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ABSTRACT

High penetration of solar Photovoltaic (PV) generation on distribution feeders is

anticipated in view of current policy changes favouring renewable energy adoption

in the country, and elsewhere across the world. The rising penetration of PV on

distribution networks will increase the possibility of power balance between the PV

inverter and the loads, a fact well acknowledged in international studies. The load

behavior is also changing from the traditional constant power model and hence the

interaction of static inverters and different types of load models can produce an

altogether new class of disturbances. These interactions, in the presence of grid-

side disturbances, may lead to anomalous situations that can impact the integrity

of the distribution network. Unintentional islanding of a feeder section containing

both solar PV inverter and loads is deemed to be an immediate consequence of

such events that can trigger the protective devices at the Point of Common Cou-

pling (PCC). To protect such active distribution networks, it will be important and

essential to investigate and analyze such situations, deemed to cause unintentional

islanding. This framework is in contrast to the existing anti-islanding measures

present inside commercial grid-connected PV inverters that ‘react’ once an island

is formed. The proposed framework is built on the pillars of continuous system

monitoring (via available methods), data collection and use of machine learning

in real-time to detect any anomalies that can accidentally island a feeder section.

The collected data consists of instances from well-known power system transients

like short-circuit faults, switching surges, load switching etc. and from recently

discovered situations that have been proved to lead to anomalously high currents

that can island a feeder or its section. The strategy is to enable the PV inverter to

learn how to differentiate these from other power system transients so as to pre-

emptively detect and avoid formation of an unintentional island or activate timely

change in operation mode and operate an island with acceptable power quality.

Use of online classification algorithms executed in portable, dedicated computing

platforms fit inside the inverter have reported prediction (pre-detection) accuracies

and speeds that show promising applications in small-scale distributed generation

systems like rooftop net-metering on residential or institutional establishments.

iii
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Chapter 1

Introduction

1.1 The Distributed Generation Paradigm

The electrical power system is traditionally built on the model of centralized-

generation, transmission and distribution which has been in existence for over a

century now with inherent operational inefficiencies. However, the incorporation of

renewable energy based distributed sources has brought a paradigm shift towards

the concept of localized-generation that reduces losses and saves additional gener-

ation capacity. The introduction of such generators downstream of a distribution

network also brings dynamic changes and modifies the configuration. The differ-

ence between such active networks and the traditional ones and the challenges

and issues in operating them have been discussed in the following sub-sections

respectively.

1.1.1 Traditional and Active Power Distribution Networks

Electricity is a critical public utility besides water and gas that needs to be sup-

plied to the end users through an efficient distribution network. The electricity

distribution infrastructure consists of a systematized arrangement of conductors

and cables which can be laid in an overhead or an underground configuration.

Generally, for reasons of economy and ease in operation and maintenance, the

overhead system is preferred. However, in areas where erection of poles for over-

head conductor mounting is infeasible or restricted by right of way issues, the

underground system is adopted wherein cables are routed through conduits and

1



Chapter 1 Introduction 2

trenches under the surface of streets and sidewalks. Such a configuration has its

own advantages in the form of long-term reliability, public safety and aesthetics.

A distribution system represents the consumer-side terminating portion of a large

and complex network called the power grid that segments the power system into

its generation, transmission and distribution levels. It is the electrical sub-system

between the transmission substation and consumers’ meters. Physically, an over-

head distribution network consists of a hierarchical topology of three types of

conductors: feeders, distributors and service mains. The radial system is the most

common topology which is employed for power generation at low voltage-level and

when the substation is sited near the load centre. Due to its simplicity, confined

reach and economical operation, it is popular in rural areas. Figure 1.1 shows

a single line diagram of a radial distribution system. Three feeders can be ob-

served to be radiating from the substation. A feeder is the main conductor that

connects the substation to the distribution area and from which no tappings are

taken since it is designed for continuous current carrying capacity. In the figure

1.1, SL is a feeder that connects to the distributor IB at node I. The tappings for

supplying loads are taken at different points along IB. A distributor must main-

tain the voltage profile along its length since point-wise tappings lead to a variable

current passing through it. It must be ensured that the voltage variations are

within the nominal limit of ±5% of the value rated to be at the consumers’ termi-

nals [1]. Service mains are the cables that connect the consumer premises to the

distributor tappings. A ring-main system is a more common topology in urban

areas that have a dense conglomeration of different types of customers. If multiple

distributors are introduced in figure 1.1 and the primaries of their distribution

transformers are connected to form a loop such that it closes on the substation,

then a topology as shown in figure 1.2 is obtained. The closed feeder SLNAOPQR

has several sections that can operate as independent feeders in case a fault occurs

or maintenance and repair is being done on any part of the ring. Therefore, such

a topology ensures reliability of supply to consumers. In addition to this, the

voltage fluctuations at the customers’ terminals are less than those experienced in

a radial system. If more than two generating stations or substations are added to

the feeder ring, an interconnected system is formed which is generally considered

as the third topology of distribution networks. The interconnected system topol-

ogy adds a dimension of efficiency through pooling of generating resources that

facilitate load sharing during peak hours and reduce reserve power capacity.

The traditional distribution systems are a part of the conventional electricity sup-

ply model that follows the centralized hierarchy: a large plant generates power
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Figure 1.1: Single line diagram of a radial distribution system

Figure 1.2: Single line diagram of a ring-main distribution system

which is transmitted over high voltages and then distributed to the consumers

at voltage levels determined by the end-use type i.e. residential, commercial or

industrial. These systems experience the highest burden among the three power

system components and work under high operational stress. They also suffer from

inefficiencies in power delivery and consumption. Moreover, the generating sources

consume fossil-fuels for the thermodynamic energy-conversion process to produce

an alternating current. Due to inherent conductor-resistance and thermal limits of

power transfer, the centralized delivery model largely remains in-efficient because

of huge losses in the transmission and distribution lines. Each unit of electri-

cal energy lost in the form of unrecoverable heat during transmission or due to

inefficient consumption at the utilization end has a quantum of carbon emission

released in the atmosphere. Such attributes have made the power industry a major

source of environmental imbalance amidst rising concerns of global warming. The
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de-carbonization of the power system was thus envisaged alongside improvements

in the delivery and consumption efficiency of the traditional power grid. Radical

changes were then conceptualized and implemented with strong focus on optimiz-

ing the distribution system operation. The ‘smart grid’ paradigm thus evolved

and most of its technologies were targeted for the distribution network that repre-

sents the back-bone of the power supply system. One element was identified to be

an integral part supporting the idea of a smart grid: incorporation of generating

sources at the consumption-end with the ability to operate in isolation from the

main-grid during contingencies and extreme events. This, however, came as a ma-

jor challenge since the traditional distribution feeders are mostly radial in nature

and integration of a generator in the service stream would transform them from

passive to active networks. Thus the centralized model, in existence since the later

half of the 19th century was being gradually replaced by a distributed framework.

The transformation has slowly picked up pace but the introduction of distributed

generation facilitated some disruptive innovations to happen at the distribution

level: customer-side generation or the idea of ‘prosumers’ (producing-consumers),

Vehicle to Grid (V2G), distributed storage and many more.

The concept of electricity generators operating in parallel with the electrical distri-

bution network has now been in practice since the last few years. The integration

of such generators, distributed in nature, space and availability has become an

essential feature of the smart grid framework. Generation sources based on re-

newable energy, due to their green-attributes, have given impetus to the same.

Technologies like solar PV inverters, wind-electric generators, small hydro tur-

bines, microturbines, biomass generators etc. are clean sources of electrical power

whose output can be synchronized with the utility grid. However the addition of

these sources brings some operational complexities [2] which need to be addressed

and planned about. However, the scheme has gained commercial weight whose

popularity can be adjudged by the various names that have found use in practice:

1. Distributed Generation

2. On-site Generation

3. Dispersed Generation

4. Embedded Generation

5. Distributed Energy Resources.

On a comparative front, distributed generation offers the following advantages over

conventional centralized generation:

1. Generation near the site of consumption; no additional transmission infrastruc-

ture required
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2. Cleaner sources like renewable energy-based generators can be used more effec-

tively with added value to their generation

3. Around 20% of Transmission and Distribution (T & D) losses, as found in the

centralized system, can be reportedly avoided

4. Design can be customized to be made reliable by becoming compatible to local

requirements

5. Multiple modes of generation like co-generation, tri-generation that provide

more value for energy conversion and utilization can be used

6. Can be used to power load independent of the grid; micro-grid configuration is

possible.

The major reason for the growth and adoption of distributed-generation has been

the inherent losses prevalent in the existing supply model. The centralized gen-

eration based power delivery model encounters power dissipation in conductors

over long distances, voltage drop, extreme weather events and other disturbances

that affect its reliability. On the other hand, distributed-generation located close

to the points of consumption and integrated with the power grid supports power

flow in the network besides enhancing the reliability of supply to consumers in the

event of main-grid failure, brown-out, black-out or shut-down. Rising interest in

distributed-generation can also be attributed to other important reasons like:

1. Deregulation of power utilities

2. Emerging power markets that involve customer participation

3. Provision of ancillary services by distributed generators like reactive power sup-

port and stand-by capacity etc.

4. Savings in investment of additional generation , transmission and distribution

capacity by utilities.

Since the power grid was not designed for the inclusion of sources in its distribution-

pathway, the integration of distributed energy resources is a technically complex

issue. When the sources are renewable-energy based, their stochastic nature and

the variability in availability of generation induces extra randomness in the system

operation. Hence such active distribution systems face a lot of issues that have

been covered in detail in the subsequent section. The aim of this section is to

build up on these issues and take forward the issue of unintentional islanding in

solar PV systems connected with the distribution grid which is the main focus of

this research. Figure 1.3 shows the conventional form of power delivery based on

large, fossil-fuel powered centralized generators. The different levels of the system

are shown with the direction of power flows. The distribution system is radial in

nature, meaning that power can only flow from the substation towards the loads.
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Figure 1.3: Conventional power delivery model

Figure 1.4: Active distribution network due to DG interconnection

Figure 1.4 shows the topology of the same network, as above, when a Distributed

Generator (DG) is connected at a node on the distribution feeder which is called

the Point of Common Coupling (PCC). Another DG is directly connected to a load

bus on the feeder. There is now a possibility of power flow in reverse direction
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due to the DG output exceeding load demand. Such a situation is one of the

consequences of DG interconnection.

1.1.2 Challenges and Issues with DG Integration

A smart grid can accommodate rising distributed generation. Most of the integra-

tion takes place at the distribution and utilization level, as discussed previously.

However there are a lot of challenges and issues associated with connection of dis-

tributed resources on the grid. The biggest challenge is to connect the DGs to

the existing distribution system without making major changes or modifications

to the intrinsic or inherent nature of the distribution network.

The prevalent issues can be categorized as:-

1. Technical Issues

a. Power Quality Issues

b. Utility Interconnection Issues

c. Protection Issues

2. Business and Financial Issues.

Technical Issues:-

a. Power Quality Issues:

DG interconnection causes problems like voltage rise, sag, flicker and harmonics

mainly due to the nature of sources (like solar PV), the power converter interface

or due to improper synchronization with the utility grid. Figure 1.5 displays

voltage disturbances in a section of a small feeder that are typically caused due to

integration of a PV system. Such random fluctuations in voltage waveforms affect

the quality of power being delivered to the connected loads and put stress on the

reserve units for grid-support to provide quick inertial response.

Figure 1.5: Typical deviations in voltage due to a solar PV array
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b. Utility Interconnection Issues:

The distributed generator that wants to connect to the utility grid must be syn-

chronized in phase, frequency and voltage with the grid. Different types of DGs

have different methods of interconnecting with the grid. Unsuccessful interconnec-

tion has implications on power flow in the line including circulating currents and

power quality reduction. To maintain the discipline of the grid, many standards

exist worldwide for utility interconnection of distributed generators. An example

is the IEEE 1547 Standard for Interconnecting Distributed Resources with Electric

Power Systems, 2004 [3].

c. Protection Issues:

Since the DG is a source in addition to the centralized generator(s) on the grid,

its integration is expected to disturb the protection coordination of the utility

system. The DG infeed adds to the fault current level however the direction

of this contribution is such that the grid-side Ifault is reduced causing a PCC

over-current relay to under-reach. Thus a high penetration of DGs, solar PV

inverters in particular, can even lead to de-sensitization of protective relays during

short-circuit faults[4]. Apart from this phenomenon, DGs can cause several other

protection-related issues that affect the integrity of the distribution system. Some

of the common protection issues can be noted as:

1. Over current protection sensitivity

2. Instantaneous Reclosing

3. Unintentional Islanding

4. Ferroresonance

5. Grounding Issues

Business and Financial Issues:

Schemes like net-metering allow customers to install DGs like solar PV inverters

on their rooftops and sell the excess power back to the utility grid. There is a fear

among utilities that rising DG penetration will reduce their revenues. Solar PV

generated electricity reduces the amount of money utilities need to pay for fuel to

generate power, but those savings are offset by “revenue erosion” from lower sales

and from deferring investment in poles, wires, and other infrastructure, found a

study by the Lawrence Berkeley National Laboratory [5]. According to the study’s

results, if distributed solar PV adoption rose to the equivalent of 2.5% of utility

retail sales in USA, it would cut shareholder earnings by 4%. However, the impact

on electricity rates for consumers would be minimal - only 0.1 or 0.2% increase.

These figures are reported from a set of results generated for different penetration
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scenarios for two prototypical utilities in the USA. Despite reported resistance

to DG integration from distribution utilities worldwide, the penetration level has

been increasing, and rapidly in developing economies. The long-term impacts of

DG integration will culminate into monetary benefits over the years for the utility

owners.

Key Points:

1. Distributed generation is an integral aspect of smart grid framework

2. The integration of DGs with the grid introduces operational aspects

3. Renewable energy based generators like solar PV induce extra problems due to

stochastic generation

4. Proper planning is required to integrate DGs at the distribution level and

mitigate operational threats

5. Unintentional islanding is identified as a protection issue which will be the focus

of the next section.

1.2 Research Context

The general description of advantages and impacts of grid-connected distributed

generation systems was provided in the previous section. This section focuses

on the particular case of solar PV interconnection with the distribution network.

The concept of islanding, the associated problems and the scope of the reported

research work (including a brief note on the relevance of research in this domain)

have been discussed in this section.

1.2.1 Grid-Integration of Solar PV

Solar energy is a clean and inexhaustible source that can be transformed into

electrical energy by PV cells stacked into modules and arrays, with some efficiency

limits. Advancements in inverter technology have ramped up the pace of grid-

interfaced solar PV systems and more number of installations are taking place

at the distribution level. However, there is still a lot to explore regarding how

such inverter-interfaced DG technology can affect the centralized grid in different

scenarios. Solar PV generators can supply power to the electric grid through a

grid-interactive or grid-connected solar PV system. The connection of solar PV can

take place at two levels in the power system: Transmission level and distribution



Chapter 1 Introduction 10

level. Large-size PV systems of multi-MW capacity feed three-phase power to the

high-voltage transmission grid and are known as utility-scale PV power plants.

On the other hand, kW or sub-MW scale PV systems that usually feed one-phase

power to the distribution network are popularly called as distributed generation

systems.

Penetration level is an important term associated with the amount of PV based

generation feeding the distribution network. From the distribution system point

of view, PV penetration level is defined as : PV Capacity
Peak load of line section or feeder

. This is

the most commonly used definition for the penetration level. In other definitions,

minimum system load or transformer/ station rating become the denominator re-

spectively. At low penetration levels, PV does not affect the system much apart

from small issues like sudden ramp-up of generation from scheduled generators [6]

or a dynamic battery response due to variable solar insolation. At high penetra-

tion scenarios, many issues are expected to arise from PV integration, namely as

noted in [6]:

1. Over voltages at the customer node depending on the PV location; if PV is

located away from the substation, the voltage profile will increase towards the load

end thus causing voltage regulation problems

2. Possibility of reverse power flow

3. Distribution system losses may increase as penetration increases above 5%

4. More harmonics, voltage disturbances and flicker

5. Increased chances of unintentional islanding.

Since a PV array is a current-source, most of the grid-connected inverters are Cur-

rent Source Inverters (CSIs) or current-controlled Voltage Source Inverters (VSIs)

that employ pulse-width modulation (PWM) based switching to fabricate a sinu-

soidal current wave. As grid synchronization requires PV system output to match

the utility phase and frequency, the inverters need a continuous reference to achieve

the same. Figure 1.6 shows a schematic block diagram of the basic architecture

of a grid-connected solar PV system. The early CSIs were line-commutated which

means they used the utility line voltage as a reference trigger for commutation of

switches in the power electronic bridge to create a sine wave output that matched

the utility requirements. The latest CSIs and VSIs are self-commutated and can

sustain operation based on their internal reference to trigger the switching accord-

ingly. Consequently they can also operate in absence of the utility voltage until

the inbuilt protection trips them off-line. This ability to ‘island’ is not unique

to self-commutated CSIs as per popular perception [7] but this phenomenon of

operating independently of the grid without changing the operating mode from
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constant power control to V/f regulation mode [8] has many implications as dis-

cussed in next sub-section. Figure 1.7 shows the fundamental control structure

of grid-connected PV inverters. The current-controlled or constant PQ control

strategy is generally employed in the grid-connected mode of operation. There are

two loops: the outer voltage control loop and inner current control loop. Propor-

tional Integral (PI) controllers are most commonly used for error-compensation

however the use of a Proportional-Resonant (PR) controller for the current loop

has also been proposed to reduce harmonics [9]. Since the DC link voltage has

to be maintained constant at a value > Vgrid RMS, the outer loop regulates the

same by taking this value as the reference Vref. DC link. The P-I error compensator

of the outer loop outputs the magnitude of the grid-reference current which is

multiplied by the phase information extracted by the Phase-Locked Loop (PLL)

resulting into IAC ref.. The inner loop controls the output current to be aligned

with the phase of the utility voltage and this exhibits the constant power control

philosophy also known as constant PQ control. In the grid-connected operational

mode, the inverter is not allowed to regulate the voltage or frequency of the utility

grid [10], unlike in the V/f regulatory mode. Most of the interconnection regula-

tions require PV inverters to operate at unity power factor and not to contribute

any support during voltage and frequency disturbances. Hence they cannot ride-

through any small disturbance and have to trip even during such transients leading

Figure 1.6: Block diagram of a grid-connected solar PV system

Figure 1.7: Typical control structure of a grid-connected solar PV inverter
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to wastage of generation capacity. Rising penetration will lead to inverters going

off-line and coming back repeatedly which may trigger a sustained disturbance on

the line-section leading to a kind of ‘yo-yo’ effect that was observed in Germany

[11].

It is understood that distributed solar PV connected to the central grid will be

a key component of the smart distribution network for reasons stated previously.

It is also acknowledged that higher penetration levels may lead to operational

problems that need to be addressed. One of the problems, identified as uninten-

tional islanding will be the focus of this research and more details related to it are

provided in the next sub-section.

1.2.2 Islanding in Grid-connected PV systems

Since a grid-connected PV system operates in parallel with the synchronously

running power network, the coherent operation of both the systems is absolutely

necessary for maintaining power quality and reliability. The vulnerability of the

existing power grid to frequent outages and interruptions gets magnified at the

distribution level because it is the most stressed out portion of the network. In-

terconnecting a solar PV system thus becomes challenging but careful operational

planning has ensured no hassles so far in operation of such systems world-wide.

However the continued feeding of loads in vicinity of the PV inverter when the

main supply suddenly goes off is a situation that must be avoided.

Most of the DGs including PV inverters operate in constant PQ control mode or

constant power (active and reactive) control mode. This means they are com-

manded to give a fixed output power in synchronism with the grid by providing

them fixed power set-points. Thus the operational strategy is to control the out-

put current of the inverter such that it is in phase with the utility voltage. The

PV inverter is generally operated at unity power factor because this is a strategy

of maximizing the energy yield from the array through Maximum Power Point

Tracking (MPPT). The inverter thus cannot adjust its active or reactive power

output according to the system frequency and voltage since it is programmed to

only inject maximum active power in accordance with the utility requirements.

However if the utility grid suddenly disappears, Igrid is lost but the error signal is

still passed onto the inner current control loop. This signal is further compensated

and the output activates the gate-driver that provides the triggering pulses for the

switches. However, the fabricated output wave is not sinusoidal but the inverter
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continues operating. A sudden disappearance of the mains and continued feeding

of loads by the inverter will thus lead to an isolated network continuing to operate

in the same grid-connected mode which is not required. This system configuration

in this condition is analogous to an island where a section of live conductors exist

in a large network having no power from the main source.

Islanding is a phenomenon in which a power network gets separated into con-

trollable/uncontrollable sections containing both sources and loads and operating

independently of the main power grid. For grid-mode distributed generation sys-

tems, islanding is said to occur when the DG continues supplying power to the

distribution grid even after a portion of the network, that includes the PCC, gets

disconnected from the main power system. This is clear from a single line dia-

gram representation shown in figure 1.8. The inverter will continue to operate

and feed the loads until the voltage and frequency in the island cross the inverter

operating limits and the inbuilt under/over voltage/frequency relays operate. The

Visland and fisland are controlled by 4P and 4Q between the islanded loads and

the inverter respectively. The Non-Detection Zone in which the inverter cannot

detect the islanding condition is shown in figure 1.9. For any values of Visland and

fisland at the inverter terminals, the island continues to operate until the degree

of 4P and 4Q increase to a level severe enough to trigger the relays. Therefore,

the NDZ represents the region where the load - generation balance is such that a

PV inverter employing only voltage and frequency based detection can continue

to operate in the sudden absence of the main utility.

The dynamics of an islanded system are governed by the level of 4P and 4Q
between the islanded loads and the inverter, as discussed above. The behaviour of

the isolated system will depend on the values of 4P and 4Q just at the instant

of opening of the PCC breaker, recloser or lateral fuse to form the island [12]. In

Figure 1.8: Creation of a Power Island
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Figure 1.9: Non-detection zone

Figure 1.10: Power flows in a grid-connected PV system

order to understand the correspondence between Visland and 4P and fisland and

4Q, it is important to understand the expressions for Pload and Qload. Consider a

simple configuration of a solar PV inverter connected to a feeder at node A which

is the PCC as shown in figure 1.10. The power flows have been defined with their

directions indicated. The load is single phase and has been taken to be of the

parallel RLC type which is the most common configuration adopted in many test

standards for islanding detection. Accordingly, the expressions for Pload and Qload

can be written as:

Pload = VA ×
VA
R

(1.1)

Qload = VA

[
VA
ωL
− VA

1
ωL

]
(1.2)

It is visible from equations 1.1 and 1.2 that voltage and frequency at the inverter

terminals have a relation with the active power and reactive power respectively.

When the switch shown in figure 1.10 opens, 4P = 0 and 4Q = 0. The values of

the resultant Visland and fisland are determined by the values of 4P and 4Q just

before the opening of the switch. The power balance for this circuit is expressed
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as:

Pload = PPV +4P (1.3)

Qload = QPV +4Q (1.4)

The equations 1.3 and 1.4 show that the LHS values are controlled by the PV

power outputs once an island is formed. For example, if 4Pbefore island > 0, then

Pload > PPV and when the switch opens, Pload has to decrease since 4P = 0.

Therefore the Visland = VA decreases in relation with the 4P . If the value of

Visland decreases to be < Vinv. lower limit, then the under-voltage relay inside the

inverter will trip and the island will collapse after it is detected. Similarly, for the

case of 4Qbefore island > 0, there will be an impact on fisland. As QPV = 0 for most

grid-connection schemes, Qload will become zero following equation 1.4. Hence

the term inside the square brackets in equation 1.2 will approach zero for which

the inductive part must fall and the capacitive part must increase. Consequently,

the ω will rise and thus the fisland in the resulting network will increase. If the

value of fisland rises to a value > finv. upper limit, then the over-frequency relay of

the inverter will trip and detect the island formation. The concept of under/over

voltage/frequency and its relation with 4P and 4Q can now be well understood

with the NDZ shown in figure 1.9.

Based on the reasons for occurrence, islanding can be categorized into - intentional

or unintentional. Accidental isolation of a portion having PV and loads from the

main grid due to reasons like outages/faults that cause disruption in upstream

supply is called unintentional islanding. Intentional islanding is adopted as a part

of the utility strategy to split the grid into controllable sections for supporting

peak demand and/or mitigating network congestion.

Islanding, if caused by an unplanned event, is harmful to the power system. The

problems due to unintentional islanding can be enumerated as :

1. The frequency and voltage of the island remain unregulated as it operates as

an autonomous entity and hence degrades the power quality. This can upset the

load or devices connected to the island.

2. It disturbs the co-ordination of the utility protection devices as the auto-

matic reclosers can complete the broken circuit even during power flow in the

branch/island.

3. Out-of-phase reclosure can cause circulating currents to flow when grid supply

resumes as both the grid and island may be out of synchronism after reconnec-

tion, giving rise to large electro-mechanical forces that can damage the connected
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Distributed Generators (DGs)

4. There remains a potential safety hazard to the utility personnel maintaining or

repairing the apparently de-energized distribution system

5. Transient over voltages that affect system reliability may build up

6. Inadequate grounding of the islanded system by the DG interconnection.

On the other hand, intentional islanding, if practiced strategically by utilities,

has the potential for ensuring smoother real-time operation of the distribution

network.

