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Abstract

In this work, we demonstrate that the traditional DDoS mitigation methods alone are not suitable

to combat cloud targeted DDoS attacks. We characterize the effects of DDoS attacks on the

cloud services and identify novel collateral damages to the non-targets during the DDoS attacks

on cloud services. These damages eventually slow down the overall DDoS mitigation process.

These DDoS attack effects are due to the on-demand, multi-tenant and federated nature of cloud

environment and resource contention among services. We show that the DDoS attack mitigation

can be expedited by proposed novel resource management methods at the victim service-end.

Real attack experimentation based evaluations of employing our techniques show significant

improvement over attack downtime, mitigation time, and attack cooling-down period.

We make four important contributions in the form of DDoS attack mitigation support solutions

in the cloud computing environment. The first contribution is a novel DDoS aware resource

allocation (DARAC) technique in which the resource allocation to the victim service is accurately

performed by first differentiating between legitimate requests and attack traffic thus refining

the real resource requirement with the help of server capacity planning. The remaining three

contributions address the problem of internal collateral damage on the DDoS attack victim server

which is the main cause of severe downtime and delayed attack mitigation.

In the second contribution, we investigated different aspects of DDoS attacks and find out that

the DDoS mitigation service’s performance is dependent on two factors. Severity of the “resource-

race” formed due to the “extreme DDoS” attacks and the “attack cooling down period”. Utilizing

these two important factors, we propose a supporting framework for the DDoS mitigation ser-

vices, by assisting in reducing the attack mitigation time and the overall downtime. This novel

framework comprises of a processor affinity based victim-service resizing algorithm to provide

performance isolation, and a TCP tuning technique to quickly free the attack connections, hence

minimizing the attack cooling down period.

In the third contribution, we show that the DDoS mitigation methods may not provide the

expected timely mitigation due to the heavy resource outage created by the attacks. We observe

an important Operating System (OS) level “internal collateral damage”, in which the other

critical services are also affected. We formulate the DDoS mitigation problem as an OS level

resource management problem and propose a novel resource containment approach to enforce

the victim’s resource limits.

Finally, in our last contribution, we address an important problem, whether the resource scaling

during attack, always result in rapid DDoS mitigation? We show that the operating system level

local resource contention, if contained during attacks, can expedite the overall attack mitigation.

The attack mitigation would otherwise not be completely solved by the dynamic scaling alone.

To overcome these issues, we propose a new “Scale Inside-out” approach which, during attacks,

reduces the “resource utilization factor” to a minimal value for quick absorption of the attack.

The proposed approach sacrifices victim service resources and provides those resources towards

mitigation in addition to other co-located services to ensure service availability during attack.
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Chapter 1

Introduction

In recent years, Distributed Denial of Service (DDoS) attacks resulted in fatal

attack effects to enterprises across the globe. DDoS attacks are also visible owing

to the service downtimes faced by important web-services, and remain among the

top cyber security threats during last several years. There are survey reports

which state that one out of the five enterprises across the globe are affected by

DDoS attacks [1]. The growth of DDoS attacks can be visualized by the attacks’

progression made from the perspective of the peak attack bandwidth each year.

The peak DDoS attack bandwidth touched more than 500 Gbps in 2015 from just

8 Gbps in the year 2000 [2].

Major motivations behind DDoS attacks include business rivalry, political ideology,

and cyber war among countries. The most common outcome of DDoS attacks is

“unavailability of target service”. In addition to the unavailability, there are many

short term and long term business and reputation losses, which is actually a set

of consequences of the service downtime. Currently, cloud computing is being

adopted across the globe to support the major IT needs of organizations in all

industry verticals. However, the emergence of cloud computing has also led to the

target shift of DDoS attackers towards cloud driven services. As highlighted in [2],

more than 33% of the overall reported attacks in year 2015 had cloud services as

their attack target.

On the other hand, cloud features such as the profound resources and the pay-

as you go accounting model are also becoming attractive to the attackers. Most

of the reported attacks usually last between few minutes to hours [2] and some

“massive” attacks may last for few days to even weeks. There are many recent

DDoS attacks on cloud services among those the attacks on the Amazon EC2

1
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services, the RackSpace and the Linode servers are major attack incidents resulting

into heavy service outages[3][4].

In this thesis, we make novel research contributions related to the characterization

and mitigation of DDoS attacks which target services hosted on cloud computing

infrastructures. Traditional DDoS mitigation methods are not suitable to combat

cloud targeted DDoS attacks. We identified novel collateral damages to the non-

targets during DDoS attacks on cloud services. These damages eventually slow

down the overall DDoS mitigation process. These DDoS attack effects are due

to the on-demand, multi-tenant, federated nature of cloud environment, and the

resource contention among services.

We show that the DDoS attack effects can be minimized by the novel resource

management methods proposed in this thesis. Real attack experimentation based

evaluations of our proposed techniques are encouraging and show significant im-

provement over the attack downtime, the mitigation time, and the attack cooling-

down period.

1.0.1 Motivation

We conducted an extensive survey of DDoS attack mitigation solutions for cloud

services and found that most of the current solutions are utilizing the techniques

which are mere extensions of the traditional DDoS mitigation schemes. On the

other hand, there are solutions used by service providers, which mostly work on

traffic filtering and quick attack absorption by resource scaling [5]. Additionally,

our real attack characterization of DDoS attacks on cloud services shown some of

the novel collateral damages.

These adverse effects are mostly due to the features of cloud such as multi-tenancy,

auto scaling and migration of services. These “collateral damages” are visible on

co-hosted cloud services and network components. We observe resource contention

at the level of victim operating system that makes the overall mitigation and de-

tection much slower. We also characterize that cloud features such as auto-scaling

may not help in the expected attack mitigation with rapid attack absorption.

This discussion makes it necessary for availability of efficient solutions in the direc-

tion of DDoS attack prevention, detection and mitigation with the help of resource

management during the presence of attacks.
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1.0.2 Objectives

In this thesis, we aim to find answers to the following research questions.

1. Do DDoS mitigation methods applicable to the non-cloud infrastructures

help in cloud as well?

2. What are the additional effects of DDoS attacks in cloud computing envi-

ronment?

3. What factors are responsible for the rise and success of DDoS attacks on

cloud services?

4. What techniques are useful in mitigating and minimizing the effects of DDoS

attacks in cloud computing environment?

In order to explore and validate the suitable answers to the above research ques-

tions, we further divided this work to achieve the following research objectives.

1. To review the state of the art in the area of DDoS attack prevention, detection

and mitigation research and prepare a comprehensive solution taxonomy.

2. To design a system model to understand and characterize the DDoS defense

requirements in cloud computing environment.

3. To characterize the overall short-term and long-term effects of DDoS attack

in cloud computing environment.

4. To design and demonstrate the DDoS aware cloud resource allocation algo-

rithm. This includes an auto scaling strategy which is governed by the VM

performance statistics and the incoming legitimate traffic.

5. To design an effective and immediate DDoS mitigation mechanism to lower

down the DDoS attack period, associated costs, and DDoS aftereffects such

as the collateral damages.

1.0.3 Contributions

We make following contributions in this thesis:

1. We presented a comprehensive literature review with a detailed insight into

the characterization, prevention, detection, and mitigation mechanisms to

combat DDoS attacks. Additionally, we presented a comprehensive solution
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taxonomy providing DDoS attack solution classification. Our survey con-

cluded that there is a strong requirement of solutions which are designed

keeping utility computing models in mind. (Chapter 2)

2. In the context of DDoS attacks in the multi-tenant clouds, we argue that

instead of just the victim server, multiple other stakeholders are also affected.

Some of these important stakeholders are co-hosted virtual servers, physical

servers, network resources, and cloud service providers. We show through

system analysis, experiments, and simulations that these stakeholders are

collaterally affected, even though they are not the real targets of the attacks.

The damages/effects to these stakeholders include performance interference,

poor web service performance, resource race, indirect EDoS (economic denial

of sustainability), service downtime, and business losses. (Chapter 3)

3. To detect and mitigate DDoS attacks in cloud, we argue that the on-demand

resource allocation schemes (also known as auto-scaling mechanisms) should

also be revisited. We proposed a novel mitigation strategy, DARAC (DDoS

aware resource allocation in cloud) that makes accurate auto-scaling decisions

by differentiating the legitimate traffic from the attacker traffic. We also

argue that most of the solutions in the literature, do not pay much attention

to the service quality to legitimate requests during an attack.

We calculated the share of legitimate clients in the resource addition/buying

decision and make subsequent accurate auto-scaling decision. The experi-

mental results shown that our proposed mechanism, DARAC mitigates var-

ious DDoS attack sets and takes accurate auto-scaling decisions for various

traffic combinations. (Chapter 4)

4. In this contribution, we demonstrated a fundamental difference between a

“regular” DDoS attack and an “extreme” DDoS attack. We conduct DDoS

attacks on cloud services, where having the same attack features, two different

services show completely different consequences, owing to the difference in the

resource utilization per request. We studied various aspects of these attacks

and found that the DDoS mitigation service’s performance is dependent on

two factors. One factor is related to the severity of the “resource-race” with

the victim web-service. Second factor is the “attack cooling down period”

which is the time required to bring the service availability in order after the

detection of the attack.

We utilize these two important factors and propose a supporting framework

for the DDoS mitigation services. Our proposed approach assists in reducing

the attack mitigation time and the overall service downtime. Proposed novel
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framework consists of an affinity based victim-service resizing algorithm to

provide performance isolation, and a TCP tuning technique to quickly free

the attack connections. (Chapter 5)

5. In this contribution, we observed an important operating system (OS) level

effect which we term as “internal collateral damage”, in which the other criti-

cal services are also affected in the presence of a DDoS attack. We formulated

the DDoS mitigation problem as an OS level resource management problem.

We argue that providing extra resources to the victim server is only help-

ful if we can ensure the availability of other important services. To achieve

the availability goal, we proposed a novel resource containment approach to

enforce the resource limits to victim service. (Chapter 6)

6. In this contribution, we found that the activities such as attack absorption

that provide timely attack data input for attack analytics, is adversely com-

promised by the heavy resource usage generated by DDoS attack. We showed

that the operating system level local resource contention, if reduced during

attacks, can expedite the overall attack mitigation. The attack mitigation

would otherwise not be completely solved by the dynamic resource scaling

alone. We conceived a novel relation “Resource Utilization Factor” for each

incoming request as the major component in forming the resource contention.

To overcome these resource contention issues, we propose a novel “Scale

Inside-out” approach that during attacks, reduces the “Resource Utilization

Factor” to a minimal value for quick absorption of the attack. The proposed

novel approach sacrifices victim service resources and provides those freed

resources to the mitigation service in addition to other co-located services to

ensure service availability during attack. (Chapter 7)





Chapter 2

DDoS attack in Cloud

Computing: State of the Art

2.1 Introduction

Cloud computing is a strong contender to the traditional IT implementations as it

offers “pay-as-you-go” model based low-cost computing capabilities and services on

demand. Governments, as well as industries, migrated their whole or most of the

IT infrastructure into the cloud. Infrastructure clouds promise a large number of

advantages as compared to the on-premise fixed infrastructure. These advantages

include on-demand resource availability, pay-as-you-go billing, better hardware

utilization, no in-house depreciation losses, and, no maintenance overhead. On the

other hand, there is a large number of questions in cloud adopters mind, which is

discussed in literature [6] [7]. Most of these questions are specifically related to the

data security and the business logic security [8]. There are many security related

attacks, that are well-addressed for the traditional non-cloud IT infrastructures.

