |            |

Table 4.10 (Continued)

 Table 4.11 Nodal Wastewater Flow Contribution and Ground Levels of Network 4

| Node<br>No. | Flow<br>contribution<br>(1/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) |
|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|
| 0           | 0.000                         | 421.610                | 56          | 0.061                         | 421.930                | 112         | 0.154                         | 422.568                |
| 1           | 0.358                         | 424.400                | 57          | 0.527                         | 421.608                | 113         | 0.154                         | 422.425                |
| 2           | 0.154                         | 424.393                | 58          | 0.227                         | 421.308                | 114         | 0.108                         | 422.325                |
| 3           | 0.154                         | 424.105                | 59          | 0.154                         | 425.502                | 115         | 0.154                         | 424.420                |
| 4           | 0.154                         | 423.900                | 60          | 0.108                         | 424.922                | 116         | 0.078                         | 423.954                |
| 5           | 0.154                         | 423.250                | 61          | 0.154                         | 425.536                | 117         | 3.615                         | 423.572                |
| 6           | 0.299                         | 423.115                | 62          | 0.154                         | 424.920                | 118         | 0.155                         | 423.452                |
| 7           | 0.154                         | 423.100                | 63          | 0.086                         | 424.567                | 119         | 0.298                         | 423.398                |
| 8           | 0.064                         | 423.005                | 64          | 0.244                         | 424.206                | 120         | 0.192                         | 423.599                |
| 9           | 0.154                         | 422.951                | 65          | 0.138                         | 423.170                | 121         | 0.154                         | 422.985                |
| 10          | 0.154                         | 422.617                | 66          | 0.271                         | 423.004                | 122         | 0.068                         | 422.820                |
| 11          | 0.154                         | 422.238                | 67          | 0.154                         | 422.189                | 123         | 0.139                         | 423.388                |
| 12          | 0.093                         | 422.150                | 68          | 0.104                         | 421.525                | 124         | 2.873                         | 423.757                |
| 13          | 0.154                         | 422.083                | 69          | 0.288                         | 421.242                | 125         | 0.333                         | 423.278                |

| Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(1/s) | Ground<br>Level<br>(m) | Node<br>No. | Flow<br>contribution<br>(l/s) | Ground<br>Level<br>(m) |
|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|-------------|-------------------------------|------------------------|
| 14          | 0.154                         | 423.321                | 70          | 0.089                         | 421.442                | 126         | 0.154                         | 422.900                |
| 15          | 0.154                         | 422.968                | 71          | 0.156                         | 423.355                | 127         | 0.154                         | 422.670                |
| 16          | 0.154                         | 422.598                | 72          | 0.167                         | 423.198                | 128         | 0.154                         | 422.549                |
| 17          | 0.154                         | 422.263                | 73          | 0.154                         | 424.060                | 129         | 0.115                         | 422.270                |
| 18          | 0.054                         | 422.100                | 74          | 0.154                         | 423.625                | 130         | 0.093                         | 423.310                |
| 19          | 0.154                         | 422.967                | 75          | 0.154                         | 423.325                | 131         | 0.195                         | 423.249                |
| 20          | 0.087                         | 422.725                | 76          | 0.100                         | 423.055                | 132         | 0.154                         | 423.390                |
| 21          | 0.154                         | 424.423                | 77          | 0.026                         | 422.841                | 133         | 0.116                         | 422.477                |
| 22          | 0.154                         | 423.915                | 78          | 0.307                         | 422.841                | 134         | 0.287                         | 422.125                |
| 23          | 0.154                         | 423.500                | 79          | 0.064                         | 422.316                | 135         | 0.072                         | 422.077                |
| 24          | 0.154                         | 422.995                | 80          | 0.210                         | 422.316                | 136         | 0.154                         | 422.100                |
| 25          | 0.154                         | 422.760                | 81          | 0.154                         | 421.995                | 137         | 0.154                         | 422.264                |
| 26          | 0.079                         | 422.370                | 82          | 0.133                         | 421.625                | 138         | 0.072                         | 423.006                |
| 27          | 0.154                         | 423.351                | 83          | 0.113                         | 421.329                | 139         | 0.507                         | 423.260                |
| 28          | 0.088                         | 423.125                | 84          | 0.154                         | 421.394                | 140         | 1.701                         | 422.130                |
| 29          | 0.154                         | 421.825                | 85          | 0.154                         | 421.998                | 141         | 0.154                         | 423.703                |
| 30          | 0.154                         | 421.670                | 86          | 0.111                         | 422.005                | 142         | 0.154                         | 423.750                |
| 31          | 0.154                         | 421.420                | 87          | 0.132                         | 423.038                | 143         | 0.335                         | 423.812                |
| 32          | 0.154                         | 421.233                | 88          | 1.260                         | 422.528                | 144         | 0.172                         | 423.228                |
| 33          | 0.108                         | 420.980                | 89          | 0.154                         | 422.670                | 145         | 0.187                         | 423.172                |
| 34          | 10.560                        | 420.702                | 90          | 0.154                         | 423.614                | 146         | 8.368                         | 422.686                |
| 35          | 0.171                         | 421.115                | 91          | 0.064                         | 422.930                | 147         | 0.154                         | 422.730                |
| 36          | 0.169                         | 421.757                | 92          | 0.154                         | 422.549                | 148         | 0.154                         | 422.931                |
| 37          | 0.154                         | 421.618                | 93          | 0.154                         | 424.013                | 149         | 0.154                         | 423.160                |
| 38          | 0.154                         | 421.610                | 94          | 0.154                         | 423.500                | 150         | 0.154                         | 421.640                |
| 39          | 0.077                         | 421.610                | 95          | 0.126                         | 422.870                | 151         | 0.307                         | 423.519                |
| 40          | 0.154                         | 421.749                | 96          | 0.154                         | 422.223                | 152         | 0.096                         | 423.615                |
| 41          | 0.154                         | 421.625                | 97          | 0.055                         | 422.442                | 153         | 0.067                         | 423.150                |
| 42          | 0.154                         | 421.568                | 98          | 0.081                         | 422.295                | 154         | 4.036                         | 423.100                |
| 43          | 0.154                         | 421.295                | 99          | 0.152                         | 422.195                | 155         | 0.143                         | 423.190                |
| 44          | 0.154                         | 421.805                | 100         | 0.162                         | 421.652                | 156         | 0.154                         | 423.370                |
| 45          | 0.114                         | 421.778                | 101         | 0.217                         | 421.456                | 157         | 0.161                         | 423.310                |
| 46          | 0.154                         | 424.300                | 102         | 0.143                         | 421.452                | 158         | 0.179                         | 423.278                |
| 47          | 0.307                         | 423.980                | 103         | 0.140                         | 421.449                | 159         | 0.154                         | 422.530                |
| 48          | 0.154                         | 423.570                | 104         | 0.154                         | 422.532                | 160         | 0.154                         | 422.610                |
| 49          | 0.328                         | 423.235                | 105         | 0.104                         | 421.995                | 161         | 0.154                         | 421.710                |
| 50          | 0.154                         | 423.070                | 106         | 0.132                         | 421.515                | 162         | 0.104                         | 421.670                |
| 51          | 0.151                         | 422.740                | 107         | 0.154                         | 422.316                | 163         | 0.154                         | 421.647                |
| 52          | 0.032                         | 421.647                | 108         | 0.154                         | 422.390                | 164         | 0.154                         | 423.249                |
| 53          | 0.154                         | 421.930                | 109         | 0.154                         | 422.999                | 165         | 0.041                         | 423.320                |
| 54          | 0.154                         | 422.022                | 110         | 0.079                         | 422.832                |             |                               |                        |
| 55          | 0.154                         | 421.804                | 111         | 0.036                         | 422.67                 |             |                               |                        |

Table 4.11 (Continued)

The Networks 2, 3 & 4 are solved in two steps. In the first step, 'Generation of a predefined number of spanning tree in the order of increasing weights and sequencing them in ascending order of total cumulative flow CQ' algorithm is applied. In the second step, the modified PSO is applied to the sequenced sewer layouts for component size optimization. The best optimal solution among these layouts is likely to give global optima. The process of sewer component optimization with Modified PSO Algorithm is shown in Figure 4.6.

The process of Sewer components optimization using modified PSO algorithm is described briefly here. Firstly feeding inputs (Maximum number of particles i<sub>max</sub>, Maximum number of iteration ITN<sub>max</sub>, total number of links in the sewer layout, Manning's coefficient, minimum permissible velocity, maximum permissible velocity, minimum prescribed cover, maximum permissible depth, minimum discharge Q<sub>min</sub>, commercially available diameters, pre-specified slopes, sewer layout details which includes Link no, upstream node, downstream node, the length of each link, discharge in each link, and ground level of each node). Start with first iteration (ITN = 1), particle number i = 1 (consisting of all sewer links diameter and slopes). Calculate sewer hydraulics (i.e., hydraulic mean depth, velocity, depth of flow, discharge, etc.) for complete sewer network. In the next step, calculate invert levels of upstream and downstream node; calculate no of manholes, depth of excavation and earthwork; calculate the cost of sewer, cost of manholes and cost of earthwork; and finally calculate the total cost (TC) of the sewer network. Add the respective penalty cost in total cost where constraints are violated. Calculate the fitness value of the particle. Calculate particle best position reached so far  $(p_{best})$  and repeat for i = i+1 till i is less than or equal to  $i_{\text{max}}$  . Calculate globally best particle position of the swarm that has the best fitness value among the particles ( $g_{best}$ ). Repeat this or ITN = ITN +1 till ITN is less than or equal to ITN<sub>max</sub>. Finally, take solution given by the g<sub>best</sub> particle and stop.



Figure 4.6 Sewer components optimization procedure using modified PSO algorithm

## 4.4.4 Input data of Program

The program requires the following inputs:

- (i) Total number of links in the selected sewer layout
- (ii) Manning's coefficient = 0.013
- (iii) Minimum permissible velocity = 0.6 m/s
- (iv) Maximum permissible velocity = 3.0 m/s
- (v) Minimum prescribed cover = 0.9 m
- (vi) Maximum permissible depth = 5 m
- (vii) Minimum discharge ( $Q_{min}$ ) = 0.0014 m<sup>3</sup>/s
- (viii) Total number of commercially available diameters is given in Table 4.12 and pre-specified slopes are given in Table 4.13.
- (ix) Link no, upstream node, downstream node, the length of each link, discharge in each link, and ground level of each node.

| S. No. | Diameter<br>(mm) | S. No. | Diameter<br>(mm) |
|--------|------------------|--------|------------------|
| 1      | 200              | 7      | 500              |
| 2      | 250              | 8      | 600              |
| 3      | 300              | 9      | 700              |
| 4      | 350              | 10     | 800              |
| 5      | 400              | 11     | 900              |
| 6      | 450              | 12     | 1000             |

Table 4.12 Commercially Available Diameters

 Table 4.13 Pre-specified Slopes

| S. No. | Slope (1 in) | S. No. | Slope (1 in) |
|--------|--------------|--------|--------------|
| 1      | 60           | 11     | 400          |
| 2      | 70           | 12     | 450          |
| 3      | 80           | 13     | 500          |
| 4      | 100          | 14     | 550          |
| 5      | 125          | 15     | 600          |
| 6      | 150          | 16     | 700          |
| 7      | 200          | 17     | 830          |
| 8      | 250          | 18     | 950          |
| 9      | 300          | 19     | 1000         |
| 10     | 350          |        |              |

The application of the 'Generation of a predefined number of spanning tree in the order of increasing weights and sequencing them in ascending order of total cumulative flow CQ' and the modified PSO algorithm is presented in this section by applying both algorithms to solve the Networks 2, 3 & 4. Results with modified PSO are compared with original PSO. The original PSO parameter values of  $c_1$  and  $c_2$  have been taken as 2 and  $\omega$  has been taken as 0.8.

## 5.1 Results of case Study I

The results of Network 2 (Sudarshanpura) were obtained using swarm size of 1000. The maximum numbers of iterations were kept as 30, 60 & 90 for each sewer layout. Table 5.1 shows the variation in total optimal cost with total cumulative discharges of the layout.

|           | Total      | Total cost (Rs.) |                 |                 |                 |                 |                 |  |  |  |
|-----------|------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|
| S.<br>No. | cumulative | 30 Iter          | rations         | 60 Ite          | rations         | 90 Iterations   |                 |  |  |  |
|           | CQ (l/s)   | Modified<br>PSO  | Standard<br>PSO | Modified<br>PSO | Standard<br>PSO | Modified<br>PSO | Standard<br>PSO |  |  |  |
| 1         | 3639.13    | 8409804          | 8473401         | 8387754         | 8473401         | 8371539         | 8473401         |  |  |  |
| 2         | 3642.34    | 8531554          | 8547602         | 8494772         | 8547330         | 8477464         | 8547330         |  |  |  |
| 3         | 3644.56    | 8575012          | 8632550         | 8575012         | 8632550         | 8561420         | 8632550         |  |  |  |
| 4         | 3692.80    | 9005505          | 9064954         | 8930532         | 9064954         | 8984307         | 9064954         |  |  |  |
| 5         | 3724.24    | 9356613          | 9412557         | 9314713         | 9410543         | 9336448         | 9410543         |  |  |  |
| 6         | 4027.95    | 11432085         | 11492097        | 11412199        | 11492097        | 11414562        | 11492097        |  |  |  |
| 7         | 4252.10    | 11456577         | 11494326        | 11465393        | 11494326        | 11465363        | 11494326        |  |  |  |
| 8         | 4480.85    | 11528582         | 11627095        | 11505595        | 11618001        | 11526601        | 11618001        |  |  |  |
| 9         | 4676.69    | 11668743         | 11825881        | 11625467        | 11825881        | 11671505        | 11825881        |  |  |  |
| 10        | 4774.97    | 11786525         | 11910006        | 11789190        | 11910006        | 11769816        | 11910006        |  |  |  |
| 11        | 5130.95    | 13327064         | 13770609        | 13315939        | 13770609        | 13311153        | 13770609        |  |  |  |
| 12        | 5521.53    | 13584318         | 14126408        | 13569519        | 14126408        | 13569977        | 14126408        |  |  |  |

 Table 5.1 Total Cumulative Discharge vs. Total Optimal Cost for Different Iterations for Network 2


Figure 5.1 Total cumulative discharge vs. Optimal cost of layouts at 30 iterations for Network 2



Figure 5.2 Total cumulative discharges vs. Optimal cost of layouts at 60 iterations for Network 2



Figure 5.3 Total cumulative discharges vs. Optimal cost of layouts at 90 iterations for Network 2

| S.<br>No. | Total<br>cumulative<br>discharge<br>(l/s) | Cost of<br>Earthwork<br>(Rs.) | Cost of<br>Manholes<br>(Rs.) | Cost of<br>Sewer Pipe<br>(Rs.) | Total Cost<br>(Rs.) |
|-----------|-------------------------------------------|-------------------------------|------------------------------|--------------------------------|---------------------|
| 1         | 3639.13                                   | 1248959                       | 4569200                      | 2553380                        | 8371539             |
| 2         | 3642.34                                   | 1306484                       | 4617600                      | 2553380                        | 8477464             |
| 3         | 3644.56                                   | 1237880                       | 4619900                      | 2703640                        | 8561420             |
| 4         | 3692.80                                   | 1437117                       | 4937600                      | 2609590                        | 8984307             |
| 5         | 3724.24                                   | 1508448                       | 5226400                      | 2601600                        | 9336448             |
| 6         | 4027.95                                   | 1894832                       | 6439700                      | 3080030                        | 11414562            |
| 7         | 4252.10                                   | 1923163                       | 6532900                      | 3009300                        | 11465363            |
| 8         | 4480.85                                   | 1848781                       | 6677000                      | 3000820                        | 11526601            |
| 9         | 4676.69                                   | 1917195                       | 6815500                      | 2938810                        | 11671505            |
| 10        | 4774.97                                   | 2020866                       | 6680400                      | 3068550                        | 11769816            |
| 11        | 5130.95                                   | 2432103                       | 7613500                      | 3265550                        | 13311153            |
| 12        | 5521.53                                   | 2384407                       | 7764700                      | 3420870                        | 13569977            |
|           |                                           |                               |                              |                                |                     |

 Table 5.2 Sewer Layout Cost Details for Network 2

Table 5.1 clearly shows that the layout having minimum CQ has the minimum total cost. The total cost of sewer layout is generally increasing with the CQ of a layout. The cost of optimal layout (CQ = 3639.13 l/s) is Rs.  $8.371 \times 10^6$  with modified PSO as compared to the cost of original PSO Rs.  $8.473 \times 10^6$ . Further the 2<sup>nd</sup> alternative layout (CQ = 3642.34 l/s) these cost are Rs.  $8.477 \times 10^6$  and Rs.  $8.547 \times 10^6$  respectively, for 90 iterations.

Figures 5.1, 5.2 and 5.3 show the optimal cost obtained by the modified and original PSO algorithm against the total cumulative discharges of the layouts for 30, 60 and 90 iterations, respectively. It is clearly seen that the proposed modified PSO algorithm was able to obtain a better solution as compared to an original PSO algorithm in all the layouts.

Table 5.2 shows the sewer component costs (cost of earthwork, manhole and sewer) against the total cost of layouts.

The Optimal sewer layout and 11 other alternative layouts of the base network 2 are shown in Figures 5.4 to Figure 5.15 respectively.



**Figure 5.4** Optimal sewer layout of Network 2, CQ = 3639.13 l/s



**Figure 5.5** Alternative layout 1 of Network 2, CQ = 3642.34 l/s



**Figure 5.6** Alternative layout 2 of Network 2, CQ = 3644.56 l/s



**Figure 5.7** Alternative layout 3 of Network 2, CQ = 3692.80 l/s



**Figure 5.8** Alternative layout 4 of Network 2, CQ = 3724.24 l/s



**Figure 5.9** Alternative layout 5 of Network 2, CQ = 4027.95 l/s



Figure 5.10 Alternative layout 6 of Network 2, CQ = 4252.10 l/s



Figure 5.11 Alternative layout 7 of Network 2, CQ = 4480.85 l/s



**Figure 5.12** Alternative layout 8 of Network 2, CQ = 4676.69 l/s



**Figure 5.13** Alternative layout 9 of Network 2, CQ = 4774.97 l/s



**Figure 5.14** Alternative layout 10 of Network 2, CQ = 5130.95 l/s



Figure 5.15 Alternative layout 11 of Network 2, CQ = 5521.53 l/s

Optimal sewer layout of Base Network 2 as shown in Figure 5.4 is selected for the detailed design. This layout is solved using different swarm sizes of 200, 400, 600, 800, 1000 and 1200 to assess the effect of the swarm size on the performance of the proposed modified and original PSO algorithm.

Figures 5.16, 5.17, 5.18 and 5.19 show the minimum total cost obtained by the modified and original PSO algorithm against the swarm sizes for different iterations. From the Figures 5.16 to 5.19 following observation can be made:

- (i) In original PSO the minima is obtained with swarm size 600 with  $c_1 = 2$ ,  $c_2 = 2$ and  $\omega = 0.8$ .
- (ii) In modified PSO the minima is obtained with swarm size 1000 with  $c_1$ ,  $c_2$  and  $\omega$  are modified as per equations 4.19, 4.20 and 4.18 respectively.
- (iii) It can further be observed the minima of modified PSO is better as compare to minima of original PSO.

The optimal cost obtained by the original PSO in 90 iterations for 1000 swarm size is Rs.  $8.473 \times 10^6$ , whereas the solution cost obtained by the modified PSO is reduced to Rs.  $8.371 \times 10^6$ .