1.2.3 Relevance of Research in the Domain

Islanding as a concern is still discussed today. However the ill-effects of such an

event remain a matter of debate among the utilities and PV system operators. In

many situations the utilities refuse interconnection to their networks because of the

fear of accidental islanding. Although the internationally documented experiences

of such events are limited, actual records of unintentional islanding events have

been reported in [13] and [14].

Important reports like [15] have published results of sustained efforts in studying

the phenomenon which concludes that the possibilities of its occurrence are rare

however, there is lack of clarity and consensus on the validity of results for the

scenario of rising PV penetration. A recent survey in [16] has clearly brought out

the thinking of the distribution system operators for whom unintentional islanding

is the biggest concern among others that can result due to DG interconnection as

discussed in section 1. Figure 1.11 is reproduced from that published survey and

shows the response of a group of different types of utilities based on investment

holding.

The inverter technology is changing swiftly and the nature of loads is also chang-

ing from linear to non-linear (with more complex static and dynamic models) thus

the load-PV interaction seems an important feature for islanding-related studies.

Also the risks of islanding-protection performance in the case of multiple inverters

of different make and protection strategies connected to the same feeder have not

been clearly outlined. Furthermore, it is more critical now to keep track of the

power system occurrences at the distribution level for high PV penetrations. Thus

it is felt that starting from the basic study and analysis on dynamic interactions

between loads and PV inverters for different grid conditions and operating situa-

tions may provide some new outlook to the problem of unintentional islanding. It
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Figure 1.11: Concerns Among Distribution Utilities from DG Integration as pub-
lished in [16]

is important to look at the issue of PV inverter islanding from the perspective of a

new self-isolating, parallel-running energy systems paradigm. Rather than treat-

ing it solely as a protection issue, it should be tackled comprehensively given the

challenging scenarios ahead. Since solar PV systems involve a lot of initial invest-

ment, the value of the energy they deliver to the grid has a premium. Therefore,

adopting a reactive approach of removing the inverter as an anti-islanding measure

leads to loss of valuable power, even for a few seconds, which multiplies to units

of energy lost or undelivered. Thus, it is felt that the pre-hand actionable intelli-

gence about suspicious triggers to islanding is essential. Therein lies the scope of

the work that proposes a pro-active islanding-management strategy in response to

unique islanding-initiators. Detecting such triggers, before the feeder protection

acts, can alert PV inverters to make a decision regarding their operational mode

in the lead time obtained.

The following section will outline the theme of the proposed research wherein

initial attempts have been made at exploring and discovering some new situations

that may cause unintentional islanding and enabling intelligence inside inverters

to preemptively detect them. The research problem, the specific objectives and

the problem formulation has been discussed in the portion that follows.
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1.3 Research Objective

In this study, some anomalous occurrences arising out of impacts of high localized-

penetration of solar PV generation on radial feeders have been investigated. One

of the two discovered phenomena has been identified as a potential initiator of

unintentional islanding on the modeled feeder. The aim is to detect this event

and signal a mode-change trigger to the solar PV inverter before a feeder protec-

tive device isolates the section. The preemptive mode-change triggering logic is

the major contribution of this work. It aims to alert the inverter to change its

operational mode from constant PQ control to V/f regulatory mode so that once

an island is formed, the inverter is ready to maintain and sustain the loads un-

til load-generation imbalance occurs or the utility resumes. Elements of machine

learning have been used to discover patterns from the data points belonging to

the explored events and other known power system transients. Various learning

techniques have been tested offline and realized in a dedicated microcomputer for

online classification of signals that provides actionable intelligence to the inverter.

An effective feature extraction methodology for real-time applications has also

been proposed to enable online identification of such patterns. This research work

is thus in contrast to the existing work being done on improving the accuracy of

detecting an island formation.

The formal research objectives pertaining to this thesis work can be stated as fol-

lows :

1. To discover and create different situations and analyze various behaviours oc-

curring in grid-connected solar PV systems that can lead to unintentional islanding

and creating a bank of such precursor signatures.

2. To create a machine-learning based framework for enabling a predictive strat-

egy for predicting the possibility of island formation in such networks based on

knowledge of predicting features/signals/symptoms/signatures.

3. To create a preemptive detection based mode change triggering logic for solar

PV inverters in the situation of an imminent islanding condition on a distribution

network with high penetration.

The problem, keeping in view the objectives mentioned above, can be framed as

a mathematical expression in the following form:

Let there be two sets Set S1 ∈ {E1} and S2 ∈ {E2} where E1 = [events that

cannot cause islanding] and E2 = [discovered islanding initiator]. A set of class

labels C = {0, 1} exists such that ∀x ∈ S1, y = 0 and ∀x ∈ S2, y = 1 where x is
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the feature extracted from event data. The problem is to design a learning system

that can execute the following task:

Given a training data set D = S1 ∪ S2, learn a model G = f(x, y) such that for

any X /∈ D, G should return a y ∈ C accurately and quickly. Also, for any x ∈ S2

that comes from a different sampling rate, y = 1. Additionally, when only a set

of features x is available, the system must group the events as belonging to either

S1 or S2.

In this context, ‘quickly’ is explained by the condition tprediction < tfeeder protection.

1.4 Thesis Organization

The remaining thesis is organized in the following manner. Chapter 2 presents

a review of the state of the art in islanding detection based on intelligent tech-

niques. Apart from covering various types of tools and techniques reported in

the literature, the chapter also includes a section on reported efforts towards pro-

active islanding mitigation and then discusses broader prospects for CI techniques

in tackling islanding comprehensively. It also cites some examples used in other

applications to set the theme for the work carried in this research. Chapter 3

describes the exploration and investigation of the unique phenomena observed

on different radial feeder models. The Real Time Digital Simulator (RTDS) and

emulator-network model verification of the island-initiating event have been ex-

plained. Collection of data pertaining to the events discovered and to other power

system transients simulated along with its pre-processing is explained in Chapter

4. The chapter mainly details the offline feature extraction and event detection

by multivariate statistical methods and supervised learning models. Offline detec-

tion by unsupervised learning is also described. Chapter 5 describes online feature

extraction and event detection. The physical realization of the mode-changing

trigger is also described. Chapter 6 concludes the study. Figure 1.12 provides a

flow of the thesis in the form of a block diagram highlighting the major portions

covered in each chapter.

1
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Chapter 2

Literature Review

2.1 Introduction

The fundamental concepts related to islanding of solar PV interfaced distributed

generation were discussed in the previous chapter. This chapter presents a survey

of the state of the art in the domain of Computational Intelligence (CI) based is-

landing detection and then shifts focus towards islanding-prediction that has been

attempted in the literature. A summary of recent work reported in the literature

has been provided through a comparative analysis of the different CI techniques

used. The chapter begins with a description of the classical anti-islanding tech-

niques and their shortcomings. For the purpose of understanding the practical

significance of anti-islanding in grid-connected DG systems, a dedicated section

on various international standards has been included. The section that follows

provides a thorough review of the recently published works and briefly explains

the underlying methods and techniques used in the cited works. This also includes

a sub-section on the various software platforms used to implement the same. The

limited amount of references to efforts towards predicting an islanding situation,

as found in the literature, have been focused upon in the last section. Apart from

detecting an islanding condition, CI based techniques have a lot more to offer for a

comprehensive management of such a condition. These interesting prospects have

also been discussed with real examples (in other applications) and build the theme

for this research apart from highlighting the importance of the chosen problem.

The following paragraphs discuss islanding, its impacts and detection methods

alongside examples of actual events.

For grid-connected distributed generation systems, islanding is said to occur when

21
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the DG continues supplying power to the loads on a section at permissible voltage

and frequency [17] even after that portion of the network gets disconnected from

the main power system. This can happen either accidentally (unintentional is-

landing) due to various reasons like outages, faults and breakdowns that interrupt

the upstream supply. Recently, some new cause of unintentional islanding was

reported in [18] wherein the inverter anti-islanding method itself caused a voltage

imbalance that initiated the isolation of the PCC section. Islanding can be inten-

tional if it is executed as a part of the utility strategy to split the network into

controllable sections for supporting peak demand and for managing congestion.

Although internationally documented experiences of such events are limited [13],

actual records of unintentional islanding events found in some works have high-

lighted the profound impacts on the network and the loads, as observed in the

field. Intentional islanding, on the contrary, can ensure a seamless operation of

the distribution network in real-time contingencies. Non-availability of DG power

to the loads during islanding situations carries a financial loss. Although cost of

power generated by many DGs is approaching grid-parity , the loss of available

power even for a few seconds leads to value-reduction. In the UK, the latest feed-in

tariff is 4.32 pounds/kWh for a 10 kW solar PV system. This example proves that

the operational cost involved with such DGs is high relative to centralized thermal

generators and hence their unintentional islanded operation involves huge finan-

cial implications due to misuse of valuable power. Thus efficient and cost-effective

islanding-management techniques have become a necessity.

Accidental islanding disrupts the integrity of the power system as discussed in the

previous chapter. Unregulated Visland and fisland were observed in a real islanding

event on a 60 kV network in Portugal [19]. The island was formed due to a phase

to ground fault and the voltage supplied to the consumers was below the level

prescribed by the European standard EN50160. The issue of the utility protec-

tion co-ordination getting disturbed presents a serious concern as the automatic

reclosers can complete the broken circuit even during power flow in the island.

In all the islanding events described in [13], the islands just managed to success-

fully collapse before the reclosing of the feeder. However, there always remains a

risk of circulating current flow due to automatic reclosure during islanding oper-

ation. Transient over voltages affecting system reliability is a serious outcome as

experienced during an islanding event caused during maintenance work on a MV

feeder in Spain [20]. Voltages as high as 258% of nominal value were observed due

to islanding behavior of the solar PV inverters. Damages to the PV plant and

customers connected to the feeder were also confirmed.
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As a part of the compliance to follow the regional grid-code and maintain grid-

discipline [10], the DGs have to avoid islanding by detecting the condition within a

stipulated time interval. The anti-islanding measures differ in operation for differ-

ent types of generators feeding the grid. A solar PV inverter employs a technique

that might not work well for a biogas-run alternator[21] owing to distinct charac-

teristics like input-output relation or large inertia. Furthermore, the performance

of these techniques is also affected by the type of load connected to the system

[22]. In principle, the loss of utility supply can be detected in two ways. The

first one involves monitoring the changes in grid parameters until they cross the

values defined for healthy system operation. The second way is to inject some

disturbances artificially and analyze the network’s response to get an indication

of deviation from normal state resulting from the loss of upstream supply. These

two ways represent the classical islanding-detection methods and have been named

as passive and active respectively. An amalgamation of the two results in hybrid

techniques, and these three together cover the category of local techniques under

the classical methods. There is also a second broad category of classical techniques

that rely on transmitting signals over power lines to alert the DG in the wake of an

islanding event. These remote telecommunication based techniques are too costly

for use in interconnected distributed generation systems. The classical techniques

have matured at the commercial level and mostly passive and active methods are

embedded inside PV inverters. The spectrum of anti-islanding methods also in-

cludes the CI based techniques that have not yet found commercial breakthrough.

They are being actively pursued in research and will be the main focus of this

chapter. This approach of islanding-detection incorporates the elements of data

mining, machine learning and optimization to learn the patterns prominent in

different events and distinguish them from the islanding event. However, the de-

tection is built upon the basics of classical techniques. Accordingly, they have

been termed as ‘passive based’ and ‘active based’ in the general classification of

anti-islanding techniques shown in figure 2.1. ‘Passive based’ methods learn the

patterns from measurements of local parameters to identify power system events

and classify them as islanding and non-islanding. The ‘active based’ ones are

characteristically of two types. Those belonging to the first type generate optimal

disturbances to help system parameters exceed the threshold in an islanding con-

dition. The aim is to enable a quick detection with least impact on the system.

The second type includes those that can optimize the response of the DG to a

given disturbance to improve the detection of an islanding condition. The classi-

cal methods and their shortcomings and different CI based techniques reported in

recent works have been described in separate sections later in the chapter.
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Figure 2.1: General classification of anti-islanding techniques

2.2 International Standards for Anti-Islanding

Many global standards exist for interconnecting distributed energy resources to

the centralized utility power grid. These are documented guidelines and recom-

mendations containing sections that specify certain anti-islanding requirements

for the generators. The most basic requirement is expressed in terms of minimum

islanding detection time for which quality factor of the load or Qf is an important

determinant. The generator must detect the formation of an island and discon-

nect itself from the grid within the stipulated time period. The Qf at the time of

island formation is an important factor that assesses the capability of an islanding-

detection technique. It defines the strength of the resonance for the parallel RLC

load in the island. This load model is frequently used to represent feeder loads

to test the performance of an islanding-detection method. In the test procedures

specified in these standards, the quality factor is adjusted in such a way that the

loads resonate at grid frequency. The condition of power balance between the DG

and the load alongside resonance in the load present the toughest case for island

detection. A high Qf at resonance tends to stabilize the island at grid frequency

making it more difficult to detect. Besides these, the standards also mention the

lower and upper limits of the operating range of VGrid and fGrid for the DG after

interconnection. This range also determines the extent of the NDZ since a wide

range will lead to a broader area covered in this zone.

Some of the prominent and most referenced standards that are followed across
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Table 2.1: Various anti-islanding standards
Standard Q-factor Detection Time Frequency Range Voltage Range

IEEE 929-2000 2.5 Within 2 s 59.3 Hz to 60.5 Hz 0.88 p.u. to 1.1 p.u.
IEEE 1547 1 Within 2 s 59.3 Hz to 60 Hz 0.88 p.u. to 1.1 p.u.
IEC 62116 1 Within 2 s 59.3 Hz to 60 Hz 0.88 p.u. to 1.15 p.u.
UL 1741 1 Within 2 s 59.3 Hz to 60.5 Hz 0.88 p.u. to 1.1 p.u.

Japanese JIS C 8692:1997 0 Within 2 s (active) Setting Value Setting Value
Between 0.5 s to 1 s (passive)

Korean 1 Within 0.5 s 59.3 Hz to 60 Hz 0.88 p.u. to 1.1 p.u.
German VDE 0126-1-1 2 Within 0.2 s 47.5 Hz to 50.2 Hz 0.88 p.u. to 1.15 p.u.

Australian AS 47777.3-2005 1 Within 2 s Setting Value Setting Value
Canadian C22.2 No. 107-01 2.5 Within 2 s 59.5 Hz to 60.5 Hz 0.88 p.u. to 1.06 p.u.

French ERDF-NOI-RES 13E 2 Instantaneously 49.5 Hz to 50.5 Hz 0.85 p.u. to 1.15 p.u.
UK G83/2 (DGs upto 16 A/phase) > 0.5 within 0.5 s 47.5 Hz to 51.5 Hz (stage 1) 0.87 p.u. to 1.14 p.u. (stage 1)

47 Hz to 52 Hz (stage 2) 0.8 p.u. to 1.19 p.u. (stage 2)
UK G59/3 (17 kW/phase or 50 kW 3 phase) > 0.5 within 0.5 s 47.5 Hz to 51.5 Hz (stage 1) 0.87 p.u. to 1.14 p.u. (stage 1)

47 Hz to 52 Hz (stage 2) 0.8 p.u. to 1.19 p.u. (stage 2)

the globe are the ones given by the IEEE, IEC and UL. The major examples are

IEEE 929-2000 [23], IEEE 1547 [3], IEC 62116 [24] and the UL-1741 [25]. Besides

these internationally accepted standards, various countries have come up with their

own set of rules and guidelines to formulate standardizing operating procedures

for grid-connected DG systems. The summary of the various standards and the

information they convey is given in table 2.1 where per unit (p.u.) representation of

electrical quantities has been used. Many country-specific standards have proposed

some good recommendations alongside the internationally accepted standards from

major organizations. It can be seen that the Canadian, Korean and German

standards impose the most strict anti-islanding requirements for the DGs. Many

developing countries who plan to increase the DG penetration on their distribution

networks can study these standards as ready reference for developing their own

set of protocols based on the operating conditions they desire.

2.3 Classical Techniques and their Shortcomings

The local techniques among the classical ones are prevalent in commercial prac-

tice as described previously. However several shortcomings seem to render them

slightly incompetent for the foreseen scenario of rising DG penetration. The pas-

sive methods are named so because they act by monitoring the various electrical

quantities in the PCC region around the DG, without actively manipulating them.

The values of these quantities during the normal grid-connected operation of the

DGs are used to define the islanding protection thresholds. An islanding situation

is detected on the violation of the thresholds caused due to disconnection from

the utility supply. Voltage and frequency and their time-derivatives, power, Rate

of Change of Power (RoCoP), Rate of Change of Frequency (RoCoF), change in

power factor, current and voltage THD, change in phase angle among others are

some of the system parameters in the region local to the DG that are monitored
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in passive detection [26]. Under-voltage, over-voltage and under-frequency, over-

frequency relays are the most basic protection systems residing inside the DG. To

explain their working, the example of a solar PV inverter connected to a distribu-

tion network in the UK and compliant with the G83/2 standard can be taken. An

unintentional islanding situation may reduce the frequency of the section around

the PCC below 47.5 Hz due to reactive power mismatch. This crosses the lower

frequency threshold value defined in the standard and hence the under-frequency

relay will immediately detect the island formation. However, in the case of a close

balance between the Qload and the inverter output, the island may persist if the

frequency remains within the limits of the operational range defined in the stan-

dard. In such a situation, the RoCoF based passive detection may be effective

since the Hz/s variation in the islanded mode may be different from that in the

grid-connected operation.

Speed and accuracy are generally the two performance indicators for any islanding-

detection method. Passive methods, as discussed above, can quickly detect changes

in local parameters but they are not always 100% accurate in detecting islands.

Islanding-detection accuracy is affected by the extent of the NDZs that represent

the region of 4P and 4Q between the load and DG for which the Visland and

fisland remain within the safe operating limits, even in the absence of grid. This

has been depicted earlier in figure 1.9. An anti-islanding technique fails to detect

the islanding condition when the power mis-match levels lie in the NDZ. Both

passive and active techniques possess a NDZ. The variation of load with voltage

and frequency (static and dynamic characteristics) and the control functions of

the DG, particularly inverter based, also impact the area covered by the NDZ for

a passive technique.

The passive methods somehow fail to capture the dynamics of the multi-dimensional

variations in different parameters taking place on a distribution network. A pas-

sive islanding protection relay is effectively able to monitor and process only one

parameter at a time. For multiple parameters, setting the threshold becomes a

problem. The thresholds should be such that they are not too low to cause false

detection and not too high that island-formation goes undetected. For the set up

as shown in figure 1.10, Pload = Pinv+Pgrid and Qload = Qinv+Qgrid. However,

under power balance condition, Pgrid and Qgrid approach zero and this fact guides

the theory behind the relation between Visland, fisland and 4P and 4Q between

the loads and PV inverter. For a parallel RLC load, the resonant frequency is

given by ω0 =
√

1
LC

and the quality-factor is expressed as Qf = R
√

C
L

. When an

inverter-based DG like solar PV that operates in a constant PQ control mode gets
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accidentally disconnected from the utility grid[27], the voltage and frequency of the

island vary with the active and reactive power output that are controlled by the

solar insolation. Noticeably the NDZ for such a situation, as given by equations

2.1 and 2.2 and discussed in [28], conveys the association between Visland, fisland

and 4P and 4Q and thus highlights the importance of the term ‘P-Q mismatch

level’ for islanding-related studies.

Qf

(
1−

(
f

fmin

)2
)
≤ ∆Q

Pload
≤ Qf

(
1−

(
f

fmax

)2
)

(2.1)

(
V

Vmax

)2

− 1 ≤ ∆P

Pload
≤
(

V

Vmin

)2

− 1 (2.2)

These fractions are the defining parameters of a NDZ. Based on the Vlower and

Vupper and flower and fupper threshold settings in utility relays and the load qual-

ity factor as defined in a standard, the NDZ for a passive technique can be de-

termined. Since the approach in such threshold based techniques is limited to

comparing the value of the monitored parameter with the design threshold, they

often overlook the fact that a true islanding condition is defined by the status

of multiple parameters. The passive islanding detection techniques are identified

and named according to the various quantities that they monitor. A few examples

are under/over voltage method, under/over frequency method, change of source

impedance, voltage unbalance and THD of DG current method, RoCoP, RoCoF

and vector surge relays (similar to RoCoF).

The response of the PCC region of a feeder to disturbances during healthy system

conditions and in an islanded condition can be different. This difference is utilized

in active methods to detect islanding. The active methods try to bring the local

parameters, used in passive detection, out of the NDZ by injecting a disturbance

in the DG output. If the main supply is present, such a disturbance will not

make any impact but during grid-disconnection, the response of the system to the

disturbance gets magnified that forces the local parameters to cross the threshold.

This deviation is finally detected by the underlying passive-detection based relay

that identifies the island formation. The active methods have the advantages of

a smaller NDZ but they tend to degrade the power quality of the network. They

also take longer to detect islanding as compared to the passive methods. Current

injection methods, active frequency drift (AFD), Sandia frequency shift and Sandia

voltage shift [29], adaptive logic phase shift method are some of the examples of

active islanding detection methods. Considering the example of the PV inverter

cited above, if both the under/over frequency and RoCoF based passive methods
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fail, then the AFD method can ensure island detection. This method will force the

frequency of the Visland to drift above or below the limits defined in the standard

G83/2 which advocates the use of an active method for a reliable loss of mains

detection. Suitable for PV inverters, the basic AFD slightly distorts the current

waveform injected by the inverter into the utility grid so that the natural frequency

of the VPCC drifts outside the safe limits. The shift is overpowered by the utility

supply frequency regulation but once it is removed, the shift gets amplified. This

is requirement for accurate detection and it must be met specially during the

condition when QLoad = V 2[(ωL)−1 − (ωC)] = QPV, which is when the passive

methods fail. Advanced variants of this method use positive feedback to increase

the deviation intensity as reported in [30] or propose changes in the injected current

waveforms, like in [31], where a sudden change over half cycle of the fundamental

produces the necessary phase shift. This modifies the disturbance so as to have

less impact on the grid, mainly in terms of reduced THD.

The hybrid methods leverage the speed of passive methods and the accuracy of

active methods combined together but the detection time is increased. They fare

better in some respects when compared individually to each of the two methods

since they are not an implementation of sequential operation of active and passive

techniques but a single technique incorporating the strengths of both. However,

these set of techniques also do not seem to provide a comprehensive, dynamic

and robust solution to the issue since they enforce the same reactive strategy of

islanding detection. As the number of renewable energy based DG installations on

the centralized power grid will increase, the challenges and complexity are expected

to increase and new triggers to section islanding will emerge. In such a scenario,

the local methods may not suffice to provide a reliable and foolproof solution to

ensure network security and real-time smooth operation.

2.4 Computational Intelligence based Techniques

for Anti-Islanding

The classical methods do not possess embedded intelligence to learn from events

and decisions. They perform event detection by executing a conditional rule-based

logic for given thresholds. An islanding event is defined when a set of conditions

is satisfied, requiring sequential execution of if-then-else rules in a span of few

cycles to detect its occurrence. Moreover as DG penetration and their advanced

control functions increase, the thresholds will also keep changing dynamically.
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These challenging scenarios exist alongside the fact that new type of phenomena

keep occurring on active distribution feeders giving rise to potentially malicious

events. Given such complexities, more robust islanding-protection can be achieved

with the use of CI based techniques. These set of techniques can process multiple

quantities simultaneously and compute inferential parameters to build predictive

models. The DG’s control structure can then be embedded with a ‘trained model’

enabling it to identify different events correctly in real time.

Designing a computational model for islanding-detection comprises a few steps.

First, raw data belonging to different events is collected from which distinct event-

specific features are extracted. These features are then archived into a database

and inherent patterns are discovered to extract useful knowledge that develops in-

telligence in the DG to recognize and classify events and take decisions accordingly.

A detailed comparison of the CI techniques reported in literature for anti-islanding

has been presented in this section. The CI techniques can solve highly non-linear

problems including those that cannot be easily translated into an algorithm. In

this respect, they slightly differ from AI based methods [32] under whose paradigm

data mining and machine learning have been generally put. However there is a

very thin boundary between the two classes of intelligence and thus the broad

classification has not been made while reporting the specific techniques in this

section. Processing event data-extracted features to build models that identify

and classify (passive based) is not the only approach towards anti-islanding. CI

based techniques have also been used in generating optimal disturbance signals

as well as in optimizing the response to a given disturbance signal in detecting

islanding and this approach has been termed as ‘active based’. The following sub-

sections report the various feature extraction techniques, the CI techniques and

special software packages used in the anti-islanding studies mentioned in recent

literature by briefly explaining each one of them.

2.4.1 Feature Extraction Techniques

Features are processed forms of power grid signals like current, voltage, frequency

and others that carry inherent information about the physical events that generate

them. Various signal processing methods have been applied in extracting impor-

tant features from different signals as explored from the literature survey. The

islanding-detection technique reported in [33] has used a software model that exe-

cutes a certain signal processing algorithm for extracting features from the voltage

and current signals. The parameter deviations discussed in [34] have been directly
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obtained as the features for training the learning model. Twenty-one suitable

features were extracted from the voltage and current waveforms in [35].

A feature extraction window is an interval of time in which an instantaneous signal

is processed to derive features. The window can be stationary in time or moving

known as sliding window. The literature contains references to both kinds of win-

dows used for feature extraction at different sampling rates for continuous signals.