Their solutions are now being applied to the cloud targeted attacks. As data and

business logic is located on a remote cloud server with no transparent control,

most security concerns are not similar to their earlier equivalents in non-cloud

infrastructures.

One of these attacks, which has been a much visible attack is the Denial of Service

(DoS) attack [9]. Traditionally, DoS attackers target the server, which is providing

a service to its consumers. Behaving like a legitimate customer, DoS attackers try

to flood active server in a manner such that the service becomes unavailable due to

a large number of requests pending and overflowing the service queue. A different

7
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flavor of DoS is Distributed DoS, or DDoS, where attackers are a group of machines

targeting a particular service [10]. There is a high rise in the number of reported

incidents of DDoS, which makes it one of the most important and fatal threat

amongst many [11].

More than 20% of enterprises in the world saw at least one reported DDoS attack

incident on their infrastructure [1]. The authors in [12] show a strong anticipation

about the DDoS attackers target shift towards cloud infrastructure and services.

Many attacks in last three years support these attack anticipations presented in

the report. Amongst many recent attacks, there are few popular attacks which

gained a lot of attention in the research community [12]. Lizard Squad attacked

cloud-based gaming services of Microsoft and Sony and took down their services

on Christmas day in 2015. Cloud service provider, Rackspace, was targeted by

a massive DDoS attack on its services. In an another spectacular attack exam-

ple, Amazon EC2 cloud servers faced another massive DDoS attack. These at-

tack incidents incurred heavy downtime, business losses and many long-term and

short-term effects on business processes of victims. A report by Verisign iDefense

Security Intelligence Services [3] shows that the most attacked target of DDoS

attacks in the last number of quarters is cloud and SaaS (Software as a Service)

sector.

More than one-third of all the reported DDoS attack mitigations were on cloud

services. One of the most important consequence of DDoS attack in the cloud

is “economic losses”. Report in [1] estimates the average financial loss due to a

DDoS attack to around 444K USD. There are other reports by Neustar [13], which

present the economic loss data of Q1, 2015. In this report, the average financial

loss is more than 66K USD/hour. DDoS attacks and their characterization become

completely different when applied to the context of the cloud. The difference arises

mainly due to the consequences of an attack on the victim server. Infrastructure

as a Service (IaaS) clouds run client services inside virtual machines (VMs).

Virtualization of servers is the key to the elastic and on-demand capabilities of the

cloud, where VMs get more and more resources when needed and return unused

resources when idle. Cloud computing’s heavy adoption trend is due to the on-

demand computing and resource availability capabilities. This capability enables

the cloud infrastructure to provide profound resources by scaling, as and when

there is a requirement on a VM. Therefore, a VM will not experience a resource

outage as ample amount of on-demand resources are available in the cloud. This

feature of “elasticity” or “auto-scaling” results into economic losses based DDoS
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attack that is also known as Economic Denial of Sustainability (EDoS) attack or

Fraudulent Resource Consumption (FRC) attack [14].

In this chapter, we aim to provide a survey of DDoS attacks in the cloud envi-

ronment. We also differentiate these attacks with the traditional DDoS attacks

and survey various contributions in this space and classify them. For this purpose,

we prepare a detailed taxonomy of these works to provide aid to comprehend this

survey.

2.1.1 Need of A Survey on DDoS Attacks in Cloud

There are a number of survey papers available which deal with DDoS attacks, both

from the perspective of attacks and mitigation in networks. There are surveys and

taxonomies available which also include traditional DDoS mitigations methods

including attack traceback, attack filtering and attack prevention [15] [16]. Tax-

onomies like [17] highlight DDoS in the cloud with the perspective of software

defined networks. Surveys such as [18] focus on the solutions which are designed

around traffic and behavior change detection. The following are some of the im-

portant requirements for this survey:

1. Cloud computing and technologies around it are recent phenomenon. It

requires a different treatment regarding the characterization of the attack,

detection and prevention. The desirable difference is evident in many recent

attack incidents [12].

2. There are quite a good number of recent studies available on DDoS attacks,

but there is no specific survey (including surveys on Cloud DDoS attacks)

available to consider and gather solutions related to resource management

aspects of utility computing.

3. Economic aspects of the DDoS attack (quoted as EDoS) and its consequences

on cloud resource allocation is entirely missing from existing surveys; thus,

the solutions specific to these issues are required.

2.1.2 Survey Methodology

We performed literature collection by doing an exhaustive systematic search on all

the major indexing databases and collecting a huge number of papers related to

the area. An initial scan resulted into a subclass of the collection. Another deep

scan resulted in the papers we used in our survey and are used in the taxonomy
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Figure 2.1: DDoS Attack Scenario in Infrastructure Cloud

preparation. We believe that the contributions listed in this survey are exhaustive

and lists all the important contributions in the emerging area till date.

2.1.3 Contributions

We make following contributions in this chapter:

1. We introduce DDoS attack scenario in infrastructure clouds and identify how

various elements of cloud computing are affected by DDoS attacks.

2. We present a detailed survey and taxonomy of solutions of DDoS attacks in

cloud computing. Based on the developed taxonomy, we identify weaknesses

in the state-of-the-art solution space leading to future research directions.

3. We provide a comprehensive set of performance and evaluation metrics for a

uniform comparison and verification among attack solutions.

4. This chapter presents a detailed set of design aspects of effective DDoS miti-

gation at the end. It includes mitigation strategies at resource allocation level

instead of preventive and detection strategies used by existing solutions.

5. This work would help security researchers to deal with the DDoS differently

as compared to the treatment given while considering traditional IT infras-

tructure.
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2.1.4 Organization

We discuss cloud computing and its essential features, which are affected by the

DDoS attacks in Section 2.2. Section 2.3 details recent attack statistics to help

in understanding the need for this survey. Section 2.4 presents the DDoS attack

model and the threat model in the cloud. Section 2.5 offers a detailed and com-

prehensive taxonomy to help the reader to understand the broad solution space

for DDoS attacks applicable to cloud computing. This taxonomy has three major

branches which we discuss in three different sections. These three sections are at-

tack prevention (Section 2.6), attack detection (Section 2.7) and attack mitigation

(Section 2.8). In Section 2.9, we provide the guideline towards solutions to DDoS

attack mitigation. We draw conclusions of this work in Section 2.10.

2.2 DDoS Attacks and Cloud Computing

Cloud computing provides an on-demand utility computing model where resources

are available on “pay-as-you-go” basis. In particular, the cloud provider is an

“Infrastructure as a Service (IaaS)” provider, who provisions VMs on-demand.

On the other hand, a service provider is a cloud consumer who places the web

service in the form of a VM (say an e-commerce application) in the infrastructure

cloud provided by the cloud provider. Figure 2.1 depicts a typical cloud computing

environment with a large number of servers running VMs.

2.2.1 DDoS Attack and Cloud Features

DDoS attacks have recently been very successful on cloud computing, where the

attackers exploit the “pay-as-you-go” model [12]. There are three important fea-

tures, which are the major reasons behind the success trends of cloud computing.

On the other hand, the same set of features is proven to be very helpful to DDoS

attackers in getting success in the attacks (discussed in Section 2.2.2). We now

discuss these three features in detail:

2.2.1.1 Auto Scaling

Hardware virtualization provides a feature to shrink-expand resources of a VM

while it is running. These properties permit the allocation of additional CPUs,
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main memory, storage and network bandwidth to a VM when required. Addition-

ally, this can also be used to remove some of the allocated resources when they are

idle or not needed. Multiple providers use this resource allocation mechanism with

the help of auto scaling [19] web services, which allows cloud consumers to decide

the resource need on the basis of resource utilization or similar matrices. The same

feature is extended towards adding more VM instances on more physical servers

and stopping when there is no need. Machine level scaling (vertical scaling) and

data center or cloud level scaling (horizontal scaling) are two crucial features of

utility computing.

Scalability is achieved by spreading an application over multiple physical servers

in the cloud. Scalability is driven by high speed interconnects and high speed

as well as ample storage. Virtualization of operating systems plays an important

role while considering the scalability of VMs. VM cloning and its subsequent

deployment are quite fast. Hence, whenever there is a requirement, cloned VMs

can be booted on other servers and used to share the load. Scalability is also

strongly supported by the live migration of VMs, where a running virtual server

can be migrated to another bigger physical server without almost no downtime

offering uninterrupted scalable operation.

2.2.1.2 Pay-as-you-go accounting

On-demand utility model has become very attractive for consumers due to its

leaner resource accounting and billing model. “Pay-as-you-go” model allows a

cloud consumer to use resources without physically buying them. A VM owner

may want to add or remove more resources on-the-fly as and when needed. Other

benefits of using cloud platform offer better hardware utilization and no need of

arrangements like power, space, cooling and maintenance. Pricing or accounting

plays an important role while understanding DDoS attacks in the cloud. Mostly,

cloud instances are charged on an hourly basis and thus the minimum accounting

period is an hour. Resources can be allotted on fixed basis, pay-as-you-go basis

and by auctions. Similarly, storage and network bandwidth are measured using

total size and total data (in and out) transfer. It is very clear that these models

are “pay-as-you-go” models and are still evolving.
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2.2.1.3 Multi-tenancy

Multi-tenancy gives the benefit of running more than one VMs from different

VM owners on a single physical server. Multi-tenancy is a way to achieve higher

hardware utilization and thus higher ROI (Return on Investment). An individual

user may want to have more than one VMs running similar or different applications

on a single physical server.

2.2.2 DDoS Attack Scenario in Cloud

A typical attack scenario is as shown in Figure 2.1. An infrastructure cloud has

many servers and these servers run VMs in a multi-tenant virtualized environ-

ments. In addition of aiming at “Denial of Service”, attackers might also aim to

attack economic sustainability aspects of cloud consumers. Discussions on this

attack started right after the inception of cloud computing [14]. There are few

other contributions where this attack has been termed as Fraudulent Resource

Consumption (FRC) attacks [20] and bandwidth exhaustion attacks [21].

Attackers thoroughly plant bots and trojans on compromised machines over the

Internet and target web services with Distributed Denial of Service attacks. DDoS

takes the shape of an EDoS attack when the victim service is hosted in the cloud.

Organizations exist (also known as “Booters”), which provide a network of bots to

their consumers to plan DDoS attacks on their rival websites [22]. Motives of these

attacks range from business competition, political rivalry, extortions to cyber wars

among countries.

The cloud paradigm provides enormous opportunities and benefits to consumers

and the same set of features are available and may be useful for DDoS attackers.

An attacker who plans a DDoS attack would send enough fake requests to achieve

“Denial of Service”. However, this attack would generate heavy resource utilization

on the victim server. The auto scaling [19] takes this “overload” situation as

feedback and adds more CPUs (or other resources) to the active pool of resources

of this VM. Once a VM gets deployed, it starts as a “Normal load VM”. Now, let

us assume that the DDoS attack has started and consequently VM gets overloaded

(“Overloaded VM”). The overload condition triggers auto-scaling features of cloud

resource allocation, and it will choose one of the many strategies available in the

literature for VM resource allocation, VM migration, and VM placement [23].

Overloaded VM may be given some more resources or migrated to a higher resource
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capacity server or may be supported by another instance started on another server.

If there is no mitigation system in place, this process will keep adding the resources.