Figure 5.16 Variation of the optimal cost with swarm sizes (at 30 iterations) for Network 2



Figure 5.17 Variation of the optimal cost with swarm sizes (at 60 iterations) for Network 2



Figure 5.18 Variation of the optimal cost with swarm sizes (at 90 iterations) for Network 2



Figure 5.19 Variation of the optimal cost with swarm sizes (at 120 iterations) for Network 2



Figure 5.20 Variation of the optimal cost with swarm sizes at different iterations, modified PSO for Network 2

It is seen that the solution obtained by the Modified PSO algorithm is much better than the solution of the Original PSO algorithm. Figure 5.20 shows the optimal cost obtained with modified particle swarm optimization; the best solution produced when the swarm size is 1000. Table 5.3 presents the details of the optimal design of sewer component sizing of an optimal layout (Figure 5.4) with 1000 swarm size and 90 iterations. The Comparison of the Modified PSO with the Original PSO for the optimal layout of Network 2 is given in Appendix B.

| Pipe | Nod | e no. | Length | Design     | Diameter   | Slope  | Vp           | d    | Groun  | d Level | Invert | t Level | Cover | depths (m) |
|------|-----|-------|--------|------------|------------|--------|--------------|------|--------|---------|--------|---------|-------|------------|
| no.  | Up  | Down  | (m)    | flow (m/s) | (mm) (1 in | (1 in) | (1 in) (m/s) | D    | Up     | Down    | Up     | Down    | Up    | Down       |
| 11   | 10  | 9     | 20     | 0.0004     | 200        | 250    | 0.27         | 0.10 | 93.185 | 93.135  | 92.065 | 91.985  | 1.120 | 1.150      |
| 21   | 18  | 19    | 12     | 0.0003     | 200        | 250    | 0.25         | 0.09 | 94.050 | 94.245  | 92.930 | 92.882  | 1.120 | 1.363      |
| 30   | 28  | 27    | 30     | 0.0004     | 200        | 250    | 0.25         | 0.09 | 94.855 | 94.125  | 93.125 | 93.005  | 1.730 | 1.120      |
| 38   | 35  | 25    | 12     | 0.0004     | 200        | 250    | 0.25         | 0.09 | 95.540 | 94.955  | 93.883 | 93.835  | 1.657 | 1.120      |
| 43   | 40  | 39    | 14     | 0.0004     | 200        | 250    | 0.25         | 0.09 | 96.105 | 96.335  | 94.985 | 94.929  | 1.120 | 1.406      |
| 48   | 44  | 43    | 30     | 0.0004     | 200        | 250    | 0.25         | 0.09 | 96.265 | 95.775  | 94.775 | 94.655  | 1.490 | 1.120      |
| 52   | 48  | 30    | 24     | 0.0005     | 200        | 60     | 0.45         | 0.08 | 95.250 | 94.400  | 93.680 | 93.280  | 1.570 | 1.120      |
| 55   | 51  | 49    | 72     | 0.0009     | 200        | 250    | 0.33         | 0.14 | 96.445 | 96.040  | 95.208 | 94.920  | 1.237 | 1.120      |
| 59   | 54  | 36    | 24     | 0.0005     | 200        | 250    | 0.28         | 0.11 | 95.950 | 95.555  | 94.531 | 94.435  | 1.419 | 1.120      |
| 62   | 59  | 55    | 30     | 0.0006     | 200        | 250    | 0.29         | 0.11 | 96.435 | 96.555  | 95.315 | 95.195  | 1.120 | 1.360      |
| 66   | 60  | 57    | 32     | 0.0006     | 200        | 250    | 0.30         | 0.12 | 96.565 | 96.885  | 95.445 | 95.317  | 1.120 | 1.568      |
| 69   | 61  | 58    | 143    | 0.0518     | 300        | 250    | 0.97         | 0.70 | 95.865 | 96.970  | 94.645 | 94.073  | 1.220 | 2.897      |
| 72   | 64  | 63    | 33     | 0.0007     | 200        | 250    | 0.30         | 0.12 | 97.605 | 97.345  | 96.357 | 96.225  | 1.248 | 1.120      |
| 79   | 73  | 72    | 30     | 0.0006     | 200        | 250    | 0.29         | 0.11 | 97.050 | 96.925  | 95.925 | 95.805  | 1.125 | 1.120      |
| 85   | 75  | 74    | 76     | 0.0010     | 200        | 250    | 0.34         | 0.15 | 97.970 | 97.775  | 96.850 | 96.546  | 1.120 | 1.229      |
| 99   | 89  | 88    | 30     | 0.0504     | 300        | 250    | 0.96         | 0.68 | 99.305 | 99.240  | 98.085 | 97.965  | 1.220 | 1.275      |
| 101  | 91  | 90    | 33     | 0.0008     | 200        | 250    | 0.33         | 0.14 | 98.235 | 98.125  | 97.115 | 96.983  | 1.120 | 1.142      |
| 103  | 93  | 92    | 36     | 0.0005     | 200        | 250    | 0.27         | 0.10 | 98.475 | 98.450  | 97.355 | 97.211  | 1.120 | 1.239      |
| 112  | 102 | 101   | 30     | 0.0008     | 200        | 250    | 0.32         | 0.13 | 98.980 | 98.875  | 97.860 | 97.740  | 1.120 | 1.135      |
| 10   | 9   | 8     | 30     | 0.0007     | 200        | 60     | 0.50         | 0.09 | 93.135 | 92.435  | 91.815 | 91.315  | 1.320 | 1.120      |
| 29   | 27  | 26    | 30     | 0.0008     | 200        | 250    | 0.32         | 0.13 | 94.125 | 94.450  | 93.005 | 92.885  | 1.120 | 1.565      |
| 42   | 39  | 38    | 30     | 0.0006     | 200        | 250    | 0.29         | 0.11 | 96.335 | 96.030  | 94.929 | 94.809  | 1.406 | 1.221      |
| 71   | 63  | 62    | 33     | 0.0011     | 200        | 250    | 0.35         | 0.16 | 97.345 | 97.240  | 96.225 | 96.093  | 1.120 | 1.147      |

**Table 5.3** Characteristics of the Optimal Sewer Network Obtained by the Modified PSO for Network 2

| Pipe | Pipe Node no. | Length | Design | Diameter   | Slope | Vp         | d         | Groun          | d Level | Invert | Level  | Cover  | depths (m) |       |
|------|---------------|--------|--------|------------|-------|------------|-----------|----------------|---------|--------|--------|--------|------------|-------|
| no.  | Up            | Down   | (m)    | flow (m/s) | (mm)  | nm) (1 in) | in) (m/s) | $\overline{D}$ | Up      | Down   | Up     | Down   | Up         | Down  |
| 78   | 72            | 56     | 21     | 0.0011     | 200   | 250        | 0.36      | 0.16           | 96.925  | 96.790 | 95.754 | 95.670 | 1.171      | 1.120 |
| 98   | 88            | 87     | 30     | 0.0508     | 300   | 250        | 0.97      | 0.69           | 99.240  | 99.225 | 97.965 | 97.845 | 1.275      | 1.380 |
| 100  | 90            | 78     | 33     | 0.0013     | 200   | 60         | 0.60      | 0.12           | 98.125  | 97.820 | 96.983 | 96.433 | 1.142      | 1.387 |
| 104  | 92            | 94     | 30     | 0.0008     | 200   | 250        | 0.33      | 0.14           | 98.450  | 98.400 | 97.211 | 97.091 | 1.239      | 1.309 |
| 105  | 94            | 95     | 26     | 0.0012     | 200   | 250        | 0.36      | 0.16           | 98.400  | 98.395 | 97.091 | 96.987 | 1.309      | 1.408 |
| 111  | 101           | 100    | 30     | 0.0011     | 200   | 250        | 0.36      | 0.16           | 98.875  | 98.810 | 97.740 | 97.620 | 1.135      | 1.190 |
| 9    | 8             | 7      | 30     | 0.0011     | 200   | 60         | 0.57      | 0.11           | 92.435  | 91.350 | 90.730 | 90.230 | 1.705      | 1.120 |
| 28   | 26            | 25     | 27     | 0.0011     | 200   | 250        | 0.35      | 0.16           | 94.450  | 94.955 | 92.885 | 92.777 | 1.565      | 2.178 |
| 41   | 38            | 37     | 30     | 0.0011     | 200   | 100        | 0.49      | 0.13           | 96.030  | 95.650 | 94.809 | 94.509 | 1.221      | 1.141 |
| 70   | 62            | 58     | 24     | 0.0014     | 200   | 70         | 0.59      | 0.13           | 97.240  | 96.970 | 96.093 | 95.750 | 1.147      | 1.220 |
| 97   | 87            | 86     | 30     | 0.0511     | 300   | 250        | 0.97      | 0.69           | 99.225  | 99.045 | 97.845 | 97.725 | 1.380      | 1.320 |
| 110  | 100           | 99     | 30     | 0.0015     | 200   | 70         | 0.61      | 0.14           | 98.810  | 98.750 | 97.620 | 97.191 | 1.190      | 1.559 |
| 8    | 7             | 1      | 9      | 0.0012     | 200   | 60         | 0.59      | 0.12           | 91.350  | 91.085 | 90.115 | 89.965 | 1.235      | 1.120 |
| 27   | 25            | 24     | 30     | 0.0019     | 200   | 80         | 0.62      | 0.16           | 94.955  | 94.815 | 92.777 | 92.402 | 2.178      | 2.413 |
| 40   | 37            | 36     | 16     | 0.0013     | 200   | 250        | 0.38      | 0.18           | 95.650  | 95.555 | 94.499 | 94.435 | 1.151      | 1.120 |
| 68   | 58            | 57     | 33     | 0.0536     | 300   | 250        | 0.97      | 0.71           | 96.970  | 96.885 | 94.073 | 93.941 | 2.897      | 2.944 |
| 96   | 86            | 85     | 30     | 0.0515     | 300   | 250        | 0.97      | 0.69           | 99.045  | 98.680 | 97.580 | 97.460 | 1.465      | 1.220 |
| 109  | 99            | 98     | 30     | 0.0019     | 200   | 80         | 0.62      | 0.16           | 98.750  | 98.685 | 97.191 | 96.816 | 1.559      | 1.869 |
| 26   | 24            | 23     | 30     | 0.0022     | 200   | 100        | 0.61      | 0.18           | 94.815  | 94.625 | 92.402 | 92.102 | 2.413      | 2.523 |
| 39   | 36            | 34     | 7      | 0.0019     | 200   | 80         | 0.63      | 0.16           | 95.555  | 95.500 | 94.435 | 94.348 | 1.120      | 1.153 |
| 65   | 57            | 56     | 8      | 0.0545     | 300   | 250        | 0.98      | 0.72           | 96.885  | 96.790 | 93.941 | 93.909 | 2.944      | 2.881 |
| 95   | 85            | 84     | 30     | 0.0519     | 300   | 250        | 0.97      | 0.70           | 98.680  | 98.610 | 97.460 | 97.340 | 1.220      | 1.270 |
| 108  | 98            | 97     | 30     | 0.0023     | 200   | 100        | 0.61      | 0.18           | 98.685  | 98.545 | 96.816 | 96.516 | 1.869      | 2.029 |

 Table 5.3 (Continued)

| Pipe | Nod | e no. | Length | Design     | Diameter | Slope  | v <sub>p</sub> | d              | Groun  | d Level | Inver  | Level  | Cover | depths (m) |
|------|-----|-------|--------|------------|----------|--------|----------------|----------------|--------|---------|--------|--------|-------|------------|
| no.  | Up  | Down  | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s)          | $\overline{D}$ | Up     | Down    | Up     | Down   | Up    | Down       |
| 25   | 23  | 22    | 30     | 0.0026     | 200      | 100    | 0.64           | 0.20           | 94.625 | 94.550  | 92.102 | 91.802 | 2.523 | 2.748      |
| 36   | 34  | 33    | 18     | 0.0023     | 200      | 60     | 0.73           | 0.16           | 95.500 | 95.350  | 94.348 | 94.048 | 1.153 | 1.303      |
| 64   | 56  | 55    | 25     | 0.0560     | 300      | 250    | 0.98           | 0.74           | 96.790 | 96.555  | 93.909 | 93.809 | 2.881 | 2.746      |
| 94   | 84  | 83    | 30     | 0.0523     | 300      | 250    | 0.97           | 0.70           | 98.610 | 98.435  | 97.335 | 97.215 | 1.275 | 1.220      |
| 107  | 97  | 96    | 30     | 0.0027     | 200      | 100    | 0.64           | 0.20           | 98.545 | 98.430  | 96.516 | 96.216 | 2.029 | 2.214      |
| 24   | 22  | 21    | 30     | 0.0030     | 200      | 125    | 0.61           | 0.22           | 94.550 | 94.425  | 91.802 | 91.562 | 2.748 | 2.863      |
| 35   | 33  | 32    | 30     | 0.0027     | 200      | 100    | 0.64           | 0.20           | 95.350 | 95.115  | 94.048 | 93.748 | 1.303 | 1.368      |
| 61   | 55  | 53    | 20     | 0.0570     | 300      | 250    | 0.98           | 0.75           | 96.555 | 96.625  | 93.809 | 93.729 | 2.746 | 2.896      |
| 93   | 83  | 82    | 30     | 0.0527     | 300      | 250    | 0.97           | 0.70           | 98.435 | 98.385  | 97.215 | 97.095 | 1.220 | 1.290      |
| 106  | 96  | 95    | 30     | 0.0030     | 200      | 125    | 0.61           | 0.22           | 98.430 | 98.395  | 96.216 | 95.976 | 2.214 | 2.419      |
| 23   | 21  | 20    | 30     | 0.0034     | 200      | 125    | 0.63           | 0.24           | 94.425 | 94.310  | 91.562 | 91.322 | 2.863 | 2.988      |
| 34   | 32  | 31    | 30     | 0.0031     | 200      | 125    | 0.62           | 0.23           | 95.115 | 94.750  | 93.748 | 93.508 | 1.368 | 1.243      |
| 92   | 82  | 81    | 30     | 0.0530     | 300      | 250    | 0.97           | 0.71           | 98.385 | 98.270  | 97.095 | 96.975 | 1.290 | 1.295      |
| 116  | 95  | 104   | 27     | 0.0046     | 200      | 150    | 0.65           | 0.29           | 98.395 | 98.325  | 95.976 | 95.796 | 2.419 | 2.529      |
| 115  | 104 | 103   | 27     | 0.0049     | 200      | 150    | 0.66           | 0.30           | 98.325 | 98.260  | 95.796 | 95.616 | 2.529 | 2.644      |
| 22   | 20  | 19    | 18     | 0.0036     | 200      | 150    | 0.61           | 0.26           | 94.310 | 94.245  | 91.322 | 91.202 | 2.988 | 3.043      |
| 33   | 31  | 30    | 30     | 0.0035     | 200      | 125    | 0.64           | 0.24           | 94.750 | 94.400  | 93.508 | 93.268 | 1.243 | 1.133      |
| 91   | 81  | 80    | 10     | 0.0532     | 300      | 250    | 0.97           | 0.71           | 98.270 | 98.205  | 96.975 | 96.935 | 1.295 | 1.270      |
| 114  | 103 | 80    | 27     | 0.0052     | 200      | 200    | 0.61           | 0.33           | 98.260 | 98.205  | 95.616 | 95.481 | 2.644 | 2.724      |
| 14   | 19  | 12    | 30     | 0.0043     | 200      | 150    | 0.64           | 0.28           | 94.245 | 94.135  | 91.202 | 91.002 | 3.043 | 3.133      |
| 32   | 30  | 29    | 22     | 0.0043     | 200      | 150    | 0.64           | 0.28           | 94.400 | 94.150  | 93.177 | 93.030 | 1.223 | 1.120      |
| 90   | 80  | 79    | 31     | 0.0588     | 300      | 250    | 0.99           | 0.77           | 98.205 | 98.115  | 95.481 | 95.357 | 2.724 | 2.758      |
| 13   | 12  | 11    | 20     | 0.0046     | 200      | 150    | 0.65           | 0.29           | 94.135 | 93.345  | 91.002 | 90.869 | 3.133 | 2.476      |

 Table 5.3 (Continued)

| Pipe | Node no. |      | Length | Design     | Diameter | Slope  | v <sub>p</sub> | d    | Groun  | d Level | Invert | Level  | Cover | depths (m) |
|------|----------|------|--------|------------|----------|--------|----------------|------|--------|---------|--------|--------|-------|------------|
| no.  | Up       | Down | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s)          | D    | Up     | Down    | Up     | Down   | Up    | Down       |
| 31   | 29       | 17   | 30     | 0.0047     | 200      | 150    | 0.65           | 0.29 | 94.150 | 93.990  | 93.030 | 92.830 | 1.120 | 1.160      |
| 89   | 79       | 78   | 31     | 0.0592     | 300      | 250    | 0.99           | 0.78 | 98.115 | 97.820  | 95.357 | 95.233 | 2.758 | 2.587      |
| 7    | 11       | 6    | 30     | 0.0052     | 200      | 200    | 0.60           | 0.33 | 93.345 | 93.340  | 90.869 | 90.719 | 2.476 | 2.621      |
| 19   | 17       | 16   | 30     | 0.0052     | 200      | 200    | 0.61           | 0.33 | 93.990 | 93.855  | 92.830 | 92.680 | 1.160 | 1.175      |
| 88   | 78       | 77   | 13     | 0.0606     | 300      | 200    | 1.09           | 0.72 | 97.820 | 97.885  | 95.233 | 95.168 | 2.587 | 2.717      |
| 6    | 6        | 5    | 30     | 0.0055     | 200      | 200    | 0.62           | 0.34 | 93.340 | 93.245  | 90.719 | 90.569 | 2.621 | 2.676      |
| 18   | 16       | 15   | 30     | 0.0056     | 200      | 200    | 0.62           | 0.34 | 93.855 | 93.820  | 92.680 | 92.530 | 1.175 | 1.290      |
| 87   | 77       | 76   | 38     | 0.0611     | 300      | 200    | 1.09           | 0.72 | 97.885 | 97.820  | 95.168 | 94.978 | 2.717 | 2.842      |
| 5    | 5        | 4    | 30     | 0.0059     | 200      | 200    | 0.63           | 0.35 | 93.245 | 93.185  | 90.569 | 90.419 | 2.676 | 2.766      |
| 17   | 15       | 14   | 30     | 0.0060     | 200      | 200    | 0.63           | 0.36 | 93.820 | 93.795  | 92.530 | 92.380 | 1.290 | 1.415      |
| 86   | 76       | 74   | 38     | 0.0616     | 300      | 200    | 1.09           | 0.73 | 97.820 | 97.775  | 94.978 | 94.788 | 2.842 | 2.987      |
| 4    | 4        | 3    | 10     | 0.0060     | 200      | 60     | 0.97           | 0.26 | 93.185 | 93.120  | 90.419 | 90.252 | 2.766 | 2.868      |
| 84   | 74       | 71   | 34     | 0.0630     | 300      | 200    | 1.10           | 0.74 | 97.775 | 97.610  | 94.788 | 94.618 | 2.987 | 2.992      |
| 83   | 71       | 70   | 26     | 0.0635     | 300      | 200    | 1.10           | 0.75 | 97.610 | 97.525  | 94.618 | 94.488 | 2.992 | 3.037      |
| 82   | 70       | 69   | 26     | 0.0638     | 300      | 200    | 1.10           | 0.75 | 97.525 | 97.320  | 94.488 | 94.358 | 3.037 | 2.962      |
| 81   | 69       | 68   | 26     | 0.0642     | 300      | 200    | 1.10           | 0.75 | 97.320 | 97.100  | 94.358 | 94.228 | 2.962 | 2.872      |
| 77   | 68       | 67   | 22     | 0.0644     | 300      | 200    | 1.10           | 0.76 | 97.100 | 96.955  | 94.228 | 94.118 | 2.872 | 2.837      |
| 76   | 67       | 66   | 22     | 0.0647     | 300      | 200    | 1.10           | 0.76 | 96.955 | 96.915  | 94.118 | 94.008 | 2.837 | 2.907      |
| 75   | 66       | 65   | 30     | 0.0651     | 300      | 200    | 1.10           | 0.76 | 96.915 | 96.765  | 94.008 | 93.858 | 2.907 | 2.907      |
| 74   | 65       | 53   | 30     | 0.0655     | 300      | 200    | 1.10           | 0.77 | 96.765 | 96.625  | 93.858 | 93.708 | 2.907 | 2.917      |
| 60   | 53       | 52   | 30     | 0.1229     | 400      | 250    | 1.19           | 0.75 | 96.625 | 96.340  | 93.708 | 93.588 | 2.917 | 2.752      |
| 57   | 52       | 50   | 30     | 0.1234     | 450      | 450    | 0.96           | 0.74 | 96.340 | 96.115  | 93.588 | 93.522 | 2.752 | 2.593      |
| 56   | 50       | 49   | 30     | 0.1238     | 450      | 450    | 0.96           | 0.74 | 96.115 | 96.040  | 93.522 | 93.455 | 2.593 | 2.585      |

