
A

DISSERTATION REPORT

ON

Power Management Validation using Accelerated Platform

Is submitted as a partial fulfilment of the degree of

MASTER OF TECHNOLOGY IN VLSI Design

BY

ULLAS

(2017PEV5111)

UNDER THE GUIDANCE OF

Dr. C. Periasamy

&

Neeraj Gupta

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY

JAIPUR (JUNE 2019)

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY

JAIPUR (RAJASTHAN) – 302017

Certificate

This is to certify that the dissertation report entitled Power Management Validation using

Accelerated Platform submitted by Ullas (2017PEV5111), in the partial fulfilment of the

Degree Master of Technology in VLSI Design of Malaviya National Institute of Technology, is

the work completed by him under my supervision, and approved for submission during

academic session 2018-2019.

Date : 11 July 2019 Dr. C. Periasamy

Place : Jaipur (Project Supervisor)

 Professor

 Dept. of ECE

 MNIT Jaipur, India

 CERTIFICATE

This is to certify that the thesis entitled “Power Management Validation using Accelerated

Platform” is bonafide report of the work done by Ullas (WWID-11828090) in partial fulfilment

 of the requirement for degree of Master of Technology in VLSI Design, Malaviya National

Institute of Technology, Jaipur. The project was carried out at Intel Technology India

Private Limited, Bengaluru during the period June-2018 to June-2019 under my supervision and

guidance.

External Project Supervisor

Date: 11th July 2019 Neeraj Gupta

Place: Bengaluru (Pre-Si Verification Engineer)

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

MALAVIYA NATIONAL INSTITUTE OF TECHNOLOGY

JAIPUR (RAJASTHAN) – 302017

Declaration

I, Ullas, declare that this Dissertation titled as “Power Management Validation using

Accelerated Platform” and the work presented in it is my own and that, to the best of my

knowledge and belief.

I confirm that the major portion of the report except the refereed works, contains no

material previously published nor present a material which to be substantial extent has been

accepted or the award of any other degree by university or other institute of higher learning.

Wherever I used data (Theories, results) from other sources, credit has been made to that source

by citing them (to the best of my knowledge). Due care has been taken in writing this thesis,

errors and omissions are regretted.

Date: 11/07/2019 Ullas

Place: Jaipur ID : 2017PEV5111

Acknowledgment

I take immense pleasure in thanking of gratitude to my guide Dr. C. Periasamy,

Professor, Malaviya National Institute of Technology (MNIT) Jaipur for being a source of

inspiration and for timely guidance during the project. The supervision and support that he gave

truly helped in the progression of my thesis. I am highly obliged to him for his valuable advices

and moral support during research period.

I wish to express my deep sense of gratitude to my Internship co-supervisor Neeraj

Gupta, Pre-si Verification engineer, Intel Technologies India Pvt. Ltd. Bangalore, and my

manager Mamta Garg, Engineering Manager, Intel Technologies India Pvt. Ltd. Bangalore, for

having permitted me to carry out this project work. Through-out the internship, they had given

me much valuable advice on project work which I am very lucky to benefit from.

I would like to express my gratitude and sincere thanks to our Head of Department

(HoD), Dr. D.Boolchandani, Malaviya National Institute of Technology (MNIT) Jaipur for

allowing me to undertake this thesis work and for his guidelines during the review process.

I would also like to express my sincere thanks to Santhosh kumar, Yoga Priya Vadivelu,

and Sahil Madan for helping me to carry out my final year thesis work at Intel, and all other

team members for supporting and guiding me during the thesis.

Ullas

Abstract

Every design verification technique requires coverage metrics to assess the quality of

the design and determine when the design it is robust enough for tape-out. This project

contains the functional coverage collection flow of full chip power management and

approach to increase the Coverage Percentage. At end of the Project Coverage Percentage

of 88% is achieved. This project also explains about the debugging of the full chip power

management test cases through emulation.

First step towards the coverage collection of FCPM is get all the scenario to be tested.