This situation may last till service provider can pay or cloud service provider

consumes all the resources. Finally, it will lead to “Service Denial”. In turn, this

leads to on-demand resource billing, and thus economic losses over and above the

planned budget may occur. One trivial solution is to run VMs on fixed or static

resource profile where the SLA does not have any provision for additional resources

on demand. In this case, the DDoS will directly result in “Denial of Service” and

all the attractive features of the cloud will be lost.

2.3 Attack Statistics and Impact Characterization

In this section, we provide coverage to various attack statistics and their impact

on various victim organizations. We also covered few characterization studies to

quantify the effects of DDoS attacks in the cloud.

2.3.1 Attack Statistics

Denial of service attacks are quantified and studied by many security solutions

providers in the market [24] [25] [26] [27]. There are a number of other reports

which state about the impact and rise of DDoS/EDoS attacks in the cloud. It

was also anticipated that there will be a major target shift of the DDoS attackers

from traditional servers to cloud-based services [12] and it has even been proven

by the Q1 reports of 2015 [3]. As per this report [3], most of the attack targets

were cloud services in Q1, 2015. According to the report published in March

2015 by Neustar [13], economic losses per hour at peak times are 470% more than

the previous year. Lizard Squad planned attacks on Microsoft and Sony gaming

servers, is the first example. Similarly, Amazon EC2 servers and Rackspace servers,

which are cloud service providers, were attacked using a large DDoS attack in early

2015. Economic aspects of these attacks are also challenging. Greatfire.org was

targeted by a heavy DDoS attack in March 2015, costing it an enormous bill of

$30,000 daily on Amazon EC2 cloud [28]. As per report in [1], the average financial

damage by a DDoS attack is up to 444,000 USD.

Akamai Technologies, in their report for Q4 2013, presented that almost the whole

world’s IT Infrastructure (188 countries), got affected by the reported DDoS at-

tacks [29] and there was around 50% rise compared to last year. According to [30],
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In Q1 of 2014, the attackers started relying on other flavors like reflection and am-

plification based DDoS instead of bot-net based DDoS. Even the innovative “DDoS

as a Service” tools are making it easier for hackers to plan these attacks. As per

Q1, 2014 report of [26], the total DDoS attacks within last one year has increased

by a significant number (47%). Another paramount figure to ponder is target

servers. More than half of these DDoS attacks targeted towards entertainment

and media industry which is mostly hosted in the cloud.

There are some other reports by Arbor Networks [27], which state that NTP based

reflection and amplification attacks are the new forms of the DDoS. There is an

additional attack that is termed very dangerous, started showing its effect parallel

to a DDoS attack. This attack is known as “smoke screening”, which is an attack

to plan information or data breach behind a DDoS. While DDoS distract whole

staff in mitigating or preventing from the present situation, the attacker may plan

other attacks to harm. As per this report by Neustar [25], around 50% of the

organizations have suffered from the “smoke screening” attack while they were

only mitigating DDoS.

Repetition of the attack is also a major issue, and most of the targeted companies

(90%) have faced repetitive attacks leading to vast business losses. The growth and

adoption of cloud [31] and DDoS mitigation solutions in the cloud are two major

points complementary to each other. Enterprises took few years to start adopting

infrastructure clouds after its inception in 2007, and now many of organizations

are entirely or partly transformed their IT infrastructure into cloud [32].

2.3.2 DDoS Attack Impact Studies in the Cloud

After the inception of the term “EDoS attack” by Christofer Hoff in 2008 [14],

there are some works related to the characterization of the DDoS attack in the

cloud and study its impacts. To see the effect of the DDoS attack, the authors

in [33] conducted an important experiment, where they calculated the maximum

possible charges on a cloud service. The authors conducted the experiment by

sending 1000 requests/second with 1000 Megabits/second data transfer on a web-

service hosted on Amazon CloudFront for 30 days. This experiment accumulated

an additional cost of $42,000 for these additional requests.

The authors in [20] characterized the effectiveness of the EDoS attack on cloud

consumer’s bills. The authors in [20] have calculated the additional cost when

there is only one attacker that is sending one request per minute for one month.
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Even this could gather total 13GB of data transfer assuming a normal web request

size of 320KB. A similar experiment was conducted in [34] where a web server

cluster running on extra-large instance at Amazon EC2 was targeted with an

EDoS attack. The observation showed that bills grew on the basis of the number

of requests and deployment of additional resources. The authors in [35] presented

the potential of malicious use of browsers of legitimate users to plan an EDoS

attack. The authors use social engineering based web-bug enabled spam email to

use legitimate browsers for the attack [35]. The authors argued that rented bots

are easy to detect by the DDoS mitigation infrastructure and web-bugs in the

form of a spam email to plan an EDoS attack can be used easily. They planned an

attack on Amazon S3 infrastructure and characterized the attack effects. Other

attack characterizations are presented in [36] and [37].

2.4 Attack and Threat Models

We prepared the attack model and the threat model of DDoS attacks in the cloud.

We discuss these models in the following:

2.4.1 Attack Models

For last few years, DDoS attacks hold a major contribution among all the cyber

attacks. The attack models valid a few years ago are no more suitable for the

today’s DDoS attacks. Cloud and its profound resources forced attackers to plan

more powerful attacks. Attackers may be a group of machines under a single

roof, a large number of geographically spread bots forming a botnet or may be an

attacker cloud having comparable resources to a botnet. As said by the authors

in [38], the DDoS attack scenario is an “arms-race” between the victim and the

attackers. This “arms-race” term is a good fit for the cloud-based and cloud

originated attacks and reaches a different level and scale. We detail the attack

model with various attack features in Table 2.1. The attack can be planned by

one or more methods shown in Figure 2.1, which, in addition to having botnet-

driven attacks, also includes cloud originated DDoS attacks. These bots are also

known as BotClouds [39]. There are other sets of unexplored attackers like mobile

phone bots and IoT devices which require attention now [40].

We argue that the solutions to modern day DDoS should be designed keeping the

attack model shown in Table 2.1 in mind. Attack packets, frequency, bandwidth,
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Features Details

Packets HTTP GET, POST, TCP SYN, ICMP and amplification
by DNS, NTP and TFTP

Frequency Typical minimum frequency is >500 requests/s, depends
upon resources at both the ends [41]

Bandwidth 1 Gbps to 300 Gbps [42]

Attackers A single source, a network or botnet. Cloud servers (BotClouds)
may be used to utilize scaling to win the “arms race”.

Methods Low rate, flood, flash mimic, amplification and massive

Repetition repetition may be done from different sources after few minutes/hours

Duration Minutes to hours (average 72 minutes [42]) and some lasts a few days.

Targets Multimedia, government, e-commerce, cloud services and others

Motives Competition, rivalry, extortion, smoke-screening and cyber war
among countries

Timings Important days for the enterprises including product launch,
sale launch, important days for countries etc.

Table 2.1: DDoS Attack Model in Cloud

attacker profiles, methods to plan the attack, repetition, duration, targets, timing,

and attack motives are few important aspects which should be considered while

designing novel solutions. We included the most important features of attacks to

help the community to understand the modern DDoS attacks and their shape.

2.4.2 Threat Models

DDoS attacks targeted towards cloud platforms are quite similar to the attacks

on fixed infrastructures. Attackers aim, and the attack consequences make these

attacks different in the cloud. DDoS, in the form of EDoS, may target the service

provider on its economic sustainability. It is important to note that the DDoS

attack consequences in the cloud are not limited to the victim VM and its re-

sources. Cloud computing platform has multiple other VMs in the multi-tenant

environment, other physical servers, network devices and bandwidth in the cloud.

Surprisingly, other components are also affected. These possible threats are listed

in Table 2.2. These threats are substantiated by contributions made by Xu et

al. in [43] citing it as co-residence attacks. Some additional threats to cloud

providers are dispute resolution in billing as the significant resource allocation

would result in obvious billing, and payment recovery accordingly may become an

issue [44] [45]. Other threats are from internal nodes. Cloud infrastructure may

be used by an attacker to plan an attack. A large amount of compute capacity of

the cloud can be used for these malicious activities [46]. Abuse of cloud services

for the purpose of attack planning has recently become an important threat. A
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Threats to Details

Victim Economic losses, service downtime, unnecessary resource addition,
Server VM instance creation, migrations, business & reputation losses.

Co-hosted Performance Interference, resource race, and extra migrations
VMs due to resource exhaustion on physical server

Host Extra migrations and it would not be able to fulfil the requirements
Server of co-hosted VMs due to resource consumption by victim VM

Victim Downtime, economic losses, short term and long term
Owner business losses.

Cloud Extra migrations, performance interference to other VMs, large
Provider bandwidth bottleneck, downtime, and higher energy consumption

Other Incoming migrations, VM instance creation and consequent issues
servers due to VM instances under attack

Service Poor service quality, service downtime and problems to dependent .
end-users services

Table 2.2: DDoS Threat Model in Cloud

detailed analysis and survey of various abuse detection methods in the cloud are

presented in [47].

1. Threats to Service Provider: In addition to economic or sustainability threats,

the service provider might face a number of performance issues in their cloud-

based service. It is of particular importance when the EDoS attack is happen-

ing. The cloud allocates additional resources after diagnosing an “Overload”

state of a particular VM.

During this period, the service may become unavailable, or there may be

high response times and even request timeouts. In the worst case, when

there is no resource cap (limit) associated with a VM, the cloud may the-

oretically allocate an infinite amount of resources. Practically, this needs

few additional aspects. Once resources of a physical server, are exhausted

using allocation, Cloud resource allocation methods may migrate the VM in

consideration to another physical server where more resources are available.

The cloud provider may also start some additional VMs to scale the service

due to higher load. In both the cases, there is a downtime associated, which

attributes to both VM migration or booting VM instances on other servers.

Other repercussions include business and reputation losses generated due to

downtime.

2. Threats to cloud provider and other tenants: The most significant threat to

the cloud provider is the effect of the DDoS on the underlying infrastructure

as well as other co-existing services. As cloud infrastructure is multi-tenant,
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multiple VMs co-exist together. Due to continuous resources requirements

of the DDoS affected VM, other VMs on the same physical machine would

face performance interference [48] and resource contention. Even the genuine

resource requirement of other VMs would be affected because the resource

allocation mechanism would take a decision on the basis of needs at that

moment. The co-hosted tenant may face downtime and migration overhead,

because of resource exhaustion on the physical server due to the affected

VM. We discuss these issues in much greater details with our contributions

in Chapter 3.

2.5 Taxonomy of DDoS Solutions

This section presents the detailed solution taxonomy of DDoS attacks in the cloud.