Table 5.3 (Continued)

| Pipe No |    | e no. | Length | Design     | Diameter | Slope  | Vp    | d              | Ground | d Level | Invert | Level  | Cover d | epths (m) |
|---------|----|-------|--------|------------|----------|--------|-------|----------------|--------|---------|--------|--------|---------|-----------|
| no.     | Up | Down  | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up     | Down    | Up     | Down   | Up      | Down      |
| 54      | 49 | 47    | 26     | 0.1251     | 450      | 450    | 0.96  | 0.75           | 96.040 | 95.625  | 93.455 | 93.397 | 2.585   | 2.228     |
| 53      | 47 | 46    | 26     | 0.1254     | 450      | 450    | 0.96  | 0.75           | 95.625 | 95.255  | 93.397 | 93.340 | 2.228   | 1.916     |
| 50      | 46 | 45    | 20     | 0.1258     | 450      | 450    | 0.96  | 0.75           | 95.255 | 95.530  | 93.340 | 93.295 | 1.916   | 2.235     |
| 49      | 45 | 43    | 20     | 0.1261     | 450      | 450    | 0.96  | 0.75           | 95.530 | 95.775  | 93.295 | 93.251 | 2.235   | 2.524     |
| 47      | 43 | 42    | 11     | 0.1266     | 450      | 450    | 0.96  | 0.76           | 95.775 | 95.635  | 93.251 | 93.226 | 2.524   | 2.409     |
| 46      | 42 | 41    | 30     | 0.1270     | 450      | 450    | 0.96  | 0.76           | 95.635 | 94.550  | 93.226 | 93.160 | 2.409   | 1.391     |
| 45      | 41 | 14    | 30     | 0.1274     | 450      | 60     | 2.13  | 0.42           | 94.550 | 93.795  | 92.925 | 92.425 | 1.625   | 1.370     |
| 16      | 14 | 13    | 30     | 0.1337     | 450      | 100    | 1.78  | 0.49           | 93.795 | 93.425  | 92.355 | 92.055 | 1.440   | 1.370     |
| 15      | 13 | 3     | 30     | 0.1341     | 450      | 100    | 1.78  | 0.49           | 93.425 | 93.120  | 92.050 | 91.750 | 1.375   | 1.370     |
| 3       | 3  | 2     | 23     | 0.1404     | 450      | 350    | 1.09  | 0.74           | 93.120 | 92.455  | 90.252 | 90.186 | 2.868   | 2.269     |
| 2       | 2  | 1     | 23     | 0.1407     | 450      | 60     | 2.18  | 0.44           | 92.455 | 91.085  | 90.098 | 89.715 | 2.357   | 1.370     |
| 1       | 1  | 0     | 30     | 0.1423     | 450      | 70     | 2.07  | 0.46           | 91.085 | 90.745  | 89.715 | 89.286 | 1.370   | 1.459     |

 Table 5.3 (Continued)

## 5.2 Result of Case Study II

The results of Network 3 (Banjaran) were obtained using swarm size of 1000. The maximum numbers of iterations were kept as 30, 60 & 90 for each sewer layout. Table 5.4 shows the variation in total optimal cost with total cumulative discharges of the layout.

|     | Total      | Total cost (Rs.) |                 |                 |                 |                 |                 |  |  |  |  |  |
|-----|------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|--|
| S.  | cumulative | 30 Iter          | rations         | 60 Iter         | rations         | 90 Iterations   |                 |  |  |  |  |  |
| NO. | (l/s)      | Modified<br>PSO  | Standard<br>PSO | Modified<br>PSO | Standard<br>PSO | Modified<br>PSO | Standard<br>PSO |  |  |  |  |  |
| 1   | 1936.62    | 8481572          | 8592942         | 8461514         | 8592742         | 8455746         | 8592742         |  |  |  |  |  |
| 2   | 1936.80    | 8524050          | 8692557         | 8557276         | 8692557         | 8515448         | 8692557         |  |  |  |  |  |
| 3   | 1937.95    | 8557831          | 8709819         | 8543633         | 8709819         | 8595790         | 8709819         |  |  |  |  |  |
| 4   | 1939.34    | 9123060          | 9213455         | 9045062         | 9213119         | 9028524         | 9213119         |  |  |  |  |  |
| 5   | 1950.18    | 9234746          | 9381940         | 9215594         | 9381940         | 9236219         | 9381940         |  |  |  |  |  |
| 6   | 2074.10    | 9437854          | 10635704        | 9421560         | 10635704        | 9416131         | 10635704        |  |  |  |  |  |
| 7   | 2221.65    | 10960246         | 14387497        | 10993204        | 14387497        | 10807841        | 14387497        |  |  |  |  |  |

Table 5.4 Total Cumulative Discharge vs. Total optimal Cost at Different Iterations for network 3



Figure 5.21 Total cumulative discharges vs. Optimal cost of layouts at 30 iterations for Network 3



Figure 5.22 Total cumulative discharges vs. Optimal cost of layouts at 60 iterations for Network 3



Figure 5.23 Total cumulative discharges vs. Optimal cost of layouts at 90 iterations for Network 3

| S.<br>No. | Total<br>cumulative<br>discharge (l/s) | Cost of<br>Earthwork<br>(Rs.) | Cost of<br>Manholes<br>(Rs.) | Cost of Sewer<br>Pipe<br>(Rs.) | Total Cost<br>(Rs.) |
|-----------|----------------------------------------|-------------------------------|------------------------------|--------------------------------|---------------------|
| 1         | 1936.62                                | 1396710                       | 5077166                      | 1981870                        | 8455746             |
| 2         | 1936.80                                | 1333070                       | 5004608                      | 2177770                        | 8515448             |
| 3         | 1937.95                                | 1369970                       | 5029720                      | 2196100                        | 8595790             |
| 4         | 1939.34                                | 1523720                       | 5310174                      | 2194630                        | 9028524             |
| 5         | 1950.18                                | 1474720                       | 5564699                      | 2196800                        | 9236219             |
| 6         | 2074.10                                | 1509080                       | 5669421                      | 2237630                        | 9416131             |
| 7         | 2221.65                                | 1761010                       | 6746076                      | 2300756                        | 10807841            |

 Table 5.5 Sewer Layout Cost Details for Network 3

Table 5.4 clearly shows that the layout having minimum CQ has the minimum total cost. The total cost of sewer layout is generally increasing with the CQ of a layout. The cost of optimal layout (CQ = 1936.62 l/s) is Rs.  $8.455 \times 10^6$  with modified PSO

as compared to the cost of original PSO Rs.  $8.592 \times 10^6$ . Further the 2<sup>nd</sup> alternative layout (CQ = 1936.8 l/s) these costs is Rs.  $8.515 \times 10^6$  and Rs.  $8.692 \times 10^6$  respectively, for 90 iterations.

Figures 5.21, 5.22 and 5.23 show the optimal cost obtained by the modified and original PSO algorithm against the total cumulative discharges of the layouts for 30, 60 and 90 iterations, respectively. It is clearly seen that the proposed modified PSO algorithm was able to obtain a better solution as compared to an original PSO algorithm in all the layouts.

Table 5.5 shows the sewer component costs (cost of earthwork, manhole and sewer) against the total cost of layouts.

The Optimal sewer layout and 2<sup>nd</sup> alternative layout of a Base Network 3 are shown in Figures 5.24 and 5.25 respectively.



**Figure 5.24** Optimal sewer layout of Network 3, CQ = 1936.62 l/s



Figure 5.25 Alternative layout 1 of Network 3, CQ = 1936.80 l/s

Optimal sewer layout of Base Network 3 as shown in Figure 5.24 is selected for the detailed design. This layout is solved using different swarm sizes of 200, 400, 600, 800, 1000 and 1200 to assess the effect of the swarm size on the performance of the proposed modified and original PSO algorithm.

Figures 5.26, 5.27, 5.28 and 5.29 show the minimum total cost obtained by the modified and original PSO algorithm against the swarm sizes for different iterations. The optimal cost obtained by the original PSO in 90 iterations for 1000 swarm size is Rs.  $8.592 \times 10^6$ , whereas the solution cost obtained by the modified PSO is reduced to Rs.  $8.455 \times 10^6$ .



Figure 5.26 Variation of the optimal cost with swarm sizes (at 30 iterations) for Network 3



Figure 5.27 Variation of the optimal cost with swarm sizes (at 60 iterations) for Network 3



Figure 5.28 Variation of the optimal cost with swarm sizes (at 90 iterations) for Network 3



Figure 5.29 Variation of the optimal cost with swarm sizes (at 120 iterations) for Network 3



Figure 5.30 Variation of the minimum total cost with swarm sizes at different iterations, modified PSO for network 3

It is seen that the solution obtained by the modified PSO algorithm is much better than the solution of the original PSO algorithm. Figure 5.30 shows the optimal cost obtained with modified particle swarm optimization; the best solution produced when the swarm size is 1000. Table 5.6 presents the details of the optimal design of sewer component sizing of an optimal layout (Figure 5.24) with 1000 swarm size and 90 iterations.

| Pipe | Node | e no. | Length | Design     | Diameter | Slope  | Vp    | d              | Ground  | d Level | Invert  | Level   | Cover | depths (m) |
|------|------|-------|--------|------------|----------|--------|-------|----------------|---------|---------|---------|---------|-------|------------|
| no.  | Up   | Down  | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up    | Down       |
| 24   | 23   | 22    | 30     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 330.793 | 330.975 | 329.673 | 329.553 | 1.120 | 1.422      |
| 39   | 37   | 36    | 28     | 0.0002     | 200      | 250    | 0.19  | 0.06           | 330.421 | 330.003 | 328.995 | 328.883 | 1.426 | 1.120      |
| 41   | 38   | 39    | 20     | 0.0001     | 200      | 80     | 0.20  | 0.03           | 330.005 | 329.735 | 328.865 | 328.615 | 1.140 | 1.120      |
| 42   | 39   | 40    | 24     | 0.0001     | 200      | 250    | 0.18  | 0.05           | 329.735 | 329.325 | 328.301 | 328.205 | 1.434 | 1.120      |
| 44   | 40   | 42    | 28     | 0.0003     | 200      | 250    | 0.24  | 0.08           | 329.325 | 334.580 | 328.205 | 328.093 | 1.120 | 6.487      |
| 45   | 41   | 28    | 29     | 0.0001     | 200      | 250    | 0.16  | 0.04           | 329.151 | 329.253 | 328.031 | 327.915 | 1.120 | 1.338      |
| 46   | 42   | 35    | 28     | 0.0004     | 200      | 250    | 0.26  | 0.09           | 334.580 | 330.163 | 328.093 | 327.981 | 6.487 | 2.182      |
| 47   | 43   | 44    | 30     | 0.0001     | 200      | 60     | 0.26  | 0.03           | 330.074 | 329.638 | 328.954 | 328.454 | 1.120 | 1.184      |
| 48   | 44   | 27    | 38     | 0.0002     | 200      | 250    | 0.21  | 0.07           | 329.638 | 329.840 | 328.454 | 328.302 | 1.184 | 1.538      |
| 52   | 49   | 48    | 35     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 331.192 | 331.421 | 330.072 | 329.932 | 1.120 | 1.489      |
| 54   | 50   | 51    | 35     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 330.655 | 330.510 | 329.530 | 329.390 | 1.125 | 1.120      |
| 55   | 51   | 52    | 34     | 0.0002     | 200      | 250    | 0.21  | 0.07           | 330.510 | 330.597 | 329.390 | 329.254 | 1.120 | 1.343      |
| 56   | 52   | 53    | 30     | 0.0621     | 300      | 200    | 1.09  | 0.73           | 330.597 | 330.885 | 329.254 | 329.104 | 1.343 | 1.781      |
| 57   | 53   | 54    | 35     | 0.0622     | 300      | 200    | 1.09  | 0.73           | 330.885 | 330.898 | 329.104 | 328.929 | 1.781 | 1.969      |
| 69   | 64   | 63    | 30     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 332.064 | 332.365 | 330.944 | 330.824 | 1.120 | 1.541      |
| 83   | 69   | 68    | 30     | 0.0001     | 200      | 200    | 0.18  | 0.05           | 330.880 | 330.736 | 329.760 | 329.610 | 1.120 | 1.126      |
| 80   | 70   | 67    | 30     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 331.147 | 331.166 | 330.027 | 329.907 | 1.120 | 1.259      |
| 77   | 71   | 66    | 30     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 331.407 | 331.540 | 330.287 | 330.167 | 1.120 | 1.373      |
| 74   | 72   | 65    | 30     | 0.0001     | 200      | 250    | 0.17  | 0.05           | 331.958 | 331.882 | 330.838 | 330.718 | 1.120 | 1.164      |
| 107  | 87   | 88    | 30     | 0.0001     | 200      | 250    | 0.16  | 0.05           | 331.166 | 331.341 | 330.046 | 329.926 | 1.120 | 1.415      |
| 102  | 88   | 83    | 33     | 0.0002     | 200      | 250    | 0.20  | 0.07           | 331.341 | 332.775 | 329.926 | 329.794 | 1.415 | 2.981      |
| 117  | 97   | 96    | 16     | 0.0002     | 200      | 250    | 0.21  | 0.07           | 330.735 | 331.144 | 329.615 | 329.551 | 1.120 | 1.593      |

 Table 5.6 Characteristics of the Optimal Sewer Network Obtained by the Modified PSO for Network 3

| Pipe | Node no. | Length $(m)$ | Design | Diameter   | Slope | Vp     | d     | Ground         | d Level | Invert  | Level   | Cover   | depths (m) |       |
|------|----------|--------------|--------|------------|-------|--------|-------|----------------|---------|---------|---------|---------|------------|-------|
| no.  | Up       | Down         | (m)    | flow (m/s) | (mm)  | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up         | Down  |
| 120  | 98       | 99           | 30     | 0.0001     | 200   | 250    | 0.16  | 0.05           | 330.804 | 330.897 | 329.684 | 329.564 | 1.120      | 1.333 |
| 127  | 99       | 104          | 34     | 0.0002     | 200   | 250    | 0.21  | 0.07           | 330.897 | 330.725 | 329.564 | 329.428 | 1.333      | 1.297 |
| 122  | 100      | 101          | 30     | 0.0001     | 200   | 250    | 0.16  | 0.05           | 330.532 | 330.592 | 329.412 | 329.292 | 1.120      | 1.300 |
| 123  | 101      | 102          | 26     | 0.0002     | 200   | 250    | 0.20  | 0.06           | 330.592 | 330.550 | 329.292 | 329.188 | 1.300      | 1.362 |
| 126  | 104      | 103          | 30     | 0.0003     | 200   | 250    | 0.24  | 0.08           | 330.725 | 330.620 | 329.428 | 329.308 | 1.297      | 1.312 |
| 23   | 22       | 21           | 30     | 0.0002     | 200   | 250    | 0.21  | 0.07           | 330.975 | 331.134 | 329.553 | 329.433 | 1.422      | 1.701 |
| 36   | 36       | 35           | 27     | 0.0002     | 200   | 250    | 0.21  | 0.07           | 330.003 | 330.163 | 328.883 | 328.775 | 1.120      | 1.388 |
| 51   | 48       | 47           | 35     | 0.0002     | 200   | 250    | 0.21  | 0.07           | 331.421 | 331.624 | 329.932 | 329.792 | 1.489      | 1.832 |
| 71   | 63       | 79           | 30     | 0.0004     | 200   | 250    | 0.26  | 0.09           | 332.365 | 332.075 | 330.824 | 330.704 | 1.541      | 1.371 |
| 75   | 65       | 84           | 30     | 0.0004     | 200   | 250    | 0.26  | 0.09           | 331.882 | 332.096 | 330.718 | 330.598 | 1.164      | 1.498 |
| 78   | 66       | 89           | 30     | 0.0004     | 200   | 250    | 0.26  | 0.10           | 331.540 | 331.617 | 330.167 | 330.047 | 1.373      | 1.570 |
| 97   | 79       | 80           | 30     | 0.0005     | 200   | 250    | 0.27  | 0.10           | 332.075 | 331.556 | 330.556 | 330.436 | 1.519      | 1.120 |
| 98   | 80       | 81           | 17     | 0.0005     | 200   | 250    | 0.28  | 0.11           | 331.556 | 331.634 | 330.436 | 330.368 | 1.120      | 1.266 |
| 99   | 81       | 82           | 35     | 0.0007     | 200   | 250    | 0.31  | 0.13           | 331.634 | 331.721 | 330.368 | 330.228 | 1.266      | 1.493 |
| 101  | 82       | 83           | 30     | 0.0008     | 200   | 250    | 0.32  | 0.14           | 331.721 | 332.775 | 330.228 | 330.108 | 1.493      | 2.667 |
| 95   | 83       | 77           | 35     | 0.0011     | 200   | 250    | 0.36  | 0.16           | 332.775 | 332.503 | 329.794 | 329.654 | 2.981      | 2.849 |
| 103  | 84       | 85           | 30     | 0.0005     | 200   | 250    | 0.27  | 0.11           | 332.096 | 331.250 | 330.250 | 330.130 | 1.846      | 1.120 |
| 104  | 85       | 86           | 17     | 0.0005     | 200   | 250    | 0.28  | 0.11           | 331.250 | 331.300 | 330.130 | 330.062 | 1.120      | 1.238 |
| 106  | 86       | 91           | 35     | 0.0007     | 200   | 80     | 0.46  | 0.10           | 331.300 | 330.717 | 330.035 | 329.597 | 1.266      | 1.120 |
| 109  | 89       | 90           | 30     | 0.0005     | 200   | 80     | 0.40  | 0.08           | 331.617 | 330.972 | 330.047 | 329.672 | 1.570      | 1.300 |
| 110  | 90       | 91           | 18     | 0.0005     | 200   | 250    | 0.28  | 0.11           | 330.972 | 330.717 | 329.669 | 329.597 | 1.303      | 1.120 |
| 111  | 91       | 92           | 35     | 0.0015     | 200   | 70     | 0.60  | 0.13           | 330.717 | 330.721 | 329.597 | 329.097 | 1.120      | 1.624 |
| 113  | 92       | 93           | 30     | 0.0016     | 200   | 70     | 0.62  | 0.14           | 330.721 | 330.882 | 329.097 | 328.669 | 1.624      | 2.214 |