In reference [36], the governor input signal has been sampled at 175 Hz in a 200

ms window to extract 35 features for training the learning model used. Discrete

Wavelet Transform (DWT) is a discrete sampling technique that decomposes a sig-

nal into different frequency scales having different temporal resolutions[37]. The

mother wavelet is decomposed into detail wavelets known as levels. The DWT of

the transient current signal has been used to extract feature vectors at a sampling

rate of 20 kHz for the classifier modeled in[38]. The study used Daubechies-4

(DB-4) wavelets with 6 decomposition levels for analyzing the signal in a 0.01 sec

window. DWT of 166 samples from a 60 Hz voltage waveform has been used to ex-

tract energy contents of 7 detail wavelets from a sliding mode window at a sampling

rate of 10 kHz in [39] that used Daubechies-1 (DB-1) as the mother wavelet. The

DWT of transient voltage and current signals at a sampling frequency of 10 kHz

has been utilized to derive the input feature vectors for the classification learner

reported in [40]. The study used Mother wavelets belonging to the Daubechies

family and signals in each mother wavelet were decomposed upto 9 levels to train

the classifier exhaustively. However, the study resulted in a finding that using only

the voltage signal, DB-4 wavelet and the third level gave the best results.

Discrete Fourier Transform (DFT) is another popular method of feature extrac-

tion that has many different variants. It is the equivalent of the continuous Fourier

transform and is generally applicable to stationary sequences. For a sequence made

up of equally-spaced samples of a function, the DFT gives a sequence of equiva-

lent length containing samples of the discrete time FT that are equally spaced and

represent a function of frequency that is complex-valued. Many variants of this

method have been reported in the literature for deriving the features for use in

different approaches for islanding detection. Goertzel algorithm has been used in

the active based method reported in [41]. This method is an algorithmic approach

to generate a kind of DFT that directly extracts the magnitude and frequency of

a particular harmonic. In the cited study, the Goertzel algorithm has been used

for the 9th harmonic of the current wave to detect islanding. The 2nd harmonic

component of the PCC voltage waveform was utilized in [42] that proposed an ac-

tive islanding detection method using the Goertzel algorithm. For quick islanding
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detection, the use of Fast Fourier Transform (FFT) has been aptly found in the

literature. This technique reduces the time complexity of computing the DFT of

a signal by using a sparse matrices product to express the DFT matrix. FFT has

been used in [43] to calculate the Harmonic Content (HC) of the equivalent reac-

tance seen at the DG terminals XDG as one of the input features for the learner

model applied.

Auto-regressive signal modeling is a parametric spectral analysis technique and

finds use in deriving important features from data points. It has been utilized

in [44] to extract various features from the current and voltage signals for the

classification model used. In reference [45], voltage and current were measured

and 21 possible features were extracted by sampling them at 1 kHz. Feature

selection algorithms like Forward Feature Selection (FFS) and Backward Feature

Selection (BFS) were applied to select four main features for island detection.

2.4.2 Computational Intelligence Techniques

1. Decision Tree: A Decision Tree (DT) is a non-parametric predictor model that

can be used for both classification and regression. It essentially employs an op-

timized attribute-search throughout the complete data set of features and labels.

Concepts of information theory are used to find the best attribute to classify the

data at each sub-tree’s root node. As a classifier, it is of high dimensions for

accurate modeling of non-linear decision boundaries, it has to balance dimension-

ality [46]. The root node contains the initial classification problem which splits

into internal nodes that test other attributes for respective thresholds or settings

to further branch out. Each branch of a node represents a decision function or

logic. If the conditions for the logical test are matched, the leaf nodes contain the

predicted class label.

A DT classifier trained using 11 features obtained from 54 events generated in

simulation has been used in [33] to classify events into islanding and non-islanding

ones. Reference [34] also uses a DT classifier that is based on the ID3 algorithm

and trained from the events generated from the same test-circuit model as used

in [33]. Current and power factor were selected by the tree as the best features

for learning the classification model used. DT was used as one of the classifiers in

a study in [38] that employed transient signals for loss of mains detection. DT is

also used as one of the classifiers in [45] to detect islanding after being trained and

tested by k-fold cross validation on two different sets of features. A DT was used to
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initialize the classification boundary of the fuzzy inference system in [47] and[48]

by using the three most significant features selected by the tree. A Classification

and Regression Tree (CART) used in [43] was trained from the input features

derived from the reactance across the synchronous DG terminals. The DT used in

the study reported an accuracy of 100% during both training and testing stages

with an appreciable time of detection. An efficient anti-islanding relay proposed

in [40] employed a DT as the classification model for identifying islanding events

from the non-islanding ones. The classifier achieved an average test accuracy of

98% after multiple-folds of cross-validation.

2. Random Forest Classifier : A Random Forest Classifier (RFC) is a ensemble of

a different DTs. The RF algorithm follows a voting method among the trees to

reduce the bias in classifying unknown instances. A RFC made up of C4.5 DTs

[49] was used as the main classifier in [45]. Both entropy and information gain

functions were used to split the training data at each sub-tree to construct the

trees.

3. Naive Bayesian classifier : It is a classification model based on the Bayesian

paradigm of probability. From the training data set, it basically learns the con-

ditional probability P (C = c|X = x) = P (X=x|C=c)P (C=c)
P (X=x)

for each feature xi ∈ X
with the predicted class label value c ∈ set of class labels C. The expression thus

estimates the probability of a test data point belonging to a class c conditioned

on its set of features xi. The assumption that all the data sets are independent of

each other helps in calculating the probabilities from a large set of training data

points. This assumption is also the reason behind calling it Naive. The study

reported in [35] used a Naive Bayesian (NB) classifier whose classification accu-

racy was validated with a Support Vector Machine (SVM) classifier and 4-fold

cross-validation. Four-fold cross validation for training and testing a NB classifier

was reported in [45]. The classifier was trained with all possible 21 features and 4

important features, in addition, to identify and classify various events simulated

for all three scenarios described in the work.

4. Support Vector Machine: A Support Vector Machine (SVM) is a prediction

model based on the statistical decision-theory. For discrete-valued data, it rep-

resents a parametric classifier that finds an optimally separating hyperplane to

divide the training data into different classes. The optimal hyperplane can then

categorize unseen data points into one of the possible classes. For non-linearly

separable training data, a SVM classifier uses a kernel function K(xi, xj) that

relates a subset of training data vectors xi to the testing data vectors xj. This is a
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non-linear transformation comprised of some basis functions and projects the in-

put data onto a high-dimensional feature space. The kernel for linearly-separable

data is simply K(xi) = x. Building a SVM classifier involves solving a constrained

optimization problem of finding the best separating hyperplane with minimum

training error. In the study reported in [38], SVM has been used as one of the

classification models. A kernel using the Radial Basis Function (RBF) has been

used in the SVM classifier to validate the classification results of the main classifier

in[35]. The use of a SVM classifier has also been been reported in [44] wherein

it was trained using the derived feature vectors. RBF kernel was used where the

kernel parameter λ and the term that controls the optimization known as error-

penalty C were varied in a range. The best combination was then selected by

using five-fold cross-validation. SVM was one of the classifiers used in [45]. It was

trained and tested for two different sets of features using k-fold cross validation.

5. Artificial Neural Network : It is a technique that creates a set of neurons similar

to those found in a biological neural network. It has great capability to learn and

recognize from patterns. The input data vectors activate the neurons. A transfer

function weighs and transforms them and other neurons receive these activations.

The process is repeated until an output neuron is finally activated and it recognizes

the particular data set which was to be identified. In [50], the learning capabilities

of a Neural Network (NN) have been utilized in a wavelet-fuzzy neural network.

An ANN based classifier has been used in[39] to build an event-classifier trained

with the used feature data. The unsupervised learning paradigm was tried in [36]

that used a self Organizing Map (SOM) type neural network to detect islanded

operation of a synchronous generator. The network used 7 neurons in a hexagonal

topology. The learning parameters of the SOM NN were set in the form of a

Gaussian neighborhood function with h0 = 1 and two learning rates n1 = 0.9 and

n2 = 0.02 divided among 650 cycles with all the initial neuron weight vectors set

as 0.5.

A NN clasifier has been used as one of the benchmark classifiers in [45] to validate

the accuracy of the main classifier. A Multi-Layer Perceptron (MLP) type ANN

with 4 layers has been designed in [51] as the main learning network to identify

and classify islanding events. The MLP was built with 8 perceptrons in the first

layer, 4 in the second and 2 and 1 in the third and output layers respectively.

VDG output sampled at 64 and 128 samples per second was used as the input feature

vector.

6. Probabilistic Neural Network : A Probabilistic Neural Network (PNN) is a
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feed-forward neural network with four layers. There is communication between

the neurons in each layer. When a test vector is given to the network, the first

layer computes the distance of this vector from the training-data input vectors.

The result is a vector whose elements indicate the nearness of the test input to the

training input. The second layer sums the contribution for each class of inputs and

produces a vector of probabilities as its net output. Finally, a complete transfer

function on the output of the second layer picks the maximum value among these

probabilities. It produces a ‘1’ (positive identification) for that class else gives a ‘0’

(negative identification). A PNN has been used as one of the classifiers in [38] that

used 4-fold cross validation for performance optimization. The study reported in

[52] used phase-space analysis to extract features. These were then used to train a

PNN based classifier to implement an effective anti-islanding strategy. VDG terminalk

was used as a parameter to extract five input features in the high dimensional phase

space.

7. Fuzzy Logic Control : Fuzzy logic extracts fuzzy variables from crisp, real-world

input variables. This is based on a reasoning logic that is multi-valued and can

express beyond true and false. The literature mentions the use of fuzzy logic based

techniques mostly in active-islanding strategies since they are best at handling and

processing uncertainties. A fuzzy inference system whose classification boundaries

were initialized by a DT built using the three most significant features has been re-

ported in [47] and [48]. The classification boundaries given by the DT were used to

assign membership functions to the generated fuzzy variables. The fuzzy rule base

contained 4 rules and they were used to identify and classify events into islanding

and non-islanding. Reference [53] utilized fuzzy logic in an active islanding detec-

tion strategy. In the active based technique used in the work, the reference values

of Id and Iq were modified by their respective fuzzy output disturbances. The rules

in the fuzzy inference system were then used to detect islanding. Vd and ωPLL were

used as input signals and triangular and trapezoidal membership functions were

assigned to them respectively to create the disturbances. A Wavelet fuzzy neural

network based controller was used in [50] to regulate the error between Qinverter

and the Qcommand. The drift in fPCC from the NDZ value was detected to confirm

islanding after the injection of the disturbance signal in the form of a direct-axis

current. The uncertainty-handling was done by the fuzzy logic portion in this

active based method.

8. Wavelet Fuzzy Neural Network : It is a combination of Fuzzy Neural Network

(FNN) and Wavelet Neural Network (WNN). Wavelets, as discussed above, are

powerful processed signals that retain the time and frequency information of each
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harmonic of the original waveforms. FNNs on the other hand combine the ad-

vantages of robustness of fuzzy reasoning in real-life situations and the learning

capabilities of an ANN. In [50], the conventional Proportional-Integral (PI) con-

troller was replaced by a WFNN based controller. Uncertainty was handled by

the fuzzy portion and learning capabilities of the ANN were used to adjust the

interaction among controller levels to minimize the energy function V based on

Qcommand - Qinverter.

2.4.3 Special Software Packages used in Anti-Islanding

Studies

A distributed energy resource can have many possible locations for integrating it

with a given distribution network. The network-portion between the PCC and

the utility protection on the DG side becomes the region of interest for testing

the anti-islanding capabilities of the connected DG. Accordingly, the test set-

ups described in the anti-islanding standards are realized or modeled in software

to test and analyze the performance and results of a particular anti-islanding

technique. Certain benchmark feeder models are also used as test systems since

placing DGs on a standard network having defined parameters is a justifiable

practice. The IEEE 34 bus system is a suitable test-bed for analyzing the impact

of integrating renewable energy based DGs [54], including islanding in particular,

as reported in literature[55, 54, 56, 57]. The IEEE 13 node feeder is another

test-system that represents a small yet highly un-balanced distribution network

[58] and provides a challenging test-framework for anti-islanding studies that can

be then scaled to larger networks. The same network, with some modifications,

has been used in this research work. Apart from those given by the IEEE, many

other standard distribution systems exist that can be modeled to study the impact

of DG integration and consequently test the anti-islanding techniques applied to

them [59]. The CIGRE benchmark medium voltage system [60] is another popular

test-bench for modeling DG integration with the power grid and testing for anti-

islanding performance.

The test systems that are based on standard radial feeders have been simulated in

Matlab-Simulink in [35, 45] and in PS-CAD/EMTDC in [38, 44]. PSIM simulator

has been used in [41] for creating the test bench specified in the IEEE-1547 stan-

dard. Digsilent Power Factory has been used to model the CIGRE MV system in

[40] wherein various islanding and non-islanding conditions have been simulated.

Digsilent Power Factory was also used to model the IEEE 33 bus system in [52].
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Studying the performance of a given anti-islanding technique of a feeder-integrated

DG in simulation requires the models of some basic elements to be available in-

side the software package being used. These fundamental components are the grid

substation, the feeder, DGs of various types and the loads. Models of the required

basic components like transmission lines, transformers and circuit breakers are

available in almost all the modeling and simulation softwares. The over-current

relay model and the Voltage Regulating Transformer (VRT) model is available in

all the software tools discussed except in Simulink. Different software tools dis-

cussed above have been compared for their capabilities in designing test systems

for studying anti-islanding techniques in table 2.1. The ability to model a feeder

based on its geographic coordinates available from the GIS data makes any tool

convenient to use and the same has been discussed in the table.

MATLAB provides special toolboxes and library packages for implementation of

various CI based techniques. Fuzzy logic toolbox is generally used for creating

fuzzy systems and its use has been reported in [47, 48, 53]. The neural network

toolbox of Matlab has been used to create the ANN in [45] and the PNN in [38].

The SVM classifier modeled in MATLAB in [38] was created using the LibSVM

package. MATLAB has the capability to implement various CI techniques through

interactive toolboxes however the source-code of the underlying algorithms are

proprietary and not easily visible. User-side modifications or adjustments to the

algorithms thus cannot be made.

CART data mining package as used in [33, 38] and Insightful Miner package in

[47] are other DT building softwares reported in the literature. The CART R© data

mining package is owned by Salford Systems and is available under the Salford

Predictive Modeler (SPM) software suite. CART stands for Classification and

Regression Tree which is a popular variant of the DT algorithm. The package

provides robust performance and built-in automation courtesy the strong original

proprietary code. It also offers ease of use with a user-friendly interface. Insightful

Miner is an enterprise-wide data mining tool that can be integrated with many

data-handling applications. It provides tools for cleaning and manipulating data

for analytical modeling on pre-processed data and can perform all types of sta-

tistical visualizations. It can fit a variety of statistical models including linear

and logistic regression and DTs. It comes with an in-built support for popular

analytical platforms like SPSS and SAS.

WEKA is another powerful open-source data mining and machine-learning pack-

age whose use was reported in training the Naive-Bayesian classifier modeled in

[35]. Waikato Environment for Knowledge Analysis (WEKA) is a freely available
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Table 2.2: Comparison of software tools reported for test system modeling

Software Tool GIS data input DG model available VRT model Residential load model
MATLAB-Simulink Yes PV + wind No No
PS-CAD Yes PV + wind No Yes
PSIM No PV + wind No No
Power Factory Yes PV + wind Yes Yes

software that offers portability across any computing platform as it is programmed

in Java. It supports standard data mining operations like classification, clustering,

regression including data pre-processing and visualization. WEKA offers the capa-

bility to provide connectivity to Structured Query Language (SQL) databases and

it can also process the result returned by a database query. WEKA was used to

train the DT used inside the anti-islanding relay proposed in [40]. It was also used

in [45] for training and testing the Random-Forest classifier along with MATLAB.

A comparative evaluation of the different computational intelligence based anti-

islanding techniques reported has been presented in table 2.3 and table 2.4. Go-

ertzel algorithm has also been included as a computational technique however its

brief explanation had been covered in section 2.4.1.
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Table 2.3: Comparison on simulation parameters

CI Technique Events Simulated Test System DG Type

Decision Tree [33] 54 prescribed events: faults and switching actions Own system model Synchronous Generator

Decision Tree [34] 15 types of faults Own system model Synchronous Generator

Decision Tree [38] 154 islanding cases: CIGRE MV system Induction (DG 1)

Opening of bus and feeder Circuit Breakers (CBs) Synchronous (DG 2)

121 non-islanding cases:

Temporary faults, load and DG switching

Decision Tree [43] 72 scenarios of 7 event types: WSCC 9-bus system Synchronous generator

Faults and DG, capacitor and load switching

Decision Tree [40] 568 islanding and non-islanding events: CIGRE MV system 1 Synchronous generator

Faults, DG trips and capacitor and load switching 1 Induction generator

NB classifier [35] P and Q mismatches, individually and all together IEEE 34 bus system; Inverter based

load and capacitor switching DG at node 848

Goertzel algorithm [41] Grid disconnection and power-balance condition IEEE 1547 test system 1 phase PV inverter

Goertzel algorithm [42] Grid disconnection and voltage disturbances Own system model 1 phase PV inverter

SVM Classifier [38] 154 islanding cases: CIGRE MV system Induction (DG 1)

Opening of bus and feeder CBs Synchronous (DG 2)

121 non-islanding cases:

Temporary faults, load and DG switching

SVM classifier [44] 350 islanding events: IEEE 13 bus system 1 phase PV inverter

± 40% P mismatch and ± 5% Q mismatch

350 non-islanding cases:

Faults and load switching

PNN [38] 154 islanding cases: CIGRE MV system Induction (DG 1)

Opening of bus and feeder CBs Synchronous (DG 2)

121 non-islanding cases:

Temporary faults, load and DG switching

PNN [52] 1012 islanding and non-islanding events: IEEE 33 bus system 4 synchronous generators

3 types of faults and capacitor and load switching

Fuzzy logic [47, 48] 6 different islanding and non-islanding conditions: Own system model 2 Synchronous generators

3 φ faults, CB and DG trips, sudden load decrease

Fuzzy logic [53] Power balance condition at high Q values Own system model 1 phase inverter

ANN [36] Islanding events: Own system model Synchronous generator

Opening of 3 CBs for DG loading from 30% to 400%

Non-islanding events:

Load switching at various buses (0.25 p.u. to 2 p.u.)

Capacitor switching (0.2 p.u. to 1.6 p.u.)

3 phase and 1 phase faults

ANN [39] Total 360 islanding and non-islanding events Own system model Two 3 phase PV inverters

Islanding events:

Opening of utility and DG side CBs (1 cycle)

Non-islanding events:

Faults, loads/capacitor bank switching

ANN [51] 2000 simulations created: Own system model Synchronous generator

Switch opening, load switching and abnormal frequency

WFNN [50] Disconnection of the grid UL-1741 test system Inverter based

RF classifier [45] Total 200 events IEEE 34 bus system Synchronous generator

Islanding events: and inverter

P mismatch upto ±30%, Q mismatch upto ±5%

Both of the above mismatch conditions together

Non-islanding cases:

Load, capacitor and motor switching at different buses

faults at different buses
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Table 2.4: Comparison on performance parameters

CI Technique Features Extracted Time Taken in Detection Accuracy of Detection

Decision Tree [33] 11 grid parameters 45 to 50 ms 100% (non-islanding)

83.33% (islanding)

Decision Tree [34] Deviations in I ,V , pf , f , P and Q Not reported Not quantified

Decision Tree [38] Signal energy of different wavelets 0.032 s + processing time 90% average

at each of the 6 decomposition levels

Decision Tree [45] 21 different grid parameters extracted: Not reported 95% (inverter DG)

V, f, Z1 and φ selected 97% (synchronous DG)

96% (Both DGs)

Decision Tree [43] Max.(df/dt) and HCodd(XDG) /HCeven(XDG) 300 ms 100% (Training and testing)

Decision Tree [40] DWT energy coefficients of transient voltage 0.01 s 98% (both DGs)

NB classifier [35] 21 different grid parameters within 120 ms 96.66% average

NB classifier [45] 21 different grid parameters extracted Not reported 56% (inverter DG)

V, f, Z1 and φ selected 100% (synchronous DG)

100% (Both DG types)

Goertzel algorithm [41] Magnitude and frequency of: 1 cycle of VPCC Active method

9th harmonic component of VPCC

Goertzel algorithm [42] 2nd harmonic component of PCC voltage Less than 120 ms Active method

SVM Classifier [38] Signal energy of different wavelets 0.032 s + processing time 74% average

at each of the 6 decomposition levels

SVM Classifier [35] 21 different grid parameters Not reported 88.33% average

SVM Classifier [44] 62 features from voltage and current signals 50 ms 98.94% average

SVM Classifier [45] 21 different grid parameters extracted: Not reported 94% (inverter DG)

V, f, Z1 and φ selected 100% (synchronous DG)

100% (Both DGs)

PNN [38] Signal energy of different wavelets 0.032 s + processing time 85% average

at each of the 6 decomposition levels

PNN [52] 5 phase-space features of DG terminal voltage 0.24 s 100% (islanding/ non-islanding)

Fuzzy Logic [47] 11 grid parameters extracted; Not reported 100%

DT selects ∆P
∆T

, ∆f
∆T

and ∆f

as 3 most significant features

Fuzzy Logic [48] 11 grid parameters extracted; Not reported 100 % for 36 training cases

∆P
∆T

, ∆f
∆T

and ∆f selected (with and without 30 dB noise)

Fuzzy Logic [53] Features monitored: Vd and ωPLL Not reported Active based method

ANN [36] 240 input data vectors: 35 × 1 200 ms 97.9% average

ANN [39] Energy contents of: Not reported 97.22% average (DG 1)

7 detail wavelets (levels) 97.77% average (DG 2)

for each phase voltage signal

ANN [45] 21 different grid parameters extracted: 0.30 s (inverter DG) 97% (inverter DG)

V, f, Z1 and φ selected 0.20 s (synchronous DG) 100% (synchronous DG)

0.26 s (Both DGs) 100% (Both DGs)

ANN [51] DG output voltage sampled at: > 2.75 s (64) 99.28% average

64 and 128 samples/sec 2.32 s (128)

WFNN [50] Feature monitored: ω − ωgrid 0.68 s Active based method

Input feature:

Q - Qinv and its derivative

RF Classifier [45] 21 different grid parameters extracted: 0.18 s (inverter DG) 98% (inverter DG)

V, f, Z1 and φ selected 0.18 s (synchronous DG) 100% (synchronous DG)

0.18 s (Both DGs) 100% (Both DGs)
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2.5 Pro-active Islanding Management: Classical

Attempts and Prospects for CI Techniques

The classical and intelligent approaches to islanding mitigation discussed so far

essentially follow a reactive strategy. Despite commercial advancements in con-

trolling this condition, islanding still remains an issue that needs to be compre-

hensively addressed in practice. It is one of those protection-related issues whose

effects are expected to be influenced by DG penetration levels. As has been men-

tioned previously, the practice of disconnecting a DG upon island detection leads

to loss of valuable power carrying financial implications. Although it is essential

for maintaining system integrity, such an approach is not expected to be ‘smart’

enough to tackle this situation in the foreseen scenario of rising penetration. This

is more pertinent to solar PV based DGs that remain the focus of this work. Given

the rise in advanced PV inverter functions that now allow supporting grid volt-

age and frequency during short-duration contingencies, it makes sense to have the

inverter connected to the network to supply the islanded loads by adjusting its

operational mode.

The probability of occurrence of unintentional islanding was estimated to be prac-

tically zero by [15]. However the findings of this study, done in 2000, stand chal-

lenged presently when the penetration level is rising steadily. A study done for

a PV interfaced feeder in [61] calculated the number of hours of load-generation

balance to estimate the risk of accidental islanding. If this probability is a finite

number P , then the cost of PV power undelivered can be expressed as a represen-

tative value N×P×Wn×Y INR/year where N is the total number of hours the PV

system is in operation annually at a nominal power output of Wn Watts sold at a

levelized tariff of Y INR/kWh. Thus the revenue made by the PV operator reduces

to N ×Wn× Y (1−P ) INR/year due to the inverter tripping offline following the

prevalent reactive islanding management strategy. This can increase the payback

period that may render the project financially unviable. It is thus important to

have a pro-active management strategy in place to tackle unintentional islanding.

By proactive, it is meant that the inverter can identify an imminent islanding

situation and adjust its operational mode so as to run the loads in the island. It

must also be responsive in the same manner to new triggers to section islanding

that emerge in the high-penetration scenario, and one has been described in this

thesis. The classical methods that attempted this approach have been listed and

similar prospects for CI methods have been discussed in this section.
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The PV generation estimate, the load profile and the typical nature of the yesteryear’s

grid were leveraged in [62] to predict unintentional islanding events in distribution

networks. This was one of the initial attempts towards a predictive approach.

It was a simulation study that developed simplified analytical models of the self-

commutated inverters available at that time. Various conditions of 4P and 4Q
were simulated to analyze the run-on time to estimate the duration of a possi-

ble islanding condition based on deviations in the control-circuit responses of the

inverters. A contemporary work of that period, reported in [63], estimated the

parameters for which a power balance condition could exist for possible formation

of an island. It used the concepts of limit-cycle behaviour, small-signal stability

and describing function methods for predicting the fundamental frequency and its

multiples at which islanding can occur. In [64], a similar task was performed by

analysis of the various inverter control functions modeled for the same.

The power and capabilities that the CI based techniques can offer are being under-

mined by the way they are currently being used for islanding mitigation. Fitting

a learning model inside a DG to distinguish the occurrence of islanding from other

events can be oriented towards incorporating predictive capabilities regarding the

possibility of islanding. This can lead to robust and foolproof real-time operation

for which data analytics and CI techniques possesses the necessary capabilities.