We gathered the final set of contributions using the systematic search methodology

discussed in Section 2.1.2. We comprehensively surveyed the works related to the

DDoS defense in the cloud and prepared a taxonomy as shown in Figure 2.2. We

prepare this taxonomy by keeping a view that this work would serve the purpose

of providing a clear, detailed and complete picture of the solutions space, different

ideas, and approaches available in the literature. We also provide nomenclature to

taxonomy fields to classify different contributions. We segment the taxonomy in

three important parts which are attack prevention (P), attack detection (D), and

DDoS Defense in Cloud Computing

0

Attack Prevention (P)

Challenge Response (P1)

Hidden Servers/Ports (P2)

Restrictive Access (P3)

Resource Limits (P4)

Anomaly Detection (D1)

Source/Spoof Trace (D2)

BotCloud Detection (D4)

Attack Detection (D)

Count Based Filtering (D3)

Resource Usage (D5)

Attack Mitigation (M)

Resource Scaling (M1)

Victim Migration (M2)

Software Defined Networking (M3)

DDoS Mitigation as a Service (M4)

Figure 2.2: DDoS attack prevention, detection and mitigation in cloud: a taxonomy
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Figure 2.3: DDoS Protection in cloud at various levels

attack mitigation and recovery (M). Few of these works contributed in all three or

two divisions of this classification, therefore, we discuss these contributions in all

the related sections. The typical attack DDoS attsolution space looks like the one

shown in Figure 2.3. At the first instance when the requests come, a simple “Tur-

ing test” may help in preventing the attack. The next stage is anomaly detection

to both prevent and detect the attack. There is a large number of contributions

related to attack detection which focus on the area of traffic monitoring and anal-

ysis. The third stage is based on the methods which are helpful in mitigation as

well as recovery. Cloud computing features and profound resources help at this

stage. We highlight the need for more solutions at this stage in section 2.8. There

is a large number of contributions available at each stage, and they are listed in

the next sections. However, in the Figure 2.3, we could just show a simplified gist,

which misses many other solutions at each stage.

Before moving on to the discussion of various DDoS solution categories in the next

section, we make an effort to propose important evaluation and performance met-

rics for various categories of our taxonomy. Table 2.3 shows the metrics related to

the all three subclasses and their subcategories. It is important to highlight that in

the next sections, we use these metrics in our discussion to compare the suitability

of various solutions. There are many solutions which do not use any evaluation or

performance metrics. However, we believe that these important metrics can help

the community to orchestrate solutions which are verifiable against the important

properties we list in the Table 2.3.
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Subcategory Important metrics to benchmark the solutions

A
tt

a
c
k

P
r
e
v
e
n
ti

o
n Challenge Response Accessibility, usability, puzzle generation, storage, and false alerts

Hidden Servers/ports Redirection, puzzle metrics, overhead of replicas, and load balancing

Restrictive Access Accessibility, usability, response delay and false alerts in admission control

Resource Limit Cost and overhead of management of additional reserved resources

A
tt

a
c
k

D
e
te

c
ti

o
n

Anomaly Detection Overhead cost of training and profiling and false positives, and negatives

Source and Spoof Trace TTL data verification, traceback costs, false positives, and negatives

Count Based Filtering Suitability to various static and dynamic counts in minimizing the false alerts

BotCloud Detection Overhead cost of learning and verifying traffic flows and false alerts

Resource Usage Overhead of employing monitors and counters, and threshold suitability

A
tt

a
c
k

M
it

ig
a
ti

o
n Resource Scaling Auto-scaling decision and threshold suitability

Victim Migration Migration downtime, costs and network overhead for deltas

SDN Overhead cost of training, profiling, and false positives, and negatives

DMaaS Solution costs, service downtime, and other metrics based on different solutions

Table 2.3: Various performance metrics to benchmark the DDoS attack solutions in
cloud computing

2.6 Attack Prevention (P)

DDoS prevention in the cloud is a pro-active measure, where suspected attackers’

requests are filtered or dropped before these requests start affecting the server.

Prevention methods do not have any “presence of attack” state as such, which

is usually available to the attack detection and mitigation methods. Therefore,

prevention methods are applied to all users whether legitimate or illegitimate.

Most of these methods are tested against their usability, which incurs an overhead

for the server as well as legitimate clients. We further classify this direction in

four subclasses:

1. Challenge Response.

2. Hidden Servers/ports.

3. Restrictive Access.

4. Resource Limit.

For a quick view, the overall theme of each set of these methods, their strengths,

challenges, and weaknesses are listed in Table 2.4. We also prepare a list of impor-

tant individual contributions in Table 2.5. We enlist a brief theme of each solution

to provide an overview about the variety of contributions available in each of the

subclass.

2.6.1 Challenge Response (P1)

Challenge-Response Protocols (CRP) are designed to identify the presence of real

users. Many times, this concept has been applied in an opposite manner, where
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Techniques Strengths Challenges Limitations Work

Challenge
Response
(P1)

Effective and usable
methods using puz-
zles to differentiate
human and bots

Overhead of graph-
ics generation and its
storage

Image segmentation,
OCR, dictionary and
parsing attacks, and
puzzle accumulation
attacks

[49][50][51]
[52][53][54]
[55][56]

Hidden
Server-
s/Ports
(P2)

Service is being of-
fered to legitimate
users while no direct
connection is estab-
lished with the real
server in the first in-
stance

Redundant servers
ports and load bal-
ancing among them
is needed

Overhead of addi-
tional security layer
and redirections

[54][49][57]
[58][59]

Restrictive
Access (P3)

Admission control or
instead of blocking/-
dropping responses
are prioritized for
different classes of
users

Quality of service
concerns and over-
head of maintaining
number of connec-
tions for delayed pe-
riod

Not scalable in case
of massive DDoS
with spoofing by
large number of
sources

[60][61][49]
[57]

Resource
Limits (P4)

Limiting the eco-
nomic losses by
restricting the
maximum usable
resources by a VM

Determining the re-
source limits and ca-
pacity planning of a
server

It does not prevent
DDoS and its effects,
except limiting the
economic losses due
to cloud billing

[62][63][5]

Table 2.4: DDoS Attack Prevention Techniques in Cloud

the protocol tries to determine if the user is a bot/attacker machine, especially

in the case of crypto puzzles or proof-of-work puzzles. One of the most common

prevention technique is a Turing test in the form of a CAPTCHA, which is usually

one of the most preferred methods in the category of challenge-response protocols.

In addition to the methods related to cloud, some important CRPs from traditional

DDoS defenses are also added to this discussion.

Graphical Turing tests are popular CRP implementations available today. Instead

of showing plain text challenge and seeking an answer, these tests may present an

image and a question related to that image. The image may have a picture, text

with various impurities like an arc, distortion, and noise. Graphical CAPTCHA

may have moving images in the form of .GIF or set of multiple pictures to choose

from. Crypto puzzles are used to assess the computational capability of a client.

Crypto puzzles are questions seeking output of a function with given inputs. For

example, let us consider a hash function f(x, y) with inputs a and b. The client is

expected to compute f(a, b) and return the answer back in some stipulated time.

Now, we discuss few important strategies related to challenge response schemes

to prevent DDoS attack in cloud computing. EDoS Shield [52] and Alosaimi et

al. [53] used graphical Turing tests to prevent the bot driven attack from occurring.
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Major theme of the contribution

C
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(P

1
) [49] Crypto puzzles to identify benign traffic

[50] Crypto puzzle levels based on the attack rate

[51] Crypto puzzles to identify benign traffic

[52] Graphical Turing tests

[53] Both graphical as well as crypto puzzles

[54] Proof-of-work puzzles

[55] Turing tests combined with other techniques

H
id

d
e
n

S
e
rv

e
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/
P

o
rt

s
(P

2
)

[54] Moving target approach to hide the servers

[49] Secure ephemeral servers with authentication

[57] Limits number of connections on hidden ports

[58] Moving targets using server replica shuffling

[59] Hidden server only visible to benign users

[64] Proxy forwards benign requests to the server

R
e
st

ri
c
ti

v
e

A
c
c
e
ss

(P
3
)

[60] Admission control based on delayed response

[61] Human behavior (rate) detection and access

[49] Client reputation based prioritized access

[57] Admission control puzzles and hidden ports

R
e
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u
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e
L
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s
(P

4
)

[5] Resource Scaling to absorb the attack

[63] Resource caps to limit the attack effects

[62] Cloud metric monitoring and alarms

[65] DDoS Aware scaling and capacity planning

Table 2.5: DDoS Attack Prevention Techniques in Cloud

The authors in [53] proposed a DDoS Mitigation System (DDoS-MS), where initial

two packets from the client side, form the basis of the attack identification and

subsequent mitigation. In their work, they used both graphical Turing tests and

crypto puzzles to identify the attacker.

The authors in [52] proposed a solution that filters requests on the basis of graph-

ical Turing tests (CAPTCHAs). In this mode, a Virtual Firewall (VF) shield is

designed which distinguishes the incoming requests on the basis of two lists, white

and black. These records are updated on the basis of the success and failures of

graphical Turing tests. To prove the effectiveness and novelty of their solution,

authors conducted simulations to show the effect of their scheme on end-to-end de-

lay, cost, and other performance indicators like throughput and bandwidth. There

are a variety of crypto puzzles with different difficulty levels in [49] [50] [51]. The

authors in [49] presented sPoW (Self-Verifying Proof of Work) methodology to

mitigate EDDoS (Distributed EDoS). They provided a method to mitigate both
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network-level EDDoS and Application level EDDoS by extending the work pro-

posed in [56]. In [56], instead of accepting all the traffic, the mechanism only

accepts the traffic that it is capable of taking. The authors in [49] provided an

innovative solution where they use crypto-puzzle to identify legitimate customers.

These crypto-puzzles are self-verifying and do not run on the server. Instead of

the server, the client computes the solution. On the basis of the time taken to

solve the crypto-puzzle servers/nodes in the intermediate path, it will be decided

whether the incoming traffic is legitimate traffic or not. The salient feature of this

approach is that DDoS attacker may send their traffic even at a higher rate by

speedily computing the puzzle, even in this case, sPoW approach does not allow

the traffic. On the other hand, if DDoS traffic comes at a normal rate (equivalent

to the rate at which legitimate customer sends) then their approach is successful

in limiting the traffic.

Challenge Response schemes provide an easy way of implementing the attack pre-

vention methods by addressing the most common automated, bot originated, and

rate based attacks. The authors in [66] describes a list of qualities for crypto

puzzles. A crypto puzzle should be solvable in a definite time and should not

have other possible methods. Additionally, the server should be able to compute

answers and verify them with ease.

Proof-of-work approaches are crypto puzzles but may have advanced features to

utilize the client computation power and based on the correctness of the solution

and computation time, the authentication and prioritized access is granted [49] [54].

This approach has multiple benefits including computation overhead shifting to

the client and stopping overwhelming computationally equipped clients.

Accessibility and conversion rates are two important points to assess the challenge-

response protocol implementations such as CAPTCHAs [67]. CRP implementa-

tions are designed and tested from the perspective of their attack persistence,

accessibility, overhead, puzzle generation, and storage requirements. Many of

these issues are related to the area of Human Computer Interaction (HCI). One

of the important aspects of “Challenge-Response Protocols” is Accessibility, which

should be considered while designing the question generation module. Designing

difficult questions so that bots cannot construct their answer is quite an easy task,

but a normal user should also be able to answer the questions with adequate com-

fort. Solutions based on Turing tests should be examined using a usability and

accessibility study. Text puzzles are known to be cracked using dictionary attacks

or parsing attacks. There is a number of limitations which are posed by [52], like



Chapter 2. DDoS attack in Cloud Computing: State of the Art 25

the puzzle accumulation attack where an attacker sends a large number of requests

for getting puzzles but does not solve them. It would result in an extra overhead

of generating the puzzles at the server end. These Turing tests require additional

overhead to generate graphics and storage space to store images. There are mul-

tiple works related to CAPTCHA cracking using image segmentation and optical

character recognition (OCR).