Table 5.6 (continued)
| Pipe | Node | e no. | Length | Design     | Diameter | Slope  | Vp    | d              | Ground  | d Level | Invert  | Level   | Cover | depths (m) |
|------|------|-------|--------|------------|----------|--------|-------|----------------|---------|---------|---------|---------|-------|------------|
| no.  | Up   | Down  | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up    | Down       |
| 114  | 93   | 94    | 30     | 0.0017     | 200      | 70     | 0.63  | 0.14           | 330.882 | 331.159 | 328.669 | 328.240 | 2.214 | 2.919      |
| 115  | 94   | 21    | 29     | 0.0018     | 200      | 80     | 0.61  | 0.15           | 331.159 | 331.134 | 328.240 | 327.877 | 2.919 | 3.257      |
| 116  | 96   | 95    | 30     | 0.0003     | 200      | 250    | 0.22  | 0.08           | 331.144 | 331.068 | 329.551 | 329.431 | 1.593 | 1.637      |
| 124  | 103  | 102   | 33     | 0.0004     | 200      | 250    | 0.26  | 0.09           | 330.620 | 330.550 | 329.308 | 329.176 | 1.312 | 1.374      |
| 22   | 21   | 20    | 12     | 0.0020     | 200      | 80     | 0.64  | 0.16           | 331.134 | 331.178 | 327.877 | 327.727 | 3.257 | 3.451      |
| 37   | 35   | 34    | 30     | 0.0007     | 200      | 250    | 0.31  | 0.13           | 330.163 | 330.294 | 327.981 | 327.861 | 2.182 | 2.433      |
| 50   | 47   | 46    | 27     | 0.0003     | 200      | 250    | 0.24  | 0.09           | 331.624 | 331.726 | 329.792 | 329.684 | 1.832 | 2.042      |
| 81   | 95   | 67    | 30     | 0.0003     | 200      | 250    | 0.25  | 0.09           | 331.068 | 331.166 | 329.431 | 329.311 | 1.637 | 1.855      |
| 125  | 102  | 57    | 29     | 0.0007     | 200      | 250    | 0.31  | 0.13           | 330.550 | 330.467 | 329.176 | 329.060 | 1.374 | 1.407      |
| 4    | 20   | 4     | 30     | 0.0021     | 200      | 80     | 0.64  | 0.16           | 331.178 | 331.205 | 327.727 | 327.352 | 3.451 | 3.853      |
| 38   | 34   | 30    | 18     | 0.0008     | 200      | 250    | 0.32  | 0.13           | 330.294 | 330.077 | 327.861 | 327.789 | 2.433 | 2.288      |
| 49   | 46   | 45    | 10     | 0.0011     | 200      | 250    | 0.36  | 0.16           | 331.726 | 331.775 | 329.684 | 329.644 | 2.042 | 2.131      |
| 79   | 67   | 68    | 34     | 0.0007     | 200      | 250    | 0.31  | 0.13           | 331.166 | 330.736 | 329.311 | 329.175 | 1.855 | 1.561      |
| 82   | 68   | 54    | 24     | 0.0011     | 200      | 250    | 0.35  | 0.16           | 330.736 | 330.898 | 329.175 | 329.079 | 1.561 | 1.819      |
| 68   | 45   | 62    | 36     | 0.0063     | 200      | 200    | 0.64  | 0.37           | 331.775 | 332.352 | 329.644 | 329.464 | 2.131 | 2.888      |
| 58   | 54   | 55    | 30     | 0.0634     | 300      | 200    | 1.10  | 0.75           | 330.898 | 330.637 | 328.929 | 328.779 | 1.969 | 1.858      |
| 59   | 55   | 56    | 30     | 0.0635     | 300      | 200    | 1.10  | 0.75           | 330.637 | 330.600 | 328.779 | 328.629 | 1.858 | 1.971      |
| 60   | 56   | 57    | 15     | 0.0635     | 300      | 200    | 1.10  | 0.75           | 330.600 | 330.467 | 328.629 | 328.554 | 1.971 | 1.913      |
| 61   | 57   | 58    | 30     | 0.0643     | 300      | 200    | 1.10  | 0.76           | 330.467 | 330.196 | 328.554 | 328.404 | 1.913 | 1.792      |
| 62   | 58   | 59    | 30     | 0.0644     | 300      | 200    | 1.10  | 0.76           | 330.196 | 330.511 | 328.404 | 328.254 | 1.792 | 2.257      |
| 63   | 59   | 60    | 30     | 0.0645     | 300      | 200    | 1.10  | 0.76           | 330.511 | 330.659 | 328.254 | 328.104 | 2.257 | 2.555      |
| 64   | 60   | 24    | 34     | 0.0646     | 300      | 200    | 1.10  | 0.76           | 330.659 | 330.704 | 328.104 | 327.934 | 2.555 | 2.770      |
| 65   | 62   | 61    | 30     | 0.0064     | 200      | 200    | 0.64  | 0.37           | 332.352 | 332.214 | 329.464 | 329.314 | 2.888 | 2.900      |

 Table 5.6 (continued)

| Pipe | Node | e no. | Length | Design     | Diameter | Slope  | Vp    | d              | Ground  | l Level | Invert  | Level   | Cover d | lepths (m) |
|------|------|-------|--------|------------|----------|--------|-------|----------------|---------|---------|---------|---------|---------|------------|
| no.  | Up   | Down  | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up      | Down       |
| 26   | 24   | 25    | 30     | 0.0647     | 300      | 200    | 1.10  | 0.76           | 330.704 | 330.714 | 327.934 | 327.784 | 2.770   | 2.930      |
| 27   | 25   | 26    | 30     | 0.0648     | 300      | 200    | 1.10  | 0.76           | 330.714 | 330.500 | 327.784 | 327.634 | 2.930   | 2.866      |
| 28   | 26   | 27    | 32     | 0.0649     | 300      | 200    | 1.10  | 0.76           | 330.500 | 329.840 | 327.634 | 327.474 | 2.866   | 2.366      |
| 29   | 27   | 28    | 32     | 0.0652     | 300      | 200    | 1.10  | 0.76           | 329.840 | 329.253 | 327.474 | 327.314 | 2.366   | 1.939      |
| 30   | 28   | 29    | 30     | 0.0654     | 300      | 200    | 1.10  | 0.77           | 329.253 | 329.354 | 327.314 | 327.164 | 1.939   | 2.190      |
| 31   | 29   | 30    | 25     | 0.0655     | 300      | 200    | 1.10  | 0.77           | 329.354 | 330.077 | 327.164 | 327.039 | 2.190   | 3.038      |
| 32   | 30   | 31    | 30     | 0.0663     | 300      | 200    | 1.10  | 0.78           | 330.077 | 330.086 | 327.039 | 326.889 | 3.038   | 3.197      |
| 33   | 31   | 32    | 30     | 0.0664     | 350      | 250    | 1.04  | 0.63           | 330.086 | 329.513 | 326.889 | 326.769 | 3.197   | 2.744      |
| 34   | 32   | 33    | 30     | 0.0665     | 350      | 250    | 1.04  | 0.63           | 329.513 | 328.669 | 326.769 | 326.649 | 2.744   | 2.020      |
| 35   | 33   | 17    | 20     | 0.0666     | 350      | 250    | 1.04  | 0.63           | 328.669 | 328.457 | 326.649 | 326.569 | 2.020   | 1.888      |
| 67   | 61   | 73    | 30     | 0.0067     | 200      | 200    | 0.65  | 0.38           | 332.214 | 332.134 | 329.314 | 329.164 | 2.900   | 2.970      |
| 89   | 73   | 74    | 30     | 0.0068     | 200      | 200    | 0.65  | 0.38           | 332.134 | 332.064 | 329.164 | 329.014 | 2.970   | 3.050      |
| 90   | 74   | 75    | 17     | 0.0068     | 200      | 250    | 0.60  | 0.41           | 332.064 | 331.325 | 329.014 | 328.946 | 3.050   | 2.379      |
| 91   | 75   | 76    | 35     | 0.0077     | 200      | 250    | 0.62  | 0.43           | 331.325 | 331.625 | 328.946 | 328.806 | 2.379   | 2.819      |
| 93   | 76   | 77    | 30     | 0.0078     | 200      | 250    | 0.62  | 0.43           | 331.625 | 332.503 | 328.806 | 328.686 | 2.819   | 3.817      |
| 94   | 77   | 78    | 30     | 0.0091     | 200      | 250    | 0.65  | 0.47           | 332.503 | 332.870 | 328.686 | 328.566 | 3.817   | 4.304      |
| 96   | 78   | 2     | 28     | 0.0092     | 200      | 250    | 0.65  | 0.47           | 332.870 | 331.608 | 328.566 | 328.454 | 4.304   | 3.154      |
| 1    | 2    | 3     | 30     | 0.0153     | 200      | 250    | 0.72  | 0.63           | 331.608 | 331.670 | 328.454 | 328.334 | 3.154   | 3.336      |
| 2    | 3    | 4     | 30     | 0.0154     | 200      | 250    | 0.72  | 0.64           | 331.670 | 331.205 | 328.334 | 328.214 | 3.336   | 2.991      |
| 3    | 4    | 5     | 30     | 0.0176     | 200      | 250    | 0.74  | 0.70           | 331.205 | 330.812 | 327.352 | 327.232 | 3.853   | 3.580      |
| 5    | 5    | 6     | 30     | 0.0177     | 200      | 250    | 0.74  | 0.70           | 330.812 | 330.705 | 327.232 | 327.112 | 3.580   | 3.593      |
| 6    | 6    | 7     | 30     | 0.0178     | 200      | 250    | 0.74  | 0.70           | 330.705 | 330.036 | 327.112 | 326.992 | 3.593   | 3.044      |
| 7    | 7    | 105   | 30     | 0.0179     | 200      | 250    | 0.74  | 0.71           | 330.036 | 330.004 | 326.992 | 326.872 | 3.044   | 3.132      |

 Table 5.6 (continued)

| Pipe | Node | e no. | Length | Design     | Diameter | Slope  | Vp    | d              | Ground  | d Level | Invert  | Level   | Cover of | lepths (m) |
|------|------|-------|--------|------------|----------|--------|-------|----------------|---------|---------|---------|---------|----------|------------|
| no.  | Up   | Down  | (m)    | flow (m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up       | Down       |
| 128  | 105  | 8     | 7      | 0.0179     | 200      | 250    | 0.74  | 0.71           | 330.004 | 330.003 | 326.872 | 326.844 | 3.132    | 3.159      |
| 8    | 8    | 9     | 28     | 0.0192     | 200      | 250    | 0.75  | 0.74           | 330.003 | 330.327 | 326.844 | 326.732 | 3.159    | 3.595      |
| 10   | 9    | 10    | 28     | 0.0193     | 200      | 250    | 0.75  | 0.75           | 330.327 | 329.563 | 326.732 | 326.620 | 3.595    | 2.943      |
| 11   | 10   | 11    | 30     | 0.0195     | 200      | 250    | 0.75  | 0.75           | 329.563 | 329.605 | 326.620 | 326.500 | 2.943    | 3.105      |
| 13   | 11   | 12    | 22     | 0.0195     | 200      | 250    | 0.75  | 0.76           | 329.605 | 328.796 | 326.500 | 326.412 | 3.105    | 2.384      |
| 14   | 12   | 13    | 30     | 0.0266     | 250      | 250    | 0.83  | 0.62           | 328.796 | 328.370 | 326.412 | 326.292 | 2.384    | 2.078      |
| 15   | 13   | 14    | 21     | 0.0266     | 250      | 250    | 0.83  | 0.62           | 328.370 | 328.125 | 326.292 | 326.208 | 2.078    | 1.917      |
| 16   | 14   | 15    | 30     | 0.0267     | 250      | 250    | 0.83  | 0.62           | 328.125 | 327.825 | 326.208 | 326.088 | 1.917    | 1.737      |
| 17   | 15   | 16    | 30     | 0.0268     | 250      | 250    | 0.83  | 0.62           | 327.825 | 328.007 | 326.088 | 325.968 | 1.737    | 2.039      |
| 18   | 16   | 17    | 28     | 0.0269     | 250      | 250    | 0.83  | 0.62           | 328.007 | 328.457 | 325.968 | 325.856 | 2.039    | 2.601      |
| 19   | 17   | 18    | 30     | 0.0936     | 400      | 350    | 0.99  | 0.69           | 328.457 | 328.991 | 325.856 | 325.771 | 2.601    | 3.220      |
| 20   | 18   | 19    | 30     | 0.0936     | 400      | 350    | 0.99  | 0.69           | 328.991 | 329.216 | 325.771 | 325.685 | 3.220    | 3.531      |
| 21   | 19   | 1     | 26     | 0.0937     | 400      | 350    | 0.99  | 0.69           | 329.216 | 329.345 | 325.685 | 325.611 | 3.531    | 3.734      |

 Table 5.6 (continued)

## 5.3 Result of Case study III

The results of Network 4 (Nawalgarh) were obtained using swarm size of 1000. The maximum numbers of iterations were kept as 30, 60 & 90 for each sewer layout. Table 5.7 shows the variation in total optimal cost with total cumulative discharges of the layout.

 Table 5.7 Total Cumulative Discharge vs. Total Optimal Cost at Different Iterations for network 4

|      | Total      |                 |                 | Total c         | ost (Rs.)       |                 |                 |
|------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| S.   | cumulative | 30 Ite          | rations         | 60 Ite          | erations        | 90 Ite          | rations         |
| 110. | (l/s)      | Modified<br>PSO | Standard<br>PSO | Modified<br>PSO | Standard<br>PSO | Modified<br>PSO | Standard<br>PSO |
| 1    | 782.305    | 8832960         | 8956858         | 8826437         | 8956858         | 8825648         | 8956858         |
| 2    | 783.575    | 8866182         | 9325498         | 8866486         | 9325498         | 8865631         | 9325498         |
| 3    | 784.52     | 9267493         | 9369972         | 9281602         | 9369499         | 9238069         | 9369499         |
| 4    | 785.62     | 9493587         | 10656747        | 9464435         | 10656747        | 9464435         | 10656747        |
| 5    | 792.04     | 9946074         | 9956157         | 9941329         | 9956157         | 9943422         | 9956157         |
| 6    | 796.27     | 10234896        | 11217101        | 10160188        | 11217101        | 10162921        | 11217101        |
| 7    | 808.39     | 10769615        | 10998840        | 10766192        | 10998840        | 10780661        | 10998840        |



Figure 5.31 Total cumulative discharges vs. Optimal cost of layouts at 30 iterations for Network 4



Figure 5.32 Total cumulative discharges vs. Optimal cost of layouts at 60 iterations for Network 4



Figure 5.33 Total cumulative discharges vs. Optimal cost of layouts at 90 iterations for Network 4

| S<br>No. | Total<br>cumulative<br>discharge (l/s) | Cost of<br>Earthwork<br>(Rs.) | Cost of<br>Manholes<br>(Rs.) | Cost of<br>Sewer Pipe<br>(Rs.) | Total Cost<br>(Rs.) |
|----------|----------------------------------------|-------------------------------|------------------------------|--------------------------------|---------------------|
| 1        | 782.305                                | 1225650                       | 5325908                      | 2274090                        | 8825648             |
| 2        | 783.575                                | 1231240                       | 5349231                      | 2285160                        | 8865631             |
| 3        | 784.52                                 | 1315660                       | 5659979                      | 2262430                        | 9238069             |
| 4        | 785.62                                 | 1365810                       | 5813465                      | 2285160                        | 9464435             |
| 5        | 792.04                                 | 1561290                       | 6119702                      | 2262430                        | 9943422             |
| 6        | 796.27                                 | 1604500                       | 6265781                      | 2292640                        | 10162921            |
| 7        | 808.39                                 | 1758780                       | 6747171                      | 2274710                        | 10780661            |

Table 5.8 Sewer Layout Cost Details for Network 4

Table 5.7 clearly shows that the layout having minimum CQ has the minimum total cost. The total cost of sewer layout is generally increasing with the CQ of a layout. The cost of optimal layout (CQ = 782.305 l/s) is Rs.  $8.825 \times 10^6$  with modified PSO as compared to the cost of original PSO Rs.  $8.956 \times 10^6$  for 90 iterations.

Figures 5.31, 5.32 and 5.33 show the optimal cost obtained by the modified and original PSO algorithm against the total cumulative discharges of the layouts for 30, 60 and 90 iterations, respectively. It is clearly seen that the proposed modified PSO algorithm was able to obtain a better solution as compared to an original PSO algorithm in all the layouts.

Table 5.8 shows the sewer component costs (cost of earthwork, manhole and sewer) against the total cost of layouts.

The Optimal Sewer Layout and an alternative layout of a Base Network 4 are shown in Figures 5.34 and 5.35 respectively.



**Figure 5.34** Optimal sewer layout of Network 4, CQ = 782.305 l/s



Figure 5.35 Alternative layout 1 of Network 4, CQ = 783.575 l/s

Optimal sewer layout of Base Network 4 as shown in Figure 5.34 is selected for the detailed design. This layout is solved using different swarm sizes of 200, 400, 600, 800, 1000 and 1200 to assess the effect of the swarm size on the performance of the proposed modified and original PSO algorithm.

Figures 5.36, 5.37, 5.38 and 5.39 show the minimum total cost obtained by the modified and original PSO algorithm against the swarm sizes for different iterations. The minimum cost obtained by the Original PSO in 90 iterations for 1000 swarm size is Rs.  $8.956 \times 10^6$ , whereas the solution cost obtained by the Modified PSO is reduced to Rs.  $8.825 \times 10^6$ .



Figure 5.36 Variation of the optimal cost with swarm sizes (at 30 iterations) for Network 4



Figure 5.37 Variation of the optimal cost with swarm sizes (at 60 iterations) for Network 4



Figure 5.38 Variation of the optimal cost with swarm sizes (at 90 iterations) for Network 4



Figure 5.39 Variation of the optimal cost with swarm sizes (at 120 iterations) for Network 4



Figure 5.40 Variation of the minimum total cost with swarm sizes at different iterations, modified PSO for Network 4

It is seen that the solution obtained by the modified PSO algorithm is much better than the solution of the original PSO algorithm. Figure 5.40 shows the optimal cost obtained with modified particle swarm optimization; the best solution produced when the swarm size is 1000. Table 5.9 presents the details of the optimal design of sewer component sizing of an optimal layout (Figure 5.34) with 1000 swarm size and 90 iterations.

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Ground  | l Level | Invert  | Level   | Cover d | epths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|---------|-----------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up      | Down      |
| 2    | 1    | 46    | 35     | 0.0004        | 200      | 250    | 0.25  | 0.09           | 424.400 | 424.300 | 423.280 | 423.140 | 1.120   | 1.160     |
| 3    | 2    | 3     | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 424.393 | 424.105 | 423.105 | 422.985 | 1.288   | 1.120     |
| 4    | 3    | 4     | 30     | 0.0003        | 200      | 250    | 0.24  | 0.08           | 424.105 | 423.900 | 422.900 | 422.780 | 1.205   | 1.120     |
| 5    | 4    | 5     | 30     | 0.0005        | 200      | 250    | 0.27  | 0.10           | 423.900 | 423.250 | 422.250 | 422.130 | 1.650   | 1.120     |
| 6    | 5    | 6     | 30     | 0.0006        | 200      | 250    | 0.30  | 0.12           | 423.250 | 423.115 | 422.115 | 421.995 | 1.135   | 1.120     |
| 8    | 6    | 14    | 29     | 0.0009        | 200      | 250    | 0.34  | 0.15           | 423.115 | 423.321 | 421.995 | 421.879 | 1.120   | 1.442     |
| 9    | 7    | 8     | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 423.100 | 423.005 | 421.980 | 421.860 | 1.120   | 1.145     |
| 10   | 8    | 9     | 13     | 0.0002        | 200      | 250    | 0.21  | 0.07           | 423.005 | 422.951 | 421.860 | 421.808 | 1.145   | 1.143     |
| 16   | 14   | 15    | 30     | 0.0011        | 200      | 250    | 0.35  | 0.16           | 423.321 | 422.968 | 421.879 | 421.759 | 1.442   | 1.209     |
| 17   | 15   | 16    | 30     | 0.0012        | 200      | 250    | 0.37  | 0.17           | 422.968 | 422.598 | 421.598 | 421.478 | 1.370   | 1.120     |
| 18   | 16   | 17    | 30     | 0.0014        | 200      | 80     | 0.56  | 0.13           | 422.598 | 422.263 | 421.478 | 421.103 | 1.120   | 1.160     |
| 19   | 17   | 18    | 30     | 0.0015        | 200      | 70     | 0.61  | 0.14           | 422.263 | 422.100 | 421.103 | 420.674 | 1.160   | 1.426     |
| 20   | 18   | 13    | 11     | 0.0016        | 200      | 70     | 0.62  | 0.14           | 422.100 | 422.083 | 420.674 | 420.517 | 1.426   | 1.566     |
| 21   | 19   | 20    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.967 | 422.725 | 421.725 | 421.605 | 1.242   | 1.120     |
| 22   | 20   | 10    | 17     | 0.0002        | 200      | 250    | 0.22  | 0.07           | 422.725 | 422.617 | 421.565 | 421.497 | 1.160   | 1.120     |
| 23   | 21   | 22    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 424.423 | 423.915 | 422.915 | 422.795 | 1.508   | 1.120     |
| 24   | 22   | 23    | 30     | 0.0003        | 200      | 60     | 0.39  | 0.06           | 423.915 | 423.500 | 422.795 | 422.295 | 1.120   | 1.205     |
| 25   | 23   | 24    | 30     | 0.0005        | 200      | 250    | 0.27  | 0.10           | 423.500 | 422.995 | 421.995 | 421.875 | 1.505   | 1.120     |
| 26   | 24   | 25    | 30     | 0.0006        | 200      | 250    | 0.30  | 0.12           | 422.995 | 422.760 | 421.760 | 421.640 | 1.235   | 1.120     |
| 27   | 25   | 26    | 30     | 0.0008        | 200      | 70     | 0.49  | 0.10           | 422.760 | 422.370 | 421.640 | 421.212 | 1.120   | 1.159     |
| 28   | 26   | 11    | 15     | 0.0008        | 200      | 250    | 0.33  | 0.14           | 422.370 | 422.238 | 421.178 | 421.118 | 1.192   | 1.120     |
| 29   | 27   | 28    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 423.351 | 423.125 | 422.125 | 422.005 | 1.226   | 1.120     |
| 30   | 28   | 9     | 17     | 0.0002        | 200      | 60     | 0.36  | 0.05           | 423.125 | 422.951 | 422.005 | 421.722 | 1.120   | 1.229     |