During this project test plan document is prepared consisting of all the scenario as Power

states are the major functionality that need to be covered are identified and added in

coverage module of the Power Checker.

After running the test case, Power Checker runs on post processing mode to generate

the Virtual Database. This database has the coverage information. All the database of

the individual test cases in the project are combined into one database to get consolidated

coverage information and final database is used to analyze missed cover items.

There are many approach to analyze missed cover items. In this project few of the

approach are discussed. Missed cover items are analyzed through simulation waveform.

Uncovered items are to be covered through identifying proper test case. Sometime cover

items are missed if required switches or fuses are disabled on SoC. These fuses are

responsible for enablement of particular functionality on the SoC.

During the entire flow, many tools are used. Verdi- Coverage Point viewer is used to

check which missed and hit covered items. Verdi is also used to see the simulation

waveform. Urg is used to combine all the database of different test case into one.

Abbreviations

SoC System on Chip

IP Intellectual Property

FCPM Full Chip Power Management

RTL Register Transfer Logic

HVP Hierarchical Verification Path

FSM Finite State Machine

GPC Global Power Checker

VDB Virtual Database

TLM Transaction Level Modelling

PCU Power Control Unit

DTS Digital Thermal Sensor

RPT Report

DUT Design Under Test

List of Figures

2.1 Verification management requires a broad range of coverage metrics. ….7

3.1 Overview of the C-state and PC-state .. 9
3.2 Is it worth entering in C6-state .. 10

4.1 Coverage Flow in SoC ... 11
4.2 Coverage Collection Flow ... 12
4.3 Verdi as a Coverage Point Viewer ... 13
4.4 Example of P-state Cover Item .. 14
4.5 Example of P-state Cross C-state Cover Item .. 14
4.6 Example of Prochot Cover Item ... 15
4.7 Error check ofpower checker .. 15

5.1 Component of the Power Checker ... 19

5.2 Core C-state and Core P-state reference model 20
5.3 Core P-state checker ... 21
5.4 Package C-state tracker .. 22

5.5 Tracker with error message ... 23

8.1 Weekly Coverage Percentage .. 32
8.2 Logbook Summary ...33

8.3 LOG1 - Emulation Run .. 34
8.4 LOG2 - LinearInstruction Pointer .. 34

8.5 Log3 -Instructions Description .. 35
8.6 Log4 - PCU Tracker ... 35

Contents

Certificate

Declaration

Acknowledgements

Abstract

Abbreviations

List of Figures

Contents ... 18

Chapter 1 Introduction ... 1
1.1 Pre - Silicon Validation ... 1

1.2 Motivation 1
1.3 Objective 2
1.4 Organization 2

Chapter 2 ... 3

Literature Survey .. 3

2.1 Requirement of Low Power SoC Design .. 3
2.2 Coverage, the Heart of Verification .. 4
Importance of Coverage ... 4

Code Coverage .. 5

Functional Coverage .. 6

Assertion Coverage .. 6

Conclusion .. 6

Chapter 3 .. 8

Power States ... 8
3.1 P-states 8
3.2 C-states 8

3.3 Dropping in deeper C-state .. 9

3.4 T-States 10

Chapter 4 .. 11
4.1 Coverage Flow inSoC ... 11
4.2 Coverage Collection Flow .. 12

4.3 Test Plan Creation ... 12
4.4 Identification of Cover Items .. 13
Example .. 15

4.5 Generation of Virtual Database .. 16
4.6 Analysis of Missed Cover Items ... 17

Chapter 5 .. 18

Power Checker .. 18
5.1 Introduction 18

5.2 Structure of Power Checker ... 18
5.3 Advantage of Power Checker .. 23

Chapter 6 .. 25

Chapter 7 ... 28

7.1 Tools for FCPMValidation .. 28
7.2 Tool for writing Test Case .. 30

7.3 Forcing Signals 30
7.4 Approach to Debug Power Management Test .. 30

Chapter 8 .. 32
8.1 Coverage Percentage ... 32
8.2 FCPM Test Debug .. 32
8.3 Result after Test Case Run .. 33
8.4 Debugging Power Management Flow ... 33