Supporting this statement is the fact that prediction and forecasting techniques

are used on a day to day and term to term basis in running the power system. Load

forecasting is the most visible example of using historical data to predict future

values. Therefore, monitoring, recording and processing data distinct to different

types of events can be effectively used in incorporating learning into the DG to

develop event predictive capabilities. Suitable optimization techniques can then be

used to minimize the prediction error or tune the parameters of a real-time event

identifier and classifier to enhance the accuracy and computational efficiency.

An encouraging example from the field is the application of data mining in prevent-

ing future blackouts on feeders in the USA. The commercial technology reported in

[65] uses predictive-grid analytics to learn a model from the patterns of historical

outages. The abnormalities or anomalies preceding an outage train the predictive

model that identifies them in real time and takes corrective action before they mag-

nify. Similar to the use of signature data of anticipated events, sensitivity-analysis

of signature data has been used in detecting the occurrence of malicious events in

[66]. However, characterizing the signatures of impending islanding events from

other events data is possible after a thorough study of the distribution network and

its response to the dynamics of the connected renewable energy DG [67]. Current
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research reported on islanding-prediction has mostly focused on using actual and

simulated records from PMU measurements to predict island formations in bulk in-

terconnected transmission networks having centralized thermal generators feeding

the islands formed. The study in [68] identified pre-event signatures from the PMU

records of an actual islanding event while simulated real-time PMU measurements

were used in [69]. However, PMU data is not always available for distribution grids

[70] where much of the risk of unintentional islanding prevails. Thus alternative

approaches are required to build better performing predictive models. Few exam-

ples in other applications as noted in the literature are: real-time prediction of

extreme events in underground power distribution system using historical events

data [71] and use of learning-to-rank algorithms for real-time failure-susceptibility

rankings of primary feeders of an underground system in [72].

2.6 Conclusion

This chapter discussed the classical techniques of islanding detection that are

prevalent in use. With the help of some examples, their functioning and shortcom-

ings were also explained. Various CI based techniques reported in the literature

for islanding protection of renewable energy based DGs were also discussed. A

comparative analysis of these techniques in terms of speed, accuracy and other

performance parameters was presented for a clear understanding. The available

software tools and packages used in the reported techniques, with their relative

merits and capabilities highlighted, were also mentioned to create awareness for the

same. The need for proactive islanding management strategies was stressed upon

that relates to the importance of the problem chosen in this research. Following

this, some innovative prospects for the application of CI techniques in islanding

detection were discussed. The rise in clean energy based DG penetration on distri-

bution feeders poses new challenges for system operation. Anomalous occurrences

due to combined effect of uncontrollable generation, evolving nature of loads and

rising network complexities may lead to section islanding triggers. The next chap-

ter describes one such trigger that has been discovered in this study. Given a

challenging scenario ahead, it is felt that the CI based techniques should be ori-

ented towards predictive detection approaches to enable zero wastage of power

during an island forming situation.
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Discovered Initiators of

Unintentional Islanding

3.1 P-Q Mismatch and Islanding

The degree of active power mismatch 4P and reactive power mismatch 4Q be-

tween the loads and the PV inverter on a feeder section has a close relation with

islanding of the section. The behaviour of the islanded portion of a network is

determined by the level of 4P and 4Q as described in section 1.2.2. The voltage

magnitude and frequency of the supply in the island are governed by the inter-

action between the loads and the PV inverter. If the mismatch rises to a level

such that the inverter operating limits of voltage and frequency are exceeded, the

island collapses. If the mismatch level is such that the resulting Visland and fisland

are within the Non-Detection Zone (NDZ), as defined in section 1.2.2, the island

continues to operate and the inverter in such a situation is said to be in ‘run-on’

mode. The value of P-Q mismatch at the instant of isolation of the feeder section

actually determines whether the isolated section will form an island or not. Once

an island is formed, the level of 4P and 4Q determines whether it will sustain

itself or collapse and in how much expected duration.

The various international anti-islanding standards described in chapter 2 also men-

tion of regulating the levels of P-Q mismatch as an important step in the standard

tests prescribed by them. Subjecting the PV inverter to different incremental lev-

els of 4P and 4Q is a part of the procedure for testing the performance of the

inverter’s anti-islanding method in different conditions. Many simulation, labo-

ratory based and field studies reported in the literature have tested the various

43
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anti-islanding approaches proposed by them in the worst conditions of P-Q mis-

match. The closely matched power situation of 4P → 0 and 4Q→ 0 represents

the toughest condition for an inverter to detect an islanding state. The field tests

in [14] resulted into an interesting finding. The study concluded that the dy-

namic nature of loads could itself force them into a P-Q match condition with

the inverter, on the basis of the resulting voltage and frequency, just after section

isolation, leading to sustenance of an unintended island.

Few of the practical studies reported in [73], [74] and [75] have characterized PV in-

verters’ islanding behavior for different levels of P-Q mismatch on feeder sections.

However in the expected scenario of high PV penetration levels on distribution

feeders, complete P-Q match can not be ruled-out as a remote possibility. In-

ternationally accepted reports like [15] have also acknowledged that P-Q balance

between PV inverter and loads is a possibility that can be quantified. Field tests

in [14] and laboratory tests in [76] have studied and assessed the inverters’ anti-

islanding capabilities for the case of 4P = 0 and 4Q = 0. In a further study done

for a spot type distribution network in India in [61], the risk of unintentional is-

landing was estimated by keeping an account of the number of hours for which this

condition occurs. These documented practices have highlighted the significance of

power mismatch levels for the condition of islanding, but this correspondence has

been studied for the situation after the occurrence of the event. This study in-

vestigates the impact of a complete P-Q match case, coupled with some other

conditions, on the possibility of creation of an imminent islanding situation.

It is clear from the above-mentioned points that P-Q mismatch plays an impor-

tant role both before a feeder section’s isolation and during the islanding condition.

However, the P-Q interaction in high PV penetration levels can also lead to situa-

tions that may cause section islanding. Combined with the model of loads’ power

consumption variation with voltage and frequency, some levels of P-Q mismatch

may lead to anomalous power flows during grid-end disturbances. Such power

flows can transform into over-current spikes capable of activating the utility side

protection at the PCC. The same condition was observed on the different radial

feeder models used in this study. The next section describes the modeling of a

modified IEEE feeder model. The modifications were mostly made in the original

model to enforce different levels of P-Q mismatch during event simulation to ob-

serve the impacts on section islanding. The resulting anomalous over-currents have

been described alongside verification of one them as an island-initiating anomaly.
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3.2 Simulation Verification of the Observed

Islanding Initiator

High localized penetration of solar PV generation on radial feeders can lead to

anomalous power flows. Such occurrences get magnified in the presence of system

disturbances and many other component-level parameters also affect their inten-

sity. The PCC protection is vulnerable to any resulting over-current and this can

trigger section islanding. Two of such over-current anomalies observed in simula-

tion on a modified IEEE feeder model have been described in this section. The

feeder modeling, observed over-currents and verification of one of the over-currents

as an islanding-initiator is described in the following subsections.

3.2.1 Modified IEEE 13 Node Feeder Simulink Model

A distribution network model was required to be created for modeling the impacts

of high PV penetration and to observe the resulting power flows. A simulation

based study was thus appropriate as a preliminary step towards exploring the

same. Accordingly, the IEEE 13 node feeder was modeled in Simulink platform

of MATLAB with some modifications that seemed necessary for carrying the ex-

ploratory study. This feeder model was particularly chosen because it represents a

complex network for carrying out studies relating to impacts of high PV penetra-

tions on small feeders. Although it is small, it is highly unbalanced and provides a

challenging test-bed for islanding-related studies and favourable results obtained

for this feeder can help in scaling the study to larger networks.

Among the foremost additions to this feeder model, a 100.7 kWp solar PV array

was integrated at node 692 through a three-phase inverter. This capacity of the

solar PV based DG was chosen because it is a typical value used in small-sized

commercial projects. Based on this value, the load ratings were adjusted keeping

in view the intention of enforcing near 100% penetration on the section 671-692.

Specifically for node 692, Pload = PPV and Qload = Q671-675 Cap. bank +Qinv. filter ckt..

Node 692 was chosen as the PCC because of two reasons. First, the results of

the Simulink power flow study agreed with the benchmark results that this node

has one of the lowest voltages, although the values were not found to be same in

both results. Therefore to improve the voltage profile by active power injection,

the PV system was added. Secondly, the section 692-675 has a switch whose

location conveniently facilitates the creation of an islanding situation in simulation.
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The automatic voltage regulator connected at the substation node 650 in the

original feeder was not modeled. This was done intentionally so as to avoid any

possible dynamic interaction of the PV system with the tap-changing controls of

the AVR. This is a phenomenon often practically observed in the field [6] and

modeling it could affect the recording of certain patterns related to islanding on

the feeder. To support the change’s justification, it was found in the technical

documentation that usually no On-Load Tap Changer (OLTC) action is seen in

medium or low voltage transformers on distribution feeders. Also, when no OLTC

exists, the voltage rise effect limits the maximum PV penetration [77] and thus the

assumption was considered to be safe. A recent study assessing PV induced over

voltage on distribution feeders, reported in [78], has also presented its findings on

the IEEE 13 node feeder without considering the AVR in its model. The single

line diagram of the modified IEEE 13 node feeder is shown in figure 3.1.

The rest of the changes were made in the power consumption of the loads on

section 692-675. The constant-current load at node 675 was removed and the P

and Q demands of the constant-current load at node 692 were adjusted to observe

the desired load-PV interactions at high penetrations. The modeled PV inverter

operates on unity power factor and thus to attain the P-Q balance, the loads had to

be scaled according to the chosen PV capacity and the fixed feeder capacitor bank

size. In the inverter model, the DC-AC conversion stage is preceded by a DC-DC

converter that regulates the DC link voltage to a value of 500 V at the inverter

input terminals. An incremental conductance based MPPT algorithm having an

integral regulator method has been used to track the maximum power point of the

PV array. A detailed schematic is shown in figure 3.2. The three phase inverter is

Figure 3.1: The modified IEEE 13 node feeder
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Figure 3.2: Schematic diagram of the modeled PV inverter

a voltage control based current controlled CSI interfaced to the feeder via a 100

kVA coupling transformer. The section 692-675 in the modified feeder model now

contains the three-phase inverter, a single-phase constant-current load and a 600

kVAr capacitor bank as shown in figure 3.3. The capacitor inside the filter circuit

of the inverter plays an important role in enforcing P-Q balance as discussed in

the next paragraph.

To verify the modeling approach, the operation of the system was checked in is-

landed mode to see whether the parameter variation is in accordance with the

theory. The section 671-692 was isolated with the PV inverter and the resulting

voltage and frequency were checked for a P-Q mismatch condition. For simu-

lating the same, the values of PLoad and QLoad and those corresponding to the

inverter (along with a R-C filter circuit) and the capacitor bank in the section

were set as follows: Pload = 90 kW, Qload = 151 kVAr; PPV = 100 kW AC at peak

radiation,QPV = 0; Qcapacitive = QCap. bank + Qinv. filter ckt. = 600 kVAr + 10 kVAr

= 610 kVAr. It must be recalled that the load is single-phase while the inverter

Figure 3.3: The section 692-675 of the modified feeder
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and the capacitor bank are three-phase devices. The islanding switch was opened

for a period of 30 ms starting at t = 0.45 seconds and reclosed at t = 0.48 seconds,

from start of tsimulation. The solar irradiance in all the events simulated in this

study has been kept fixed at 1000 W
m2 . This was done to ensure a static frame of

study in which the PV system operates at its full capacity rated at the Standard

Test Conditions (STC). For all the simulations discussed in this paper, the MPPT

of the PV array is switched on at t = 0.4 seconds and after a few transients,

reaches the peak operating power point of the PV array. The resulting islanding

operation has been shown in figure 3.4. It can be observed that the isolated net-

work’s voltage and frequency pertain to the values explained in the basic theory of

islanding of solar PV systems. The resulting under-voltage and under-frequency

agrees with the theoretical trends applicable for the case of P-Q mismatch during

islanding. The highly unbalanced nature of the feeder is also evident. The scale of

the figure apparently suggests of no possible impacts of non-inclusion of an AVR

since the observed three phase voltage remains at its nominal value. Also, since

the major objective of this exercise was to observe the trends and the behaviour

via the waveform, slight changes in the expected magnitude shall not affect the

trend-related information carried in the signal’s shape. The harmonics observed in

the three phase voltages and currents are natural when a PV system is integrated

and the Igrid side harmonics averaged to be inside allowable range. The simulation

modeled a discrete circuit by sampling the voltages and currents at a rate of 1

MHz. Although such a high sampling rate is not practically seen in power sys-

tems, this was used to closely approximate a continuous system in the discrete

time-step simulation. Similar kind of wave shapes were observed in field tests car-

Figure 3.4: Islanding operation in the P-Q mismatch case
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ried on a MV feeder in Spain [20]. The island reported over-voltages are visible

in the field-test results reproduced with permission in figure 3.5. The time-scale

of observing voltages and currents in the field tests is 10 ms/division. Although,

comparing simulation results with field-results may not be completely appropriate,

the similarity in the general trend of the obtained system parameters does provide

confidence about the system modeling approach.

Figure 3.5: Field test results as in [20]

3.2.2 Anomalous current liable to cause section islanding

Two types of dynamics are commonly observed on any distribution feeder: distur-

bances from the grid substation side and variation of Pload and Qload with the bus

voltage and frequency. The injection of relatively large quantities of solar PV gen-

eration will add to the dynamic interactions between the inverter and the loads.

Such occurrences alongside different grid conditions, coupled with load-model dy-

namics, can cause abnormal power flows that may trip the protective devices at

the PCC. To investigate the impact of such events on the modified feeder model,

two types of disturbances were simulated from the utility substation side - under

voltage and over voltage, in concurrence with exact P-Q balance. Reportedly,

these two types of disturbances are commonly used in practice for carrying out is-

landing related studies [79]. In either case, the following values were set to enforce

complete P-Q match between the 1 phase load and the PV inverter and Qcapacitive

on the feeder section 671-692: PLoad = 23.33 kW and QLoad = 203.33 kVAr. A 10

kW resistor in parallel with this load model creates exact P match as the P and Q
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demands of the inverter filter circuit are negligible. The values of PPV and Qsupply

were kept the same as used in the P-Q mismatch case earlier.

The modeled solar PV inverter was given a lower value of minimum operating

voltage which is slightly below the nominal floor values given in standards (0.8

p.u. to 1.15 p.u.). This is however comfortably outside the Low Voltage Ride

Through (LVRT) operating zone as given in [80]. The intention was to provide

flexibility in the operating limits in view of the recent developments in adoption

of LVRT for PV inverters to attain uninterrupted distribution system operation.

However, for the purpose of this study, the magnitude in the simulated under-

voltage event was kept within the operating range of the inverter (0.7 p.u. to 1.3

p.u.) so that no LVRT functionality, if incorporated in the future, is activated. The

modeled inverter cannot support the grid-voltage however even if this advanced

functionality is ever incorporated, the time lapsed tvoltage restoration is suspected to be

> tidentifying anomaly. The island-initiating anomaly was induced by the combined

effect of the grid-end low-voltage disturbance and the load model’s relation of

power consumption with Vbus.

The simulated under-voltage disturbance was 0.7 p.u. of the nominal voltage am-

plitude and was programmed to occur from the substation end for 30 ms from t =

0.45 s to t = 0.48 s with tsimulation = 0 s as reference. The low voltage event simu-

lated in this study is not attributed to loading on the feeder. Such kind of voltage

sag can be caused by practical reasons like generation-end short-circuit faults and

brownouts on a feeder-lateral. Recently, a new phenomenon was reported in the

field that caused voltage fall due to the action of inverter’s anti-islanding protec-

tion [18]. All the disturbances in this work have been simulated for a period of

30 ms considering the inverse time-current characteristics of a commercial digital

over-current relay model SEL-751 having directional over-current protection. This

relay’s catalog specifications show a tmax. pickup of 8 ms. Accordingly the 30 ms

nominal period was considered as a reference so that any over-current instance has

a duration that is of the order of this value. Also, the tsampling < tmax. pickup which

ensures that if the previous condition is met, the current can trip the relay. Since

the P-Q match condition had already been configured on the feeder and the under-

voltage was simulated alongside, this event has been named as UV+P-Q match

and will be referred to as the same throughout the thesis. The resulting grid-side

current flowing in phase C of section 671-692 due to this event’s simulation run is

shown shown in figure 3.6. The current has many anomalous peaks during the pe-

riod of voltage disturbance and after the disturbance ends. The islanding-initiator

is observed in the UV+P-Q after disturbance stage. It must also be noted that
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Figure 3.6: The discovered islanding-initiator

the instantaneous L-G voltages in phase C in the period from 0.48 s to 0.512 s are

of the order of 0.85 p.u. which is well within the inverter’s operating range.

The single phase load on the section 671-692 has a constant-current model that

follows the relation P ∝ V n
bus where n = 1. Because of the substation-side under-

voltage disturbance, the low voltage propagates at the PCC bus and the P-Q

balance is broken. There is now an excess of power from the PV inverter that

begins flowing in reverse, towards the lower potential at the substation. Once

the condition of ||Vbus|| = 1 p.u. is satisfied, the superposition of the phasors

Vgrid(t) + VPV reverse(t) gets magnified. This magnification causes an instantaneous

spike in the phase C voltage resulting into the spike in the corresponding current

as shown in the figure by a circle. The obtained anomaly is consistent with the

reported observation that reverse power flow leads to over voltages in high-PV

penetration feeders even when the AVRs might not be present or not working

properly [77]. Considering the magnitude and duration of this over-current, how

this spike can become an island-initiating trigger has been explained next.

For the feeder model used in this study, an event will be called island-initiating if its

intensity and duration can trip the utility protection near 692. For radial feeders,

generally over-current relays and lateral fuses are used as protective devices [81].

However due to PV integration effects, the use of Directional Over-Current Relay

(DOCR) at the PCC is recommended in practice. Since the observed anomaly is an

over-current spike, its RMS value and duration must match with the trip-settings

and time-current characteristics of the PCC protection. However, the feeder circuit

has no actual protective device modeled. In a static frame, the comparison of the
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over-current’s magnitude with a calculated threshold has been followed to check

whether the spike would trip the device, if it were kept at the PCC. To verify

the severity of this current, the possible threshold for a protective device in this

section was estimated. The addition of a solar PV inverter on a radial feeder

brings an additional source of Ifault in the system. This impacts the magnitude

and direction of fault currents flowing in the network. The radial nature of the

feeder is lost since fault current from PV can flow in reverse for a short-circuit

fault at an upstream node. The traditional system protection is not designed for

such reverse flows and thus their coordination is disturbed.

The magnitude and direction of the maximum possible fault current at node 692

will decide the setting of the over-current relay to be placed there. Since the over-

current anomaly is caused due to reverse power flow, a DOCR must be preferably

chosen as the PCC protection. Accordingly, a three phase to ground short-circuit

fault was created at the substation bus. The fault current was recorded in the

section 671-692. This was done following the observations made in a short-circuit

study performed for the IEEE 13 node feeder in [82]. The study found that the

maximum fault current at the PCC was recorded when the fault occurred at a

node farthest from it. For our network, node 650 is farthest from node 692 and

hence for a L-L-L-G fault at 650, the RMS value of Ifault 692 was found to be

less than that for the over-current spike which is 0.1 kA. Therefore, the current

in the UV+P-Q after-disturbance event exceeds the threshold estimated for a

DOCR at node 692. Also, the magnitude of this spike is more than the maximum

continuous current Imax. 671-692 = VL-N peak/Z671−675 ∼ 60 A. This is more than 1.3

times Imax. load which defines the Ipick up and hence the severity of the discovered

over-current spike is again confirmed. Although tsampling < tmax. pickup, the duration

of the over-current spike is 0.6 ms based on the used sampling rate. Such a small

duration spike cannot trip a DOCR as it does not last long enough to match the

relay’s time-current characteristics. However, this spike can blow a lateral fuse or

trip a recloser placed before it for the fuse-saving scheme. Since a lateral fuse is

also commonly used in radial feeders, the status of the discovered anomaly as an

islanding-initiator is confirmed in simulation.

With an objective of investigating more of such anomalous occurrences due to

multiple dynamics in active distribution networks, an over-voltage + P-Q match

event was simulated. This was done to observe the behaviour of the modeled

inverter, having a liberal operating range, at the other extreme of the wide oper-

ating voltage range. A voltage-rise, symmetrically 1.3 p.u. of the nominal voltage

amplitude, was programmed from the substation-end for a period of 30 ms from
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t = 0.45 s to 0.48 s. The power settings were kept the same as in previous cases

so as to enforce P-Q balance alongside the disturbance occurrence. The resulting

grid-side current is shown in figure 3.7. There are characteristic sharp peaks and

valleys in this current during the period of over-voltage disturbance. Its magni-

tude however, could not cross the previously calculated threshold. Hence, based

on the same static fault study approach, this over-current was not found to be

severe enough to trigger section islanding. Traditionally, voltage-swells on dis-

tribution feeders occur due to reasons like Ferranti-effect. Modeling such a high

voltage-rise was motivated by the fact that over-voltages due to PV integration

effects are also becoming a common phenomena and their magnitudes have not

been characterized.

Figure 3.7: OV+P-Q match

3.2.3 RTDS Verification of the Observed Islanding Initia-

tor

Since a simulation based study provides the control over system parameters, it al-

lows convenient investigation of events facilitating extensive collection of data. Ac-

cordingly, the simulation based study was carried-forward in a realistic framework

by running the model in real time. The complete system involving all the compo-

nents was re-modeled and executed in a Real Time Digital Simulator (RTDS). Both

the events discussed above were simulated. The Simulink model was re-structured

in a master-slave configuration with inclusion of block programs necessary to in-

terface the Simulink system with the RTDS mainframe. A RTDS provides both

hardware-in-loop and processor-in-loop capabilities to execute models designed in
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Simulink and various other simulation softwares. Rapid control prototyping in

real time is also supported. An RTDS contains a collection of powerful processors

arranged in a rack. Each processor is a multi-core central processing unit usually

running at 3.2 GHz and above with upto 32 cores.

An OPAL-RT make RTDS (model OP-5600) available at the Department of Elec-

trical Engineering, Indian Institute of Technology Jodhpur was used in the study.

The RTDS rack has been shown in figure 3.8. The system with an oscilloscope

attached was used to observe the real-time waveforms and has been shown in fig-

ure 3.9. The system comes with its own modeling software known as RT-LAB.

The Simulink model was re-designed in this software where the model blocks that

interface the Simulink model with the RTDS processor were added. Since real-

time simulations cannot adjust sampling times dynamically, the Simulink models

have to be designed with a fixed time-step of simulation. Accordingly, the model

configuration was changed to fixed time-step discrete and it was run with a sample

time of 10 µs. This is the lowest resolution of sampling time possible on the RTDS

used for the study.

Figure 3.8: The RTDS rack
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Figure 3.9: The oscilloscope connected to OPAL-RT OP-5600

The system was configured to have a stop-time that makes the duration of a run as

0.5 s. Both the UV+P-Q match and OV+P-Q match cases were simulated for 0.5 s

in real time. The model was compiled in Simulink on the personal workstation and

the execution of the compiled C code was done in the RTDS. The results generated

by the RTDS were communicated to the personal workstation and were saved in

the MATLAB workspace from which the waveshapes were plotted as shown in

figures 3.10 and 3.11 respectively. The spikes in the initial phase are due to the

PV system integration transients.

Figure 3.10: RTDS result for the UV+P-Q match case
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Figure 3.11: RTDS result for the OV+P-Q match case

3.3 Emulator Network Verification

A discovered anomalous phenomenon must be network independent. Thus the

over-current spike observed for the UV+P-Q match event on the modified IEEE

13 node feeder must be replicable. It must be observed if the same set of conditions

that cause it occur on a different radial feeder. Accordingly, a one-phase, one-bus

network was created using emulators and the associated hardware in the Smart

Controllers laboratory of the Centre for Distributed Generation at The Energy and

Resources Institute, New Delhi, India to verify the spike’s occurrence. There were

some differences from the settings configured for the simulation study. Firstly,

there was no source of reactive power so only P-match condition could be realized.

Secondly, the inverter used was a commercial model (SMA Sunny Central) whose

operating voltage range was 0.8 p.u. to 1.15 p.u. and which worked on unity power

factor. The power grid was realized using a grid-simulator which could operate

only in 1-phase mode due to some technical issues. The system frequency was

50 Hz unlike the simulation study. The solar PV array was replaced by a 30 kW

solar PV array simulator whose radiation was also kept fixed at 1000 W/m2. A

programmable load or the load emulator provided a constant impedance type load

model however only a purely resistive load was implemented due to the availability

of an active power supply only. The feeder model realized in hardware is shown

in figure 3.12.

The grid-simulator used was a 30 kVA programmable voltage source from which

all kinds of voltage disturbances can be programmed. The 5 kVA inverter func-

tioned as a typical CSI with a pre-configured operating margin. The radial feeder
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Figure 3.12: The laboratory emulator network

was created using 2.5 mm2, three core single phase cables with effective resistance

of 5 Ω and negligible inductance. The load values were set on a workstation and

communicated to the load emulator through RS-485 protocol. The PV inverter

was supplied with the solar PV emulator output corresponding to the STC pro-

grammed from the interactive dashboard. The loads were fine tuned to a value

such that their consumption matched the inverter’s output. An under-voltage dis-

turbance of 80% of the nominal one-phase grid-voltage of 230 V was programmed

on the dashboard of the grid-simulator. The resulting current as observed on the

digital oscilloscope is shown in figure 3.13.