2.6.2 Hidden Servers/Ports (P2)

Hidden servers or hidden resources such as ports is an important method to re-

move a direct communication link between the client and the server. Keeping an

intermediate node/proxy to work as a forwarding authority, helps in achieving the

objective of hiding the servers. The important jobs of this forwarding authority

may include balancing the load among the servers, monitoring the incoming traffic

for any vulnerability, and fault-tolerance and recovery of the servers.

Various approaches hiding the server resources include hidden proxy server [54],

ephemeral servers [49], and hidden ports [57]. The authors in [54] proposed a

moving target method to defend from DDoS attacks. The authors proposed the

inclusion of many hidden proxy servers which may be dynamically assigned and

changed to save legitimate clients. This approach has some practical issues like

scalability, inclusion of large no. of proxy servers, and shuffling. Even different web

services may not like to have changing server addresses in between connections.

This method uses client puzzles using PoW (Proof-of-Work) to distinguish between

attackers and normal traffic. Some of these approaches randomly allocate different

hidden servers. Jia et al. [58] used the moving target based mechanism by shuffling

the targets to confuse the attackers. This is achieved using the server replicas.

This solution requires the overhead of maintaining the replicas and managing the

moving target strategies. Additionally, the authors proposed strategies of effective

shuffling assignments of clients requests to servers. The authors in [59] proposed a

DDoS detection mechanism which is a request rate based detection method. The

proposed method black lists incoming client request on the basis of their threshold

rate.

By this blacklist, access is granted by special “army nodes” creating a virtual

firewall. The authors argued that this way, the server could continue to serve

legitimate clients. Similarly, the authors in [64] proposed a solution where a proxy

server tests and forwards the benign requests to the server behind the fore-front
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service. Hidden servers or ports are preventive mechanisms to save the real ser-

vice to face a DDoS attack. Therefore, requests to these hidden servers or ports

are redirected by the authentication/proxy server which is the first server to be

encountered by a client. Authentication provides an extra security layer to secure

the actual service. Hidden servers can help in stopping the malicious or massive

traffic to affect the real server. This extra layer may also support other purposes

of redirection and load balancing among servers. The major limitation of this

approach include the cost of the intermediate servers, time delay, and the com-

putation overhead of redirection and its management at the intermediate nodes.

Additional overhead includes the cost of maintaining the server replicas and their

backup management.

2.6.3 Restrictive Access (P3)

Restrictive access techniques are basically admission control methods to take pre-

ventive action against the service capacity. Some of these strategies implement the

prevention by delaying responses/access to the suspected attackers or even addi-

tional clients. In many of the contributions, this delay is introduced by prioritizing

the legitimate clients or selecting clients with “good” past behaviors. There are

few other techniques such as “Delayed access” and “Selective access” which are

mostly similar, except that the strategies to provide the access to the clients are

different.

In some cases, reputation is the basis of the admission control mechanism, in

which some users are preferred over the others on the basis of reputation [49]. The

correctness of crypto puzzle solution within a definite time and past web access

behavior helps in calculating the reputation value. The authors in [49] named

the reputation value as “capabilities”. The authors in [60] gave a solution which

did not drop any request based on its behavior, instead, they delayed the access

to them. This delayed access prevents the attack to occur and even does not

trigger auto-scaling. The proposed method controls the user access requests by

their past web access history. In case these claims reach certain thresholds, the

request responses are delayed instead of dropping the requests. These thresholds

are decided from the request history of users. The effectiveness of delayed responses

is questionable in real environments because of user accessibility issues, which

requires timely responses. The authors in [61] followed a different approach where

if a user does not behave as per typical human behavior, it is blocked for a specific

period and then it is again unblocked. The authors proposed a subclass of the
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DDoS attack and termed it as index page based attack where the very first page

or homepage of the website is targeted for a DDoS attack [61]. The first page

of every website should be free and can be fetched without solving any puzzle or

authentication. The authors show attacks on this first page, where no Turing test

prevention mechanism may work. The authors provided human behavior based

identification to mitigate the attack and drop the requests of an attacker.

Instead of queuing all the clients, the authors in [57] proposed an admission control

algorithm, where a limited number of clients are served simultaneously. These

clients solve the Turing test and are assigned to the hidden ports using a port

key. Once the test is passed by legitimate users, the proposed mechanism tries to

limit the number of clients at any time by using an admission control algorithm.

The server allocates resources on the basis of priority calculated based on the user

behavior. The behavior is basically the web behavior on an e-commerce site on

the basis of multiple parameters.

Most of the admission control methods, which implement restrictive access to stop

the DDoS attacks to occur, are primarily based on delayed access or reputation

based access. These methods provide a good way to optimize the server capacity

by allowing requests based on the available resources. On one hand, these input

control methods are solely dependent on the server capacity and client capability

to compute the puzzle responses. At times, this restriction may limit the server

to address the accessibility or usability perspective for fresh clients. As discussed

in Section 2.6.1, the problems associated with the puzzle based solutions are also

applicable here. Additionally, in case of sophisticated or stealthy attacks, the

malicious attackers may try to earn the “reputation” before they show their real

malicious behavior.

2.6.4 Resource Limits (P4)

As discussed in Section 2.3 on attack characterization, it was visible that the

economic bills generated by a DDoS attack can be enormous. Resource limits

can help in preventing these economic losses by correct auto-scaling decisions.

However, deciding whether the resource surge is due to the DDoS attack or due

to the real genuine traffic, is a very difficult task. Another way to prevent these

resource losses is to put fixed resource services or “capped” resource limits on

each service in the cloud. By doing this, we will miss the advantages of important

features of cloud computing such as on demand resource allocation.
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There are number of discussions and demands by cloud consumers on providing

a track of resource utilization in the form of alerts. Additionally, some of the

providers, provide the real-time monitoring services [62]. They also provide re-

source limits in the form of “Caps” on maximum resources a VM would be able

to buy and sustain.

Resource limits can surely restrict the cost penalty on the dynamically scaled

resourced but they can also limit the usage of on-demand computing feature of

cloud computing. Attack prevention mechanism discussed above present a variety

of methods available for the preventive security. However, it is important to note

that these prevention mechanisms alone can not help in combating the DDoS

attacks in cloud infrastructures. Another line of support from other mechanisms

such as detection and mitigation mechanisms may help once the attack is present.

2.7 Attack Detection (D)

Attack detection is a state where attack signs are present on the server in terms

of its services and monitored performance metrics. These attack signs are initial

signs, where the attack has just started to take the shape, or there may be a situ-

ation, where the attack has already deteriorated the performance. These methods

may seem to be similar to “attack prevention” at times, and many of contribu-

tions provide solutions in the same manner. Various performance metrics, which

are monitored and affected due to an attack range from large response times and

timeouts to higher memory and CPU usage. We further classify this section into

five subcategories:

1. Anomaly Detection.

2. Source and Spoof Trace.

3. Count Based Filtering.

4. BotCloud Detection.

5. Resource Usage.

For a quick view, the overall theme of each set of the classified methods, their

strengths, challenges, and weaknesses are listed in Table 2.6. We also prepare a

list of important individual contributions in Table 2.7 where we enlist a brief theme

of each solution to show the variety of contributions available in each subclass.
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Techniques Strengths Challenges Limitations Work

Anomaly
Detection
(D1)

Machine learning
and feature based
detection

Feature identifica-
tion, testing and
minimizing false
alarms and IP
spoofing

Scalability issues and
overhead of training,
matching and statistical
analysis of traffic fea-
tures

[68][69][70]
[20][71][72]
[73][74][75]
[57][76] [77]

Source and
Spoof Trace
(D2)

Identifying the
source of of web
requests to stop
spoofing

Filtering at edge
routers and suitabil-
ity of TTL based
methods

Cooperative mecha-
nisms require network
devices and service
support

[78][79][80]
[81][82][83]
[84][85][86]

Count
Based
Filtering
(D3)

Hop count, number
of connections or
number of requests
based threshold
filtering

Requires TTL hop
data of real user.
Heterogeneous im-
plementations of hop
count. Deciding on
count threshold is a
challenge

IP spoofing issues may
defeat the (non-TTL)
schemes. Only success-
ful in case of two dif-
ferent TTLs for same
source IPs are received.
False alarms. Probing is
also needed.

[55][51][52]
[61][59][87]

BotCloud
Detection
(D4)

Detecting the attack
sources inside the
cloud by monitoring
the features of VMs
and the network

Identifying the ac-
tivities and their
thresholds for var-
ious suspicious
activities

Very difficult to de-
tect all kinds of at-
tack flows (including
zero-day). The detec-
tion only works at the
edge of attack originat-
ing cloud.

[46][88][89]
[90][39]

Resource
usage (D5)

OS level/hypervisor
level detection meth-
ods to monitor ab-
normal usage

Interpreting the high
utilization whether it
is due to attack or
due to the real traf-
fic

Only gives a signal
about the possibility of
attack and requires sup-
plementary detection
mechanisms

[91][46] [92]

Table 2.6: DDoS Attack Detection Techniques in Cloud: D1 Pattern Detection

2.7.1 Anomaly Detection (D1)

Anomaly detection methods identify anomalous patterns from packet traces, es-

tablished connections, and web access logs or request headers. The specific pattern

to identify in the log or the trace is decided by attack traces and other past his-

toric behaviors. Web behavior is modeled using a large number of characteristics

and metrics working upon those characteristics. Most of the contributions used

the web behavior of normal web traffic as a benchmark pattern. These meth-

ods collect the normal web behavior during the period when the attack is not

present. On the other hand, few contributions prepare attack behavior profile and

than filter-out the attack traffic by learning based detection. Feature selection,

dataset preparation, and testing or profiling against these learned rules are the

three important set of operations involved in these detection strategies.

Now, we discuss few important strategies related to DDoS attack anomaly detec-

tion in cloud computing. Idziorek et al. [68] worked on web access logs and argued

that legitimate web access patterns follow “Zipf” distribution. Based on the web
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[68] Anomaly traffic detection using Zipf’s law

[69] Co-variance profiling of IP/TCP flags[72]

[71] Filtering based on Jensen-Shannon Divergence

[93] Co-relation based attack flow analysis

[74] IP/TCP flags based confidence filtering

[75] “Helinger” distance based multi-stage solution

[57] User profiling using walk-through on site pages

[76] Filtering using SOAP headers

[20] Identification of a genuine web session

[77] Profiling based on time spent on the pages

S
o
u

rc
e

a
n
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e

(D
2
)

[79] Back propagation neural networks tracing

[81] SOA-Based Trace back to reconstruct the path

[82] OS fingerprinting to stop IP spoofing

[84] Multi-stage source checking using text puzzles

[83] Source authentication using token at each router

[85] Source tracing based on location parameters

[78] Deterministic packet marking of ingress routers

[94] Multiple filters to stop spoofing

[73] TTL probing to find genuine TTLs

[86] Statistical filtering based spoof detection

C
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u
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t
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g
(D

3
) [55] Hop count and request frequency thresholds

[51] TTL matching to detect IP spoofing

[61] Request threshold for a human in unit time

[87] Threshold on number of connections by a source

[73] TTL probing to find genuine TTLs

[59] Request count threshold by each source
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o
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(D
4
)

[46] Network/VMM checks to find attack VMs
[88] CSP driven attack flow check and source trace

[89] Bot detection in VMs using NetFlow

[90] Hypervisor led collaborative egress detection

[39] Virtual Machine Introspection (VMI)

R
e
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u
rc

e
U

sa
g
e

(D
5
) [91] VM resource utilization threshold for detection

[46] Resource counters and traffic thresholds for VMs

[95] Resource usage anomalies and introspection

[65] DDoS Aware auto-scaling to combat EDoS

[92] Resource usage of attack target servers

Table 2.7: DDoS Attack Detection Techniques based on Pattern Detection

access pattern training, they could identify outliers, which do not follow this dis-

tribution in pattern [68]. On the other hand, the authors in [69] used the baseline

profiling of various IP and TCP flags which entails the network behavior model.