Chapter 9 Conclusion ... 36

Bibliography ... 38

1

Chapter 1 Introduction

1.1 Pre - Silicon Validation

The current VLSI technologies develops the SoC in different phases. RTL

design, pre- silicon verification, physical design and post-silicon validation

are the major steps in the VLSI product development cycle. The RTLdesign

phase encodes all the specification and functionality of the product. The

verification phase verifies weather the RTL design is matching the

specifications or not. Pre-silicon verification phase verifies the functionality

of the design at RTL level whereas post-silicon validation phase verifies the

functionality at silicon. The product should match with the specification at

every phase of verification. Pre silicon validation is one of the most

important validation phase. Pre silicon validation phase verify the

correctness of design. Basically it’s required modelling of the system.

1.2 Motivation

Pre-silicon debug and validation is most important phase in the product

development cycle of SoCs. The system or product should work properly

at silicon level as per the specification. Nowadays, verifying the system

performance at silicon level is very difficult as well as very expensive task.

If the SoC fails at silicon levels, debugging the failure becomes the major

challenge. SoCs have very high complexity. So, before tape out, it is

required to make sure that all the critical scenarios are covered to avoid any

silicon failure. Here, the coverage plays very important role since

verification engineer assess coverage results and make critical decisions on

2

what to do next. In fact, for the verification of large, complex system-on-chip

(SoC) designs, coverage metrics and the responses to them guide

the entire flow. Higher coverage percentage gives confidence whether

product is ready for tape out.

1.3 Objective

The Objective of the project is:

• To explain about the flow of coverage collection

• To explain about coverage architecture

• To explain about approaches to increase the coverage percentage

• To explain about power management test debug

1.4 Organization

• Inthis thesis, Chapter 2 is the literature survey which willdiscuss

about importance of low power SoC and

• Chapter 3 Type and importance of the coverage

• Chapter 4 Power States and Importance of each states.

• Chapter 5 Steps to collect the coverage.

• Chapter 6 Architecture of Coverage Collection.

• Chapter 7 Analysis of missed cover items.

• Chapter 8 Approach to debug power related test

• Chapter 9 Results and Discussion

3

Chapter 2

Literature Survey

2.1 Requirement of Low Power SoC Design

In the application, there is an ongoing quest for more functionality,

performance and integration within SoC which in turn leads to power

dissipation in the range of hundreds of watts. This has been specifically

observed in the recent Intel processor variants like ItaniuM2 With the

dissipation reaching 120 Watts. Devices in this class require interacted

packing, heat sinks and a cooling system.

All these culminate in multiple problems that need to be sorted out to

conserve the practicability of the upcoming applications. The enhanced

integration of mobile applications required greater dependency on the

battery lifetime of the system over preceding generations. Although the

headway in CMOS Technology has caused a twofold increase in the

transistor density every 18th months, the corresponding improvement in

battery technology exceeds 5 years duration.

In the current technology trend, smaller devices are gaining

importance. To achieve smaller devices, aggressive scaling is done. Scaling

of the devices are done to accommodate more number of transistor in

lesser area but due to this many problem arises. Few are mentioned below:

• Increase in leakage power.

• Reduction in yield due to process parameter variations.

4

• Reliability is reduced

• Testing is becoming difficult

Packaging and cooling cost is dependent on the amount of power

dissipation by the chip. Generated heat on the chip should be taken out;

otherwise it will start malfunctioning.

Demand of the portable systems and hand held devices such as phone,

palmtop etc. is increasing at high rate. Not only this, limitless functionality

with limited power supply is the requirement. Limitless functionality will

increase power consumption and battery life is becoming primary concern

but unfortunately the battery technology has not kept off with the energy

requirement.