**Table 5.9** Characteristics of the Optimal Sewer Network Obtained by the Modified PSO for Network 4

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Ground  | d Level | Invert  | Level   | Cover d | epths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|---------|-----------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up      | Down      |
| 42   | 40   | 41    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 421.749 | 421.625 | 420.625 | 420.505 | 1.124   | 1.120     |
| 43   | 41   | 42    | 30     | 0.0003        | 200      | 250    | 0.24  | 0.08           | 421.625 | 421.568 | 420.505 | 420.385 | 1.120   | 1.183     |
| 44   | 42   | 37    | 30     | 0.0005        | 200      | 250    | 0.27  | 0.10           | 421.568 | 421.618 | 420.385 | 420.265 | 1.183   | 1.353     |
| 45   | 43   | 44    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 421.295 | 421.805 | 420.175 | 420.055 | 1.120   | 1.750     |
| 46   | 44   | 45    | 30     | 0.0003        | 200      | 250    | 0.24  | 0.08           | 421.805 | 421.778 | 420.055 | 419.935 | 1.750   | 1.843     |
| 47   | 45   | 36    | 22     | 0.0004        | 200      | 250    | 0.26  | 0.10           | 421.778 | 421.757 | 419.935 | 419.847 | 1.843   | 1.910     |
| 48   | 46   | 47    | 30     | 0.0005        | 200      | 250    | 0.28  | 0.11           | 424.300 | 423.980 | 422.980 | 422.860 | 1.320   | 1.120     |
| 62   | 58   | 32    | 44     | 0.0002        | 200      | 250    | 0.22  | 0.07           | 421.308 | 421.233 | 420.188 | 420.012 | 1.120   | 1.221     |
| 50   | 59   | 47    | 30     | 0.0002        | 200      | 60     | 0.31  | 0.04           | 425.502 | 423.980 | 423.360 | 422.860 | 2.142   | 1.120     |
| 64   | 60   | 64    | 21     | 0.0001        | 200      | 60     | 0.27  | 0.03           | 424.922 | 424.206 | 423.436 | 423.086 | 1.486   | 1.120     |
| 65   | 61   | 62    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 425.536 | 424.920 | 423.920 | 423.800 | 1.616   | 1.120     |
| 66   | 62   | 63    | 30     | 0.0003        | 200      | 60     | 0.39  | 0.06           | 424.920 | 424.567 | 423.800 | 423.300 | 1.120   | 1.267     |
| 67   | 63   | 64    | 17     | 0.0004        | 200      | 250    | 0.26  | 0.09           | 424.567 | 424.206 | 423.154 | 423.086 | 1.413   | 1.120     |
| 78   | 71   | 72    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 423.355 | 423.198 | 422.198 | 422.078 | 1.157   | 1.120     |
| 79   | 72   | 66    | 33     | 0.0003        | 200      | 250    | 0.24  | 0.09           | 423.198 | 423.004 | 422.016 | 421.884 | 1.182   | 1.120     |
| 69   | 73   | 64    | 18     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 424.060 | 424.206 | 422.940 | 422.868 | 1.120   | 1.338     |
| 81   | 74   | 75    | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 423.625 | 423.325 | 422.325 | 422.205 | 1.300   | 1.120     |
| 82   | 75   | 76    | 30     | 0.0003        | 200      | 60     | 0.39  | 0.06           | 423.325 | 423.055 | 422.205 | 421.705 | 1.120   | 1.350     |
| 83   | 76   | 77    | 20     | 0.0004        | 200      | 250    | 0.26  | 0.10           | 423.055 | 422.841 | 421.705 | 421.625 | 1.350   | 1.216     |
| 84   | 77   | 78    | 5      | 0.0004        | 200      | 250    | 0.27  | 0.10           | 422.841 | 422.841 | 421.625 | 421.605 | 1.216   | 1.236     |
| 94   | 86   | 85    | 30     | 0.0001        | 200      | 250    | 0.17  | 0.05           | 422.005 | 421.998 | 420.885 | 420.765 | 1.120   | 1.233     |
| 72   | 89   | 66    | 23     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.670 | 423.004 | 421.550 | 421.458 | 1.120   | 1.546     |
| 99   | 90   | 91    | 30     | 0.0002        | 200      | 60     | 0.31  | 0.04           | 423.614 | 422.930 | 422.310 | 421.810 | 1.304   | 1.120     |

 Table 5.9 (continued)

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Ground  | d Level | Invert  | Level   | Cover d | lepths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|---------|------------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up      | Down       |
| 100  | 91   | 92    | 13     | 0.0002        | 200      | 250    | 0.21  | 0.07           | 422.930 | 422.549 | 421.481 | 421.429 | 1.449   | 1.120      |
| 86   | 92   | 78    | 30     | 0.0004        | 200      | 250    | 0.25  | 0.09           | 422.549 | 422.841 | 421.429 | 421.309 | 1.120   | 1.532      |
| 102  | 93   | 94    | 30     | 0.0002        | 200      | 60     | 0.31  | 0.04           | 424.013 | 423.500 | 422.880 | 422.380 | 1.133   | 1.120      |
| 103  | 94   | 95    | 30     | 0.0003        | 200      | 150    | 0.28  | 0.07           | 423.500 | 422.870 | 421.950 | 421.750 | 1.550   | 1.120      |
| 104  | 95   | 96    | 25     | 0.0004        | 200      | 250    | 0.27  | 0.10           | 422.870 | 422.223 | 421.203 | 421.103 | 1.667   | 1.120      |
| 106  | 97   | 96    | 11     | 0.0001        | 200      | 250    | 0.14  | 0.04           | 422.442 | 422.223 | 421.147 | 421.103 | 1.295   | 1.120      |
| 114  | 104  | 105   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.532 | 421.995 | 420.995 | 420.875 | 1.537   | 1.120      |
| 115  | 105  | 103   | 20     | 0.0003        | 200      | 250    | 0.22  | 0.08           | 421.995 | 421.449 | 420.409 | 420.329 | 1.586   | 1.120      |
| 116  | 106  | 103   | 26     | 0.0001        | 200      | 250    | 0.18  | 0.05           | 421.515 | 421.449 | 420.395 | 420.291 | 1.120   | 1.158      |
| 117  | 108  | 107   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.390 | 422.316 | 421.270 | 421.150 | 1.120   | 1.166      |
| 119  | 109  | 110   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.999 | 422.832 | 421.832 | 421.712 | 1.167   | 1.120      |
| 120  | 110  | 111   | 16     | 0.0002        | 200      | 250    | 0.22  | 0.07           | 422.832 | 422.670 | 421.614 | 421.550 | 1.218   | 1.120      |
| 125  | 115  | 116   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 424.420 | 423.954 | 422.954 | 422.834 | 1.466   | 1.120      |
| 126  | 116  | 117   | 15     | 0.0002        | 200      | 250    | 0.22  | 0.07           | 423.954 | 423.572 | 422.512 | 422.452 | 1.442   | 1.120      |
| 127  | 117  | 118   | 30     | 0.0038        | 200      | 150    | 0.62  | 0.26           | 423.572 | 423.452 | 422.452 | 422.252 | 1.120   | 1.200      |
| 128  | 118  | 119   | 30     | 0.0040        | 200      | 150    | 0.62  | 0.27           | 423.452 | 423.398 | 422.252 | 422.052 | 1.200   | 1.346      |
| 131  | 120  | 119   | 37     | 0.0002        | 200      | 250    | 0.20  | 0.07           | 423.599 | 423.398 | 422.426 | 422.278 | 1.173   | 1.120      |
| 132  | 121  | 122   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.985 | 422.820 | 421.820 | 421.700 | 1.165   | 1.120      |
| 133  | 122  | 111   | 13     | 0.0002        | 200      | 250    | 0.21  | 0.07           | 422.820 | 422.670 | 421.602 | 421.550 | 1.218   | 1.120      |
| 135  | 124  | 123   | 39     | 0.0029        | 200      | 60     | 0.78  | 0.18           | 423.757 | 423.388 | 422.637 | 421.987 | 1.120   | 1.401      |
| 142  | 130  | 131   | 18     | 0.0001        | 200      | 250    | 0.16  | 0.05           | 423.310 | 423.249 | 422.190 | 422.118 | 1.120   | 1.131      |
| 155  | 142  | 141   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 423.750 | 423.703 | 422.630 | 422.510 | 1.120   | 1.193      |
| 111  | 150  | 101   | 12     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 421.640 | 421.456 | 420.384 | 420.336 | 1.256   | 1.120      |

 Table 5.9 (continued)

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Groun   | d Level | Invert  | Level   | Cover | depths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|-------|------------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up    | Down       |
| 167  | 151  | 153   | 30     | 0.0003        | 200      | 100    | 0.32  | 0.07           | 423.519 | 423.150 | 422.330 | 422.030 | 1.189 | 1.120      |
| 168  | 152  | 143   | 19     | 0.0001        | 200      | 250    | 0.16  | 0.05           | 423.615 | 423.812 | 422.495 | 422.419 | 1.120 | 1.393      |
| 169  | 153  | 154   | 13     | 0.0004        | 200      | 250    | 0.25  | 0.09           | 423.150 | 423.100 | 422.030 | 421.978 | 1.120 | 1.122      |
| 170  | 154  | 155   | 30     | 0.0044        | 200      | 150    | 0.64  | 0.28           | 423.100 | 423.190 | 421.978 | 421.778 | 1.122 | 1.412      |
| 171  | 155  | 144   | 28     | 0.0046        | 200      | 150    | 0.65  | 0.29           | 423.190 | 423.228 | 421.778 | 421.591 | 1.412 | 1.637      |
| 172  | 156  | 157   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 423.370 | 423.310 | 422.250 | 422.130 | 1.120 | 1.180      |
| 173  | 157  | 158   | 31     | 0.0003        | 200      | 250    | 0.24  | 0.08           | 423.310 | 423.278 | 422.130 | 422.006 | 1.180 | 1.272      |
| 174  | 158  | 145   | 35     | 0.0005        | 200      | 200    | 0.30  | 0.10           | 423.278 | 423.172 | 422.006 | 421.831 | 1.272 | 1.341      |
| 175  | 160  | 159   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 422.610 | 422.530 | 421.490 | 421.370 | 1.120 | 1.160      |
| 177  | 161  | 162   | 30     | 0.0002        | 200      | 250    | 0.19  | 0.06           | 421.710 | 421.670 | 420.590 | 420.470 | 1.120 | 1.200      |
| 178  | 162  | 101   | 20     | 0.0003        | 200      | 250    | 0.22  | 0.08           | 421.670 | 421.456 | 420.416 | 420.336 | 1.254 | 1.120      |
| 11   | 9    | 10    | 30     | 0.0006        | 200      | 250    | 0.30  | 0.12           | 422.951 | 422.617 | 421.617 | 421.497 | 1.334 | 1.120      |
| 12   | 10   | 11    | 30     | 0.0010        | 200      | 250    | 0.35  | 0.15           | 422.617 | 422.238 | 421.238 | 421.118 | 1.379 | 1.120      |
| 13   | 11   | 12    | 30     | 0.0020        | 200      | 80     | 0.63  | 0.16           | 422.238 | 422.150 | 421.118 | 420.743 | 1.120 | 1.407      |
| 14   | 12   | 13    | 18     | 0.0021        | 200      | 80     | 0.64  | 0.17           | 422.150 | 422.083 | 420.743 | 420.518 | 1.407 | 1.565      |
| 15   | 13   | 29    | 30     | 0.0038        | 200      | 150    | 0.62  | 0.26           | 422.083 | 421.825 | 420.517 | 420.317 | 1.566 | 1.508      |
| 31   | 29   | 30    | 30     | 0.0040        | 200      | 150    | 0.62  | 0.27           | 421.825 | 421.670 | 420.317 | 420.117 | 1.508 | 1.553      |
| 32   | 30   | 31    | 30     | 0.0042        | 200      | 150    | 0.63  | 0.27           | 421.670 | 421.420 | 420.117 | 419.917 | 1.553 | 1.503      |
| 33   | 31   | 32    | 30     | 0.0043        | 200      | 150    | 0.64  | 0.28           | 421.420 | 421.233 | 419.917 | 419.717 | 1.503 | 1.516      |
| 34   | 32   | 33    | 30     | 0.0047        | 200      | 150    | 0.65  | 0.29           | 421.233 | 420.980 | 419.717 | 419.517 | 1.516 | 1.463      |
| 35   | 33   | 34    | 21     | 0.0048        | 200      | 150    | 0.66  | 0.30           | 420.980 | 420.702 | 419.517 | 419.377 | 1.463 | 1.325      |
| 36   | 34   | 35    | 30     | 0.0154        | 200      | 250    | 0.72  | 0.64           | 420.702 | 421.115 | 419.377 | 419.257 | 1.325 | 1.858      |
| 37   | 35   | 36    | 33     | 0.0155        | 200      | 250    | 0.72  | 0.64           | 421.115 | 421.757 | 419.257 | 419.125 | 1.858 | 2.632      |

 Table 5.9 (continued)

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Ground  | d Level | Invert  | Level   | Cover d | lepths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|---------|------------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up      | Down       |
| 38   | 36   | 37    | 33     | 0.0161        | 200      | 250    | 0.73  | 0.66           | 421.757 | 421.618 | 419.125 | 418.993 | 2.632   | 2.625      |
| 39   | 37   | 38    | 30     | 0.0167        | 200      | 250    | 0.73  | 0.67           | 421.618 | 421.610 | 418.993 | 418.873 | 2.625   | 2.737      |
| 40   | 38   | 39    | 30     | 0.0169        | 200      | 250    | 0.74  | 0.68           | 421.610 | 421.610 | 418.873 | 418.753 | 2.737   | 2.857      |
| 49   | 47   | 48    | 30     | 0.0010        | 200      | 60     | 0.56  | 0.10           | 423.980 | 423.570 | 422.860 | 422.360 | 1.120   | 1.210      |
| 51   | 48   | 49    | 30     | 0.0011        | 200      | 250    | 0.36  | 0.16           | 423.570 | 423.235 | 422.235 | 422.115 | 1.335   | 1.120      |
| 52   | 49   | 50    | 30     | 0.0015        | 200      | 70     | 0.60  | 0.13           | 423.235 | 423.070 | 422.115 | 421.686 | 1.120   | 1.384      |
| 54   | 50   | 51    | 30     | 0.0016        | 200      | 70     | 0.62  | 0.14           | 423.070 | 422.740 | 421.686 | 421.258 | 1.384   | 1.482      |
| 55   | 51   | 52    | 30     | 0.0018        | 200      | 80     | 0.61  | 0.15           | 422.740 | 421.647 | 420.902 | 420.527 | 1.838   | 1.120      |
| 68   | 64   | 65    | 30     | 0.0009        | 200      | 250    | 0.33  | 0.14           | 424.206 | 423.170 | 422.170 | 422.050 | 2.036   | 1.120      |
| 70   | 65   | 66    | 27     | 0.0010        | 200      | 250    | 0.35  | 0.15           | 423.170 | 423.004 | 421.992 | 421.884 | 1.178   | 1.120      |
| 71   | 66   | 67    | 30     | 0.0018        | 200      | 80     | 0.61  | 0.15           | 423.004 | 422.189 | 421.444 | 421.069 | 1.560   | 1.120      |
| 73   | 67   | 68    | 30     | 0.0019        | 200      | 80     | 0.63  | 0.16           | 422.189 | 421.525 | 420.780 | 420.405 | 1.409   | 1.120      |
| 74   | 68   | 69    | 20     | 0.0020        | 200      | 80     | 0.64  | 0.16           | 421.525 | 421.242 | 420.372 | 420.122 | 1.153   | 1.120      |
| 85   | 78   | 79    | 30     | 0.0011        | 200      | 250    | 0.36  | 0.16           | 422.841 | 422.316 | 421.309 | 421.189 | 1.532   | 1.127      |
| 87   | 79   | 80    | 13     | 0.0012        | 200      | 250    | 0.36  | 0.16           | 422.316 | 422.316 | 421.189 | 421.137 | 1.127   | 1.179      |
| 93   | 85   | 84    | 30     | 0.0003        | 200      | 250    | 0.23  | 0.08           | 421.998 | 421.394 | 420.394 | 420.274 | 1.604   | 1.120      |
| 89   | 107  | 80    | 12     | 0.0003        | 200      | 250    | 0.24  | 0.08           | 422.316 | 422.316 | 421.150 | 421.102 | 1.166   | 1.214      |
| 121  | 111  | 112   | 7      | 0.0005        | 200      | 250    | 0.28  | 0.11           | 422.670 | 422.568 | 421.476 | 421.448 | 1.194   | 1.120      |
| 122  | 112  | 113   | 30     | 0.0006        | 200      | 250    | 0.30  | 0.12           | 422.568 | 422.425 | 421.425 | 421.305 | 1.143   | 1.120      |
| 123  | 113  | 114   | 30     | 0.0008        | 200      | 250    | 0.32  | 0.14           | 422.425 | 422.325 | 421.305 | 421.185 | 1.120   | 1.140      |
| 124  | 114  | 96    | 21     | 0.0009        | 200      | 250    | 0.33  | 0.14           | 422.325 | 422.223 | 421.185 | 421.101 | 1.140   | 1.122      |
| 130  | 119  | 123   | 28     | 0.0045        | 200      | 150    | 0.65  | 0.29           | 423.398 | 423.388 | 422.052 | 421.865 | 1.346   | 1.523      |
| 134  | 123  | 125   | 27     | 0.0075        | 200      | 250    | 0.62  | 0.43           | 423.388 | 423.278 | 421.865 | 421.757 | 1.523   | 1.521      |

 Table 5.9 (continued)