A similar peak in the grid-side current was observed however it occurred during the

Figure 3.13: The over-current observed on the emulator network
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period of under-voltage disturbance. This was because the load model in the lab-

oratory was that of the constant-impedance type whose P ∝ V 2
bus led to an abrupt

rise in excess reverse power from the PV inverter, inside the disturbance duration,

thus causing the early occurrence of the peak. Hence Pnet flow = Pgrid + PPV reverse

caused net flow in reverse that caused the sudden rise in the current. A replica

of the emulators-based network was designed in Simulink for cross-verification of

the emulator findings. Since Simulink does not contain a model block for a pro-

grammable single phase voltage source, a three phase network had to be created.

The relevant parameters were scaled accordingly to replicate the laboratory net-

work in the three phase domain.

The nominal system voltage was changed to 400 V rms L-L and the network

resistance was changed to 15 Ω but a small 1 mH inductance was added. The

models of the PV array and the three phase inverter used for the modified IEEE

13 node feeder model were used in designing this network also. However the

operating range of this inverter model was different from that pre-configured for

the inverter used in the laboratory. A 100 kW resistive load, as used in the

laboratory study, was added having a constant impedance model characteristics.

The Simulink model was run as a discrete-time step circuit for 0.5 seconds with

a sampling rate of 1 MHz for reasons stated above. In the simulation run, the

MPPT was switched on at t = 0.4 s and after a few transients, the P-Q balance

was achieved at t = 0.42 s. To simulate the action taken in the laboratory study, an

under voltage disturbance of 0.7 p.u. was introduced at 0.42 seconds, immediately

after achieving the power match condition. The resulting patterns in the grid-side

current are shown in figure 3.14.

Figure 3.14: Results for the Simulink study of the emulator network
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Each of the individual phase currents resemble the wave-shape obtained in the

hardware study. The spikes occur inside the duration of the under-voltage dis-

turbance. This occurrence is attributed to the constant-impedance characteristics

of the load that resulted into the reverse flow of the excess PV power during the

voltage-sag period. Since the simulation was run for 0.5 seconds only, the progres-

sive wave forms could not be observed. It is intuited that more of such peaks will

repeat in a sequence. To find whether the obtained current can trigger isolation

of the section of this radial feeder model, the same static fault study approach

was adopted. A three phase to ground short-circuit fault was created at the point

of interconnection of the PV inverter with the network. Since the fault could be

created at any instant after t = 0.42 s, it was programmed to occur at t = 0.45

s persisting for a period of 30 ms till t = 0.48 s. The process was repeated for

the case when the PV inverter was removed from the model. The fault current

obtained in both the cases were sinusoidal. The peak value of the sinusoidal fault

current for the case when PV inverter was connected came to be less than the

value obtained in the case of no PV interconnection. This is in agreement with

the results of the static fault study done for the modified IEEE 13 node feeder

model.

The RMS value of the over-current spike due to the UV+P-Q match event was

comparable with the fault current RMS value of 0.02 kA. Thus, in a manner

similar to the verification done for the case of the modified IEEE feeder, the

island-initiating status of the emulator study anomaly was assessed.

3.4 Conclusion

This chapter described the investigation of the impacts of high localized-penetration

of solar PV generation on a modeled radial feeder. The IEEE 13 node feeder was

modeled in Simulink with some modifications to carry out the investigative study

as desired. Anomalous instances of over-currents were found for two cases: P-Q

match between loads and PV inverter alongside under-voltage and over-voltage dis-

turbances from the grid-side. The over-current observed in the after-disturbance

period of the UV+P-Q match event was found to island the section 671-692 on the

feeder. A static fault study was performed to verify the status of this over-current

as an islanding-initiator for the modeled feeder. The discovered phenomenon’s

occurrence was attributed to the reverse flow of excess PV power that lead to

an instantaneous spike in phase C current of the section. The constant-current
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model of the 1-phase load in the section caused a sudden reduction in active

power consumption due to the voltage-sag. This disrupted the P-Q balance and

the magnitude of superposition of VPV excess + Vgrid peaked after the disturbance

was removed. The post-disturbance over-current observed for the OV+P-Q match

event was not found to be an islanding-initiator for the section 671-692 based on

the same static fault study.

To have a realistic feel of the simulation, both the events were simulated on a

RTDS. The same nature of waveforms were observed for both the UV+P-Q and

OV+P-Q match cases confirming the occurrence of the anomalous current spikes

in real-time simulation. For the same set of conditions corresponding to a UV+P-

Q match event, the over-current spike was also observed on a 1-φ, 1-bus network

created using emulators in a laboratory setup. However, due to the constant-Z

model of the resistive loads, the spike was observed during the voltage-sag period,

verifying the phenomenon’s occurrence and displaying the impacts of various load

models.

The next study, presented in the successive chapter, initiates the use of learning

models for event detection. It describes how the data points belonging to the two

events discovered on the IEEE feeder were used to extract features to fit different

learning models. The different learning models implemented are based on mul-

tivariate statistical methods and supervised and unsupervised machine learning.

Their common objective is to identify the island-initiating current from other tran-

sient events. However, the detection is offline as the data is saved first and then

the prediction models are applied.



Chapter 4

Offline Feature Extraction and

Event Detection

4.1 PCA Based Feature Extraction

The system designed on the modified IEEE 13 bus feeder was configured as a

discrete time-step model in Simulink. The sampling time was kept as 1µs and

different event based simulations including under-voltage + P-Q match and over-

voltage + P-Q match cases, described in previous section, were run for a time

duration of 0.5 seconds. The voltages and currents were thus sampled at 1 MHz

for reasons given in the previous section. These simulation runs generated a huge

amount of data points. Based on the sampling rate and the actual time at which

the simulations were stopped, an order of magnitude of 50,000 data points were

generated for each run. These are instantaneous values of current and voltage of

phase C recorded at section 671-692. Thus a N × 2 dimensional data matrix was

saved for each event simulation run where N typically remained of the order of

50,000. The entries under both the columns showed a strong correlation as also

exists practically between voltage and current and the phase difference present

between them was also visible. Since in each event simulation run, the MPPT was

switched on at t = 0.42 s, the active-power contribution from the PV system could

be stabilized only after that. Each event simulation had two portions in general -

the ‘normal’ system operation and the disturbance portion. The ‘normal’ system

operation corresponds to the duration when no external disturbances exist in the

system apart from the harmonics introduced by the PV inverter. For the UV+P-

Q match and OV+P-Q match cases, both the ‘during disturbance’ and ‘after-

61
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disturbance’ periods were used to collect data for building predictive models.

The ‘normal’ system operation portion was common to all the different types of

event simulations. It was thus treated as a separate event in itself. Any predictive

model built for this study carries the objective of identifying the island-initiating

over-current from the UV+P-Q match case from other different kinds of power

system transients - known ones and those discovered in this study. Hence a large

amount of data points must be collected to form a composite matrix (that may

or may not be having final outcome values) to fit a predictor model whose final

outcome is the class or group to which an event has been identified to belong

to. For this study, there are two possible classes where events can be categorized

or grouped into :- island-initiating or not island-initiating. An appropriate step

before building a predictive model is to reduce the dimensionality of the data.

Since the data matrix for each event-simulation is quite large, the collection of such

matrices will compound the number of instances. It is thus important to extract

only meaningful information and discard data redundancy and keep only those

attributes or dimensions that contribute to the information content. Accordingly,

Principal Component Analysis (PCA) was thought to be an appropriate technique

to extract features from the N × 2 dimensional data since current and voltage are

correlated quantities.

PCA is a linear-algebra based projection technique that maps highly correlated fea-

tures into a low dimensional space. The resultant feature vectors in this sub-space

are non-correlated and orthogonal to each other. Mathematically, it represents

an orthonormal basis transformation wherein the input data vectors are projected

onto new basis vectors of an m dimensional feature space, where m is the number

of features in the original data. The best way to represent a given dataset is to

select those features:

1. Along which the variance of data points is maximum

2. Whose covariance with other features is minimum.

These two conditions also translate into the desired properties of low noise and

reduced redundancy. The basic mathematics of PCA can be explained as follows:

Let X ∈ Rm be a real-valued matrix having n samples or observations where each

sample vector is a column. Hence X is arranged as a m × n data matrix which

has to be represented by Y , of the same dimensions. Let P be a transformation

matrix that converts X into a representation matrix Y such that the features of

Y follow the two conditions mentioned above. Accordingly, P must be a m ×m
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matrix that transforms X as in equation 4.1:

PX = Y (4.1)

The covariance matrix of Y is given by equation 4.2:

Cov(Y ) =
1

n− 1
Y Y T (4.2)

The diagonal elements of Cov(Y ) represent the variance of each dimension while

the off-diagonal elements are the covariances between different dimensions. To

satisfy the two conditions given above, the values of diagonal elements must be

high and those of the off-diagonal terms must be least. The best possible way to

achieve this is to simply diagonalize this matrix.

If P can be represented as collection of row vectors
[
p1 p2... pm

]T
Then, Y can be expressed as in equation 4.3:

Y =


p1x1 p1x2...p1xn

p2x1 p2x2...p2xn

. . .

. . .

pnx1 pnx2...pnxn

 (4.3)

When, X is a collection of column vectors,
[
x1 x2... xn

]
.

It is evident from equation 4.3 that the vectors of X are projected onto the vectors

of P which now act as new basis vectors. Since basis vectors of a Euclidean vector

space are always orthogonal, they must now be orthonormal so that the projection

represents only a rotation, not a stretch or change in length. Therefore, now the

task is to find P such that Cov(Y ) becomes a diagonal matrix. Also, the essential

requirement becomes that P must be a matrix of orthonormal vectors.

Using equation 4.1, equation 4.2 can be expanded into equation 4.4 as:

Cov(Y ) =
1

n− 1
PX(PX)T

Cov(Y ) =
1

n− 1
PXXTP T

Cov(Y ) =
1

n− 1
PCov(X)P T

(4.4)

To diagonalize Cov(Y ), the basic PCA algorithm takes advantage of the fact that
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Eigen Value Decomposition (EVD) of a symmetric matrix results into orthogonal

eigen vectors that can be normalized to unit length. Cov(X) is anm×m symmetric

matrix that can be expressed as in equation 4.5 based on the standard EVD:

Cov(X) = EDE−1 (4.5)

Here, E is the matrix of eigen vectors of Cov(X) and D is a diagonal matrix of

its eigen values. The EVD based PCA suggests the choice of P as P = ET . To

make the eigen vectors of Cov(X) orthonormal, the matrix is mean-centered along

the dimensions so as to normalize the length to 1. This makes P an orthonormal

matrix for whom P T = P−1. Using equation 4.5, equation 4.4 can be further

expanded to result into equation 4.6 as:

Cov(Y ) =
1

n− 1
P (EDE−1)P T

Cov(Y ) =
1

n− 1
P (EDE−1)P−1

Cov(Y ) =
1

n− 1
P (P TDP T−1)P T

Cov(Y ) =
1

n− 1
P (P TDP−1−1)P T

Cov(Y ) =
1

n− 1
P (P TDP )P T

Cov(Y ) =
1

n− 1
(PP T )D(PP T )

Cov(Y ) =
1

n− 1
(PP−1)D(PP−1)

Cov(Y ) =
1

n− 1
D

(4.6)

Thus the selection of P as ET made Cov(Y ) a diagonal matrix. There is another

version of PCA in which the Singular Value Decomposition (SVD) of the input

data matrix is used to diagonalize the required matrix. In this approach, the

data matrix X is decomposed into two orthonormal and one diagonal matrix as

in equation 4.7:

X = UΓV T (4.7)

Here, U is a n×m matrix with orthonormal columns, V is a m×m orthonormal

matrix and Γ is a m×m diagonal matrix of singular values. The columns of U are

orthonormal eigen vectors of XXT , columns of V are orthonormal eigenvectors of

XTX and singular values contained in Γ are the square roots of eigen values from

U or V in a descending order.
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The basic PCA algorithm based on the EVD of covariance matrix can now be

formulated. The same has been described in Algorithm 1.

Algorithm 1 PCA

1: Arrange data sample vectors into a data matrix X = samples × observations
2: Mean centering of X → mean centre X by subtracting column means from

each observation along the columns to have zero means along the columns.
This results into matrix A

3: Compute the covariance matrix of the mean-centered data matrix A by AT×A
n−1

.
It is a square symmetric matrix of p× p dimension

4: Find the eigen vectors of the covariance matrix of A
5: Sort the eigen vectors in decreasing order of eigen values
6: Project the sample vectors of A onto these eigen vectors to find their feature

vectors for building prediction models

To re-iterate the basic vectors involved in this application of PCA:

Eigen vectors = principal component axes

Score vectors = projection of mean centered data samples onto the Principal Com-

ponents (PCs)

Eigen values = variance of each score vector = latent values

The ‘normal’ system operation portion was taken as a reference case. Linear PCA

technique was applied on the data set corresponding to the ‘normal’ case to create

the reference PCA model. PCA based on the standard SVD approach was imple-

mented in MATLAB to find the principal component matrix. The two-dimensional

data belonging to the ‘normal’ case resulted in two principal components (PCs)

as explained in equation 4.8 ∀n = 1 to N = |Normal|.[
V (n) I(n)

]
N×2
→
[
PC1 PC2

]
2×2

(4.8)

Latent analysis was used to select a component. A latent matrix contains the

values of variances of projections of data points onto the PCs known as scores.

Based on the variance of the projections onto the two PCs, the 1st PC was retained

for all analyses. The latent matrix is shown in table 4.1 that explains the choice

of retaining PC1. Thus the projection of mean-centered data points onto the 1st

principal component of the reference PCA model, F1(n), was taken as the feature

attribute of data points belonging to different events as explained in equation 4.9

where each of the two PCs is a 2× 1 vector.[
V (n) I(n)

]
N×2
×
[
PC1 PC2

]
2×2

=
[
F1(n) F2(n)

]
N×2

(4.9)
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Table 4.1: Latent values for the reference PCA model

On PC1 On PC2

5.37 ×106 486.6

Many kernel functions also exist that can transform the original data into feature

vectors in the principal component sub-space non linearly. For N number of data

sample vectors x ∈ Rm stacked above one another to form a data matrix XN×m,

application of PCA on X leads to a p× p coefficient matrix P . If r ≤ m number

of PCs are retained based on latent values, then X can be resolved into a PCA

model and a residual model as X = XPCA + Xres. The projection onto the PC

or loading matrix leads to formation of a score matrix TN×m. The original data

matrix X can be reconstructed using score matrices TPCA and Tres and loadings

PPCA and Pres as X = TPCAP
T
PCA + TresP

T
res where Pres and Tres are of N ×m− r

dimension [83].

The application of PCA on the ‘normal’ system conditions dataset to form the ref-

erence PCA model resulted into two things - reduction of reference model dataset

into a uni-dimensional matrix and a methodology to extract features from any

data set for training and testing different predictive models. The next section

discusses two multivariate statistical models that were used in conjunction with

PCA for event detection purposes.

4.2 Multivariate Statistics based Event Detec-

tion

The PCA technique used above was applied in building models that can detect

any abnormal instance or occurrence using statistical process control strategy.

This approach is well suited for multivariate statistical models that can sense

the statistical significance of deviation in a dataset. Although PCA itself is a

multivariate technique, it has to be used with some statistical parameter that

can define control limits for a process variable and sense its violation. Therefore,

the PCA feature extraction methodology was used to implement two different

types of multivariate statistics based event detection models discussed below. The

data belonging to different events simulated was pre-processed and projected onto

the 1st PC of the reference PCA model. The aim of the underlying statistical

process control strategy is to differentiate a condition that can cause unintentional



Chapter 4 Offline Feature Extraction and Event Detection 67

islanding on the modeled feeder from those like faults and other transients that

appear similar to an islanding-initiator but actually are not. These events are thus

tricky to detect and identify correctly. As highlighted in chapter 2, the techniques

described in the literature detect an islanding condition among other transients

like faults, load and capacitor switching surges, and transients after the island has

been formed. This study explores the possible practical causes of the event, as

described in chapter 3, and then applies models for detecting such conditions from

the ones that appear close enough to fool the inverter. For the offline detection

study discussed in this chapter, the four cases resulting from the two grid-side

disturbances (described in chapter 3) and a three-phase short-circuit fault case

have been simulated.

4.2.1 PCA + Q Statistics based Model

The different event based cases simulated for this offline study and the number

of samples generated are given in table 4.2. The ‘normal’ system condition is an

event in itself as mentioned above. A three phase to ground short-circuit fault

was introduced at the PCC (node 692) with a fault resistance Rf = 0.01 Ω. This

event was simulated for a 30 ms interval and only the disturbance period data

points were collected. Thus N ∼ 30, 000 for this case. Similarly, for the ‘during-

disturbance’ and ’after-disturbance’ scenarios of the UV+P-Q match and OV+P-Q

match cases, number of samples N ∼ 30, 000 were recorded respectively since both

the scenarios were equally long having a 30 ms duration.

The statistical process control method is widely used in industrial engineering for

quality control purposes. It has found other applications in many domains for out-

lier detection to check if the process variables are in control. Any process variable

is indicated as out of control when a certain statistic related to it crosses its upper

limit. PCA has two multivariate statistics associated with it: the Hotelling’s T 2

statistic and the Q statistic. Both have an Upper Control Limit (UCL) defined

in different ways and when these limits for both of them are crossed by the cor-

responding statistics of data points in a data set, it indicates an anomalous and

abnormal behavior.

The Hotelling’s T 2 statistic is a multivariate distance of a set of data points from a

target value. It indicates the variance of data points inside the PCA model. If f is

a mean-centered (scaled) sample data vector then tPCA = fPPCA is a score vector.

The T 2 statistic for f is defined as T 2 = t′∧ t where ∧ is a diagonal matrix having
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Table 4.2: Cases Simulated for the First Offline Study

Case No. of Samples Event
Case 1 30484 Normal
Case 2 30584 UV+P-Q match

(during disturbance)
Case 3 30622 UV+P-Q match

(after disturbance)
Case 4 30585 L-L-L-G fault at PCC
Case 5 30656 OV+P-Q match

(during disturbance)
Case 6 30644 OV+P-Q match

(after disturbance)

r Eigen values of data matrix FN×m for r ≤ m number of retained PCs. The

UCL for the statistic is denoted by T 2
α. If all data points are linear and normally

distributed, the T 2
α follows an F distribution and is given as in equation 4.10

T 2
α = r

(N2 − 1)

N(N − r)
Fr,N−r (4.10)

at a given level of confidence α. Here r and N − r are the two degrees of freedom

of the F statistical distribution.

The Q statistic is a measure of deviation of the original data points from the

projection onto the PC axes. Hence it measures variance among data points

inside the residual subspace. The Q statistic is calculated using residuals and

for a residual vector e of a scaled sample vector f , the Q statistic is given as

Q = eT e = fT (I−PpcaP T
pca) where I is an identity matrix. For normally distributed

and linearly co-related data points, the Q statistic follows a central χ2 distribution

and its UCL is given by equation 4.11

Qα =
σ2

2µ
× χ2

(
2µ2

σ2

)
(4.11)

at given level of confidence α. Here µ and σ2 are the mean and variance of the Q

statistic respectively.

Recently, PCA based process control strategy has been applied for detecting the oc-

currence of an islanding condition and distinguishing it from several non-islanding

events. PMU recordings of frequency measurements on 6 different sites in the UK

power grid were used as reference data for implementing T 2 and Q statistic based

islanding detection in [84]. The occurrence of an islanding situation was evident
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only when the Qα was crossed in addition to the crossing of T 2
α by the correspond-

ing multivariate statistics for a test event data set. Since the power system is a

dynamically varying system, the system variables used for creating the reference

PCA model also change dynamically causing temporal variations in the model

also. To tackle this issue, a recursive PCA algorithm was developed in [85] for

the same UK power system case. The reference PCA model was updated in every

iteration and the detection results for abnormal transients verified its effectiveness

over the static PCA approach. This research thesis reports a study that has made

use of the usual SVD for creating the reference PCA model since the reference

data does not change from one event to other. This is so because the simulation

has been performed for fixed settings to observe some unique changes that occur

in fixed-time windows as described previously.

The application of the PCA + Q statistics model involves the calculation of Q

value for each of the 5 events except for the one represented by case 1. Each data

set Xsamples×2 ∈ different test cases (2 to 6) underwent scaling to make the mean

along the columns as zero. The mean-centered data set Xmc was then projected

onto the 1st PC of the reference PCA model as Xmc × Ppca. Correspondingly, the

T 2 and Q statistics were calculated. Since crossing of the T 2
α limit for the reference

case by the T 2 statistic of any test case indicates only a faulty or out of control

event, the Q statistic was used as the only parameter for detection. Q statistic

measures deviation inside the residual subspace and hence is a strong indicator of

any abnormal or anomalous condition.

Following the same, the 5 test cases were subjected to mean-centering as before and

were projected onto the 1st PC of the reference PCA model. The Q statistics for

the projected data matrix for each case was found and compared with the UCL

Qα of the reference case score. The Qα at 98% confidence level was calculated

to be = 3.846 × 107. For finding this value, the Q matrix was first found as

Q = residualsT × residuals where residuals is a N × 1 vector containing values

of the residuals of the reference PCA model. The mean and variance of the first

column of the resulting matrix were used in equation 4.11 to calculate the same.

The results of this multivariate statistics based detection are given in table 4.3.

As seen in table 4.3, this approach identifies the anomalous case (case 3) of the

island-initiating over-current correctly. It also correctly identifies that the distur-

bance event in case 2 is not an anomaly that can island the system. However

the cases 4, 5 and 6 are incorrectly identified. It must be noted that the L-L-L-G

short-circuit fault at PCC (case 4) is not an islanding-initiator. This is because for
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Table 4.3: Event detection results using Q statistic

Case Q Q > Qα Islanding initiator
2 1.57× 107 NO NO
3 4.05× 107 YES YES
4 1.23× 109 YES NO
5 8.57× 107 YES NO
6 4.32× 107 YES NO

a given short-circuit capacity of the feeder, a short-circuit fault at the PCC will

cause very low voltages which can cross the Vinv. lower limit. Thus the PV inverter

will shut-down itself following the tripping action of the under-voltage relay and

hence no PV generation will remain even if the section is isolated during the fault.

Although the Q value for the data set belonging to this case is statistically the

highest indicating out-of-control process, it is not an island-initiating event. This

shows that the Q statistic based statistical process control approach is not com-

pletely reliable for detecting any anomalous currents liable to island a section on

the system. To improve upon the false detection rate, the Kullback-Leibler (K-L)

divergence based approach using the PCA model is presented in the next section.

4.2.2 PCA + K-L Divergence based Model

K-L divergence is an important statistical measure that belongs to the domain

of information theory. It is also known as relative entropy. It has shown a great

potential for application in Fault Detection and Diagnosis (FDD) and has been

aptly applied to incipient fault detection in mechanical and electrical systems

as reported in [86]. It has also been widely used in multimedia security and

neuroscience. However, the application of K-L divergence in islanding detection

could not be confirmed in the literature. This section details the use of K-L

divergence in conjunction with the PCA model for improved accuracy of event

detection.

K-L divergence is basically a measure of dissimilarity between two probability dis-

tributions. If two data samples are drawn from two populations having the same

distribution, the K-L divergence for the two samples will be zero. For two contin-

uous Probability Density Functions (PDFs) f(x) and g(x) of a random variable

x, the K-L Information (KLI) is defined as in equation 4.12:

I(f ||g) =

∫
f(x) log

f(x)

g(x)
dx (4.12)
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The K-L divergence is then given as a symmetric operation of the KLI in the form

of KLD(f ,g) = I(f ||g) + I(g||f). For discrete distributions, K-L divergence is

defined as the mean value of the log-likelihood ratio of the two distributions.

For an anomalous behavior or a sudden change in a process, the PDF of the cor-

responding data points changes from that for the reference scenario and if it goes

beyond a safe threshold ε, it can be statistically detected. This approach is also

illustrated graphically in figure 4.1. The left hand side plot shows the original prob-

ability distributions while the plot on the right is of the K-L divergence between

the two distributions with a threshold value ε shown for illustration purposes. For

two Normal (Gaussian) probability densities f and g having means and variances

as µ1, µ2 and σ2
1, σ2

2 respectively, the K-L divergence between them can be given

by a simple expression of equation 4.13.

KLD =
1

2

[
σ2

2

σ2
1

+
σ2

1

σ2
2

+ (µ1 − µ2)2

(
1

σ2
1

+
1

σ2
2

)
− 2

]
(4.13)

For this study, the divergence between distributions of projections of two types

of data sets onto the 1st PC of the reference PCA model was found. The data

set belonging to case 1 (also called reference PCA score when projected) denotes

the reference while the test data sets come from different event based cases. The

probability distribution of the reference case (projection of the ‘normal’ case data

points onto PC1) and those of each of the test cases were not Gaussian. Accord-

ingly, non-parametric kernel density estimation was used to approximate each of

the two distributions as normal distributions. For a real-valued function f(x) of a

continuous real variable x, the kernel density estimate of f(x) at x = x0 is given

Figure 4.1: A sample illustration of K-L divergence between two Gaussian distri-
butions
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by equation 4.14:
∧
f(x) =

1

Nh

N∑
i=1

K(
xi − x0

h
) (4.14)

This is also known as a Parzen window density estimator and represents a simple

non-parametric density model. Here, K() is a kernel function that gives more

weight to points that are closer to x0. This function is symmetric about zero and

integrates to one. For some x0, K(x0) = 0 if |x0| ≥ 0 or K(x) → 0 as x → ∞.