Reliability is the major issue as we move into deep sub-micron. Increase

in the power dissipation leads to increase in temperature and it has been

found that for every 10 rise in temperature, doubles the failure rate.

In offices, 80% of the power consumption is due to computer, printer and

other related devices and many of the time, these system are not in use

but still they are on. So the power management unit will automatically

turn off the screen and the other power hungry components are shut down.

Power dissipated by these devices are mostly in the form of heat and

normally some cooling technique such as air conditioner is used to

transfer the heat to the environment.

So, the only way out is to go for low power devices.

2.2 Coverage, the Heart of Verification

Importance of Coverage

Every design verification technique requires coverage metrics to gauge

5

progress, assess effectiveness, and help determine when the design is robust

enough for tape-out. At every step of the way and with every bug-finding

technology and tool, verification engineers assess coverage results and

make critical decisions on what to do next.

In fact, for the verification of large, complex system-on-chip (SoC)

designs, coverage metrics and the responses to them guide the entire flow.

The term ”coverage-driven verification” describes a methodology built

around coverage metrics as the primary way to manage verification.

Coverage is used to measure tested and untested portions of the design.

Coverage is defined as the percentage of verification objectives that have

been met.

Code Coverage

Code Coverage measures how much of the design code is exercised. This

include execution of design blocks, no of lines etc.

Coverage-driven verification is made possible by the wide range of

structural coverage information available in modern verification tools. The

most traditional form, RTL code coverage, has migrated from specialized

add-on tools directly into the more advanced simulators, providing much

better performance and ease of use.

Once limited to line coverage, today’s code coverage metrics may also

include toggle, condition, path and finite-state-machine (FSM) coverage.

These metrics can be gathered automatically in simulation, under user

control to select or exclude specific metrics or portions of the RTL.

Code coverage is very helpful at identifying” holes” in verification: if a

section of code has not been exercised then it has not been verified.

However, high code coverage metrics do not necessarily mean that a

6

design is bug-free or that the verification effort is complete and thorough.

Although code coverage is valuable, it should be supplemented by the

specification of functional coverage points that must be exercised for

thorough verification.

Functional Coverage

It is user defined metric that measures how much of the design

specification has been exercised in verification. These allow designers to

specify corner cases based on their knowledge of the implementation.

For example, functional coverage might track whether the verification

process has filled and emptied every FIFO in the design.

Assertion Coverage

It checks whether sequence of behavior have occurred. Assertions, an

essential part of modern SoC verification, can also provide valuable

coverage feedback. Knowing which assertions pass in simulation and

which ones fail is one form of coverage. Any assertions failing indicate that

functional bugs have been found. However, successful assertions do not

provide any run-time feedback information: they may have succeeded or

they may not have had the opportunity to execute at all.

Conclusion

Figure8.6summarizes the different sources of coverage metrics used in a

modern verification process. Thiswiderange ofcoverage information helps

verification teamsassess progress and determine what to do next.

7

Figure 2.1: Verification management requires a broad range of coverage metrics

8

Chapter 3 Power States

This Chapter explains about the power states and its type.

Power States are the Intel’s Technology to optimize the power consumption.

3.1 P-states

P-states are the power optimization technique by CPU and operating system

during code execution. In this, based on the requirement, CPU will

operate at different frequency and hence voltage. P0 is the highest

frequency state. It reduces the power consumption without impacting the

performance. The power management software periodically mon- itors the

processors utilization. If the utilization is less than certain threshold then

it enters in next higher P-state.

3.2 C-states

In this technique, power optimization is done during idle mode (i.e. when

no code is executed). There are two types of C-state:

• Core C-state

• Package C-state

The processor has up to 60 plus cores in a package. Core C-state is for

each core and Package C-state.

From Figure3.1, we can see different parameter related to C-state. For e.g. in C0 state

9

Figure 3.1: Overview of the C-state and PC-state

Core voltage is more as compared to C7 state. Core clock is on in C0 but

off in C1, C2, C3, C7. Idle power is highest in C0 and minimum in PC7.