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Ground  | d Level | Invert  | Level   | Cover of | lepths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|----------|------------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up       | Down       |
| 136  | 125  | 126   | 30     | 0.0078        | 200      | 250    | 0.62  | 0.44           | 423.278 | 422.900 | 421.757 | 421.637 | 1.521    | 1.263      |
| 138  | 126  | 127   | 30     | 0.0080        | 200      | 250    | 0.62  | 0.44           | 422.900 | 422.670 | 421.637 | 421.517 | 1.263    | 1.153      |
| 139  | 127  | 128   | 30     | 0.0081        | 200      | 250    | 0.63  | 0.44           | 422.670 | 422.549 | 421.517 | 421.397 | 1.153    | 1.152      |
| 140  | 128  | 129   | 30     | 0.0083        | 200      | 60     | 1.07  | 0.31           | 422.549 | 422.270 | 421.397 | 420.897 | 1.152    | 1.373      |
| 141  | 129  | 99    | 22     | 0.0084        | 200      | 250    | 0.63  | 0.45           | 422.270 | 422.195 | 420.897 | 420.809 | 1.373    | 1.386      |
| 180  | 141  | 164   | 30     | 0.0003        | 200      | 250    | 0.24  | 0.08           | 423.703 | 423.249 | 422.249 | 422.129 | 1.454    | 1.120      |
| 157  | 143  | 165   | 30     | 0.0004        | 200      | 60     | 0.43  | 0.07           | 423.812 | 423.320 | 422.419 | 421.919 | 1.393    | 1.401      |
| 148  | 159  | 134   | 30     | 0.0003        | 200      | 150    | 0.28  | 0.07           | 422.530 | 422.125 | 421.205 | 421.005 | 1.325    | 1.120      |
| 144  | 164  | 131   | 8      | 0.0005        | 200      | 250    | 0.27  | 0.10           | 423.249 | 423.249 | 422.129 | 422.097 | 1.120    | 1.152      |
| 181  | 165  | 144   | 8      | 0.0005        | 200      | 250    | 0.27  | 0.10           | 423.320 | 423.228 | 421.919 | 421.887 | 1.401    | 1.341      |
| 88   | 80   | 81    | 29     | 0.0017        | 200      | 80     | 0.60  | 0.15           | 422.316 | 421.995 | 421.102 | 420.740 | 1.214    | 1.256      |
| 90   | 81   | 82    | 30     | 0.0018        | 200      | 80     | 0.62  | 0.16           | 421.995 | 421.625 | 420.740 | 420.365 | 1.256    | 1.261      |
| 91   | 82   | 83    | 26     | 0.0020        | 200      | 80     | 0.63  | 0.16           | 421.625 | 421.329 | 420.365 | 420.040 | 1.261    | 1.290      |
| 105  | 96   | 98    | 30     | 0.0015        | 200      | 70     | 0.61  | 0.14           | 422.223 | 422.295 | 421.101 | 420.672 | 1.122    | 1.623      |
| 107  | 98   | 99    | 16     | 0.0016        | 200      | 70     | 0.62  | 0.14           | 422.295 | 422.195 | 420.672 | 420.444 | 1.623    | 1.751      |
| 108  | 99   | 100   | 30     | 0.0102        | 200      | 250    | 0.66  | 0.50           | 422.195 | 421.652 | 420.444 | 420.324 | 1.751    | 1.328      |
| 109  | 100  | 101   | 30     | 0.0104        | 200      | 250    | 0.67  | 0.51           | 421.652 | 421.456 | 420.324 | 420.204 | 1.328    | 1.252      |
| 110  | 101  | 102   | 30     | 0.0110        | 200      | 250    | 0.67  | 0.52           | 421.456 | 421.452 | 420.204 | 420.084 | 1.252    | 1.368      |
| 112  | 102  | 103   | 28     | 0.0111        | 200      | 250    | 0.68  | 0.53           | 421.452 | 421.449 | 420.084 | 419.972 | 1.368    | 1.477      |
| 113  | 103  | 83    | 27     | 0.0117        | 200      | 250    | 0.68  | 0.54           | 421.449 | 421.329 | 419.972 | 419.864 | 1.477    | 1.465      |
| 143  | 131  | 132   | 30     | 0.0008        | 200      | 250    | 0.32  | 0.13           | 423.249 | 423.390 | 422.097 | 421.977 | 1.152    | 1.413      |
| 145  | 132  | 133   | 30     | 0.0009        | 200      | 250    | 0.33  | 0.14           | 423.390 | 422.477 | 421.477 | 421.357 | 1.913    | 1.120      |
| 146  | 133  | 134   | 23     | 0.0010        | 200      | 250    | 0.35  | 0.15           | 422.477 | 422.125 | 421.097 | 421.005 | 1.380    | 1.120      |

 Table 5.9 (continued)

| Pipe | Node | e no. | Length | Design        | Diameter | Slope  | Vn    | d              | Ground  | d Level | Invert  | Level   | Cover d | lepths (m) |
|------|------|-------|--------|---------------|----------|--------|-------|----------------|---------|---------|---------|---------|---------|------------|
| No.  | Up   | Down  | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up      | Down    | Up      | Down    | Up      | Down       |
| 147  | 134  | 135   | 26     | 0.0016        | 200      | 70     | 0.62  | 0.14           | 422.125 | 422.077 | 421.005 | 420.634 | 1.120   | 1.443      |
| 149  | 135  | 136   | 14     | 0.0017        | 200      | 80     | 0.60  | 0.15           | 422.077 | 422.100 | 420.634 | 420.459 | 1.443   | 1.641      |
| 150  | 136  | 137   | 30     | 0.0018        | 200      | 80     | 0.62  | 0.15           | 422.100 | 422.264 | 420.459 | 420.084 | 1.641   | 2.180      |
| 151  | 137  | 138   | 30     | 0.0020        | 200      | 80     | 0.63  | 0.16           | 422.264 | 423.006 | 420.084 | 419.709 | 2.180   | 3.297      |
| 152  | 138  | 139   | 30     | 0.0021        | 200      | 80     | 0.64  | 0.16           | 423.006 | 423.260 | 419.709 | 419.334 | 3.297   | 3.926      |
| 159  | 144  | 145   | 34     | 0.0052        | 200      | 200    | 0.61  | 0.33           | 423.228 | 423.172 | 421.591 | 421.421 | 1.637   | 1.751      |
| 160  | 145  | 146   | 34     | 0.0059        | 200      | 200    | 0.63  | 0.35           | 423.172 | 422.686 | 421.421 | 421.251 | 1.751   | 1.435      |
| 161  | 146  | 147   | 14     | 0.0142        | 200      | 250    | 0.71  | 0.61           | 422.686 | 422.730 | 421.251 | 421.195 | 1.435   | 1.535      |
| 162  | 147  | 148   | 30     | 0.0144        | 200      | 250    | 0.71  | 0.61           | 422.730 | 422.931 | 421.195 | 421.075 | 1.535   | 1.856      |
| 163  | 148  | 149   | 30     | 0.0146        | 200      | 250    | 0.72  | 0.62           | 422.931 | 423.160 | 421.075 | 420.955 | 1.856   | 2.205      |
| 164  | 149  | 139   | 30     | 0.0147        | 200      | 250    | 0.72  | 0.62           | 423.160 | 423.260 | 420.955 | 420.835 | 2.205   | 2.425      |
| 92   | 83   | 84    | 22     | 0.0138        | 200      | 250    | 0.71  | 0.60           | 421.329 | 421.394 | 419.864 | 419.776 | 1.465   | 1.618      |
| 76   | 84   | 69    | 26     | 0.0142        | 200      | 250    | 0.71  | 0.61           | 421.394 | 421.242 | 419.776 | 419.672 | 1.618   | 1.570      |
| 153  | 139  | 87    | 30     | 0.0173        | 200      | 250    | 0.74  | 0.69           | 423.260 | 423.038 | 419.334 | 419.214 | 3.926   | 3.824      |
| 75   | 69   | 70    | 30     | 0.0165        | 200      | 250    | 0.73  | 0.67           | 421.242 | 421.442 | 419.672 | 419.552 | 1.570   | 1.890      |
| 77   | 70   | 52    | 17     | 0.0166        | 200      | 250    | 0.73  | 0.67           | 421.442 | 421.647 | 419.552 | 419.484 | 1.890   | 2.163      |
| 96   | 87   | 88    | 26     | 0.0174        | 200      | 250    | 0.74  | 0.69           | 423.038 | 422.528 | 419.214 | 419.110 | 3.824   | 3.418      |
| 97   | 88   | 140   | 30     | 0.0187        | 200      | 250    | 0.75  | 0.73           | 422.528 | 422.130 | 419.110 | 418.990 | 3.418   | 3.140      |
| 154  | 140  | 54    | 3      | 0.0204        | 200      | 150    | 0.94  | 0.65           | 422.130 | 422.022 | 418.990 | 418.970 | 3.140   | 3.052      |
| 56   | 52   | 163   | 6      | 0.0184        | 200      | 250    | 0.74  | 0.72           | 421.647 | 421.647 | 419.484 | 419.460 | 2.163   | 2.187      |
| 179  | 163  | 53    | 30     | 0.0185        | 200      | 250    | 0.75  | 0.72           | 421.647 | 421.930 | 419.460 | 419.340 | 2.187   | 2.590      |
| 57   | 53   | 54    | 30     | 0.0187        | 200      | 250    | 0.75  | 0.73           | 421.930 | 422.022 | 419.340 | 419.220 | 2.590   | 2.802      |
| 58   | 54   | 55    | 30     | 0.0392        | 250      | 200    | 0.97  | 0.75           | 422.022 | 421.804 | 418.970 | 418.820 | 3.052   | 2.984      |

 Table 5.9 (continued)

| Pipe<br>No. | Node no. |      | Length | Design        | Diameter | Slope  | Vn    | d              | Ground Level |         | Invert Level |         | Cover depths (m) |       |
|-------------|----------|------|--------|---------------|----------|--------|-------|----------------|--------------|---------|--------------|---------|------------------|-------|
|             | Up       | Down | (m)    | flow<br>(m/s) | (mm)     | (1 in) | (m/s) | $\overline{D}$ | Up           | Down    | Up           | Down    | Up               | Down  |
| 59          | 55       | 56   | 30     | 0.0394        | 250      | 200    | 0.97  | 0.75           | 421.804      | 421.930 | 418.820      | 418.670 | 2.984            | 3.260 |
| 60          | 56       | 57   | 12     | 0.0394        | 250      | 200    | 0.97  | 0.75           | 421.930      | 421.608 | 418.670      | 418.610 | 3.260            | 2.998 |
| 61          | 57       | 39   | 22     | 0.0400        | 300      | 250    | 0.92  | 0.59           | 421.608      | 421.610 | 418.610      | 418.522 | 2.998            | 3.088 |
| 41          | 39       | 0    | 15     | 0.0569        | 300      | 250    | 0.98  | 0.75           | 421.610      | 421.610 | 418.522      | 418.462 | 3.088            | 3.148 |

 Table 5.9 (continued)

In this study, an optimization procedure has been introduced for the optimal layout and component size determination of a sewer network. An algorithm 'Generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow CQ' is introduced to find a predefined number of layouts of a base sewer network in order of increasing total cumulative discharge CQ.

After the layouts are sequenced, a modified PSO algorithm is applied to optimally size sewer components of the sewer system. The proposed methods for optimal layout and component size determination were applied on three sewer networks (Sudarshanpura, Bajaran and Laxmangarh) design.

The results indicated that the layout having minimum CQ has the minimum optimal cost and the optimal cost of sewer layout generally increases with the CQ of layout. Irrespective of the shape of the area, the layout which gives the least cumulative flow gives the optimal cost. It is also seen that the proposed Modified PSO algorithm optimal solution was better as compared to Original PSO algorithm in all the layouts.

The optimal cost of the Original PSO is Rs.  $8.473 \times 10^6$ ,  $8.592 \times 10^6$  and  $8.956 \times 10^6$  whereas that of the Modified PSO is reduced to Rs.  $8.371 \times 10^6$ ,  $8.455 \times 10^6$  and  $8.825 \times 10^6$ , respectively for Sudarshanpura, Bajaran and Laxmangarh sewer networks.

By applying an optimization procedure during the design of a sewer system substantial cost savings can be realized. The results showed the ability of the proposed methods to optimally solve the problem of the layout and component size determination of sewer networks.

## **Future Scope of Work**

Based on the investigations carried out in this thesis, the following suggestions are made for future research work in this area:

- i. This problem can also be done using different optimization techniques such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), Tabu search, etc. and results can be compared.
- ii. Optimization of sewerage system with or without intermediate pumping station can be done and results can be compared.
- iii. Selection of the optimal location of a sewage pumping station can be determined.

## References

- Afshar, M.H., 2010. A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: Constrained and unconstrained approach. *Advances in Engineering Software*, 41 (2), 188–195.
- Afshar, M.H. and Mariño, M.A., 2006. Application of an ant algorithm for layout optimization of tree networks. *Engineering Optimization*, 38 (3), 353–369.
- Afshar, M.H., Shahidi, M., Rohani, M., and Sargolzaei, M., 2011. Application of cellular automata to sewer network optimization problems. *Scientia Iranica*, 18 (3 A), 304–312.
- Al-kazemi, B. and Mohan, C.K., 2002. Multi-phase discrete particle swarm optimization. In: Fourth International Workshop on Frontiers in Evolutionary Algorithms.
- Argaman, Y., Shamir, U., and Spivak, E., 1973. Design of Optimal Sewerage Systems. Journal of the Environmental Engineering Division, ASCE, 99 (5), 703–716.
- Biswas, B., Basuli, K., Naskar, S., Chakraborti, S., and Sarma, S.S., 2012. A combinatorial algorithm to generate all spanning trees of a weighted graph in order of increasing cost. *In: arXiv preprint arXiv:1209.4206*.
- Botrous, A., El-Hattab, I., and Dahab, M., 2000. Design of wastewater collection networks using dynamic programming optimization technique. In: ASCE Nat. Conf. on Environmental and pipeline Engineering, Kansas City, MO, United States of America, American Society of Civil Engineers. 503–512.
- Butler, D. and Davies, J.W., 2004. Urban drainage. London, UK: Spon Press.
- Clark, J. and Holton, D.A., 1995. A First Look at Graph Theory. New Delhi, India: Allied Publishers.
- Dajani, J.S. and Hasit, Y., 1974. Capital Cost Minimization of Drainage Networks. Journal of the Environmental Engineering Division, ASCE, 100 (2), 325–337.
- Deo, N., 2005. Graph Theory with Applications to engineering and Computer Science.

New Delhi, India: Prentice Hall of India.

- Desher, D.P. and Davis, P.K., 1986. Designing Sanitary Sewers with Microcomputers. Journal of Environmental Engineering, ASCE, 112 (6), 993–1007.
- Diogo, A.F. and Graveto, V.M., 2006. Optimal Layout of Sewer Systems: A Deterministic versus a Stochastic Model. *Journal of Hydraulic Engineering*, ASCE, 132 (9), 927–943.
- Eberhart, R.C. and Shi, Y., 1998. Comparison between genetic algorithms and particle swarm optimization. *In: In Evolutionary Programming VII*. Springer Berlin Heidelberg,Germany, 611–616.
- Elimam, A.A., Charalambous, C., and Ghobrial, F.H., 1989. Optimum Design of Large Sewer Networks. *Journal of Environmental Engineering*, ASCE, 115 (6), 1171–1190.
- Fournier, J.C., 2009. *Graphs Theory and Applications: With Exercises and Problems*. Hoboken, NJ, USA, John Wiley & Sons.
- Gidley, J.S., 1986. Optimal Design of Sanitary Sewers. *In* Proc. 4<sup>th</sup> ASCE Conf. on *Computing in Civil Engineering, Boston, MA, USA, pp.* 162–177.
- Guo, Y., Walters, G.A., Khu, S.T., and Keedwell, E., 2007. A novel cellular automata based approach to storm sewer design. *Engineering Optimization*, 39 (3), 345– 364.
- Guo, Y., Walters, G.A., and Savic, D., 2008. Optimal design of storm sewer networks: Past, present and future. In: Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK. Vol. 31.
- Guo, Y., Walters, G.A., Khu, S.T., and Keedwell, E.C., 2008. Efficient Multiobjective Storm Sewer Design Using Cellular Automata and Genetic Algorithm Hybrid. *Journal of Water Resources Planning and Management*, ASCE, 134 (6), 511– 515.
- Gupta, A., Mehndiratta, S.L., and Khanna, P., 1983. Gravity Wastewater Collection Systems Optimization. *Journal of Environmental Engineering*, 109 (5), 1195– 1209.

- Gupta, J.M., Khanna, P., and Agarwal, S.K., 1976. Optimal Design of Wastewater Collection Systems. *Journal of the Environmental Engineering Division*, ASCE, 102 (5), 1029–1041.
- Haghighi, A., 2013. Loop-by-Loop Cutting Algorithm to Generate Layouts for Urban Drainage Systems. Journal of Water Resources Planning and Management, ASCE, 139 (6), 693–703.
- Haghighi, A. and Bakhshipour, A.E., 2012. Optimization of Sewer Networks Using an Adaptive Genetic Algorithm. *Water Resources Management*, 26 (12), 3441– 3456.
- Haghighi, A. and Bakhshipour, A.E., 2015. Reliability-based layout design of sewage collection systems in flat areas. *Urban Water Journal*, (May), 1–13.
- Izquierdo, J., Montalvo, I., Pérez, R., and Fuertes, V.S., 2008. Design optimization of wastewater collection networks by PSO. *Computers and Mathematics with Applications*, 56 (3), 777–784.
- Jin, Y.X., Cheng, H.Z., Yan, J.Y., and Zhang, L., 2007. New discrete method for particle swarm optimization and its application in transmission network expansion planning. *Electric Power Systems Research*, 77 (3-4), 227–233.
- Kapoor, S. and Ramesh, H., 1995. Algorithms for Enumerating All Spanning Trees of Undirected and Weighted Graphs. SIAM (Society for Industrial and Applied Mathematics) Journal on Computing, 24 (2), 247–265.
- Kapoor, S. and Ramesh, H., 2000. An Algorithm for Enumerating All Spanning Trees of a Directed Graph. *Algorithmica*, 27 (2), 120–130.
- Karovic, O. and Mays, L.W., 2014. Sewer System Design Using Simulated Annealing in Excel. Water Resources Management, 28 (13), 4551–4565.
- Kennedy, J. and Eberhart, R., 1995. Particle swarm optimization. In: IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, IV. 1942–1948.
- Kulkarni, V.S. and Khanna, P., 1985. Pumped Wastewater Collection Systems Optimization. *Journal of Environmental Engineering*, ASCE, 111 (5), 589–601.

- Li, G. and Matthew, R.G.S., 1990. New Approach for Optimization of Urban Drainage Systems. *Journal of Environmental Engineering*, ASCE, 116 (5), 927– 944.
- Liang, L.Y., Thompson, R.G., and Young, D.M., 2000. *Designing Wastewater Collection Systems Using Genetic Algorithms*. Berlin, Heidelberg, Germany: Springer.
- Liang, L.Y., Thompson, R.G., and Young, D.M., 2004. Optimising the design of sewer networks using genetic algorithms and tabu search. *Engineering, Construction and Architectural Management*, 11 (2), 101–112.
- Liebman, J.C., 1967. A Heuristic Aid for the Design of Sewer Networks. *Journal of the Sanitary Engineering Division*, 93 (4), 81–90.
- Manual on sewerage and sewage treatment Systems, 2013. *Central Public Health and Environmental Engineering Organisation*. Ministry of Urban Development, New Delhi, India.
- Mays, L.W. and Wenzel, H.G., 1976. Optimal design of multilevel branching sewer systems. *Water Resources Research*, 12 (5), 913–917.
- Mays, L.W. and Yen, B.C., 1975. Optimal cost design of branched sewer systems. *Water Resources Research*, 11 (1), 37–47.
- Moeini, R. and Afshar, M.H., 2012. Layout and size optimization of sanitary sewer network using intelligent ants. *Advances in Engineering Software*, 51, 49–62.
- Montalvo, I., Izquierdo, J., Pérez, R., and Tung, M.M., 2008. Particle Swarm Optimization applied to the design of water supply systems. *Computers & Mathematics with Applications*, 56 (3), 769–776.
- Montalvo, I., Izquierdo, J., Pérez-García, R., and Herrera, M., 2010. Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. *Engineering Applications of Artificial Intelligence*, 23 (5), 727–735.
- Montalvo, I., Izquierdo, J., Schwarze, S., and Pérez-García, R., 2010. Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. *Mathematical and Computer Modelling*, 52 (7-

- Mu, A., Cao, D., and Wang, X., 2009. A Modified Particle Swarm Optimization Algorithm. *Natural Science*, 1 (2), 151–155.
- Naskar, S., Basuli, K., and Sarma, S. Sen, 2010. Generation of all spanning trees a combinatorial approach. *Journal of Global Reasearch in Computer Science*, 1 (4).
- Nzewi, E.U., Gray, D.D., and Houck, M.H., 1985. Optimal design program for gravity sanitary sewers. *Civil Engineering Systems*, 2 (3), 132–141.
- Ostadrahimi, L., Mariño, M. a., and Afshar, A., 2012. Multi-reservoir Operation Rules: Multi-swarm PSO-based Optimization Approach. *Water Resources Management*, 26 (2), 407–427.
- Saatci, A., 1990. Velocity and Depth of Flow Calculations in Partially Filled Pipes. *Journal of environmental engineering*, ASCE, 116 (6), 1202–1208.
- Schedule of Rates, 2013. Rajasthan Urban Infrastructure Development Project (RUIDP), Government of Rajasthan, Jaipur, Rajasthan, India.
- Schladweiler, J.C., 2015. Tracking Down the Roots Chronology [online]. Available from: http://www.sewerhistory.org/chronos/roots.htm [Accessed 17 Aug 2015].
- Shi, Y. and Eberhart, R., 1998. A modified particle swarm optimizer. In: IEEE International Conference on Evolutionary Computation. Anchorage, AK, USA: IEEE, 69–73.
- Sörensen, K. and Janssens, G.K., 2005. An algorithm to generate all spanning trees of a graph in order of increasing cost. *Pesquisa Operacional*, 25 (2), 219–229.
- Tekeli, S. and Belkaya, H., 1986. Computerized Layout Generation for Sanitary Sewers. Journal of Water Resources Planning and Management, 112 (4), 500– 515.
- Voss, M.S., 2003. Social programming using functional swarm optimization. *In: IEEE Swarm Intelligence Symposium, Indiana, USA*. 103–109.
- Walters, G.A., 1985. the Design of the Optimal Layout for a Sewer Network. *Engineering Optimization*, 9 (1), 37–50.