Common kernel functions are Gaussian, triangular, rectangular, Epanechnikov and

cosine. All these, except the Gaussian, have a cut-off point beyond which K() = 0.

The bandwidth h is an important parameter that determines how quickly the cut-

off point is reached. A small bandwidth will cause the kernel density estimate to

depend only on values close to the point of evaluation, while a larger bandwidth

will include more of the values in the vicinity of the point, yielding a smoother

estimate. For the Gaussian kernel density estimate of the reference case score, the

value of bandwidth was taken as h = 476.783. An advantage of the non-parametric

approach over a parametric model is that no model fitting is required. However,

tuning of the bandwidth is required which is usually done by cross-validation

Since mean-centering of data samples is an intrinsic step of the applied PCA

algorithm, the means of the projections of both - the test cases and the reference

case are zero. The PC scores have been assumed to be fairly normally distributed

since they are linear combinations of the original data samples [87]. Taking this

assumption, the following formula to calculate K-L divergence between a test case

and the reference case was used:

KLD =
1

2

[
σ2

test case

σ2
ref.

+
σ2

ref.

σ2
test case

− 2

]
(4.15)

Here (µref. − µtest case)
2 = 0 and σ2

ref. is nothing but the variance of projection on

the 1st PC which equals 5.736× 106, as given in table 4.1. The other variances are

those of the projections of the different test cases onto the 1st PC of the reference

PCA model.

Using equation 4.15, the test cases 2 to 6 were used as the second distribution and

the case 1 was taken as the reference distribution. The values of K-L divergence

calculated for different cases are given in table 4.4. The results from table 4.4

show an important picture. All those cases which had Q > Qα and were wrongly

detected seem to have been differentiated by their K-L divergence values. It can

be clearly seen that cases 4,5 and 6 do not fall in the same category as they had

been previously clubbed by the Q statistics based approach. The extremely large
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Table 4.4: Event detection results using K-L Divergence
Case σ2 KLD Islanding initiator

2 1.95× 106 0.554 NO
3 4.92× 106 0.004 YES
4 5.53× 103 485.55 NO
5 8.42× 106 0.1023 NO
6 5.12× 106 0.0012 NO

and small values of case 4 and 6 respectively segregate them into different category

of events however the similar order of values for case 3 and case 6 do not give a

clear boundary. The L-L-L-G fault case has the least variance among the sample

data points and hence it has the largest K-L divergence among all cases. However

after looking at the divergence values of cases 3 and case 6, setting the correct ε

for an event to be identified as the anomalous islanding trigger seems to be the

problem with this approach although the false alarm detection rate has reduced

to 1/5 from 3/5 in the previous section. To tackle this issue of threshold selection,

a machine-learning based approach to detect anomalous events correctly has been

presented in the next section.

The kernel-density estimated Gaussian PDFs for cases 3, 4 and 6 and their diver-

gence from that of case 1 are shown in figures 4.2, 4.3 and 4.4 respectively. The

higher the value of the K-L Divergence, larger is the gap between the two densities.

Although the numerical values of the respective K-L divergences for each case have

not been plotted, the figures show the asymmetry between the two distributions

in each case. This asymmetry is an indicator of the statistical divergence between

the test case data and the reference case data.

Figure 4.2: K-L Divergence: Case 3 v/s Case 1
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Figure 4.3: K-L Divergence: Case 4 v/s Case 1

Figure 4.4: K-L Divergence: Case 6 v/s Case 1

4.3 Supervised Learning Based Event Detection

The statistical process control methods used alongside PCA extracted features

have a fundamental limitation. They are threshold based approaches that identify

an abnormal event or an anomaly only when its deviation from the normal system

conditions is statistically significant so that the upper control limit of the statistic

is crossed. The changes taking place on an active distribution feeder with high

levels of PV generation are so dynamic that the thresholds change adaptively. For

example the adoption of LVRT in a PV inverter will stretch the voltage operating

limits that will affect the thresholds for an islanding condition. For an event to

become an island-initiator, generally the following conditions must be met for over-

current triggers:
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I > Imax. PCC protection and Vinv. lower limit < Vinv. terminal < Vinv. upper limit. Even if the

thresholds for a particular network remain fixed for a given inverter, there exist

many events that can satisfy the thresholds defining an islanding initiator, but are

not actually liable to island a section. An example is the case of a motor starting

transient. This event causes high inrush currents and a sharp dip in voltage that

can cross the respective current and voltage thresholds but no distribution feeder

relay is configured to operate for a current surge due to motor starting. Hence

such an event cannot island a section and therefore a learning model is required

to identify all such possible events as different from an islanding-initiator.

A threshold based detection approach will also involve a large number of sequential

if-then-else operations. A pattern recognition model fit using training data consist-

ing of samples and their actual outcomes can perform faster operations on unseen

test data. The supervised learning approach can cover all the possible events on a

high PV penetration distribution feeder along with their class labels in the knowl-

edge base. This will enable the learner to recognize the narrow dissimilarities

between the initiators and non-initiators of accidental islanding. Considering the

model G(x, y) mentioned in section 1.3, the set of class labels C = {0, 1} defines

the discrete values for binomial classification required in this case. Class label ‘0’

defines an event that cannot island a section on the modeled feeder while class

label ‘1’ defines the opposite. The next two subsections detail the classifier models

applied.

4.3.1 K-NN Classifier

The data points collected from the event simulations discussed above were analyzed

for a preliminary inspection. It was observed that the anomalous instances in the

UV+P-Q match (after disturbance) case were instantaneous values of positive half-

cycles of current and voltage corresponding to the over-current spike. They were

555 in number since the event occurred for a short duration at the given simulation

sampling rate. Based on the limited number of such instances, all the 555 values

were included in a data-set. Since a supervised learner must recognize this anomaly

as distinct from the healthy system conditions, a part of the ‘normal’ system

operation data-set was included in the same set. The model must also recognize

the patterns of the event just preceding this over-current spike and hence all the

data points in the UV+P-Q match (during disturbance) case were also included.

Thus a composite data-set was created and it was subjected to multiplication

with the 2×2 PC matrix. The projections onto PC1 were retained as features (by
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retaining only the 1st column of the resulting 51139 × 2 matrix) and from these

the training data-set was created. This composite data matrix was 51139 × 1

dimensional in which a second column of class labels was added. For labeling, the

condition of I > 100 A was used on the original un-transformed composite data

matrix to label the rows corresponding to the islanding-initiator in the training

dataset as ‘1’ with rest labeled as ‘0’. The scatter plot of the original dataset of

instantaneous data points in the 51139× 2 matrix is shown in figure 4.5.

Figure 4.5: Scatter plot for the raw 51139× 2 dataset

It can be seen that the data points with class label ‘1’ are separated from those

having class label ‘0’. However a horizontal straight line or even a slanting line

in the current-voltage plane cannot create the decision boundary for learning a

classifier to classify test data points. The reason for this, as mentioned above,

is that many events can cross the thresholds defined by straight line boundaries

and lie in class ‘1’ but they actually do not belong to that class. A decision

boundary that is not rigid but rather more smooth like a parabola visibly seems

more appropriate for such a scatter. Hence a complex non-linear decision boundary

is required to learn a classifier such that the events are assigned the correct classes.

Exploiting the fact that the class label ‘1’ data points in the training set lie close

to each other, the simplest classifier based on a K-Nearest Neighbours (K-NN)

approach was used.

The K-NN method employs an instance based learning paradigm that does not

specifically fit a rigorous mathematical model for recognizing patterns in a set of
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data points. It simply classifies an unknown instance based on its similarity with

the labeled training data points in its vicinity. A K-NN classifier is non-parametric

and its performance depends on the selection of k that defines the number of

training data points in the neighbourhood of a test point. Therefore it does not

actually create a model for classification of test data. It rather calculates the class

of a point as that encoded variable which has the highest frequency from the K-

most similar instances. Since the classification occurs only when a new instance

comes up, it is also called as a lazy-learning technique. A distance measure is used

to find the nearness of a test instance to its neighboring points. The most basic

explanation of this approach can be given mathematically as follows:

Assuming all instances correspond to points in Rn, the nearest neighbours of an

instance is defined by the Euclidean distance. Let an arbitrary instance x be

described by the feature vector

〈a1(x), a2(x), ...an(x)〉

Here, ar(x) is the value of the rth attribute of x. The distance between two

instances xi and xj based on the Euclidean measure is given by equation 4.16

d(xi, xj) ≡

√√√√ n∑
r=1

(ar(xi)− ar(xj))2 (4.16)

A class label is then assigned to the point usually based on a majority vote among

the training points in its neighborhood [88]. The algorithm used here is described

in Algorithm 2 given below. A distance-weighed K-NN approach can also be

incorporated in the basic algorithm. Thus, for any unknown query point xq, the

Algorithm 2 K-NN Classifier

1: Add each training example (x, f(x)) to the list of training examples. Here
f(x) is a binary encoded indicator response variable storing the class label for
x.

2: for a query point xq to be classified do
3: Let x1, x2.....xk be the k training instances nearest to xq based on a distance

measure

4: Return:
∧
f(xq)←

∑k
i=1 f(xi)

k

5: end for
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estimate of the encoded indicator response variable is given by equation 4.17:

∧
f(xq)←

∑k
i=1 wif(xi)∑k

i=1wi

wi ≡
1

d(xq, xi)2

(4.17)

The number of neighbours k is practically determined by two methods. The first

one is by running cross-validation to find the value that is computationally the

most appropriate. The other way is to set k =
√
N where N is the number of

sample observations. The training data set used was the same 51139 × 2 matrix

that has been described above. Since the PCA based feature extraction maps the

original two-dimensional data onto a one-dimensional space, the value of k was

varied between 1 to 10 since the class ‘1’ data points are more close to each other

and overlap with class ‘0’ at less number of instances. The classifier was trained

with the one-dimensional dataset where the choice of selecting the constituent

event datasets was justified in the previous paragraph. Since the ultimate aim

is to identify the island-initiator correctly and distinguish other ‘similar looking’

events from it, the testing was done on one known transient that appears similar

and one anomalous over-current event. Accordingly, the following test sets (as

projections onto PC1) were used for the same reasons as given previously:

Test set I : Last 10,484 points of case 1

Test set II : Data points ∈ case 4 (L-L-L-G fault at PCC)

Test set III : Data points ∈ case 6 (UV+P-Q match, after disturbance).

Based on the accuracy and time taken in predicting a class label, k was set =

5. The euclidean measure of distance was used. The average cross-validated

classification error or loss for 10-folds on the training data was 0.0070 indicating

high training accuracy. The classifier performance was tested for each of the test

cases using the ‘majority vote with nearest point tie-break’ rule. For test set II,

the classifier identified all data points to ∈ Class ‘0’ indicating a 100% accuracy

for this case. The reason for class ‘0’ status of a L-L-L-G fault event at the PCC

has already been given above. This confirms the correctness of the classifier in

assigning label ‘0’ to this case. The classifier accuracy for test sets I and III was

found to be 97.42% and 90.12% respectively after multiple runs. The confusion

matrices for these test sets are shown in table 4.5 and table 4.6 respectively. Case

6 comes very close to the case of actual islanding initiator discovered in case 3 and

hence a large number of data points were assigned label 1. The average classifier

accuracy can be reported as 95.75%. The classifier took an average time of 294 ms
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in classifying a new test data point. As the k was reduced till 1, the time taken

remained same but the accuracy improved even for testing on the third training

data set 3. Clearly in this approach also, the three-phase short-circuit fault case

is identified to be different from all other cases with 100% accuracy.

Table 4.5: K-NN: Confusion Matrix for test set I

Class 0 class 1
Class 0 10214 270
Class 1 0 0

Table 4.6: K-NN: Confusion Matrix for test set III

Class 0 class 1
Class 0 27618 3026
Class 1 0 0

4.3.2 SVM Classifier

The distribution of the binomial-class data points or feature vectors in the one-

dimensional PC subspace is shown in figure 4.6. It can be observed that there is a

fair degree of overlap between the two classes. Visibly, another transformation of

data vectors towards high-dimensional feature space looked an alternative option

to build a classification model. Accordingly, a Support Vector Machine (SVM)

based classification model was thought of. The SVM approach is based on the

statistical learning theory and can be applied to the case of both separable and

non-separable training data vectors. For the separable case, the SVM outputs

an optimally separating hyperplane defined by f(x) = β0 + xTβ with yif(xi) ∀i.
Here (xi, yi) is a part of the training data set consisting of a p dimensional sample

vector xi ∈ Rp and yi ∈ {−1, 1}, the set of binary class labels. The objective is to

maximize the distance of each class’s data points from the hyperplane defined by

M = 1
||β|| as shown in figure 4.7. This is expressed as an optimization problem in

equation 4.18:

min
β,β0
||β||

subject to yi(x
T
i β + β0) ≥ 1, i = 1., , , , N.

(4.18)

Once the optimal values for β and β0 are obtained, the decision function or clas-

sification rule is framed as
∧
G(x) = sign[β0 + xTβ].
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Figure 4.6: One-dimensional scatter of features in PC subspace

Consider the non-separable case shown in figure 4.8 where some points labeled

ξi are on the wrong side of the margin by a factor Mξ. The objective remains

the same however with one of the additional constraints that
∑
ξi < constant.

Accordingly the optimization problem changes to equation 4.19:

min
β,β0

1

2
||β||2 + C

N∑
i=1

ξi

subject to ξi > 0, yi(x
T
i β + β0) ≥ 1− ξi∀i.

(4.19)

Here C is the ‘cost’ or tuning parameter. Its value is estimated by cross-validation.

However for the non-separable case, SVM follows the kernel trick wherein a ba-

sis function transformation h(x) maps the original feature space onto a high-

dimensional space where the feature vectors become separable. Thus the in-

put space is grown in dimensions and the inputs of the model
∧
G get replaced

by the basis functions used. The inverse mapping then translates into a non-

linear decision function. The kernel function is based on the inner-product of

the basis transformation functions and the distance between two points given as

K(x, x
′
) = 〈h(x), h(x

′
)〉. Now, the classifier model changes to

∧
G(x) = sign[

∧
f(x)] =

sign[
∑N

i=1

∧
αiyiK(x, xi) +

∧
β0] where

∧
αi is a vector of non-negative Lagrangian mul-

tipliers, coming from the primal of equation 4.19 and whose upper limit is C.

The training dataset for this case has one-dimensional features. Thus a sepa-

rating hyperplane in the original input space will be just a point. Therefore, a
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Figure 4.7: Separating hyperplane for the separable case

Figure 4.8: Separating hyperplane for the non-separable case

Radial Basis Function (RBF) kernel was applied in the SVM model fit for this

data taking the assumption of normally distributed features due to the PCA

operation involved, as mentioned above. A kernel using the RBF is defined as

K(x, x
′
) = exp(−γ||x− x′||2) where γ = 1

2σ2 . The values of the tuning and kernel

parameters were taken as C = 1 and γ = 0.5 respectively. The classifier was

trained and then tested with the same test data sets (as used in the K-NN case):

Test set I : Last 10,484 points of case 1

Test set II : Data points ∈ case 4

Test set III : Data points ∈ case 6.

The classifier performance was tested for each of the independent test cases given
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a promising 10-fold cross validation accuracy during the training. For test set II,

the classifier identified all data points to ∈ Class 0. This pertains to a 100% accu-

racy for this case. The variance of data points in case of the 3-φ fault is the least

among all cases. Fault is thus detected naturally and, due to reason given above,

cannot be labeled as an islanding initiator. This confirms the correctness of the

classifier in assigning label ‘0’ to this case. The classifier accuracy for test sets I

and III was found to be 67.5% and 83% respectively after multiple runs. The time

taken in classifying test cases is important as it should be less than or equal to

the delay of the utility relay to trip a breaker so that the PV inverter trips well in

time and this is also noted in table 4.7, although not required in an offline study.

Case 6 comes very close to the case of actual islanding initiator discovered in

chapter 3 and hence a large number of data points were assigned label ‘1’. Clearly

in this approach also, the three-phase short-circuit fault case is identified to be

different from all other cases with 100% accuracy.

Table 4.7: SVM Classifier Performance for the 3 Testing Data Sets

Test Set Accuracy Time Taken (Including training time)
I 67.5% 437 ms
II 100% 63 ms
III 83% 432 ms

4.4 Unsupervised Learning Based Event Detec-

tion

Revisiting the generalized predictor model G described in section 1.3, one of the

objectives of such a model is also to identify events as belonging to S1 or S2

when it has not learnt the class labels. Obtaining a labeled dataset for training

of predictor models is not always practical or feasible. Thus G(x) must be able

to cluster events into ‘can cause islanding’ and ‘cannot cause islanding’ when

only their feature vectors xi are available. Accordingly, as a further exercise,

unsupervised learning was explored with the motivation to create self-learning

and acting systems. Such kind of systems will find more ground applications in

real-time scenarios. However, initial attempts for offline testing were made to

begin with. This section presents preliminary results of application of the same

where a Self-Organizing Map (SOM) neural network was created for preemptive

detection of unintentional islanding by classifying the discovered islanding initiator
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from other power system events. Classification of a L-L-L-G short-circuit fault at

the PCC was found to be invariant to input feature reduction. However, the other

two test cases investigated produced contrasting results when the number of input

features were changed from 1 to 2.

SOM type neural networks are based on the concept of competitive learning. Also

known as Kohonen maps, they are a type of feed-forward networks that learn

without any supervision. The weights are learned by the network on the basis of

similarity among input features. There exists a winning neuron, also known as the

best matching unit, whose weight vector is nearest to the input vector. Utilizing

this ‘winner takes it all strategy’, a SOM network also learns the input space

topology. A SOM is used to represent multidimensional data in low dimensions,

usually 1 or 2. Each neuron is a functional unit arranged in a topological space.

Since a SOM NN arranges neurons or nodes on the basis of similarity with input-

data features, it clusters the data into similar groups. Unlike traditional ANNs,

neurons in a SOM are not laterally connected to each other. Also, the meaning of

‘weight’ is different in their context. A weight vector signifies the relative degree

of similarity of each node with the features of the input vectors. Each node is

characterized by two properties: its position in the reduced-dimension space and

a vector of weights. The weight vector is of the same dimensions as each input

data vector. It has no relation with the spatial position of a node. To illustrate

the basic philosophy behind a SOM NN, consider the schematic diagram given

in figure 4.9. Here the neurons are arranged in a 4 × 4 grid or lattice in a two

dimensional plane. Two-dimensional vectors constitute an input data matrix that

has been used to train the network. Based on the similarity of the weights with

the input data features, the nodes or neurons organize themselves into regions

of similar features. Any new, previously unseen input vectors presented to the

network will stimulate nodes in the zone with similar weight vectors.

The training process of the network is explained as follows. Each node is randomly

assigned weight vectors. For a given input vector presented to the network, the

distance between weights of each neuron and the vector is calculated by equation

4.20:

d =

√√√√ n∑
i=0

(Vi −Wi)2 (4.20)

Here, Vi and Wi are the current input vector and the ith node’s weight vector. The

node with the lowest value of d becomes the Best Matching Unit (BMU) for that

particular vector. The neighbourhood of this BMU is then defined and all the
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Figure 4.9: A SOM network with neurons in a 4× 4 lattice in a two-dimensional
space

neurons inside this radius make a similar zone. However this radius shrinks with

time and ultimately the neighbourhood consists of the BMU (for that particular

vector) itself. The radius is given by equation 4.21:

σ(t) = σ0 exp(
−t
λ

) (4.21)

Where σ0 = lattice width at t0 and λ = time constant.

Once the radius is known, all the nodes are iterated through in the lattice to

determine if they are within the radius or not. If a node is found to be within

the neighbourhood then its weight vector is adjusted. For every node within

the BMU’s neighbourhood (including the BMU), the weight vector is adjusted

according to equation 4.22:

W (t+ 1) = W (t) + L(t)[V (t)−W (t)]

L(t) = L0 exp

(
−t
λ

) (4.22)

Here L(t) is the learning rate that exponentially decays with time. The amount

of influence a node’s distance from the BMU has on its learning also affects the

weight update process. Accordingly, a factor F has been added in the weight

adjustment rule now expressed in equation 4.23:

W (t+ 1) = W (t) + FL(t)[V (t)−W (t)]

F = exp

(
d2

2σ(t)2

) (4.23)

This process keeps on repeating for a specified number of iterations and the neurons

organize themselves in different regions of similarity. For training the network,
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either each data vector is passed one by one or all the vectors are given together

as a whole (batch training). Any unseen input vector when passed to the network

is then assigned a cluster based on the process mentioned above.

In general, for the winner neuron (BMU), ||X − VW || = mink=1.,,,.Nn||X − Vk||
where VW and Vk are the weight vectors of the winner neuron and the kth neuron

respectively, X is a training example and Nn is the number of neurons. The

neurons are generally arranged in a two-dimensional map space and thus the high

dimensional input space can be represented in lower dimensions by the grid of

neurons. Such networks are widely used in clustering applications and hold a lot

of promise in power system events grouping. In the domain of islanding detection,

only one such study has been reported in [89] where input signals to the governor

of a synchronous generator based DG were grouped into two classes to detect

islanding conditions from the non-islanding ones.

The SOM network was created with two neurons based on the fact that the data

points from different test cases have to be categorized into either islanding initiator

or non-islanding initiator. The network was initially created using the above used

2 dimensional matrix of 51139 samples during training, after removing the class

labels column. The different cases simulated and the total number of data points

for the given sampling rate are the same as given in table 4.2. The created network

is shown in figure 4.10.

Figure 4.10: The trained SOM network

Three data sets were clubbed together to create a composite set for training of the

network (projections of event data points onto reference PC1):

Initial 20,000 instances ∈ case 1; Complete data points from case 2 and 555

anomaly data points from case 3. The batch training algorithm was used for

training the network modeled in MATLAB. The network was trained with no

class labels corresponding to each input feature and it was tested on three test



Chapter 4 Offline Feature Extraction and Event Detection 86

data sets (projections of event data points onto reference PC1):

Test set I : Last 10,484 instances of case 1

Test set II : Data points ∈ case 4

Test set III : Data points ∈ case 6.

The network took around 7 seconds to train and based on the similarities of the

features, the input data vectors were clubbed into two clusters represented by the

two neurons arranged in a 2 × 1 grid in the map space with a hexagonal topology.

The number of training data points assigned to each cluster is shown in figure

4.11.

As part of the preliminary efforts, the network showed promising results for the

Test sets I and II. For test set II, the network based classifier assigned class la-

bel ‘0’ to all the data points with a mis-classification rate of around 0.2%. The

identification of a three-phase short-circuit fault at the PCC as not an islanding

initiator is physically attributed to the same fact mentioned previously. Accord-

ingly, grouping of almost all the data points into the non-islanding initiator cluster

is a correct action taken by the network. The classification accuracy for test sets I

and III was found to be 81.09% and 54.35% respectively. The similarity between

the anomalies represented by case 3 and case 6 seemed to have confused the net-

work in its training and a little bit of assistance provided by the corresponding

labels could have strengthened the network accuracy for test set III. Hence it is felt

that a semi-supervised learning based approach might work very well in this case

of preemptive detection of islanding in solar PV inverter interfaced distribution

network.

As mentioned above, case 6 is in close proximity to case 3 in which the actual is-

landing precursors were discovered. Thus many of the data instances were wrongly

Figure 4.11: Number of input vectors assigned to each cluster after training
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given class label ‘1’. The performance of the classification can be reported as an

average 78.42% accuracy. Table 4.8 gives the testing results. However the high-

light of the approach, which is also in agreement with the results obtained by

supervised learning methods used above, has been that the case of L-L-L-G fault

at the PCC was identified to be distinct from all the other cases with near 100%

accuracy which was exactly 100% in the supervised learning cases. Since the ap-

plicability of the technique discussed in this section has to be evaluated for a

real-time online identification scenario, discussed in the next chapter, the SOM

network was also trained on two-dimensional input data. This was done to ac-

knowledge the fact that real feeder data sampled at any practically possible rate

will not be relayed in the form of a mean-centered data set. This is in contrast

to the feature scaling step automatically performed by the SVD based PCA used

in the initial training. Thus the original two input features of the simulated data

were used for training a 2 × 1 network. The network took 14 seconds to train

on the 51139× 2 data set. Surprisingly, for test set II, the classification rate was

found to be the same as obtained for the one dimensional data set. However the

accuracy improved very little to rise to 56% for test set III. The worst perfor-

mance in identification was observed for test set I where only 36% of the input

data vectors were grouped into the correct cluster. Clearly, one thing is under-

stood from this exercise that the scaling and processing of features is very much

important for unsupervised learning techniques and hence considering the physical

limitations of feature-scaled data transmission, appropriate unsupervised learning

methods must be chosen and carefully trained to obtain an acceptable accuracy.

A semi-supervised paradigm can be a recommendable approach to begin with for

establishment of self-learning islanding predictive solar PV inverters.