3.3 Dropping in deeper C-state

From Figure3.1, it is evident that as processor goes in deeper C-state,

wake-up time is increasing. So the price of dropping in deeper C-state is

added latency while core is trying to wake-up.

From the figure3.2CAse 1, next interrupt is far when core when core is in

C1, so in this case core will go to C6-state. But in Case 2, two interrupt are

close enough. If core will drop in C6-state then response time or wakeup

time will more.

10

3.4 T-States

Figure 3.2: Is it worth entering in C6-state

T-state is known as Thermal Throttling state in which, it saves the

processor from over- heating and hence burning itself. It also has

different T-state which depends on the junction temperature. When the

sensor register that junction temperature is reaching certain level,

Hardware power manger places the processor in different T-states depend-

ing upon the temperature using clock gating technique. Different T-state is

achieved by the percentage of clock gating. For e.g. when the percentage

of clock gating is 10%, it is T1 state or when it is 25% it can be T2 and so

on.

11

Chapter 4

Steps to Collect Coverage

This chapter discuss about the way to get the overall functional coverage percentage.

4.1 Coverage Flow in SoC

To understand the coverage, it is required to know the complete

verification flow of coverage technology. Below figure4.1depict the

complete verification flow diagram:

Figure 4.1: Coverage Flow in SoC

12

4.2 Coverage Collection Flow

Below figure4.2shows the steps involved for coverage collection:

Figure 4.2: Coverage Collection Flow

4.3 Test Plan Creation

First step toward coverage collection is creation of the Test Plan.

Planning is the most important phase of SoC verification. It contains all

the scenarios to be tested at a com- mon place which makes tracking easier

because manual collection of the data may cause in missing scenarios and

hence reduction in coverage percentage.

In this project Hierarchical Verification Plan also known as hvp is

used. In this all the cover groups and coveritems which need to be tested is

defined in predefined format.

Below figure4.3shows the way to define the hvp file. After the creation

13

of the hvp file, it is uploaded in a tool called Verdi which shows all the

cover items with respective hit and missed. From there missed cover

items are analyzed.

Figure 4.3: Hierarchical Verification Plan

Figure 4.4: Verdi as a Coverage Point Viewer

4.4 Identification of Cover Items

This section explains identification of cover groups and items for functional

coverage metrics.

Functional Coverage Metrics measure the verification program based

on functional requirement. There are many way to do functional coverage

measures. One among them is Cover Group which is explained in this

report. It consist of the state values observed on the buses, grouping of

control signals.

14

Cover Groups are identified based on the FSM defined in reference

model and also on control signal.

Below are the few example of the important functionality for which

Cover Group and items has to be identified:

Figure 4.5: Example of P-state Cover Item

Figure 4.6: Example of P-state Cross C-state Cover Item

15

displays error.

Prochot: It means processor hot. When the CPU reaches its maximum

temperature (100 to 105C) then prochot signal initiates thermal

throttling so that CPU can reduce its speed and save itself from over

heating.

Example:

Figure 4.7: Example of Prochot Cover Item

After adding the cover items, now we have to check whether the

addition of the cover items have introduced any error in the model. To

check for the error, run a script known as run pc.pl in the test result folder

of the test case of the same model. run pc.pl is the Perl script is which

runs the power checker and generate desired logs andresults.

Below figure shows results after the GPC run. The highlighted part

shows that there is no syntax error and warning. In case of any error, it

Figure 4.8: Error check of power checker

16

4.5 Generation of Virtual Database

Once all the cover items that needs to be tested are added in the Power

Checker then all the test cases are run. Along with test run, Power

Checker runs to generate the Virtual

17

Database (vdb) for each individual test cases. This vdb has coverage information.

Now when each test case has vdb, next step is to combine all the vdb

into one con- solidated vdb to get overall coverage information. URG is a

Synopsys tool which is used to combine all the individual vdb(s) into one

final merged virtual database.