- Walters, G.A., 1992. A review of pipe network optimization techniques. In: B. Coulbeck and E.P. Evans, eds. Coulbeck, B. and Evans, E. (eds), Proc. Conf. on Pipeline Systems, Manchester, UK. Dordrecht, 3–13.
- Walters, G.A. and Lohbeck, T., 1993. Optimal Layout of Tree Networks Using Genetic Algorithms. *Engineering Optimization*, 22 (1), 27–48.
- Walters, G.A. and Smith, D.K., 1995. Evolutionary Design Algorithm for Optimal Layout of Tree Networks. *Engineering Optimization*, 24 (4), 261–281.
- Weng, H.T. and Liaw, S.L., 2007. An optimization model for urban sewer system hydraulic design. *Journal of the Chinese Institute of Engineers*, 30 (1), 31–42.
- Yamada, T., Kataoka, S., and Watanabe, K., 2010. Listing all the minimum spanning trees in an undirected graph. *International Journal of Computer Mathematics*, 87 (14), 3175–3185.
- Yeh, S.-F., Chu, C.-W., Chang, Y.-J., and Lin, M.-D., 2011. Applying tabu search and simulated annealing to the optimal design of sewer networks. *Engineering Optimization*, 43 (2), 159–174.

Algorithm: Generation of a predefined number of spanning tree in order of increasing weight and sequencing them in ascending order of total cumulative flow CQ

#include<iostream>

#include<set>

#include<algorithm>

#include<fstream>

#include<vector>

#include<queue>

#include<stack>

#include<map>

using namespace std;

#define N 1000

fstream fin;

fstream fout;

fstream flow;

struct edge{

int x, y, w;

edge(int xx, int yy, int ww){

```
x = xx, y = yy, w = ww;
```

```
}
```

};

friend bool operator<(const struct edge& e1, const struct edge& e2){

```
if(e1.w == e2.w)
     {
       return pair<int,int>(e1.x,e1.y) < pair<int,int>(e2.x,e2.y);
     }
               return e1.w < e2.w;
       }
set<set<edge>> treesVisited;
double contribution[N];
```

```
int parent[N];
int height[N];
map<double,vector<vector<double>>> flowSortedMsts;
int fp(int x){
       if(parent[x] == x) return x;
       return parent[x] = fp(parent[x]);
}
edge replacement(set<edge>&E1, set<edge>E2, edge e){
       int n = E1.size()+1;
       for(int i=0;i<n;i++) parent[i] = i, height[i] = 1;
       set<edge>::iterator it;
       for(it=E1.begin(); it!=E1.end(); it++){
              if(it->x == e.x && it->y == e.y) continue;
              int x=it->x, y=it->y;
              int px = fp(x), py = fp(y);
              if(px == py) continue;
              if(height[px] > height[py]){
                      parent[py] = px;
                      height[px]++;
               }
              else{
                      parent[px] = py;
                      height[py]++;
               }
       }
       edge tmp = edge(-1,-1,-1);
       int mn = (int)2e9;
       for(it=E2.begin();it!=E2.end();it++){
              if(it->x == e.x && it->y == e.y) continue;
              // Replacement shouldn't be of lesser weight
              if(it->w < e.w) continue;
              if(fp(it-x) != fp(it-y) \&\& (it-w) < mn)
                      mn = it - w;
                      tmp = *it;
```

```
}
}
return tmp;
```

```
}
```

```
pair<edge, edge> nextMST(set<edge>E1, set<edge>E2){
       int mstWeight = 0, n = E1.size()+1;
       set<edge>::iterator it;
       for(it=E1.begin(); it != E1.end(); it++) mstWeight += (it->w);
       int mn = (int)(2e9);
       edge prev = edge(-1, -1, -1), curr = edge(-1, -1, -1);
       for(it=E1.begin(); it!=E1.end(); it++){
              edge tmp = replacement(E1, E2, *it);
              int delta = tmp.w - (it->w);
    if(delta == 0){
       set<edge> copyOfE1(E1);
       copyOfE1.erase(*it);
       copyOfE1.insert(tmp);
       if(treesVisited.find(copyOfE1) == treesVisited.end()){
         mn = delta;
         prev = *it; curr = tmp;
         break:
       }
     }
              if (delta > 0 \&\& delta < mn)
                      mn = delta;
                      prev = *it; curr = tmp;
               }
       }
       if(prev.x>=0)
         fout<<"Weight of next spanning tree --> "<<mstWeight+mn<<endl;
```

// If no spanning tree of same length found, clear set of spanning trees for previous length

```
if(mn != 0){
treesVisited.clear();
```

}

```
// Insert this spanning tree for current new length in the set
set<edge> copyOfE1(E1);
copyOfE1.erase(prev);
copyOfE1.insert(curr);
treesVisited.insert(copyOfE1);
return pair<edge, edge>(prev, curr);
}
```

```
set<edge> genMST(set<edge>&E, int n){
       set<edge>MST;
       for(int i=0;i<n;i++) parent[i] = i, height[i]=1;</pre>
       set<edge>::iterator it;
       int cnt = 0;
       for(it=E.begin();it!=E.end();it++){
               if(cnt == n-1) break;
               int x = it \rightarrow x, y = it \rightarrow y;
               int px=fp(x), py=fp(y);
               if(px != py){
                       cnt++;
                       MST.insert(*it);
                       if(height[px]>height[py]){
                               parent[py] = px;
                               height[px]++;
                       }
                       else{
                               parent[px] = py;
                               height[py]++;
                       }
                }
        }
       int mstWeight=0;
       for(it=MST.begin(); it != MST.end(); it++) mstWeight += (it->w);
```

```
fout<<"MST Weight : "<<mstWeight<<endl;</pre>
```

return MST;

}

```
void calculateFlow(set<edge> spanningTree, int sinkNode, int totalNodes) {
  vector<vector<int> > tree(totalNodes+1,vector<int>(totalNodes+1,-1));
  vector<vector<int> > dag(totalNodes+1,vector<int>(totalNodes+1,-1));
  vector<vector<double>
```

>

```
edgeFlow(totalNodes+1,vector<double>(totalNodes+1,0.));
```

```
set<edge>::iterator it;
```

```
for(it=spanningTree.begin(); it!=spanningTree.end();it++){
```

```
tree[it->x][it->y] = it->w;
```

```
tree[it->y][it->x] = it->w;
```

```
}
```

vector<bool> visitedBfs(totalNodes+1,false);

// BFS Queue

queue<int> q; q.push(sinkNode);

int toNode;

```
// BFS starts
```

while(!q.empty())

{

```
toNode = q.front();
```

```
q.pop();
```

```
visitedBfs[toNode] = true;
```

```
for(int fromNode=0;fromNode<totalNodes;fromNode++){
  if(fromNode==toNode) continue;
  if(visitedBfs[fromNode]) continue;
  if(tree[fromNode][toNode] != -1){
    q.push(fromNode);
    dag[fromNode][toNode] = 1;
}</pre>
```

```
}
}
vector<double> finalContribution(N,0);
for(int i=0;i<N;i++){
    finalContribution[i] = contribution[i];
}</pre>
```

vector<bool> visitedDfs(totalNodes+1,false);

```
// DFS Stack
```

```
stack<int> s;
s.push(sinkNode);
visitedDfs[sinkNode] = true;
```

```
// DFS starts
```

```
while(!s.empty()){
  toNode = s.top();
  bool hasUnvisitedAdjacentNode = false;
  for(int fromNode=0;fromNode<totalNodes;fromNode++){</pre>
    if(fromNode==toNode) continue;
    if(dag[fromNode][toNode] == 1 && !visitedDfs[fromNode]){
       hasUnvisitedAdjacentNode = true;
       s.push(fromNode);
       visitedDfs[fromNode] = true;
       break;
    }
  }
  if(!hasUnvisitedAdjacentNode){
    int fromNode = s.top();
    s.pop();
    if(s.empty())
       break;
    toNode = s.top();
```

```
for(int i=0;i<totalNodes;i++){</pre>
         if(i==fromNode) continue;
         finalContribution[fromNode] += edgeFlow[i][fromNode];
       }
       edgeFlow[fromNode][toNode] = finalContribution[fromNode];
     }
  }
  double totalFlowSum = 0;
  for(int from=0;from<totalNodes;from++){</pre>
     for(int to=0;to<totalNodes;to++){</pre>
       if(edgeFlow[from][to]>0.){
              totalFlowSum+=edgeFlow[from][to];
                             flow << from << " " << to << " " <<
edgeFlow[from][to] <<"\n";
       }
              }
  }
  flowSortedMsts[totalFlowSum] = edgeFlow;
       return;
}
int main(){
  fin.open ("input.txt", std::fstream::in);
       int n, nE, k, x, y, w, sinkNode;
       fin >> n >> nE >> k;
       set<edge>E1, E2;
       for(int i=0;i<nE;i++){</pre>
              fin >> x >> y >> w;
              E2.insert(edge(x,y,w));
       }
       fin >> sinkNode;
```
```
for(int i=0;i<n;i++){
    fin >> contribution[i];
}
```

```
flow.open ("flow.txt", std::fstream::out);
fout.open ("output.txt", std::fstream::out);
```

```
E1 = genMST(E2, n);
fout<<"MST follows : \n";
set<edge>::iterator it;
```

```
for(it=E1.begin(); it!=E1.end();it++){ fout << it->x << " " << it->y << "\n";
```

}

```
flow << "Discharge volume in MST \n";
```

calculateFlow(E1,sinkNode,n);

int cnt = 2;

while(k--){

```
pair<edge, edge>ret = nextMST(E1, E2);
edge e1 = ret.first, e2 = ret.second;
if(e1.x <0 || e1.y<0 || e2.x<0 || e2.y<0)
{
  fout<<"No MORE Spanning trees left\n";
  break;
```

```
}
```

```
fout<<"To get next spanning tree which is number "<< cnt << ", REMOVE EDEGE --> "<<e1.x << " " << e1.y << " and INSERT EDGE --> " << e2.x << " " << e2.y << " \n";
```

```
E1.erase(e1);
E1.insert(e2);
fout<<"Edges in this Spanning Tree : \n";
for(it=E1.begin(); it!=E1.end();it++){
fout << it->x << " " << it->y << "\n";
```

```
}
         flow << "Discharge volume in Spanning Tree \n";
         calculateFlow(E1,sinkNode,n);
     cnt++;
       }
       int flowSortedNo = 1;
       fout<< "\nPrinting Sorted Spanning Trees in increasing order of Total Flow ----
\dots > n'';
               (map<double,vector<vector<double>
       for
                                                      >
                                                               >::iterator
                                                                            i
                                                                                   =
flowSortedMsts.begin(); i != flowSortedMsts.end(); i++){
              fout << "Spanning Tree Number "<< flowSortedNo<<" w.r.t Total
Flow\n";
              fout<<"Total Discharge Flow --> "<<i->first<<"\n";
              vector<vector<double>>sTree = i->second;
              for(int from=0;from<n;from++){</pre>
                      for(int to=0;to<n;to++){</pre>
                             if(sTree[from][to]>0.){
                                    fout <\!\!< from <\!\!< " " <\!\!< to <\!\!< " " <\!\!<
sTree[from][to] <<"\n";
                             }
                      }
              }
              flowSortedNo++;
       }
       return 0;
}
```

|             | Node no. |      |               | Design<br>flow |          | N      | 1odified       | PSO  |                     |       | (        | Driginal | PSO            |      |                  |       |
|-------------|----------|------|---------------|----------------|----------|--------|----------------|------|---------------------|-------|----------|----------|----------------|------|------------------|-------|
| Pipe<br>no. |          |      | Length<br>(m) |                | Diameter | Slope  | V <sub>p</sub> | d/D  | Cover depths<br>(m) |       | Diameter | Slope    | $v_p$<br>(m/s) | d/D  | Cover depths (m) |       |
|             | Up       | Down |               | (111/8)        | (mm)     | (1 11) | (m/s)          |      | Up                  | Down  | (mm)     | (1 in)   | (m/s)          |      | Up               | Down  |
| 11          | 10       | 9    | 20            | 0.0004         | 200      | 250    | 0.27           | 0.10 | 1.120               | 1.150 | 200      | 250      | 0.27           | 0.10 | 1.120            | 1.150 |
| 21          | 18       | 19   | 12            | 0.0003         | 200      | 250    | 0.25           | 0.09 | 1.120               | 1.363 | 200      | 250      | 0.25           | 0.09 | 1.120            | 1.363 |
| 30          | 28       | 27   | 30            | 0.0004         | 200      | 250    | 0.25           | 0.09 | 1.730               | 1.120 | 200      | 60       | 0.41           | 0.07 | 1.350            | 1.120 |
| 38          | 35       | 25   | 12            | 0.0004         | 200      | 250    | 0.25           | 0.09 | 1.657               | 1.120 | 200      | 250      | 0.25           | 0.09 | 1.657            | 1.120 |
| 43          | 40       | 39   | 14            | 0.0004         | 200      | 250    | 0.25           | 0.09 | 1.120               | 1.406 | 200      | 250      | 0.25           | 0.09 | 1.120            | 1.406 |
| 48          | 44       | 43   | 30            | 0.0004         | 200      | 250    | 0.25           | 0.09 | 1.490               | 1.120 | 200      | 250      | 0.25           | 0.09 | 1.490            | 1.120 |
| 52          | 48       | 30   | 24            | 0.0005         | 200      | 60     | 0.45           | 0.08 | 1.570               | 1.120 | 200      | 250      | 0.28           | 0.11 | 1.874            | 1.120 |
| 55          | 51       | 49   | 72            | 0.0009         | 200      | 250    | 0.33           | 0.14 | 1.237               | 1.120 | 200      | 250      | 0.33           | 0.14 | 1.237            | 1.120 |
| 59          | 54       | 36   | 24            | 0.0005         | 200      | 250    | 0.28           | 0.11 | 1.419               | 1.120 | 200      | 60       | 0.45           | 0.08 | 1.120            | 1.125 |
| 62          | 59       | 55   | 30            | 0.0006         | 200      | 250    | 0.29           | 0.11 | 1.120               | 1.360 | 200      | 250      | 0.29           | 0.11 | 1.120            | 1.360 |
| 66          | 60       | 57   | 32            | 0.0006         | 200      | 250    | 0.30           | 0.12 | 1.120               | 1.568 | 200      | 250      | 0.30           | 0.12 | 1.120            | 1.568 |
| 69          | 61       | 58   | 143           | 0.0518         | 300      | 250    | 0.97           | 0.70 | 1.220               | 2.897 | 300      | 250      | 0.97           | 0.70 | 1.220            | 2.897 |
| 72          | 64       | 63   | 33            | 0.0007         | 200      | 250    | 0.30           | 0.12 | 1.248               | 1.120 | 200      | 250      | 0.30           | 0.12 | 1.248            | 1.120 |
| 79          | 73       | 72   | 30            | 0.0006         | 200      | 250    | 0.29           | 0.11 | 1.125               | 1.120 | 200      | 250      | 0.29           | 0.11 | 1.125            | 1.120 |
| 85          | 75       | 74   | 76            | 0.0010         | 200      | 250    | 0.34           | 0.15 | 1.120               | 1.229 | 200      | 250      | 0.34           | 0.15 | 1.120            | 1.229 |
| 99          | 89       | 88   | 30            | 0.0504         | 300      | 250    | 0.96           | 0.68 | 1.220               | 1.275 | 300      | 250      | 0.96           | 0.68 | 1.220            | 1.275 |

The Comparison of Results of the Modified PSO with the Original PSO for Network 2

Table (Continued)

|             |          | Length<br>(m) | Design<br>flow |          | N     | 1odified | PSO     |             | Original PSO |          |       |             |       |             |              |       |
|-------------|----------|---------------|----------------|----------|-------|----------|---------|-------------|--------------|----------|-------|-------------|-------|-------------|--------------|-------|
| Pipe<br>no. | Node no. |               |                | Diameter | Slope | $v_p$    | d/D     | Cover<br>(1 | depths<br>m) | Diameter | Slope | $v_p$ (m/s) | d/D   | Cover<br>(1 | depths<br>n) |       |
|             | Up       | Down          |                | (11/3)   | (mm)  | (1 11)   | (111/8) |             | Up           | Down     | (mm)  | (1 m)       | (m/s) |             | Up           | Down  |
| 101         | 91       | 90            | 33             | 0.0008   | 200   | 250      | 0.33    | 0.14        | 1.120        | 1.142    | 200   | 250         | 0.33  | 0.14        | 1.120        | 1.142 |
| 103         | 93       | 92            | 36             | 0.0005   | 200   | 250      | 0.27    | 0.10        | 1.120        | 1.239    | 200   | 250         | 0.27  | 0.10        | 1.120        | 1.239 |
| 112         | 102      | 101           | 30             | 0.0008   | 200   | 250      | 0.32    | 0.13        | 1.120        | 1.135    | 200   | 250         | 0.32  | 0.13        | 1.120        | 1.135 |
| 10          | 9        | 8             | 30             | 0.0007   | 200   | 60       | 0.50    | 0.09        | 1.320        | 1.120    | 200   | 60          | 0.50  | 0.09        | 1.320        | 1.120 |
| 29          | 27       | 26            | 30             | 0.0008   | 200   | 250      | 0.32    | 0.13        | 1.120        | 1.565    | 200   | 250         | 0.32  | 0.13        | 1.120        | 1.565 |
| 42          | 39       | 38            | 30             | 0.0006   | 200   | 250      | 0.29    | 0.11        | 1.406        | 1.221    | 200   | 250         | 0.29  | 0.11        | 1.406        | 1.221 |
| 71          | 63       | 62            | 33             | 0.0011   | 200   | 250      | 0.35    | 0.16        | 1.120        | 1.147    | 200   | 250         | 0.35  | 0.16        | 1.120        | 1.147 |
| 78          | 72       | 56            | 21             | 0.0011   | 200   | 250      | 0.36    | 0.16        | 1.171        | 1.120    | 200   | 250         | 0.36  | 0.16        | 1.171        | 1.120 |
| 98          | 88       | 87            | 30             | 0.0508   | 300   | 250      | 0.97    | 0.69        | 1.275        | 1.380    | 300   | 250         | 0.97  | 0.69        | 1.275        | 1.380 |
| 100         | 90       | 78            | 33             | 0.0013   | 200   | 60       | 0.60    | 0.12        | 1.142        | 1.387    | 200   | 250         | 0.37  | 0.17        | 1.293        | 1.120 |
| 104         | 92       | 94            | 30             | 0.0008   | 200   | 250      | 0.33    | 0.14        | 1.239        | 1.309    | 200   | 250         | 0.33  | 0.14        | 1.239        | 1.309 |
| 105         | 94       | 95            | 26             | 0.0012   | 200   | 250      | 0.36    | 0.16        | 1.309        | 1.408    | 200   | 250         | 0.36  | 0.16        | 1.309        | 1.408 |
| 111         | 101      | 100           | 30             | 0.0011   | 200   | 250      | 0.36    | 0.16        | 1.135        | 1.190    | 200   | 250         | 0.36  | 0.16        | 1.135        | 1.190 |
| 9           | 8        | 7             | 30             | 0.0011   | 200   | 60       | 0.57    | 0.11        | 1.705        | 1.120    | 200   | 60          | 0.57  | 0.11        | 1.705        | 1.120 |
| 28          | 26       | 25            | 27             | 0.0011   | 200   | 250      | 0.35    | 0.16        | 1.565        | 2.178    | 200   | 250         | 0.35  | 0.16        | 1.565        | 2.178 |
| 41          | 38       | 37            | 30             | 0.0011   | 200   | 100      | 0.49    | 0.13        | 1.221        | 1.141    | 200   | 250         | 0.36  | 0.16        | 1.380        | 1.120 |
| 70          | 62       | 58            | 24             | 0.0014   | 200   | 70       | 0.59    | 0.13        | 1.147        | 1.220    | 200   | 60          | 0.62  | 0.13        | 1.147        | 1.277 |
| 97          | 87       | 86            | 30             | 0.0511   | 300   | 250      | 0.97    | 0.69        | 1.380        | 1.320    | 300   | 250         | 0.97  | 0.69        | 1.380        | 1.320 |
| 110         | 100      | 99            | 30             | 0.0015   | 200   | 70       | 0.61    | 0.14        | 1.190        | 1.559    | 200   | 70          | 0.61  | 0.14        | 1.190        | 1.559 |
| 8           | 7        | 1             | 9              | 0.0012   | 200   | 60       | 0.59    | 0.12        | 1.235        | 1.120    | 200   | 60          | 0.59  | 0.12        | 1.235        | 1.120 |
| 27          | 25       | 24            | 30             | 0.0019   | 200   | 80       | 0.62    | 0.16        | 2.178        | 2.413    | 200   | 80          | 0.62  | 0.16        | 2.178        | 2.413 |
| 40          | 37       | 36            | 16             | 0.0013   | 200   | 250      | 0.38    | 0.18        | 1.151        | 1.120    | 200   | 250         | 0.38  | 0.18        | 1.151        | 1.120 |