Table 4.8: SOM Classification Accuracy for the Testing Data
Test Set Accuracy

I 81.09%
II 99.83%
III 54.35%

The event detection models based on multivariate statistical methods were tested

on all the event-based cases except for case 1 (the ‘normal’ operation case). The

machine-learning based models, both supervised and unsupervised, were testing on

different independent test data sets. It would be good to combine the performance

of all these models for the two broad test data sets for a comparative evaluation.

Accordingly, the different learning models and their event detection results have

been summarized in table 4.9. The results for the two multivariate statistics based
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models have been presented in terms of a single overall detection accuracy. For

the machine-learning based models, detection accuracies have been reported test

set-wise where Test Set II and III correspond to cases 4 and 6 respectively and

Test Set I contains last 10,484 points of case 1.

It can be inferred that the K-NN based model performs in the way as desired

for this particular application. For an offline-based event detection scheme, the

nearest-neighbours approach suits based on the scatter of data points belonging

to different events, to be classified into two broad categories. However, labeling of

data points may be an intensive exercise but the experimentation with SOM NN

has opened the widows for a semi-supervised based solution since the network’s

accuracy was high in some particular test cases.

Table 4.9: Performance comparison of different learning models used for event-
based test sets

Learning Model Test Set I Test Set II Test Set III
PCA + Q statistic 40%

PCA + K-L Divergence 80%
K-NN 97.42% 100% 90.12%
SVM 67.5% 100% 83%
SOM 81.09% 99.83% 54.35%

4.5 Conclusion

This chapter gave the first-hand account of the use of event-simulation data for

building various learning models for event detection. The preliminary step of ex-

tracting important features from the raw input data was described first. Exploiting

the existence of a strong correlation between voltage and current in the modeled

power system, PCA was used as the feature extraction technique on instantaneous

values of these two quantities. The inherent pre-processing step executed during

the application of the PCA algorithm used was also explained. Projection onto

the 1st PC of the reference PCA model corresponding to the ‘normal’ operation

of the modified IEEE 13 node feeder was taken as the uni-dimensional feature for

creation of different event-detection models. Apart from the events described in

chapter 3, a L-L-L-G fault at PCC was simulated. The selection of data points for

creating the training and testing datasets for different learning models was also

justified.
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A statistical process control strategy using the PCA Q statistic was employed as

the first multivariate statistics based event detection model. However the PCA

+ Q statistic model had a high false-alarm rate and hence a PCA + K-L diver-

gence model was applied on the same data. This was a unique application of the

divergence measure for islanding-related studies, previously not reported in the

literature. The detection accuracy improved however, for a dynamically changing

active distribution network scenario, this multivariate statistical model might not

be reliable since it is fundamentally threshold based, finding whose value is a chal-

lenge. Accordingly, machine learning based models were applied on a composite

training dataset. The use of the simplest model of a K-NN classifier on indepen-

dent test data sets reported much higher accuracy than the multivariate statistical

models. A SVM classifier using the RBF kernel was also applied to create separa-

ble features in a high-dimensional space from the original 1-dimensional input PC

subspace. However the classification accuracy was less than that for K-NN and the

time taken to predict the class label was also high. The different machine-learning

models were tested offline, after storing the simulation generated data, and it was

found that both the models give a 100% accuracy in classifying the PCC fault case

correctly. Finally, considering the practical challenges in obtaining labeled data,

an unsupervised learning method based on SOM was applied on the same training

dataset - with and without PCA derived features. The network :

• Performed with near 100% accuracy for the PCC fault case regardless of the

number of features

• However for the other two test cases, the accuracy reduced when features

increased from 1 to 2

• Had a very poor accuracy of grouping the events correctly. The performance

could have improved follwoing semi-supervised learning approach.

Although the use of this unsupervised technique did not give favourable results of

event detection, the considerations made in its application were a prelude to the

online feature extraction and event detection case described in the next chapter.



Chapter 5

Online Feature Extraction and

Event Detection

5.1 Introduction

The different types of learning models for offline event detection were discussed

in chapter 4. The PCA based feature extraction methodology was also discussed.

Both, the multivariate statistical and machine learning based predictive models

were implemented. It was found that the supervised machine learning based mod-

els provided much better accuracy in correctly classifying events than the multi-

variate statistical models. With the practical considerations relating to availability

of labeled data and feature scaling and dimensionality reduction in real-time ap-

plications, an unsupervised learning technique was also attempted in the offline

mode. This represented the initial set of steps towards realization of the preemp-

tive islanding detection strategy as described in the research objectives section.

However, the application of the implemented techniques was done in offline mode

on a standard workstation (personal computer) running on a proprietary operating

system. Since the ultimate objective is to design and realize a strategy for detect-

ing islanding-initiators in real-time, an online event detection approach needs to

be implemented in a dedicated, portable computing platform.

The techniques described in this chapter and their implementation differ from that

mentioned in the previous chapter in the following ways:

1. Only one supervised learning technique has been sticked to in this chapter unlike

both supervised and unsupervised learning explored in the previous chapter

2. Two methods for feature extraction have been used: PCA and a proposed

90
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computational geometry based approach

3. All the techniques are executed in a dedicated microcomputer that can control

the mode-transfer for a solar PV inverter

4. The testing data points are not stored as offline matrices but are transmitted

in real-time from event simulations run on the personal computer

5. The predicted class labels are also translated into digital voltages to provide

the mode-change trigger.

Section 5.2 carries the PCA based methodology forward, in the online testing

mode. The projections onto the 1st PC of the reference PCA model are used as

features to train a decision tree classifier. The testing database is expanded to in-

clude a lot of different events ∈ class ‘0’ for generalizing the classification accuracy.

The online testing results on the microcomputer show better accuracy than those

obtained in the offline mode on the personal computer. Lastly, in this section,

the set of class labels predicted by the online classifier module during the event-

simulation runs was realized into a digital high or low voltage corresponding to the

respective binomial class labels. Section 5.3 highlights certain shortcomings in the

PCA based feature extraction approach and describes the proposed computational

geometry based feature extraction methodology for online implementations. The

online testing results compare well with those obtained from the application of

the PCA based methodology however in terms of time taken, both the approaches

were at par with each other. The time taken to predict the class label of the

islanding-initiator was found to be less than that its duration. Naturally, this is

less than the time taken by an over-current relay to trip the breaker at PCC or

that by a lateral fuse at PCC to blow up. This lead time can be used for changing

the mode of the PV inverter based on the trigger provided. Thus a preliminary

implementation of classification of data points transmitted from event-simulation

on a modeled feeder has been made in this study.

5.2 PCA based Online Feature Extraction and

Classification

The reference PCA model corresponding to the ‘normal’ system operation de-

scribed in chapter 4 was used to test the robustness of this feature extraction

approach for online classification. The reference PCA matrix was stored in the

microcomputer’s classifier program and the data samples transmitted from the

workstation simulations were multiplied with it to find the projections onto PC1.
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These were used as test-data features to predict the class labels of the correspond-

ing events. The offline training of the classifier and the online feature extraction

and classification is described in the next subsection.

5.2.1 Decision Tree Learning

The need for machine learning based models for identifying the discovered islanding-

initiator from other power system transients was justified in the previous chapter.

The appropriateness of adopting a supervised learning strategy, at this stage, was

also observed. Completely relying on an unsupervised learning approach for real-

time applications might not be justifiable at the preliminary level of such a study

although self-learning and acting systems must be the idealized target to achieve

absolutely robust systems. However, as exhibited by the example of predictive

grid analytics in [65], the historical data of past events collected over a time frame

supports labeled-data training, subject to its availability. Examining the scatter

of original features in the training dataset used in the offline study and the scatter

in the PC subspace, the use of K-NN and RBF-SVM classifiers was suggested.

However for the implementation of an online classification strategy, the use of a

Decision Tree (DT) was found to be more appropriate. This is attributed to the

following reasons pertinent for the online testing application for this study:

1. The training features are not linearly separated and require complex decision

boundaries.

2. Decision trees are invariant to feature scaling since they depend on ranking of

attributes and not their absolute values.

3. Training data based on PCA is mean-centered while real-time testing data is

non-scaled. Only use of DT gave acceptable change in accuracy (detailed later).

4. Only a DT is robust to a high imbalance in class-distribution and can learn the

inherent pattern effectively.

As observed in chapter 2, the use of DT classifiers in islanding-detection has rela-

tively higher number of references in the literature than others. Its use has given

better accuracy values than other types of classification models. For this study

also, it gave better results than the other models, in the offline testing mode.

Analyzing the scatter plot shown in figure 4.5, the required non-linear decision

boundary can also be learnt by a decision tree, that too very quickly. The fact

that decision trees are also robust to class-imbalance in the training data is par-

ticularly a strong justification for the present case. The reasons for using a DT
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classifier are more pertinent for the online testing case and become visible in the

next subsection.

A decision tree is a non-parametric learning model. It does not assume any specific

form for the mapping function that is to be approximated. A DT recursively

partitions the input training data to create a hierarchical tree structure following

a top-down approach, to classify data instances. Given the features or attributes

and class labels in a training data set, a DT finds a root node and leaf nodes that

are connected by branches. The root node is the starting node of the tree that

descends to other nodes based on different values of the attribute that is chosen

for the root node position. The number of training data examples having this

attribute value then decide the nature of the descendant node on the basis of the

class-label distribution. If all the examples belong to one class, the descendant

node becomes a leaf otherwise it becomes a root for a sub-tree that grows further.

Thus an attribute and a threshold value are chosen at every terminal node to grow

the tree. Statistical measures are used to find the root node and assess the quality

of the partition created by the chosen attribute. It is important to understand

two important terms regarding the same: entropy and information gain. These

two measures are generally used by different DT algorithms to measure the data

‘splitting’ ability of an attribute and to find root nodes respectively. An attribute

may be discrete-valued or continuous-valued. The concept of root, leaf and sub-

tree growth is illustrated in figure 5.1 for discrete-valued and continuous-valued

attributes.

Figure 5.1: A basic tree structure for a binomial classification problem for discrete
and continuous valued attributes
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Consider a dataset of positive and negative training examples. Entropy measures

the heterogeneity of such a dataset based on the distribution of class labels. In

general, the entropy of a dataset S containing examples having ‘c’ classes is given

as in equation 5.1:

E(S) = −
c∑
i=1

Pi log2 Pi (5.1)

Here, Pi is the number of examples having class i divided by the total number of

examples in S. Since entropy is a concept belonging to the domain of information

theory, it specifies the minimum number of bits of information required to encode

the classification of any instance ∈ S. This justifies the use of base 2 in the

logarithm. An entropy value of 1 shows a highly impure dataset signifying highest

randomness in estimating the class label of an arbitrarily drawn example. Zero

entropy means that all the examples belong to one class and the dataset is pure. A

descendant node, as shown in figure 5.1, becomes a leaf node when the entropy of

the set of data points belonging to that partition is zero. Information gain, on the

other hand, is the reduction in entropy of a dataset when a particular attribute

alone is used to partition the training data examples according to its values. For

the same dataset S, if A is a an attribute having V (A) as the set of possible values,

then the information gain of attribute A relative to a collection of examples S is

defined in equation 5.2:

Gain(S,A) = E(S)−
∑

v∈V (A)

|SV |
|S|

E(Sv) (5.2)

Here, Sv is a set of values of S for which A has a value v ∈ V (A). E(S) is the

entropy of the original dataset S and E(Sv) is the entropy of the set Sv. The

attribute having the highest information gain is selected as the root node of the

tree and this heuristic is used by the most basic variant of the DT algorithm

known as Iterative Dichotomiser-3 (ID3). Misclassification rate and Gini-index

are measures other than entropy that are used to judge the quality of a ‘split’.

Gain ratio is another alternative to information gain to select attributes for the

root nodes.

The major DT algorithms are ID3, C4.5 and Classification and Regression Trees

(CART). All these algorithms follow the same approach of a top-down greedy-

search over the input space for building the tree. However, they differ in terms of

controlling the growth of tree, incorporating continuous attributes, selecting the

attributes and handling missing values. C4.5 and CART are an extended version

of the ID3 that work best for discrete-valued attributes. In all these algorithms,



Chapter 5 Online Feature Extraction and Event Detection 95

the process of selecting an attribute and the threshold value for partitioning the

data is repeated for each descendant node. Only the training examples that pass

the test for the attribute in the parent node are used. This process is continued

for each new leaf node until either of the following conditions is met:

1. Every attribute has been included along the concerned branch at least once

2. The entropy of the set of training examples associated with the leaf node be-

comes zero.

The basic ID3 algorithm for a binomial classification problem involving discrete-

valued attributes is given in algorithm 3. Here, Examples are the training exam-

ples and Target is the class label. A test is performed for each attribute selected

for a root node in order to branch out to terminal nodes for partitioning the input

space. For discrete-valued attributes, the test is A = vi and Svi is the subset of

Examples which pass this test, in the present case. The ‘best-attribute’ is the one

having the highest information gain.

Algorithm 3 Basic ID3: ID3 (Examples, Target, Attributes)

1: Create a Root node for the tree
2: If all Examples are positive
3: Return: A single-node tree with Root having label = ‘1’
4: if all Examples are negative then
5: Return: A single-node tree with Root having label = ‘0’
6: end if
7: If Attributes is empty
8: Return: A single-node tree with Root having label = most common value of
Target in Examples

9: Otherwise Begin
10: A←− the best attribute
11: The decision attribute for Root←− A
12: for Each possible value vi of A do
13: Add a new branch below Root corresponding to the test A = vi
14: if Svi is empty then
15: Add a leaf node with label = most common value of Target in Examples
16: else
17: Below this new branch add the subtree ID3 (Examples, Target,

Attributes− A)
18: end if
19: end for
20: return Root

The CART algorithm is fundamentally based on the same philosophy as that

of ID3. However, it has several additional features. It can handle continuous

attributes, there is provision of avoiding over-fitting by ‘pruning’ the tree and it
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can handle missing values in a much better way. Also, a CART based tree can use

other measures like Gini-index or Gain-ratio for splitting a node or for selecting

attributes. For continuous-valued attributes, the test performed at each node for

branching-out is usually of the form A < t where t is a threshold value that is to

be decided at each step during the growth of the tree. The most basic heuristic is

to find those pairs of attribute values where the class-labels change in the training

dataset. The threshold must lie in-between these two extreme points and hence t

is usually taken as the average of these values. This leads to different thresholds

for the attribute A tested at different nodes. Effectively, this leads to the creation

of a discrete boolean attribute from A which will hold only two values: True when

A < t is satisfied otherwise False. This is also depicted in figure 5.1.

Since the training features for this binomial classification problem are continuous

values, CART which is an advanced version of the C4.5, was used instead of the

ID3 algorithm. Accordingly, a DT based on the CART algorithm was programmed

in Python 2.7 on a Raspberry Pi model 2 B using scikit-learn [90]. Raspberry Pi

is a small, portable microcomputer that runs on a freely available customizable

distribution of the Linux operating system. It has Python inbuilt so that program-

ming scripts can be dedicatedly run on its computing platform. The model 2 B

has a 900 MHz Broadcom quad-core ARM v7 processor with 1 GB RAM and is

pocket-sized so that it can fit conveniently inside a solar PV inverter. More details

can be referred to in Appendix II. The tree was not pruned considering the low

dimensional input feature space and the Gini index was used as the split criteria

in place of entropy. The Gini index is defined in equation 5.3.

H(X,Ai) = −
i=c∑
i=1

Pm,k(1− Pm,k) (5.3)

In equation 5.3, Pm,k stands for proportion of training examples in the mth tree

node that belong to kth class among ‘c’ class labels in that partitioned training sub-

set. The built tree had a very wide horizontal growth and hence cannot be shown

here due to space constraints. The training data consisted of the uni-dimensional

features for the same set of events as in the composite training dataset used in

chapter 4. For the reasons given previously, the test data sets were kept the same

as in chapter 4 (projections onto reference PC1 of following):

Test Set I : Last 10,484 data points of case 1

Test Set II : Data points belonging to case 4

Test Set III : Data points belonging to case 6.
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The SVD procedure automatically performs mean-centering on the reference data

for creation of the reference PCA model. Accordingly, the training and testing

data points had to be mean centered before projecting them onto the 1st PC of

the reference PCA model. The classifier modeled in the Raspberry Pi was tested

in the offline mode on feature-reduced data (prepared on the personal computer)

belonging to the different test cases simulated. The performance of the Raspberry

Pi classifier tested in offline mode is shown in table 5.1. The mean 10-fold cross-

validation accuracy was 98.873%. An accuracy of 100% for Test Set II is justified

in the same manner as for previously used classifiers. Since the classifier performed

perfectly for the unseen test set belonging to case 6 whose data points were not

included in the training set, it was decided to use the same set for the online

testing described in the next subsection.

Table 5.1: Offline DT Classifier Testing Results on Raspberry Pi

Test Set Accuracy Time Taken to Predict Class Label
Test Set I 95.16% 0.005 s
Test Set II 100% 0.0082 s
Test Set III 89.33% 0.011 s

5.2.2 Online Testing on Raspberry Pi

Different event simulations for the modified IEEE 13 node feeder Simuink model

were run on a 2.3 GHz, 4 GB RAM personal computer running on Windows en-

vironment that supports real-time Simulink data transfer to Raspberry Pi. The

interface between the Simulink model and the DT classifier programmed in Rasp-

berry Pi was made via a Local Area Network (LAN) based connectivity between

the two computers. A secure shell connection to the Raspberry Pi was established

in order to remotely access its graphical user interface through the personal com-

puter screen. The online testing scheme requires two things: extraction of features

from data samples transmitted from event simulation and prediction of class labels

of these features, as they arrive. In the case of the PCA based approach, feature

extraction was executed by multiplying individual samples with the PC matrix.

The instantaneous values of current and voltage at the PCC of the feeder model

were sent to the classifier programmed in the Raspberry Pi over the LAN.

Since for online testing, the test data is to be transmitted to the classifier in the

form of individual voltage and current samples arranged as single 1×2 arrays,

mean-centering of each of such individual entries was not possible. It requires
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a dynamic array that takes up memory. Hence the test data sets for the online

testing case were simply projected onto the 1st PC, as they arrived, and then

given to the classifier. This is only possible with a DT based classifier because it

is not affected by feature scaling [91] due to use of information-theory measures

like entropy, dependent only on the relative proportion of classes in the dataset,

for classifying a test instance. Since the classifier is trained with projections of

mean-centered data sets (belonging to different event cases), testing it with non

mean-centered test instances (due to real-time data generation) looked ambiguous.

However the classifier still tested with each one of the offline test data sets having

non-mean-centered projections to track any changes in accuracy due to non-scaling

of the features in the test data. The accuracy was found to be unchanged for Test

Set II. For others, a negligible change for Test Set I (0.6% reduction) and a 5.7%

increase for Test Set III was observed. Adjudging these figures and considering the

limitations with real-time data pre-processing, the stream of data was projected

onto the reference PCA model’s first component and fed to the classifier in online

testing mode. The related ambiguities are further cleared by looking at the final

accuracy of online classification.

The simulation was run with a fixed-step solver due to Simulink real-time hardware

requirements and the sampling time was fixed to 10µ seconds based on previous

experience with the RTDS simulation. Each event simulation was run for 0.5 s

with every disturbance having a 30 ms occurrence. The PCC current and voltage

signals were converted from the complex data type to floating point (‘double’ in the

Simulink C compiler system) type. Each one of these double data format signals

was further encoded into an unsigned integer 8-bit string. Both these strings were

sent as a multiplexed signal to the classifier over the local area network using the

User Datagram Protocol (UDP). The data packets as received by the Raspberry

Pi via UDP for the anomalous islanding initiator case can be seen in figure 5.2.

The sags and swells in the voltage and the corresponding anomalous current are

clearly visible.

The 16-bit multiplexed string was received by the classifier module and unpacked

into floating data point numbers. These unpacked numbers were made to arrange

into 1× 2 numerical python (numpy) arrays. As mentioned in the previous section,

these data points, sampled at every 10 µ seconds were multiplied by the 1st PC

of the reference PCA model, stored in the Python program and thus transformed

into 1 × 1 numpy arrays. The same set of conditions will produce the same

magnitude of values and hence the trend does not change with the sampling rate.

However the duration of spike in the UV+P-Q match after disturbance case is
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Figure 5.2: Data packets received over UDP by the Raspberry Pi for the UV+P-Q
match case

of 0.79 ms which is more than that from the old sampling rate. The different

sampling rate and a repeated simulation run will surely produce different data

points and hence the island initiator case has been used as a testing data set also.

This stream of data being transmitted from the simulation run was thus input as

feature processed data to the DT classifier. Testing on case 5 above does not make

sense as a 1.3 p.u. over-voltage is expected to occur rarely while case 6 has been

tested offline. Cases 2 and 3 were included in the test set since these anomalies

have to be accurately identified in real time by the online classifier model. Based

on the classifier’s offline performance, case 3 was decided to be kept as one of the

testing sets for the online case also. Testing a DT on one of the training data

sub-set is often required to check for over-fitting on the training data. However a

low accuracy of 89.33% for case 3 does not indicate a high degree of overfit. The

online classification was done for the following test cases:

Test Case A: Under-voltage + P-Q match (30 ms window during the disturbance)

Test Case B: Under-voltage + P-Q match (30 ms window after the disturbance

ends)

Test Case C: Three phase short-circuit fault at PCC

Test Case D: Single line to ground fault at PCC

Test Case E: Capacitor bank switching at node 675

Test Case F: Single phase load switching at PCC

The online accuracy and the average time taken to predict the class labels for each

test case is summarized in table 5.2. Table 5.3 shows the consolidated confusion

matrix for Test Cases A, B, E and F. The classifier took 4 seconds to learn the

pattern (python serial code interpretation) and at the 5th second, it started printing
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Table 5.2: Online DT Classifier Testing Results on Raspberry Pi

Test Set Accuracy Time Taken to Predict Class Label
Test Case A 98.498% 0.00032 s
Test Case B 97.064% 0.00037 s
Test Case C 100% 0.000363 s
Test Case D 100% 0.000367 s
Test Case E 96.24% 0.000317 s
Test Case F 97.20% 0.000336 s

Table 5.3: DT Confusion Matrix for Test Cases A, B, E and F

Test Case A B E F
Actual 0s into 0 3279 2986 2787 2780

Misclassified Points 50 0 109 80
Actual 1s into 1 0 122 0 0

Misclassified Points 0 94 0 0

the predicted class label for each of the input arrays, in the Python console. Figure

5.3 shows a screen shot of the process of online printing of predicted class labels

in Raspberry Pi’s Python console. The Simulink simulation model running on the

workstation is shown in the inset. 100% accuracy is repeated for online testing

on Test Case C and the same reason is applicable to the same result obtained for

Test Case D.

Re-assessing the performance of the DT classifier, the distribution of the binomial-

class data is important. Since the class distribution in the training data is highly

non-uniform and skewed, classification accuracy is not a comprehensive and in-

Figure 5.3: Online prediction of class labels
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dicative measure of its performance. Since the islanding-initiator event being in-

vestigated is rare and occurs for a very short duration, the number of instances in

this class ‘1’ event are expected to be less in comparison to class ‘0’ events. For

such cases, it is relevant to consider the Kappa statistic. It is a measure of classifier

accuracy normalized by the imbalance of classes in the data and is defined as in

equation 5.4:

κ =
ηobserved − ηexpected

1− ηexpected
(5.4)

ηobserved is the accuracy calculated from the confusion matrix while ηexpected is

calculated as in equation 5.5:

ηexpected =
Product of Marginal Frequencies

Total Instances
(5.5)

The marginal frequency of a class defines the relative proportion of instances put in

that class by the learner and those actual in that class to the total instances. The

value of the Cohen’s Kappa statistic for all the online test cases were evaluated. For

the test case B, the value of κ was found to be 0.707. For all the other test cases,

it came out to be 0. This shows that the classifier performance for the test cases of

short-circuit faults at PCC, switching surges and UV+P-Q disturbance equals the

accuracy any random classifier would give on their respective confusion matrices.

However since these events belong to class ‘0’ whose instances are relatively more in

number, it is not expected to get their respective number of classifications correct

by chance however a κ value of 0 for the test case B would have been a concern. Its

non-zero, high value indicates that the classifier has learnt the pattern correctly.

5.2.3 Inverter Mode-Change Trigger

From the online testing results reported in table 5.2, it can be seen that the DT

classifier takes an average of 0.3 ms (about 1/50th of a cycle for 60 Hz system)

to predict the class label of a data instance with 98.167% average accuracy. The

online classification accuracy for Test Case B was found to be 97.064% with time

taken for class label prediction to be 0.00037 s. The SEL-751 DOCR model taken

as a reference has typical pick-up setting of 8 ms and takes around a minimum

specified time of 10 ms - 12 ms to trip a circuit breaker. Referring to the specifi-

cations of SEL-751 and considering the physical distance between the PCC circuit

breaker and the relay, the tprediction is found to be less than the time taken by this

commercial relay to trip the breaker for any such anomalous spike that is within

its time-current characteristics. Also, for a fuse-relay protective scheme with the
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lateral fuse placed towards the grid-side, this time period is less than the dura-

tion of the spike (0.79 ms based on the circuit-simulation sampling rate used) and

hence can quickly alert the inverter before the fuse blows, so that it is ready with

the appropriate action once it has blown.