This merged vdb is opened along with the test plan in Verdi to find hit

and missed cover items.

4.6 Analysis of Missed Cover Items

Missed cover items are analyzed through different tracker and simulation

waveforms. This is discussed in detail in Chapter 6.

18

Chapter 5 Power Checker

This chapter describes about Power Checker and its uses.

5.1 Introduction

Power Checker is a tool that contains high level power management

checker, tracker and coverage for FC power validation. It runs on both

simulation and emulation. It can also run on lower platform by

disconnecting some of the features.

5.2 Structure of Power Checker

Power Checker structure is divided into two layer. One is the TLM which

is present in RTL code and another layer is power checker component

that is in Specman.

The figure5.1SHOWS the component of power checker:

TLM: TLM are scattered in several places in the core and uncore.

Each TLM in RTL code, collects the signals information from the RTLs

unit signal into a data structure and sets a valid bit, if there is any update

to signal. Valid bit triggers a DPI call that samples the data structure to

traces that will be used when power checker is running in post-processing

mode. The TLM reader of the power checker converts the traces of the

TLM into a structure and send it to the monitor using method port.

Monitor: It collects all the data from the TLM reader and combines all

into one data structure which will be further be used by reference model,

checkerand tracker. Monitor has input and output method port. Through

input port it receive signal values. And

19

Figure 5.1: Component of the Power Checker

through output port it transfer signal values to reference model, checker

and tracker. For FC validation all the method port are connected. To use

power checker for lower platform, only required method port are

connected.

Reference Model: It contains FSM for the all the features. Features

are Thread C-state, Core C-state, Core P-state, TT1, Core S1, ICCP, Ring

P-state, Package C-state and Package S-state. Core C-state and Core P-

state reference model are shown in figure

5.2. Each FSM describes the features flow and the states represents the RTL current or

20

Figure 5.2: Core C-state and Core P-state reference model

21

expected state. For e.g. when MWAIT command is executed by thread

then the FSM state will move to W4 TCx state from the running state

(CC0).

Checker: Each feature has a separate checker. It contains two types of checking.

• Timeout Checking of Temporal states

• Checking Rule for each state of the FSM

The states which are clock depend and voltage change is limited by time

is known as temporal state. For each state of the FSM, there is checking

rule that verify that relevant indications have the expected value during

the state.

For example, in figure5.3, core clock(MCLK) is on in Idle state and off

in Core CPD and Core Pll off state(Core is asleep). So these are the

checking rule for each state of the FSM.

Figure 5.3: Core P-state checker

22

Tracker: It prints the following under respective column with the time stamp.

• Current state of each features of all the FSM

• Signals value

Figure5.4is package C-state tracker. So, in the first column current C-

state is printed. The signals which are coming from PCU, Cores etc. are

displayed with the current value under respective columns.

Figure 5.4: Package C-state tracker

23

When Checker fails, then the error message will be printed in the

tracker as shown in below figure:

Figure 5.5: Tracker with error message

Coverage: This consist of Coverage Groups and items based on the

functionality. It generate vdb for all the test cases which can be used as for

analysis of coverage metrics. Coverage metrics is indication of the quality

of regression or single test.

5.3 Advantage of Power Checker

Robust FC level checking: Most of the FC validation depends on self-

checking test and memory dump which is not sufficient for power

management validation because this method will not detect bug like

wrong clock ratio after a GV- transition.

Fast development and maintenance: FC checker and tracker are

difficult to develop because compilation is time taking process. But this

power checker is highly modular. It can be developed in part and then

later can be integrated to FC. Fixing of checker and recompiling will take

very time as it provide post-process rerun of the power checker.

24

25

Chapter 6

Analysis of Missed Cover Items

In this chapter different approaches are discussed for the analyses of missed cover
items.

The First steps towards analyzing the missed cover item is to find out

which signal is responsible for not hitting the cover items. To know this

signal value should be known. In Power checker, in tracker module add the

required signal. Since tracker function is to print the signal with value, the

signal responsible for not hitting the cover items value can be known.