The authors proposed the detection of flooding in the cloud using the training of

normal and abnormal traffic and used the covariance matrix approach to detect
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the anomaly. Amongst other approaches, Shamsolmoali et al. [71] proposed sta-

tistical filtering based attack detection. Proposed approach calculates divergence

between normal traffic and attacker traffic on the basis of Jensen-Shannon Diver-

gence [72]. Initially, they used the traditional TTL based differentiation among

the legitimate users and spoofed attackers. After IP spoofing filtering, they ap-

plied the Jensen-Shannon divergence to identify the anomalies in the traffic to

achieve around 97% accuracy. There are few performance issues with TTL based

approach. TTL based filtering is not useful unless we have a large database of

actual TTL values of genuine requests using probing [73]. In [74], the authors

derived the web behavior using IP and TCP header fields. By this, they could

calculate the confidence value in the detection strategy.

The major idea of this work was the claim that IP address and TTL values are

related to multiple past contributions; therefore, the same can be extended to

other fields in IP and TCP headers and a score for each incoming packet can be

calculated. Jeyanthi et al. [75] proposed an approach to detect the DDoS attack

on the basis of entropy. The authors use “Helinger” distance which differentiates

between the attack and genuine traffic distributions. The authors have used traffic

rate and entropy and predict the arrival rates of incoming traffic based on history.

The authors in [57] demonstrated an application specific way of differentiating

web requests based on their behavior on an e-commerce site. This work created

two client profiles, one for good clients and another one for bad clients. Based

on user walk-through on pages, purchases, searches these profiles are created and

decides the customers’ priority. Resource access pattern by clients is the main

idea to detect the attackers. In [76], the authors created normal web profile,

which include HTTP and XML header features. The number of elements, content

length and depth help in creating the normal user profiles. The proposed methods

identify the outliers which deviate from these profiles. The authors in [77] argued

that an attacker would not spend any time on a page but would request them like

a flood. They gathered TSP behavior of users as well as of bots and identified that

the attackers TSP is mostly negligible or even if it is not near zero, it is constant

or periodic.

The most important strength of these attack detection techniques lies in the ma-

chine learning of the past history of benign traffic or the attack traffic. With the

advent of the paradigms such as big data analytics and software defined networks

these detection methods gained much importance in quick attack detection and

monitoring. The authors in [10] present a detailed survey of detection techniques

for traditional infrastructures. These techniques are now becoming popular for
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cloud targeted attacks. The major challenges for detection techniques lie in the

behavior identification in terms of features and their training. The most important

evaluation criteria for these methods lie in the false alerts (positive and negatives)

they generate during the testing of the incoming traffic. Other important challenge

lies in stopping the IP spoofing which can defeat many of the detection strategies.

2.7.2 Source/Spoof Trace (D2)

There is a number of trace back algorithms in the literature, which identify and

stop the spoof attack by tracing the source. Source traceback schemes are em-

ployed to stop/detect the identity spoofing techniques. These techniques are im-

portant as most of the detection/prevention methods model the user behavior or

profile based on some identity which is mostly an IP address in case of web access.

In the attack cases where IP spoofing is employed, the detection mechanisms can

be defeated very easily.

Let us have a look at some of the techniques related to this subclass of solutions.

In [79], the authors have done the source trace for SOAP requests. The authors

used back propagation neural networks to tackle both the popular variants of the

DDoS attack, which are HTML DoS and XML DoS. The authors in [81] drops

all the spoofed packets at the edge routers using egress filtering.

The authors proposed a method to identify the source of the attack by “Service

Oriented Architecture (SOA)” based technique. They proposed a source trace-

back method by introducing an additional server before the real web server. This

additional server is known as SBTA (SOA-Based Trace back Approach), which

marks each packet by cloud trace-back tag and also reconstructs the path to know

the source. The proposed method uses a database to store and compare each

incoming packet, and it requires an additional server to mitigate the attack. Os-

anaiye et al. in [82] proposed an IP spoofing detection method, which is based

on the matching of the OS versions of both attackers and real IP owners. The

authors argued that the OS fingerprint of the spoofed attacker can be found out

by asking the real OS fingerprint from the owner. The authors in [83] used source

authentication approaches where a cryptographic token is verified at each router to

authenticate the source. Similarly, authors in [84] used source checking approaches.

Source traceback approaches also used hop count or TTL values discussed in Sec-

tion 2.7.3. Other important contributions in this area, include tracing sources

by location [85] and statistical filtering [86]. There are other surveys available in
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this direction, which discuss contributions related to botnets, their trends, and

detection methods [80].

The source traceback and spoof identification methods are very important for all

the detection methods. However, being a cooperative detection mechanism, these

methods require a support from many other network devices such as edge routers,

and services. Additionally, IP address being a “source provided address”, it is

extremely difficult to design spoof protection against massive spoofing by large

scale botnets.

2.7.3 Count Based Filtering (D3)

This subclass on “Count Based Filtering” also fits into the class of prevention

mechanisms as well. Many a times, techniques use thresholds to detect the ini-

tialization of attack and later they can use the thresholds to identify the presence

of the attack. These techniques use network resources such as hop-count, number

of connections or number of requests in a unit time from a single source as count

thresholds.

The authors in [55] proposed the detection scheme, where apart from other schemes,

a hop count filter helps in identifying the spoofed packets. Similarly, the authors

in [51] used TTL values alone for the purpose of DDoS prevention cum detection.

As per this work, they store the TTL values corresponding to various IP addresses

in the white and black lists. If there is a new request then it is sent to the graph-

ical Turing test and on the basis of verification, it is added to the white list or

black list. Those who are in white-list but with a different TTL, are also sent to

the Turing test and on success their TTL value is updated. The authors in this

paper extended their earlier work of the EDoS Shield [52] and improved it for the

case of IP spoofing. Their solution is based on hop-count diversity, where attacker

packets are claimed to have same hop count, and thus they can be detected. In

this strategy, if a user sends N request in period P, access to this user is only

allowed, if his request count is less than threshold TH .

The authors in [61] used request count on the basis of human behavior and dropped

all subsequent requests from the same IP for a finite period. The authors in [55]

have proposed a method to mitigate HTML and XML DDoS attacks by multiple

level filtering on the basis of client puzzles, hop count and packet frequency. Vari-

ous filters at server side incur significant overheads and latency for ordinary users.

Similarly, the authors in [59], used the request count method to identify attackers
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and blacklist them. DDoS Deflate [87] is a popular open source DDoS detection

tool which is dependent upon the threshold of number of connections established

by each source.

The major strength of these solutions lie in their easy deployment and support

by the available OS level firewalls such as iptables and APF. These methods

also give administrators a quick control over the situation. However, these meth-

ods may not suite the requirements of all the users as the thresholds for a whole

domain behind the NAT may not be similar to the thresholds required for depen-

dent web-services. Additionally, methods such as TTL/hop-count requires a user

database having the actual hop-count/TTLs. Other issues arise due to a variety

of heterogeneous implementations of hop-count in different systems. On the other

hand, the IP spoofing techniques may defeat the (non-TTL) schemes. Overall, the

false positives or negative are important performance issues related to these count

based filtering approaches.

2.7.4 BotCloud Detection (D4)

Any cloud DDoS attacker may also use cloud infrastructure for its own nefarious

purpose. Cloud infrastructure can be used for the purpose of installing botnets.

These clouds are known as BotClouds. This subcategory describes the contri-

butions which tries to find or detect the internal attack VMs in the cloud net-

work. Most of these BotCloud related solutions are source based or Cloud Service

Provider (CSP) based approaches.

The authors in [46] presented a cloud level detection method to identify if there

are attacker bots running inside hosted VMs using network level and VMM level

checks. Another contribution in this direction applies Virtual Machine Introspec-

tion (VMI) and data mining techniques to separate the infected VMs from other

VMs in multi-tenant VMs [39]. The authors prepared a list of typical actions of

malware bots infected VMs and used a clustering algorithm to identify the infected

VMs based on the training. There are other BotCloud related solutions available

in [88] [89] [90]. The authors in [88] provided a solution where the cloud provider

checks the traffic flow and perform the anomaly detection using source traceback

techniques at the network. The authors in[89] provide a solution based on the

SDN approaches using Bot detection with the help of NetFlow protocol. The au-

thors in [90] used hypervisor based checks to detect the vulnerabilities in the guest



Chapter 2. DDoS attack in Cloud Computing: State of the Art 35

VMs using collaborative egress detection technique. Advanced methods such as

one in [39] proposed a detection using virtual machine introspection (VMI).

The major strength of these methods lie in their deployment at the CSP end.

By this, CSP has a control to monitor at the network edge for any anomaly in

the traffic behavior or other performance counters. However, these methods are

not capable of detecting all kinds of attack flows such as zero-day or stealthy

flows. On the other hand, this kind of detection methods only work at the edge

of attack originating cloud. In case, the CSP does not provide support for such

detections, these attacks may become massive utilizing the profound resources of

cloud computing.

2.7.5 Resource Usage (D5)

Utilization of various resource of the cloud or a physical server by a VM can also

provide important information about the presence of the DDoS attack or an antic-

ipation of the upcoming DDoS attack. Cloud environments run infrastructure as a

service cloud using virtualized servers where hypervisor can monitor the resource

usage of each VM on physical server. Once these VMs start reaching the decided

resource utilization thresholds, the possibility of an attack can be suspected.

In [91], the authors provided solutions on the basis of available resources with

VMs and their upcoming requirements. Similarly, Latanicki et al. in [46] used

performance counters and traffic to identify resource usage of VM and devise

possible mitigation of the attack. Resource utilization possesses a very important

and indirect metric to identify the possibility of an attack. The authors in [92]

used resource limits as the sole method of the DDoS detection and then proposed

mitigation methods. The authors in [95] modeled the resource usage anomalies

of VMs using virtual machine introspection to detect the possibility of resource

surge due the DDoS attack.

DDoS attacks being resource intensive attacks provide a indirect relationship for

the success of these resource usage based profiling and detection methods. Auto-

scaling mechanisms are triggered on the basis of “overload” and “underload” states

of the targeted VMs. This aspect also provide a possible co-relation between the

VM resource usage and a DDoS originated resource surge. The limitation of these

set of approaches lies in interpretation of the high resource utilization. It is very

difficult to conclude whether the resource surge is due to the attack or due to the
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real traffic. As the resource surge only gives a alert about the possible resource

surge, we may require other supplementary detection mechanisms.

After discussing the attack detection solutions at length, it is clear that the traffic

filtering based on the attack patterns is a major part of the DDoS attack solutions.

Most of the methods are based on machine learning artifacts and provides a way

to control the input traffic. However, the detection methods alone may not suffice

for the purpose of integral protection from the DDoS attacks. The role of attack

prevention solutions for the first hand protection and the role of attack mitigation

solutions to ensure the resource availability for effective mitigation, can not be

ignored.