Accordingly, the inverter can be made to trip and avoid the formation of an unin-

tentional island after it has preemptively detected the anomalous conditions liable

to island the section, before the utility relay action. Also, this lead-time can be

used to change the inverter’s mode of operation from constant P-Q control to V/f

regulation mode so as to prepare it in advance for maintaining an island, once

the PCC protection trips. The PV inverter can be made to work in a V/f reg-

ulatory mode before the feeder section isolates itself from the main grid so that

the constant P-Q control mode is avoided in the island that will result but will

be maintained and sustained as an intentional island so that the connected loads

receive acceptable power quality. To implement this mode-change trigger, the pre-

dicted class label values were translated into a physical HIGH or LOW voltage

on one of the General Purpose Input Output (GPIO) pins of the Raspberry Pi

corresponding to 3.3 V and 0 V respectively. This online classification and mode-

change triggering scheme are summarized as a schematic diagram shown in figure

5.4.

Figure 5.4: Preemptive islanding detection and mode-change trigger strategy

The system responded fairly quickly. However, the change in predicted class labels

due to change in test case with the lapse of simulation time could not be observed

as fast changing voltages on an ordinary multimeter. The mode change trigger

set up is shown in figure 5.5. The output of the GPIO pin is a digital value that



Chapter 5 Online Feature Extraction and Event Detection 103

can drive the GPIO pin of a Digital Signal Processor (DSP) that contains the

control circuitry for a grid-connected solar PV inverter, as shown in figure 5.6.

The figure shows the Raspberry Pi microcomputer on the left hand side while the

DSP for the inverter control is shown on the right hand side. Hence there are

two separate control circuitry for the grid-connected inverter: the online classifier

module implemented on Raspberry Pi for event detection and identification and

the switching control that is responsible for grid-synchronization.

Figure 5.5: GPIO output corresponding to predicted class labels

Figure 5.6: Implementation of inverter mode change trigger

Such a preemptive mode-triggering scheme can provide a proactive solution to

a comprehensive energy management strategy in imminent islanding situations.

However, the actual response of a fuse or an over-current relay for this current

spike needs to be ascertained for a more comprehensive understanding. Also, the
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time lapsed in changing the inverter’s mode of operation need to be determined

to check the efficacy of the proposed preemptive detection scheme.

5.3 Proposed Online Feature Extraction Method-

ology and Classification

The PCA based approach for online feature extraction has a few lacunae. The

PC matrix for the reference PCA model contained zeros and ones however it did

carry the influence of both V and I raw features. Also, it required the input data

samples to be multiplied with the elements of this PC matrix. This study pro-

poses a feature extraction methodology for online classification purposes in which

the samples can be input in the form they come, without any transformation.

The proposed model uses the concepts of computational geometry and applies an

evolutionary optimization technique to create a feature transformation approach

for offline training and online testing. For the same reasons as given for its ap-

propriateness for online classification purposes, CART based DT was used as the

classifier.

5.3.1 Computational Geometry Based Feature Extraction

The need for the proposed methodology is motivated by he research objective

expressed in section 1.3 wherein the task is to learn a model G = f(x, y) with

D = S1 ∪ S2 as the training data set and y as a predicted value in C. This

represents a binary classification problem with the aim that ∀x /∈ D, y ∈ C,

accurately and quickly. Here ‘quickly’ stands for the condition: tclass prediction <

tresponse protective device. In contrast to the PCC short-circuit fault case and other

transients like lightning and switching surges that cause different levels of changes

in voltage and current, the observed anomalous over current as the islanding-

initiator is essentially due to a voltage spike and is thus characteristically different.

For the feeder model used in this study, any data point becomes an islanding

initiator when: ∀ x /∈ D, y = 1⇔ I > 100A and 0.7 p.u. < VInv. Terminal < 1.3 p.u.

however, there exist many x /∈ D that can satisfy the threshold but y 6= 1. One

example is inrush currents due to motor starting. This event causes high current

and a dip in voltage that may satisfy the threshold but no protective relay is made

to trip on such transients and hence the corresponding data points can be assigned
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y = 0. Thus a threshold based approach for detecting potential islanding causes

from other system transients will not be reliable when the objective is to detect the

initiator quickly and accurately. Accordingly a pattern recognition model based

on supervised learning was proposed and realized for online testing. However for

effective training of the prediction model and ease in real time testing, a convenient

feature extraction methodology is very much important.

A significant amount of data was generated from the simulation of different event

based cases. The data points belonging to the ‘during-disturbance’ for two known

power system transients ∈ S1 and for ‘after-disturbance’ period for the UV+P-Q

match case (that created the islanding initiator) described in the previous section

were collected as ‘not-normal’ case samples for classifier training. Since each sim-

ulation was run for a total of 0.5 seconds from the start of the simulation time, the

samples belonging to the ‘normal’ condition, common for all the events, were also

collected as the disturbances were programmed to occur at 0.45 seconds from start

of the simulation. Among the cases simulated, those considered for offline training

and cross-validation of the classifier performance together with the number of data

samples generated for each case are summarized in table 5.4.

Table 5.4: Cases Simulated for Training Data Set for the Proposed Feature Ex-
traction Model

Case No. of Samples Event
Case 1 8641 Normal
Case 2 501 L-L-L-G Fault at PCC
Case 3 501 Capacitor bank switching
Case 4 555 UV+P-Q match

(after disturbance)

For saving on training data and keeping the meaningful information, only positive

half cycles for each events were considered for data capture. This is also consistent

with the real world data capture where an Analog to Digital Converter (ADC) will

sample values for the microcomputer and will not allow negative values to come,

if no signal scaler and shifter circuit is used. This will thus save on components

and increase the ADC precision. For the normal case, the peaks of both current

and voltage were taken in the complete positive half cycles of the two with the

phase difference between the current and voltage peaks retained. For the islanding

initiator case, only 555 samples were obtained in the simulation run at 1 MHz and

all were included in the training data set. To lower the class imbalance in data,

only the current-wave peaks were taken with 250 values above and below it for the
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L-L-L-G fault at PCC and the capacitor bank switching cases respectively, leaving

the voltage peaks in both the cycles due to phase difference.

The training data was split into two matrices by grouping it on the basis of event

types. The 3 events: Normal system operation, L-L-L-G fault at PCC and capac-

itor bank switching at node 675 belong to class label ‘0’. The islanding initiator

case data points belong to class label ‘1’. Both set of event-based data points were

put into two separate matrices. Thus set S1 ∈ {E1} and S2 ∈ {E2} where E1 =

{normal system operation, 3-phase SC fault at PCC, capacitor bank switching}
and E2 = {UV+P-Q match after under-voltage case}. Set of class labels C = {0, 1}
; ∀x ∈ S1, y = 0 and ∀x ∈ S2, y = 1; here x is a feature vector extracted from event

data. The fit classifier G = f(x, y) should also perform in such a way that for any

x ∈ S2 at a different sampling rate, y = 1. The next issue is that of selecting or

extracting the feature vectors xi∀i = 1 to |D|. Transformations like Fourier trans-

forms require the full cycle to be completed first in order to evaluate and hence

are not suitable for online applications. Furthermore, they are not applicable to

non-stationary signals while most of the signals in our case are spiky and transient

in nature. Instantaneous Discrete Wavelet Transform (DWT) for online transient

detection has also been reported in literature [92] however its implementation will

be computationally intensive (requiring memory of previous data points) for de-

tecting events at sub-seconds level in our case. Accordingly matrix multiplication

based feature transformation was advocated and investigated. The central idea is

to bring the transformation onto such a feature space that the resultant dimensions

are linearly separated or approach linear separability. Such decision boundaries are

simple to learn and prediction of class labels is faster with use of linear classifiers

like Linear Discriminant Analysis (LDA) and logistic regression.

The linear separability of training data points makes fitting a classification model

easier. However real data is seldom linearly separated and since it also cannot be

used in raw form and a few features need to be extracted from the dataset. Al-

though the PC transformation matrix contained mostly ones (with both signs) and

zeros, it contained the information of both current and voltage samples and gave

good classification results for offline testing as reported in section 5.2. One im-

portant observation was the ease and convenience of matrix-transformation based

methods for extracting features in real time data transfer. In view of the same,

the proposed feature-selection methodology transforms the training data into a

feature matrix such that the resultant feature-scatter is more linearly-separable

than the original scatter.
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The convex hulls of both the data sets were evaluated and drawn using the indices

contained in vectors returned by MATLAB. The original scatter plot of the training

data is shown in figure 5.7. The data is not linearly separable as the convex hulls

of data points ∈ S1 and S2 are joint in some common regions. To bring linear

separability, the convex hulls of the two event based data sets must be dis-joint.

For defining linear separability: two sets X0 and X1 ∈ Rn are said to be linearly

separable if there exists n+1 numbers ∈ R w1, w2, ...wn and K such that ∀x ∈ X0

:
i=n∑
i=1

wixi > K (5.6)

And, ∀x ∈ X1 :
1=n∑
i=1

wixi < K (5.7)

In equation 5.6 and equation 5.7, xi is the ith component of x. Since this condition

can be better realized geometrically, the condition of linear separability can also

be stated as:

C1 ∩ C2 = ∅, where C1 and C2 are convex hulls of the 2 sets respectively. The

convex hull of a set of points xi ∈ finite set S is defined as in equation 5.8:

Conv(S) =


|S|∑
i=1

αixi|(∀i : αi ≥ 0) ∧
|S|∑
i=1

αi = 1

 (5.8)

Positive half cycles of events ∈ S1 were used while the data points during the 0.6

ms event ∈ S2 used for creating the training data set D. Original data matrix X

Figure 5.7: Original data scatter plot
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is N × 2 where N = |S1| + |S2|. |S1| = |E1| and |S2| = |E2| = 555. The feature

mapping problem can be expressed as in equation 5.9:

[
V (n) I(n)

]
N×2
×

[
a b

c d

]
=
[
F1(n) F2(n)

]
N×2

(5.9)

5.3.2 Evolutionary Optimization Technique to Determine

Feature Transformation Matrix

The problem of finding the 2× 2 feature transformation matrix was framed as an

optimization problem. The optimization problem can be stated as:

Minimize (length (k1∩k2)); where k1 = convex hull of dataset S1 and k2 = convex

hull of dataset S2. The problem is convex because mathematically, finding the

convex hull of a set follows equation 5.6. The matrix transformation is a linear

operation and hence is convex. Therefore for any minimization function f(x, y)

if
∑

i f(αixi + βiyi) ≤ αixi + βiyi is followed with αi + βi = 1 then that problem

is convex in nature. This proves that the given optimization problem involves

steps that are convex-natured. For solving this, derivative based methods are not

applicable due to the problem’s discrete nature. An iterative approach that uses

different sets of candidate solutions and can guarantee convergence is required

and accordingly heuristic methods were investigated. Genetic Algorithm (GA)

was used in MATLAB running on a 2.3 GHz personal computer having Windows

environment to solve the unconstrained optimization problem and find the feature

transformation matrix. The new feature matrices will be such that they approach

more towards linearly separability.

After the optimization was applied, the 4 elements of the feature transformation

matrix were found. Both the dataset matrices containing elements ∈ S1 and ∈ S2

were multiplied by this matrix respectively to result into two new matrices ST1

and ST2 which were combined and then labeled with ‘0s’ and ‘1s’ respectively to be

used as a training data set for a classifier. The new scatter plot is shown in figure

5.8. The resulting features are still not completely linearly separable. They are

linearly separable for high and medium feature values but a complex non-linear

separation boundary exists for low feature values. Also a thing to be noted is

that the number of values of F1 and F2 that are common to ST1 and ST2 but

having opposite class labels are more in this case than the one plotted in figure

5.7. Therefore, entropy of data split along each individual dimension is not zero

all the time thus requiring a tree based decision structure.
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Figure 5.8: Transformed data scatter plot

A decision tree (DT) classifier based on the CART algorithm was programmed in

Python 2.7 on the Raspberry Pi, as before. Gini-index was used as the impurity

measure. The Gini index was used for the split criteria in place of entropy. The

depth of the tree was not controlled by node-pruning as shown in figure 5.9 where

the depth of the learned tree is controlled to two levels. For the built DT,X[0] = F1

and X[1] = F2. The insensitivity of DT classifiers to data scaling (a big issue in

real-time data transmission) and feature transformation was the main reason for

selecting them as classification models. The mean 10-fold cross-validation accuracy

was found to be 100% after 3 runs.

Figure 5.9: The built decision tree
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5.3.3 Online Testing

The modified IEEE 13 bus feeder Simulink model was run on the personal com-

puter and the instantaneous values of current and voltage at the PCC were sent to

the classifier programmed in the Raspberry Pi. A switching program block that

allows only positive half-cycle values to pass through was used to model the effect

of an ADC without scaler and shifter circuit. The interface between the Simulink

model and the classifier module was made via a local area network based connec-

tivity between the two computers. A secure shell connection to the Raspberry Pi

was established in order to remotely access its graphical user interface through the

personal computer screen.

The simulation was run with a fixed-step solver due to Simulink real-time hardware

requirements and the sampling time was fixed to 10µ seconds, as before, and for

purposefully testing G(x, y) from some x ∈ S2 ⊂ D at a different sampling rate.

The data-type conversion, multiplexing and de-multiplexing of the voltage and

current samples was carried in the same way as described in section 5.2. The

16-bit multiplexed string was received by the classifier module and unpacked into

floating data point numbers. These unpacked numbers were arranged into 1 ×
2 numerical python (numpy) arrays. These data points, sampled at every 10 µ

seconds, were not multiplied by the 2 × 2 feature transformation matrix (stored

in the Python program) and thus transmitted as raw 1 × 1 numpy arrays. The

online classification was done for the following test cases:

Test Case A: L-G fault at the PCC

Test Case B: Single phase load switching at the node 675

Test Case C: UV+P-Q match case (after disturbance).

The online accuracy and the average time taken to predict the class labels for each

test case is summarized in Table 5.5. Table 5.6 shows the consolidated confusion

matrix for Test Cases A, B, C. The classifier took 4 seconds to learn the pattern

(python serial code interpretation) and at the 5th second, it started printing the

predicted class label for each of the input arrays, in the Python console. 100%

accuracy is observed for online testing on Test Case C and this is what was desired

in real time situation. Table 5.7 shows a comparison of results from the presented

approach with those reported earlier from use of other classifiers and PCA.

It can be seen that the DT online classifier module, when trained using the pro-

posed feature extraction methodology, also takes an average of 0.3 ms (about

1/50th of a cycle for 60 Hz system) to predict the class label. It does so with an
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average accuracy of 98.04%. Also, a point to note from table 5.7 is that the DT

used on PCA derived features gives almost same performance (rather a 0.127%

higher average accuracy), the individual classification accuracy for the islanding

initiator case was not 100% as has been achieved by the use of the computational

geometry feature extraction method.

Table 5.5: Online Classifier Testing Results for the Proposed Feature Extraction
Methodology

Test Set Accuracy Time Taken to Predict Class Label
Test Case A 97.062% 0.00032 s
Test Case B 97.057% 0.00037 s
Test Case C 100% 0.000338 s

Table 5.6: Confusion Matrix for Test Cases A, B and C
Test Case A B C

Actual 0s into 0 3230 3241 2801
Misclassified Points 99 93 0

Actual 1s into 1 0 0 79
Misclassified Points 0 0 0

Table 5.7: Comparison of proposed approach with PCA derived features based
classifiers

Classifier Average Accuracy Time Taken
K-NN 95.75% offline testing

SVM (RBF Kernel) 83.5% offline testing
DT on PCA 98.088% 0.00037 s

DT 98.04% 0.00034 s

The class-imbalance in the training dataset prepared using features derived from

the proposed approach was much less than that in the case of the PCA approach.

However, to ascertain the classifier’s performance on online testing, the Kappa

statistic analysis was carried in the same way as before. The value of the Cohen’s

Kappa statistic for all the online test cases were evaluated. For the test case C, it

was found that the value of κ→∞. This was because the ηobserved = 1 but ηexpected

came out to be 0.946. For all the other test cases, it came out to be 0. This shows

that the classifier performance for the test cases A and B equals the accuracy any

random classifier would give on their respective confusion matrices. However as

these events belong to class ‘0’ whose instances are relatively more in number,

their respective number of correct classifications are not expected coincidentally.

A κ value of 0 for the test case C however would have been a concern but its high

non-zero value indicates that the classifier has learned the pattern correctly.
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5.4 Conclusion

This chapter described the implementation of a preemptive detection and inverter

mode-change triggering strategy in response to the discovered islanding initiator.

The PCA based approach described in chapter 4 was extended to the online feature

extraction case. The use of a decision tree classifier for online testing was justified

and its implementation with the PCA derived features was explained first. The

online feature extraction and event detection was realized on a Raspberry Pi mi-

crocomputer. The CART algorithm chosen for the classifier implementation was

programmed in Python and the tree was also tested on offline data initially. Sim-

ulations were run for the modified IEEE 13 node feeder in the personal computer

and the VPCC and IPCC samples were transmitted to the Raspberry Pi over the

LAN via UDP socket programming. The data samples were not mean-centered

and simply multiplied with the reference PC matrix stored in the Python script.

Encouraging results from an offline testing study on the DT trained with mean-

centered data and tested with non mean-centered samples verified the practicality

of this approach. The accuracy for the three testing sets did not deviate much

from the values obtained when the test-samples were mean-centered. This thus

proved the insensitivity of DT classifiers to feature scaling.

A convenient feature extraction methodology based on a new feature transforma-

tion method for real-time classification was proposed. The proposed methodology

utilized concepts from computational geometry to project original training features

onto a new feature space such that they approach linear separability. The feature

transformation matrix was found by applying an evolutionary optimization tech-

nique to the objective function of maximizing the intersection between the convex

hulls of the two training subsets. The test data samples came from different com-

binations of events simulated on the feeder model. It was found that the classifier

gave an average accuracy whose value was 0.127% less than that obtained for the

PCA based training. However, the testing accuracy for the individual test set per-

taining to the islanding-initiator was 100% unlike that for the PCA based feature

extraction case. The detection time using both the approaches came out to be the

order of 0.3 ms on average. This was found to be less than the spike’s duration

thus it can be said with confidence that tlabel prediction is less than the time taken

by a lateral fuse at PCC to blow up. Also, referring to the catalog specifications

of the reference SEL-751 DOCR model, this time is less than what the relay will

take to trip a PCC breaker.

This lead-time in detecting a potential cause of accidental islanding before the
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action of a utility relay-circuit breaker pair can be used to trigger the change in

operating mode of the inverter. Accordingly the mode-change triggering strategy

was applied on the Raspberry Pi. The predicted class labels were translated into

digital HIGH or LOW voltage corresponding to ‘1’ and ‘0’ respectively at the

GPIO pins. These pins were further connected to the GPIO pins of the DSP that

controls the firing circuitry of 1 phase grid-connected solar PV inverter. In this

way, a preliminary realization of the inverter mode-change trigger in response to

the discovered islanding-initiators was made. The preemptive islanding detection

strategy for a simulated radial feeder was implemented with real-time data transfer

from the source of events data (workstation simulation) to the online classifier

module (implementation on Raspberry Pi) with encouraging results.



Chapter 6

Conclusion

The assumptions taken in this research work have been described in different

chapters, wherever applicable. The reasons for selection of different models and

parameter settings like feeder network selection, DG capacity, PCC node and

simulation time-settings have been given. They have been aptly justified citing

the objective-oriented reason of performing the exploratory study as required. The

major contributions of this study are highlighted in section 1 while the next two

sections list the limitations of this study and suggestions for further work.

6.1 Major Contributions of this Study

The major contributions of this study can be highlighted as follows:

1. This study has lead to the observation of a potential cause of unintentional

islanding on a radial feeder with high solar PV penetration. The discovered over-

current’s occurrence has been verified in simulation, real-time simulation and on

emulator hardware.

2. The use of PCA + K-L Divergence has been shown to be a potentially useful

method for offline islanding detection. The use of this statistical measure for

islanding-related studies has been reported for the first time.

3. A feature-extraction methodology that may have potential application for online

classification of power system signals has been proposed.

4. The preemptive detection and mode-change triggering strategy has presented

a possible energy management solution for tackling imminent islanding situations

in distributed energy resources based power distribution networks.
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6.2 Limitations of this Study

1. The study has been carried for different models of radial feeders, realized in

simulation and emulator hardware. However most of the urban networks where

grid-connected solar DG systems are coming up are now changing towards mesh

based distribution networks.

2. A practical version of the static fault study to verify the status of the discovered

over-current spike as an islanding initiator for the feeder models used could not

be done.

3. The solar radiation has been kept constant at a value corresponding to the STC

of a PV module. Although the assumption has been justified, the occurrences of

P-Q match conditions throughout the day for the daily solar profile could not be

taken in account.

4. No standard methodology or practice could be adopted for verifying the status

of the discovered over-current as liable to cause islanding of a radial feeder section.

6.3 Suggestions for Future Works in this Re-

search Domain

1. Short-circuit studies can be taken up to investigate the impact of solar PV

integration on magnitude and direction of fault currents in a radial feeder. This

will further strengthen the verification of anomalous over-currents, such as those

discovered in this study, as potential causes of islanding

2. Actual protective devices like lateral fuses and DOCRs of small ratings can

be used to realize a laboratory scale feeder having PV interconnection. This can

help in observing the impact of any such anomalous occurrences on their tripping,

when kept at the PCC.

3. To realize a more practical self-acting and self-acting system, semi-supervised

learning techniques can be applied. Based on the confidence gained, a gradual

shift towards unsupervised learning techniques can be made.

4. Single-phase grid-connected inverter must be actually implemented to test the

mode-change trigger. The time taken in changing the operational mode of the

inverter in response to an imminent islanding condition is of the most practical

relevance.

This preliminary work, initiated on a low-cost hardware-Simulink integration plat-

form, will be continued for signals generated from an emulator based network on
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which the same conditions will be created. Once deployed on field, the expected

action to be taken is to either trip the PV inverter or change its mode of operation

to V/f regulatory mode, before the relay trips. The ability to act appropriately be-

fore the utility relay trip is necessitated by the fact that the loads can adjust their

power consumption based on their model of dependence of P and Q with voltage

and frequency [14]. Thus the preemptive cum predictive action is desired inside

the inverter because if allowed to feed the loads even after the grid disconnects,

a power balance condition with the loads can be satisfied and such an interaction

can ultimately lead to formation and sustenance of an unintended island.
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Appendix II

Raspberry Pi Specifications

Technical Specifications:

• Broadcom BCM2837 Arm7 Quad Core Processor powered Single Board Com-

puter running at 900 MHz

• 1GB RAM

• 40 pin extended GPIO

• 4 USB ports

• 4 pole Stereo output and Composite video port

• Full size high definition multimedia interface

• Camera interface port for connecting the Raspberry Pi camera

• Display interface port for connecting the Raspberry Pi touch screen display

• Micro SD port for loading your operating system and storing data

• Micro USB power source

120



Bibliography

[1] D.P. Kothari and I.J. Nagrath. Power system engineering, chapter Distribu-

tion Systems. Tata McGraw-Hill, 2nd edition, 2008.

[2] Roger C. Dugan and Thomas E. McDermott. Distributed generation. IEEE

Ind. Appl. Mag., 8(2):19–25, March 2002.

[3] IEEE Std. 1547-2003. IEEE Standard for Interconnecting Distributed Re-

sources with Electric Power Systems, 2003.

[4] Benjamin D. Kroposki. Optimization of Distributed and Renewable Energy

Penetration in Electric Power Distribution Systems, volume 69. 2008.

[5] Andrew Satchwell, Andrew Mills, Galen Barbose, Ryan Wiser, Peter Cap-

pers, and Naim Darghouth. Financial impacts of net-metered PV systems

on utilities and rate payers: A scoping study of two prototypical US utilities.

Technical report, Ernest Orlando Lawrence Berkeley National Laboratory,

september 2014.

[6] M.S. ElNozahy and M.M.A. Salama. Technical impacts of grid-connected

photovoltaic systems on electrical networks - A review. J. Renewable Sustain.

Energy, 5(3), 2013.

[7] John Stevens, Russell Bonn, Jerry Ginn, and Sigifredo Gonzalez. Develop-

ment and testing of an approach to anti-islanding in utility-interconnected

photovoltaic systems. Technical Report SAND 2000-1939, Sandia National

Laboratories, August 2000.

[8] Zhayoun Zhang, Wei Chen, and Zhe Zhang. A new seamless transfer control

strategy of the microgrid. The Scientific World Journal, 2014, 2014.

[9] Mihai Ciobotaru, Remus Teodorescu, and Frede Blaabjerg. Control of single-

stage single-phase pv inverter. In Proceedings of 11th EPE 2005, pages 1–10.

EPE Association, 2005.

121



BIBLIOGRAPHY 122

[10] Chris Greacen, Richard Engel, and Thomas Quetchenbach. A guidebook on

interconnection and islanded operation of mini grid power systems up to 200

kW. Technical report, Lawrence Berkeley National Laboratory, April 2013.

[11] Akhilesh Magal, Tobias Engelmeir, George Mathew, Ashwin Gambhir, Shan-

tanu Dixit, Anil Kulkarni, BG Fernandes, and Ranjit Deshmukh. Grid inte-

gration of distributed photovoltaics in India: A review of technical aspects,

best practices and the way forward. Technical report, Prayas Energy Group,

July 2014.

[12] M.E. Ropp, M. Begovic, and A. Rohatgi. Prevention of islanding in grid-

connected photovoltaic systems. Prog. Photovolt. Res. Appl., 7(1):39–59,

1999.

[13] Chun Li, J. Savulak, and R. Reinmuller. Unintentional islanding of dis-

tributed generation–operating experiences from naturally occurred events.

IEEE Trans. Power Del., 29(1):269–274, 2014.
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