Table (Continued)

|             | Node no. |      | Length<br>(m) | Design<br>flow |          | Original PSO |        |      |                     |       |          |        |             |      |             |              |
|-------------|----------|------|---------------|----------------|----------|--------------|--------|------|---------------------|-------|----------|--------|-------------|------|-------------|--------------|
| Pipe<br>no. |          |      |               |                | Diameter | Slope        | $v_p$  | d/D  | Cover depths<br>(m) |       | Diameter | Slope  | $v_p$ (m/s) | d/D  | Cover<br>(1 | depths<br>m) |
|             | Up       | Down |               | (11/3)         | (mm)     | (1 III)      | (11/8) |      | Up                  | Down  | (mm)     | (1 11) | (m/s)       |      | Up          | Down         |
| 68          | 58       | 57   | 33            | 0.0536         | 300      | 250          | 0.97   | 0.71 | 2.897               | 2.944 | 300      | 250    | 0.97        | 0.71 | 2.897       | 2.944        |
| 96          | 86       | 85   | 30            | 0.0515         | 300      | 250          | 0.97   | 0.69 | 1.465               | 1.220 | 300      | 250    | 0.97        | 0.69 | 1.465       | 1.220        |
| 109         | 99       | 98   | 30            | 0.0019         | 200      | 80           | 0.62   | 0.16 | 1.559               | 1.869 | 200      | 80     | 0.62        | 0.16 | 1.559       | 1.869        |
| 26          | 24       | 23   | 30            | 0.0022         | 200      | 100          | 0.61   | 0.18 | 2.413               | 2.523 | 200      | 100    | 0.61        | 0.18 | 2.413       | 2.523        |
| 39          | 36       | 34   | 7             | 0.0019         | 200      | 80           | 0.63   | 0.16 | 1.120               | 1.153 | 200      | 80     | 0.63        | 0.16 | 1.125       | 1.158        |
| 65          | 57       | 56   | 8             | 0.0545         | 300      | 250          | 0.98   | 0.72 | 2.944               | 2.881 | 300      | 250    | 0.98        | 0.72 | 2.944       | 2.881        |
| 95          | 85       | 84   | 30            | 0.0519         | 300      | 250          | 0.97   | 0.70 | 1.220               | 1.270 | 300      | 250    | 0.97        | 0.70 | 1.220       | 1.270        |
| 108         | 98       | 97   | 30            | 0.0023         | 200      | 100          | 0.61   | 0.18 | 1.869               | 2.029 | 200      | 100    | 0.61        | 0.18 | 1.869       | 2.029        |
| 25          | 23       | 22   | 30            | 0.0026         | 200      | 100          | 0.64   | 0.20 | 2.523               | 2.748 | 200      | 100    | 0.64        | 0.20 | 2.523       | 2.748        |
| 36          | 34       | 33   | 18            | 0.0023         | 200      | 60           | 0.73   | 0.16 | 1.153               | 1.303 | 200      | 100    | 0.61        | 0.19 | 1.158       | 1.188        |
| 64          | 56       | 55   | 25            | 0.0560         | 300      | 250          | 0.98   | 0.74 | 2.881               | 2.746 | 300      | 250    | 0.98        | 0.74 | 2.881       | 2.746        |
| 94          | 84       | 83   | 30            | 0.0523         | 300      | 250          | 0.97   | 0.70 | 1.275               | 1.220 | 300      | 250    | 0.97        | 0.70 | 1.275       | 1.220        |
| 107         | 97       | 96   | 30            | 0.0027         | 200      | 100          | 0.64   | 0.20 | 2.029               | 2.214 | 200      | 100    | 0.64        | 0.20 | 2.029       | 2.214        |
| 24          | 22       | 21   | 30            | 0.0030         | 200      | 125          | 0.61   | 0.22 | 2.748               | 2.863 | 200      | 125    | 0.61        | 0.22 | 2.748       | 2.863        |
| 35          | 33       | 32   | 30            | 0.0027         | 200      | 100          | 0.64   | 0.20 | 1.303               | 1.368 | 200      | 100    | 0.64        | 0.20 | 1.188       | 1.253        |
| 61          | 55       | 53   | 20            | 0.0570         | 300      | 250          | 0.98   | 0.75 | 2.746               | 2.896 | 300      | 250    | 0.98        | 0.75 | 2.746       | 2.896        |
| 93          | 83       | 82   | 30            | 0.0527         | 300      | 250          | 0.97   | 0.70 | 1.220               | 1.290 | 300      | 250    | 0.97        | 0.70 | 1.220       | 1.290        |
| 106         | 96       | 95   | 30            | 0.0030         | 200      | 125          | 0.61   | 0.22 | 2.214               | 2.419 | 200      | 125    | 0.61        | 0.22 | 2.214       | 2.419        |
| 23          | 21       | 20   | 30            | 0.0034         | 200      | 125          | 0.63   | 0.24 | 2.863               | 2.988 | 200      | 125    | 0.63        | 0.24 | 2.863       | 2.988        |
| 34          | 32       | 31   | 30            | 0.0031         | 200      | 125          | 0.62   | 0.23 | 1.368               | 1.243 | 200      | 125    | 0.62        | 0.23 | 1.253       | 1.128        |
| 92          | 82       | 81   | 30            | 0.0530         | 300      | 250          | 0.97   | 0.71 | 1.290               | 1.295 | 300      | 250    | 0.97        | 0.71 | 1.290       | 1.295        |
| 116         | 95       | 104  | 27            | 0.0046         | 200      | 150          | 0.65   | 0.29 | 2.419               | 2.529 | 200      | 150    | 0.65        | 0.29 | 2.419       | 2.529        |

Table (Continued)

|             | Node no. |      |               | Design<br>flow |          | N      | 1odified | PSO  |             | Original PSO |          |       |             |      |                    |       |
|-------------|----------|------|---------------|----------------|----------|--------|----------|------|-------------|--------------|----------|-------|-------------|------|--------------------|-------|
| Pipe<br>no. |          |      | Length<br>(m) |                | Diameter | Slope  | $v_p$    | d/D  | Cover<br>(1 | depths<br>m) | Diameter | Slope | $v_p$ (m/s) | d/D  | Cover depth<br>(m) |       |
|             | Up       | Down |               | (11/5)         | (mm)     | (1 11) | (11/8)   |      | Up          | Down         | (mm)     | (1 m) | (m/s)       |      | Up                 | Down  |
| 115         | 104      | 103  | 27            | 0.0049         | 200      | 150    | 0.66     | 0.30 | 2.529       | 2.644        | 200      | 150   | 0.66        | 0.30 | 2.529              | 2.644 |
| 22          | 20       | 19   | 18            | 0.0036         | 200      | 150    | 0.61     | 0.26 | 2.988       | 3.043        | 200      | 150   | 0.61        | 0.26 | 2.988              | 3.043 |
| 33          | 31       | 30   | 30            | 0.0035         | 200      | 125    | 0.64     | 0.24 | 1.243       | 1.133        | 200      | 125   | 0.64        | 0.24 | 1.230              | 1.120 |
| 91          | 81       | 80   | 10            | 0.0532         | 300      | 250    | 0.97     | 0.71 | 1.295       | 1.270        | 300      | 250   | 0.97        | 0.71 | 1.295              | 1.270 |
| 114         | 103      | 80   | 27            | 0.0052         | 200      | 200    | 0.61     | 0.33 | 2.644       | 2.724        | 200      | 200   | 0.61        | 0.33 | 2.644              | 2.724 |
| 14          | 19       | 12   | 30            | 0.0043         | 200      | 150    | 0.64     | 0.28 | 3.043       | 3.133        | 200      | 150   | 0.64        | 0.28 | 3.043              | 3.133 |
| 32          | 30       | 29   | 22            | 0.0043         | 200      | 150    | 0.64     | 0.28 | 1.223       | 1.120        | 200      | 150   | 0.64        | 0.28 | 1.223              | 1.120 |
| 90          | 80       | 79   | 31            | 0.0588         | 300      | 250    | 0.99     | 0.77 | 2.724       | 2.758        | 300      | 250   | 0.99        | 0.77 | 2.724              | 2.758 |
| 13          | 12       | 11   | 20            | 0.0046         | 200      | 150    | 0.65     | 0.29 | 3.133       | 2.476        | 200      | 150   | 0.65        | 0.29 | 3.133              | 2.476 |
| 31          | 29       | 17   | 30            | 0.0047         | 200      | 150    | 0.65     | 0.29 | 1.120       | 1.160        | 200      | 150   | 0.65        | 0.29 | 1.120              | 1.160 |
| 89          | 79       | 78   | 31            | 0.0592         | 300      | 250    | 0.99     | 0.78 | 2.758       | 2.587        | 300      | 250   | 0.99        | 0.78 | 2.758              | 2.587 |
| 7           | 11       | 6    | 30            | 0.0052         | 200      | 200    | 0.60     | 0.33 | 2.476       | 2.621        | 200      | 200   | 0.60        | 0.33 | 2.476              | 2.621 |
| 19          | 17       | 16   | 30            | 0.0052         | 200      | 200    | 0.61     | 0.33 | 1.160       | 1.175        | 200      | 200   | 0.61        | 0.33 | 1.160              | 1.175 |
| 88          | 78       | 77   | 13            | 0.0606         | 300      | 200    | 1.09     | 0.72 | 2.587       | 2.717        | 300      | 200   | 1.09        | 0.72 | 2.587              | 2.717 |
| 6           | 6        | 5    | 30            | 0.0055         | 200      | 200    | 0.62     | 0.34 | 2.621       | 2.676        | 200      | 200   | 0.62        | 0.34 | 2.621              | 2.676 |
| 18          | 16       | 15   | 30            | 0.0056         | 200      | 200    | 0.62     | 0.34 | 1.175       | 1.290        | 200      | 200   | 0.62        | 0.34 | 1.175              | 1.290 |
| 87          | 77       | 76   | 38            | 0.0611         | 300      | 200    | 1.09     | 0.72 | 2.717       | 2.842        | 350      | 250   | 1.03        | 0.59 | 2.717              | 2.804 |
| 5           | 5        | 4    | 30            | 0.0059         | 200      | 200    | 0.63     | 0.35 | 2.676       | 2.766        | 200      | 200   | 0.63        | 0.35 | 2.676              | 2.766 |
| 17          | 15       | 14   | 30            | 0.0060         | 200      | 200    | 0.63     | 0.36 | 1.290       | 1.415        | 200      | 200   | 0.63        | 0.36 | 1.290              | 1.415 |
| 86          | 76       | 74   | 38            | 0.0616         | 300      | 200    | 1.09     | 0.73 | 2.842       | 2.987        | 350      | 250   | 1.03        | 0.60 | 2.804              | 2.911 |
| 4           | 4        | 3    | 10            | 0.0060         | 200      | 60     | 0.97     | 0.26 | 2.766       | 2.868        | 200      | 200   | 0.63        | 0.36 | 2.766              | 2.751 |
| 84          | 74       | 71   | 34            | 0.0630         | 300      | 200    | 1.10     | 0.74 | 2.987       | 2.992        | 350      | 250   | 1.03        | 0.61 | 2.911              | 2.882 |

Table (Continued)

|             | Node no. |      |               | Design<br>flow |          | N       | 1odified | PSO  |             | Original PSO |          |         |         |      |                  |       |
|-------------|----------|------|---------------|----------------|----------|---------|----------|------|-------------|--------------|----------|---------|---------|------|------------------|-------|
| Pipe<br>no. |          |      | Length<br>(m) |                | Diameter | Slope   | $V_p$    | d/D  | Cover<br>(1 | depths<br>n) | Diameter | Slope   | $v_p$   | d/D  | Cover depths (m) |       |
|             | Up       | Down |               | (11/3)         | (11111)  | (1 III) | (11/3)   |      | Up          | Down         | (11111)  | (1 III) | (111/8) |      | Up               | Down  |
| 83          | 71       | 70   | 26            | 0.0635         | 300      | 200     | 1.10     | 0.75 | 2.992       | 3.037        | 350      | 250     | 1.03    | 0.61 | 2.882            | 2.901 |
| 82          | 70       | 69   | 26            | 0.0638         | 300      | 200     | 1.10     | 0.75 | 3.037       | 2.962        | 350      | 250     | 1.04    | 0.61 | 2.901            | 2.800 |
| 81          | 69       | 68   | 26            | 0.0642         | 300      | 200     | 1.10     | 0.75 | 2.962       | 2.872        | 350      | 250     | 1.04    | 0.61 | 2.800            | 2.684 |
| 77          | 68       | 67   | 22            | 0.0644         | 300      | 200     | 1.10     | 0.76 | 2.872       | 2.837        | 350      | 250     | 1.04    | 0.61 | 2.684            | 2.627 |
| 76          | 67       | 66   | 22            | 0.0647         | 300      | 200     | 1.10     | 0.76 | 2.837       | 2.907        | 350      | 250     | 1.04    | 0.62 | 2.627            | 2.675 |
| 75          | 66       | 65   | 30            | 0.0651         | 300      | 200     | 1.10     | 0.76 | 2.907       | 2.907        | 350      | 250     | 1.04    | 0.62 | 2.675            | 2.645 |
| 74          | 65       | 53   | 30            | 0.0655         | 300      | 200     | 1.10     | 0.77 | 2.907       | 2.917        | 350      | 250     | 1.04    | 0.62 | 2.645            | 2.625 |
| 60          | 53       | 52   | 30            | 0.1229         | 400      | 250     | 1.19     | 0.75 | 2.917       | 2.752        | 400      | 250     | 1.19    | 0.75 | 2.896            | 2.731 |
| 57          | 52       | 50   | 30            | 0.1234         | 450      | 450     | 0.96     | 0.74 | 2.752       | 2.593        | 400      | 250     | 1.19    | 0.75 | 2.731            | 2.626 |
| 56          | 50       | 49   | 30            | 0.1238         | 450      | 450     | 0.96     | 0.74 | 2.593       | 2.585        | 400      | 250     | 1.19    | 0.75 | 2.626            | 2.671 |
| 54          | 49       | 47   | 26            | 0.1251         | 450      | 450     | 0.96     | 0.75 | 2.585       | 2.228        | 400      | 250     | 1.19    | 0.76 | 2.671            | 2.360 |
| 53          | 47       | 46   | 26            | 0.1254         | 450      | 450     | 0.96     | 0.75 | 2.228       | 1.916        | 400      | 250     | 1.19    | 0.76 | 2.360            | 2.094 |
| 50          | 46       | 45   | 20            | 0.1258         | 450      | 450     | 0.96     | 0.75 | 1.916       | 2.235        | 400      | 250     | 1.19    | 0.77 | 2.094            | 2.449 |
| 49          | 45       | 43   | 20            | 0.1261         | 450      | 450     | 0.96     | 0.75 | 2.235       | 2.524        | 400      | 250     | 1.19    | 0.77 | 2.449            | 2.774 |
| 47          | 43       | 42   | 11            | 0.1266         | 450      | 450     | 0.96     | 0.76 | 2.524       | 2.409        | 400      | 250     | 1.19    | 0.77 | 2.774            | 2.678 |
| 46          | 42       | 41   | 30            | 0.1270         | 450      | 450     | 0.96     | 0.76 | 2.409       | 1.391        | 400      | 250     | 1.19    | 0.77 | 2.678            | 1.713 |
| 45          | 41       | 14   | 30            | 0.1274         | 450      | 60      | 2.13     | 0.42 | 1.625       | 1.370        | 400      | 250     | 1.19    | 0.78 | 1.955            | 1.320 |
| 16          | 14       | 13   | 30            | 0.1337         | 450      | 100     | 1.78     | 0.49 | 1.440       | 1.370        | 400      | 150     | 1.50    | 0.66 | 1.490            | 1.320 |
| 15          | 13       | 3    | 30            | 0.1341         | 450      | 100     | 1.78     | 0.49 | 1.375       | 1.370        | 450      | 250     | 1.24    | 0.64 | 1.555            | 1.370 |
| 3           | 3        | 2    | 23            | 0.1404         | 450      | 350     | 1.09     | 0.74 | 2.868       | 2.269        | 450      | 60      | 2.18    | 0.44 | 2.751            | 2.470 |
| 2           | 2        | 1    | 23            | 0.1407         | 450      | 60      | 2.18     | 0.44 | 2.357       | 1.370        | 450      | 125     | 1.65    | 0.54 | 2.556            | 1.370 |
| 1           | 1        | 0    | 30            | 0.1423         | 450      | 70      | 2.07     | 0.46 | 1.370       | 1.459        | 450      | 100     | 1.80    | 0.51 | 1.410            | 1.370 |

Papers that have been published / accepted for publication out of this thesis work:

## **International Journals:**

Navin, P.K. and Mathur, Y.P., 2016. Layout and Component Size Optimization of Sewer Network Using Spanning Tree and Modified PSO Algorithm. Water Resources Management, 30 (10), 3627–3643.

## **International Conference:**

- Navin P.K. and Mathur Y.P., 2016. Design optimization of sewer system using particle swarm optimization. IN Proceedings of Fifth International Conference on Soft Computing for Problem Solving (pp. 173-182). Springer Singapore.
- Navin P.K. and Mathur Y.P., 2016. Layout optimization of sewer network using minimum cumulative flow in the sewer network. In Proc. International conference on Waste Management (Recycle-2016), IIT Guwahati,Assam, India.
- Navin P.K. and Mathur Y.P., 2015. Application of graph theory for optimal sewer layout generation. In Proceeding of International conference on GCCT pp. 151-157. Discovery Publication.
- Navin P.K. and Mathur Y.P., 2013. Minimum spanning tree layout of sewerage system. In: International Conference on Advance Trends in Engineering & Technology (ICATET), Arya College of Engineering & IT, Jaipur, pp 272-276.

## **Bio Data of the Author**

Praveen Kumar Navin received the B.Tech. degree in 2008 from Allahabad Agricultural Institute – DU, Allahabad, and the M.Tech. degree in Environmental Engineering in 2010 from Malaviya National Institute of Technology, Jaipur, Rajasthan, India. He worked for M/s Durha Construction Pvt. Ltd, Lucknow and Department of Civil Engineering, NIMS University for a short period of two years. He is currently a research scholar in the department of Civil Engineering, Malaviya National Institute of Technology Jaipur. His area of research is optimization of environmental systems. He is an associate member of the Institution of Engineers (India) and Indian Water Works Association (IWWA). He has wide experiences in the field of water supply and drainage systems. He has provided technical assistance in many consultancy works with Prof. Y. P. Mathur. He has authored around 10 papers in different journals and conferences.