2.8 Attack Mitigation (M)

In this section, we group methods which help a victim server to continue serving

the incoming requests in the presence of an attack. The service downtime is a

major business parameter for websites and an organization may lose a significant

number of prospective customers [13]. Attack mitigation and service recovery are

complementary to each other and both help the victim server to remain available.

These methods are used temporarily and once the attack subside, the server may

be brought back to the actual situation. We further classify this section into four

subcategories:

1. Resource Scaling.

2. Victim Migration.

3. Software Defined Networking (SDN).

4. DDoS Mitigation as a Service (DMaaS).

For a quick view, the overall theme of each set of the classified methods, their

strengths, challenges, and weaknesses are listed in Table 2.8. We also prepare a

list of important individual contributions in Table 2.9 where we enlist a brief theme

of each solution to show the variety of contributions available in each subclass.

2.8.1 Resource Scaling (M1)

Dynamic auto-scaling of resources is one of the most popular features of the clouds.

It is also treated as one of best mitigation methods to counter DDoS attack al-

lowing server availability or continuity with scaled resources. Auto scaling can be
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Techniques Strengths Challenges Limitations Work

Resource
Scaling
(M1)

Provides a quick
relief to resource
bottlenecks resource
bottlenecks

Correctly deciding
whether and when
extra resources are
required

False alarms may lead
to EDoS. Co-hosted
VMs may also be
affected

[19][96][92]
[46]

Victim
Migration
(M2)

Migrating the DDoS
victim service to
other servers which
helps in minimizing
losses

Migration candidate
selection and migra-
tion host selection

Migration costs and
overheads. Subsequent
migrations/swaps in
cloud

[91][46][97]

Software
Defined
Networking
(SDN)(M4)

Abstract and timely
view of the network
and the incom-
ing traffic using
controllers

SDN may itself be-
come an easy target
of the DDoS attacks

Mostly useful at net-
work boundaries and
ISP level network con-
trol

[98][99][17]
[100][101][99]

DDoS Mit-
igation as
a Service
(DMaaS)(M5)

Cloud based hybrid
mitigation using ex-
tra resources or re-
mote traffic monitor-
ing and prevention
services

Cost overhead is-
sues. Methods
are mostly similar
to the on-premise
solutions but mitiga-
tion expertise is an
advantage

Solutions may not cater
various kinds of ap-
plications and attacks.
Local issues may not
be visualized by DDoS
mitigation-as-a-service

[64][102][103]
[63][62]

Table 2.8: DDoS Attack Mitigation (M) Techniques in Cloud

done horizontally, where new instances may be started on the same or different

physical server to serve incoming requests till the victim server is facing the attack.

In vertical scaling, resources like CPU, memory and disk can be scaled in the same

VM or the same logical unit. These extra resources can help the victim machine

to survive the attack and keep running. One of the major disadvantages of this

strategy is that it can become an advantage for the attacker to increase the attack

strength to even deplete added resources and generating a requirement of more

resources shaping the attack into an EDoS [19].

We now discuss few important contributions related to attack mitigation and re-

covery using resource scaling. The authors in [96] proposed a multi-level DDoS

detection system for web services. VM owner level (Tenant level), service Level,

application level and cloud level detection are placed to have a collaborative DDoS

detection system. It is one of those solutions which are utilizing the information

from all the stakeholders in mitigating the DDoS attacks. However, there might be

large overhead and other security concerns due to information flow among multiple

levels.

One of the first and most important contributions in this area, which touches

cloud-specific issues is by Shui Yu et al. [92]. The authors in this paper considered

the dynamic resource allocation feature of the cloud to help the victim server to get

additional resources for DDoS mitigation. In this way, individual cloud customers

are saved from DDoS attacks by dynamic resource allocation. Experiments on real

website data sets show that their queuing theory based scheme work to mitigate

DDoS attack. The authors in [46] presented three different scenarios to stop the
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) [96] Multi-level (VM, service, application and cloud)

[92] Dynamic resource scaling for quick detection

[46] Resource scaling in federated clouds

[5] Scaling to absorb the attack

[65] Scaling based on capacity planning

[97] Scaling over low cost untrusted CDN clouds

M
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[91] Victim VM migration to other physical servers

[104] Migrating proxy entry points at overlay

[46] Victim VM migration to other physical servers

[105] Exploiting VM migrations using DDoS

S
D

N
(M

4
)

[98] ISP-level monitoring of traffic and routing

[99] Strict authentication and access control

[100] Re-configurable network monitoring and control

[106] SDN based deep packet inspection

D
M

a
a
S

(M
5
)

[64] Victim cloud-based network service
[102] Proof-of-work scheme and ephemeral servers

[103] Hybrid (On-premise firewall plus Cloud firewall)

[63] Resource caps to limit the attack effects

[62] Cloud metric monitoring and alarms

Table 2.9: DDoS Attack Mitigation Techniques in Cloud

DDoS attack in the cloud. These three scenarios include external attacks to in-

ternal servers, internal attacks to internal servers and internal attacks to external

servers. The authors provided strategies to detect the attack and get recovered

using scaling and migrations in a federated cloud environment. Reserved resources

are kept in [92] to support the server in attack times. “How much reserved re-

sources should be kept?” is an important question. The cost of additional and

idle resources is a drawback. It is one of the flexibility which keeps back up and

reserved resources for a rainy day [46]. The authors in [97] provided a mechanism

which uses low-cost untrusted cloud servers in the presence of DDoS attacks to

scale services frugally. “CDN On Demand” is an open source platform developed

to support the mechanism [97]. Industry solutions such as [5] also advocate for

quick resource scaling for quick attack absorption.

The resource scaling is an important aspect of cloud computing which is also useful

in quick attack mitigation while maintaining the service availability. The resource

scaling is a process which is useful for a service to recover by expanding the VM

resources or VM instances. However, the resource scaling may also become against

the overall idea of cost-savings using the cloud hosting. In case the attacks are
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stealthy and remains undetected, than the resource scaling may increase the attack

costs multi-fold.

2.8.2 Victim Migration (M2)

VM migration has changed the way the entire running server is shifted to another

physical server without noticeable downtime. Migration can be used to shift the

victim server to a different physical server, which is isolated from the attack and

once the DDoS is detected and mitigated, the server can again be shifted back to

the actual place.

We discuss few important contributions using victim migration to mitigate the

DDoS attack. The authors in [91] proposed a similar strategy by keeping some re-

served resources on a server. While the attack is detected, they migrate the victim

to those reserved resources and bring it back when attack ceases. The downtime

to legitimate customers is one issue which is very important while migration is

chosen as a mitigation method. Additionally, if the attack continues for longer

duration or repeated, the cost considerations will be high. The authors in [46]

also used a similar approach. The authors in [91] proposed a remedial method

for the server affected by DDoS to keep it in the running or serving state. The

authors proposed to detect the DDoS attack at the level of Virtual Machine Mon-

itor (VMM) instead of any count based or packet filtering. VMM is detecting

the possibility of the DDoS attack by continuously monitoring resource utilization

levels. Once the resource utilization levels reach a certain threshold, VMM flags a

DDoS attack. On signaling, VMM migrates or duplicates the running VM as well

the application to a separate isolated environment on the same physical server.

This isolated environment is created with the help of reserving some additional

resources for backup, where the “victim” is shifted in case of the DDoS attack.

Once the attack gets over, the isolated environment again shifts the VM back to

its real place. On the other hand, there are characterizations which shows the

exploitation of VM migrations using DDoS attacks [105]. Other solutions such

as [104] show a different flavor migration using migrating proxy entry points at

overlay networks at the victim server-end.

Victim migration to backup resource provides a way to control the attack effects

and employ the attack mitigation. Also it may help in scaling the services using

migrating to a large sized candidate/host servers where the migratee server can

use the additional resources to detect and mitigate the attack.
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There are few issues related to the sustainability of these schemes. In particular,

wastage of additional resources, which has to be available all the time is a major

issue. Detection of the DDoS just by keeping a watch over resource utilization

might not be a good idea, as there might be higher utilization because of real traffic

during flash events or heavy computation needs. In fact, this behavior might lead

to an unnecessary duplication to an isolated environment. Even the overhead of

duplicating the system when the attack is evident might not be a wise step to

overcome the security of the server and application. If the attack continues, how

would server serve its legitimate consumers who are trying to access the service at

that point in time? If it does not serve them then “for how long, the service will

be down?” is an important factor. Additionally, if it serves them then there is a

large overhead of transferring states and keeping data and sessions up to date.

2.8.3 Software Defined Networking (M3)

Software Defined Networking (SDN) is an emerging reconfigurable network paradigm

which may change the whole DDoS mitigation space. SDN in its core separates

data and control planes of switching to support the network reconfigurability on

the fly.

There are few initial and ongoing works related to SDN assisted DDoS mitiga-

tion mechanisms. The authors in [98] proposed a SDN-based solution in which

ISP-level monitoring of traffic and routing of malicious traffic is done to specially

designed secure switches. In this work, the victim is required to request ISP for

DDoS mitigation. ISP having an abstract view of incoming traffic applies the

traffic labeling using OpenFlow switches. The suspicious traffic is then redirected

to security middle-boxes which apply the access policies on the traffic. The au-

thors have left the detection and mitigation part on the customer side. A similar

proposal by authors in [99], suggested a prototype implementation of SDN-based

detection mechanism. The major idea of this work lies in the strict access con-

trol policies for the incoming traffic which requires strict authentication for each

incoming request. Advanced deep packet inspection based approaches using SDN

are discussed in [106]. A detailed tutorial and guideline of SDN-based solutions

are given in [17].

SDN as a paradigm has immense possibilities of support for the attack mitigation

for massive as well low-rate DDoS attacks due to its reconfigurability and quick

networks view and monitoring.
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Mitigation Solutions utilizing SDN capabilities are still evolving and may become

very helpful due to their important features. However, studies such as [101] show

that even the SDN infrastructure itself can become a victim of DDoS attacks.

2.8.4 DDoS Mitigation as a Service (DMaaS) (M4)

There are multiple cloud based services/third party services which are capable of

providing the DDoS protection [26] [24] [27]. Mostly, DDoS protection is done

on a server or an intermediate node forwarding packets to the server. There

are solutions which are hosted in the cloud and provide DDoS mitigation as a

service [64] [102]. Multiple providers in the market offer this facility. However, all

these mitigation methods are threshold/count based or human intervention based.

On the other hand, there are not many specific products available to mitigate

DDoS targeting a cloud. The authors in [103] proposed a DDoS mitigation service.

This service aims to help the physical on-premise firewall to do the mitigation

quickly. The proposed solution is termed as a hybrid firewall, which uses both

physical firewall and virtual firewall (placed in the cloud). Amazon has started

providing resource limits on EC2 instances to provide an initial solution. There

were multiple requests from consumers to cloud providers about keeping cap or

limit on maximum allowed resources and subsequently there were additions from

cloud providers related to resource consumption limit alerts to customers [63].

Additionally, Amazon has created a service, cloudWatch [62], to provide real-time

information about various metrics towards a service hosted in Amazon cloud to

help the solutions to take necessary mitigation steps.

Third party mitigation services or DDoS mitigation as a Service may become very

helpful for attack mitigation and recovery using a on-premise tools and/or cloud

based solution. The attack mitigation history and expertise in handling various

attacks may become helpful for enterprises seeking specialized help. Also the cloud

based service may also utilize the extensive resource support available in the cloud.