Now there are many reasons for missing the cover items.

• Sometime the case is that the test case is unable to meet the

required conditions for the particular cover items. In such situation

different test case which can hit the cover items are run or

modification is made to the test case to satisfy the conditions of the

cover items. For e.g. Thermal Throttling scenarios (T-state) can be

hit when the processor reaches to certain temperature. To achieve

this test needs to run for more number of cycle but the originally test

were running for less number of cycle than it actually need to create

the Thermal Throttling.

• Another situation is, wrong signal is being referred by Power

Checker. When the power checker runs it takes the signal value

26

from RTL and send it to coverage module through TLM. And when

the power checker assign wrong signal value from design to coverage

module, then cover item wont get hit. For e.g. suppose a cover item

is written to test that Core 1 should reach to C6 state but in actual

design

27

Core 1 is defined as Core[2], so on this kind of situations cover

items won’t get hit. To verify mapping of the signal from design to

coverage module, waveform in generated. And in waveform, both

design and power checker signal value can be seen and required

modification is made to hit the cover items.

• Next example is for the missed scenarios related to temperature

like DTS. DTS stands for Digital Thermal Sensor. It shows the

difference between current tem-perature and maximum junction

temperature. After analyzing the waveform, it is noticed that RTL

design has correct values of the signals but Power Checker has all

0s.So finally, it is found that some fuses are not enabled in the SoC

which are required to enable temperature related scenarios.

28

Chapter 7

Full Chip Power Management Validation

Strategy

This Chapter discuss about few

• Tools for FCPM Validation

• Tool for writing Test Cases

• Approaches to debug the failure of power related test cases.

7.1 Tools for FCPM Validation

• Simulation

• Emulation

As long as the DUTs size is manageable and the simulation time is in a

day or less, HDL software simulators are the best choice for hardware

debug. They are easy to use, quick to setup, extremely fast to compile the

DUT, and superbly flexible with regard to debugging a hardware design.

Furthermore, they are also reasonably priced. However, they become

challenging at the system level when the DUT reaches into several tens of

million gates. At this level it takes simulation times in days so it increase

29

time to market. When the DUT reaches into several tens of million gates

that time for reduce time to market Emulation is good choice. So at FC

level emulation is good choice to validate power management.

30

7.2 Tool for writing Test Case

Require one compiler which covert any higher level languages such like

system Verilog, C, C++, Perl, Python to machine level language which we

use in simulation or emulation method. Intel have its own tool for writing

test. It’s targeted to create tests from fully random to much directed flows

using a powerful constraints solving technology. Key features of tool:

• An expressive test specification language for modular, abstract,

maintainable test writing.

• Ability to direct tests towards interesting cases using constraints,

biasing, and heuristics.

• A highly-controllable, constraint-based test generator capable of

generating a full spectrum of tests, from highly random to highly

directed tests.

• A declarative, maintainable, expandable model of IA32 architecture.

7.3 Forcing Signals

There are some functionality which can be verified only by forcing signal

values for e.g. DTS, prochot etc. In simulation, we can force signal with

any value at any time stamp through test case. But in emulation we

cannot force signal through test case. Here, we can force signal using

injector. For that we have to write inject script. Here the time at which

values to be injected are defined in the script.

7.4 Approach to Debug Power Management Test

In emulation, there is no waveform through which debug can be done but

different trackers and log files are generated once the test run gets over.

These logs gives the picture of what processor is doing at different time

and what are the values of the signal. Next step is to analyze the log files

and to find out which signal or register values are not set properly. After

finding this, waveform is generated for the particular time interval. Next is

31

to tracker the drivers of the signal and find the signal which is not set with

the correct value.

32

Chapter 8

Results and Discussion

8.1 Coverage Percentage

Below chart shows that the coverage percentage of 88% is achieved at the

end of the project.

Figure 8.1: Weekly Coverage Percentage

8.2 FCPM Test Debug

When the test runs, it goes through below stages:

• Command line Parsing: - In this stage, fuses are set using

switches. Doing this some features are disabled or enabled and

depending upon the test plan, flow of the test can be controlled.

33

• Create tests work area: - In this stage, environment is set

depending upon project.

• Test build: - In this stage compiler compile test case and convert

high level language to machine level language.

• Model run: - At this stage, converted machine level language

loads on to the emulation board and runs test case on emulation

board.

• Creating RPT: - In this stage, it create all transaction data

trackers file which are more useful for debug purpose, coverage and

checker. Post processing: - At this stage all post process script (like

coverage and checker script) runs.

8.3 Result after Test Case Run

Figure8.2SHows Result after Test Case Run:

Figure 8.2: Logbook Summary

8.4 Debugging Power Management Flow

Log-1 This log is the first step towards debug. It shows the reason of the

failure. Below are two main reason:

• No Halt Encountered: It means test case timed out after running for the full

34

cycle. This thing is common when we use to give large wake time and the cycle
run is not sufficient to cover that wake time. Solution is to either decrease the
wake time or increase the run cycle

• Processor dead: When the processor is not aced, test end checker run

and write in EBx as dead and dead is printed for that particular

processor.

• Processor is not going to the deep sleep state. This could be because

of some fuse which is not allowing it to happen. We need to enable

the fuse so that the processor could go to deep sleep.

Figure 8.3: LOG1 - Emulation Run

Log-2 This logs shows the series of the liner instructions pointer run by processor.

From this log it can be find out at which instruction processor is stuck.

Figure 8.4: LOG2 - Linear Instruction
Pointer

35

Log-3 After finding out at which instruction the processor is stuck, for

furtherdebug,it is important to know that what that instruction is trying to

perform. It information can be found in Log - 3 by searching for that

instruction.

Figure 8.5: Log3 - Instructions Description

Log-4 This log shows all the operation performed by PCU and all the

value set by it in registers which is helpful in further debug.

Figure 8.6: Log4 - PCU Tracker

36

Chapter 9 Conclusion

Power Management contains some of the more complex features in the

CPU. Many components in the CPU are involved in Power Management

flows. Since additional components are added in each CPU generation, and

Power goals get more aggressive, the Power Management features become

more challenging for design and validation. This enables shifting of Power

Management validation to emulation. In emulation, waveform are not

available and debug is performed from logs and trackers which has

information about the signals value and operations performed by the

processors.

Coverage is also another important aspect of Validation. It guide the

engineer throughout the entire flow and also determine when the design

is robust enough for tape out. In this project, process is discussed for

coverage collection through a novel agent global power checker. Different

approaches are discussed to analysis the missed cover items and ways to

increase the coverage percentage.

37

38

Bibliography

[1]A-32 Intel Architecture Software Developers Manual Volume 3 Systems

Programming Guide

[2] Yossef Lampe,2011 DTTC, The GLobal Power Checker(GPC): A Noval Checker,

Tracker and Coverage Package for Power Valdation on Simulation and Emulation

[3] Sasi Pavan Majety and Rammohan Koteshwar, 2019 DTTC, Enabling

Hetero Vali- dation First TIme in Intel History: Journey of LKF Pre-

Si SoC Hetero Validation

[4] Taylor Kidd, 2019,List of Useful Power and Power

Management Arti- cles, Blogs and References,

http://software.intel.com/en-us/articles/ list-of-

useful-power-and-power-management-articles-blogsand-

references

[5] https://www.Thomaskrenn.com/en/wiki/Processor_P-states_and_C-

states

[6] https://software.intel.com/en-

us/blogs/2008/05/29/ what-exactly-is-

a-p-state-pt-1

http://software.intel.com/en-us/articles/
https://www.thomaskrenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomaskrenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomaskrenn.com/en/wiki/Processor_P-states_and_C-states