The major limitation of these DMaaS approaches include remote mitigation which

may not fasten the mitigation process. Additionally, victim service owners may

not want to share the control with the third parties due to the privacy issues

of their traffic and the business logic. Other important aspects include the cost

of the solutions and the sustainability requirements of the victim enterprises. In

addition to all the categories of mitigation methods, shutdown is a typical trivial

method to stop the DDoS attack on a server. But this method does not provide
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any solution to the service downtime of the service which is non-negotiable. In

some approaches, the victim server is started at another place as a new instance

and present instance is shut down. This helps in starting a synced clone at another

place. Though there are high chances that the attacker will also attack the new

server. A similar idea has been proposed in [54] where attacked proxy servers are

shutdown and the traffic is redirected to new proxy servers.

Attack mitigation methods narrated above provide a detailed overview of various

attack mitigation and recovery solutions available in cloud computing space. The

mitigation methods are usually a supportive layer of protection for the attack

prevention and detection solutions.

2.9 Discussion and Future Directions

We referred a large volume of work while preparing this survey. With this rigorous

survey, it is clear that most of the contributions in this domain are concentrating

on the following five aspects:

1. Characterization or Impact study.

2. Prevention using Turing Tests.

3. Threshold or pattern based filtering.

4. Support to stop IP spoofing.

5. Resource scaling.

Most of the solutions proposed so far are using one or a combination of the above

approaches. There are only a few solutions which are including the auto scaling,

multi-tenancy and utility model into account. The cloud computing infrastructure

may be used to build effective mitigation solutions which ensure the quick attack

mitigation and timely recovery to ensure effective service availability.

2.9.1 Solution Considerations

In order to offer an effective solution to DDoS in the cloud, the following features

require special treatment. Here, each feature has been discussed with an intention

to provide an aid to the ideal solution.



Chapter 2. DDoS attack in Cloud Computing: State of the Art 43

2.9.1.1 Auto-scaling

Auto-scaling in the cloud is usually triggered by monitored metrics of a VM or

an application running inside a VM. These are resource usage metrics like CPU,

memory and bandwidth and other counters like response time, query processing

time etc. Triggering the auto-scaling would either result in an increase or decrease

in allocated resources. Controlling Auto-scaling or false triggering of auto-scaling

requires specific checks which can verify the real usage. These checks are available

at VM level, hypervisor level or even at abstract cloud level.

� Vertical Scaling: This feature deals with the scaling on a physical server

where multiple VMs are running with co-hosted isolations. Vertical scaling

would deal with adding or removing resources on these VMs. Total resources

which are available on the physical server are fixed but each VM may have

a different amount of resources at different times. This really depends on

the resource allocation policy and the SLA. Any DDoS affected VM would

continuously request for more and more resources and available idle resources

(with the Cloud Service Provider) should fulfill these requests.

� Horizontal Scaling: This scheme allows adding new instances of the same

VM at other physical servers. These instances are created to share the load

and maintain the quality of web services. An ideal composite scaling strat-

egy would first rely on vertical scaling followed by horizontal scaling. The

decision-making process to start more instances on more servers should look

for a true need and cost considerations. Another important point in horizon-

tal scaling is limiting the maximum number of instances of an application.

This can be decided by the cloud consumer based on the budget but a re-

striction on it may lead to losing the business.

2.9.1.2 Multi-tenancy

Multi-tenancy leads to proper hardware utilization of high-capacity servers which

would have been underutilized if not implemented as multi-tenant environments.

Vertical scaling would have much flexibility in case few VMs are running on a

single machine. On the other hand, cloud providers would have ROI (Return on

Investment) considerations and would want to host more and more VMs. Other

than this, performance isolation and performance interference aspects should also
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be looked carefully while designing capacity of these servers. DDoS defense mech-

anism and its design should reflect protecting multi-tenant environments.

2.9.1.3 Pay-as-you-go model

Pay-as-you-go model is advantageous for both consumers and providers. Literature

has mostly counted pay-as-you-go models as an advantage for consumers. But this

becomes advantageous for a cloud provider when VMs it has hosted in its cloud

requires more and more resources on a regular basis. In case, this additional

requirement is fulfilled than the consumer needs to pay for additional resources

and provider gets benefited. Almost all solutions should keep the accounting and

billing model in the perspective while designing cost-aware DDoS defense solutions.

2.9.1.4 Migration

As described in the Section 2.8, VM migration is a very important method to

minimize effects of the DDoS in a virtualized cloud. Migrations incur a cost in

terms of downtime, configuration changes, and bandwidth usage. If the application

does not have the capability to start more instances to share the load, migration is

the only way to minimize the downtime and denial of service. As horizontal scaling

cannot be done in such cases, the duration for which DDoS attacks lasts would

also play a major role. Large attack duration may lead to multiple subsequent

migrations here and there, and thus a large number of side-effects to the cloud and

other VMs. DDoS defense mechanism should be able to minimize the number of

migrations during the attack period by closely working with horizontal scaling.

2.9.1.5 Solution Costs

The most important motivation for the enterprises to shift their service to cloud

infrastructure is the cost effectiveness. However, the DDoS attack losses may

become multi-fold in the cloud infrastructure as compare to traditional on-premise

infrastructure. The major portion of the cloud users include small and medium

enterprises which necessitates the sustainability or budget factor as important

aspect while designing the solutions.
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2.10 Conclusion

This work provides a comprehensive and detailed survey about the DDoS attacks

and defense mechanisms available in the cloud computing environment. We have

shown through the discussion that EDoS attack is the primary form of DDoS at-

tack in the cloud. DDoS attacks have important characteristics which play an

important role while considering utility computing models. This chapter intro-

duces the fundamental aspects of cloud computing which are critical in order to

understand the DDoS attack and its impact.

We also presented attack statistics, its impact, and characterization by various

contributors. Attack and threat model of DDoS attack in cloud computing is pre-

sented in detail to understand various attack features and threats. We prepared a

comprehensive taxonomy of works related to DDoS defense mechanisms in cloud

computing. We believe that this survey would help to provide a directional guid-

ance towards requirements of DDoS defense mechanisms and a guideline towards

a unified and effective solution.

There are a large number of solutions which targeted the DDoS attack from one

of the three solution categories of attack prevention, detection, and mitigation.

Among these solutions, there are few contributions which are targeting at cloud-

specific features like resource allocation, on-demand resources, botcloud detection,

and network reconfiguration using SDNs.

This survey plays an important role in providing the basis for the innovative

and effective solutions to prevent and deter DDoS attacks in cloud computing.

Characterization at the level of a cloud as a whole and multiple clouds would really

help in understanding the impact of this attack at a larger level. As discussed in

the survey, solutions specifically designed for cloud and its features would surely

perform better as compared to traditional DDoS solutions. Cost and attack aware

resource allocation algorithms in the cloud would help in mitigating the attack. In

the next chapter, we provide details of our results on attack effect characterization

of DDoS attacks in the cloud.





Chapter 3

DDoS attacks in Cloud

Computing: Collateral Damage

to Non-targets

3.1 Introduction

In this chapter, we describe our first contribution to characterize and show the

various attack effects on various stakeholders. These effects include both direct

and indirect impacts while a DDoS attack is occurring. It is well established that

the consequences of the DDoS attack will affect the target server and the services

offered. We show that this is not a correct and complete evaluation of attack

consequences with servers hosted in infrastructure clouds. An infrastructure cloud

will always have multiple “multi-tenant” physical servers hosting a large number

of virtual machines (VMs) sharing various resources using different techniques of

resource multiplexing and sharing. The control of each VM would belong to its

owner, and it should ideally be isolated from other resource-sharing components.

However, the multi-tenant and collaborative nature of the cloud makes a large

difference in characterizing DDoS attacks as compared to traditional infrastruc-

tures. We also make an effort to provide a guideline to distinguish, measure, and

minimize these effects, as these effects would change the factors governing cloud

pricing, IT chargeback, and dispute resolutions. This chapter provides a compre-

hensive analysis of the various aspects of DDoS attacks in cloud computing and

solutions.

47
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This chapter is organized as follows: Section 3.2 describes DDoS attacks in the

cloud. Section 3.3 presents a system model of cloud infrastructure to support

the arguments presented in this paper. We list a detailed set of requirements

for planned experiments in Section 3.4. Experiments and results are discussed

in Section 3.5. Quantification of the results and their applicability contexts are

discussed in Section 3.6. Section 3.7 is devoted to identifying the requirements

to mitigate DDoS attacks in cloud computing. Finally, Section 3.8 presents the

conclusions.

3.2 DDoS Attack in the Cloud

A DDoS attack targets a victim server by sending it a large number of service

requests from a group of distributed clients/bots. In an infrastructure cloud, the

attack scenario would be similar to the one shown in Figure 3.1. An infrastructure

cloud will have multiple high-capacity physical servers hosting VMs to meet the

business objectives including return on investment and better hardware utiliza-

tion. This cloud has a high-speed network to connect these servers to support

applications and processes such as live VM migration. Usually, a cloud will have a

queue of incoming VMs that will be placed on the servers. The cloud as a resource

manager has multiple activities to perform, including VM placement, resource al-

location, load balancing, accounting, and billing.

For our discussion, let us concentrate on physical server 3, which hosts four VMs

in Figure 3.1. VM1 is being targeted by a DDoS attack. A DDoS attack is

usually achieved by targeting one or more of the basic server resources such as

the CPU, memory, disk, bandwidth, number of TCP connections, open files, etc.

It is important to note that the attack mechanism from an attacker’s perspective

will mostly remain the same for both on-premise fixed infrastructure and scalable

cloud infrastructure.

This makes it easy for an attacker to invest resources using the same attack strate-

gies. However, for mitigation systems, it becomes a different task altogether.

Infrastructure clouds are mostly appreciated for their capability to shrink and

expand resources by offering on-demand computing facility. Most of these basic

resources are being shrunk and expanded by cloud service providers using virtu-

alization and auto-scaling mechanisms [19, 107–109]. This would help the hosted

VM avoid reaching a “denial-of-service” (DoS) state by increasing the resources

to cope with the increasing demand.
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Attacker Traffic
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Server 1

Server 2

Server 4

Server 5

Server 3

Figure 3.1: DDoS Scenario and Various Stakeholders

Even if the resources are exhausted in server 3, the DoS state may not be reached

as the service running on VM1 can be scaled up vertically or horizontally on some

other server, say, server 1, by creating another VM instance. Theoretically, this

may be done for infinite resources and instances owing to the availability of pro-

found resources on the cloud. Obviously, these shrinking and expansion are linked

to accounting and “pay-as-you-go” billing, attacking the economic sustainability

of the VM owner. Practically, this attack may result in DoS as the maximum

allowed resources to a VM owner cannot be infinite.

These intermediate steps of continuous resource acquisition are important reasons

behind EDoS attacks, which may or may not converge to a DDoS attack. This can

be effectively understood by the resource allocation charts in Figure 3.2. A web

server instance (instance 1) has been started on a physical server in a cloud with

basic resources of one unit. For simplicity, this one unit of resources represents a

set of basic resources needed for one instance of a web server. As the web server

is a virtualized server, the total resources are assumed to be 20 units, where four

units are always reserved for the hypervisor or host domain and eight units are

already occupied by other VMs.
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VM Instance 1

VM Instance 2

VM Instance 3

Auto-scaling Decisions

Auto-scaling Decisions

Auto-scaling Decisions

Figure 3.2: EDoS and DDoS in the Cloud

Hence, there are only seven units of idle resources left that are available to all

VMs to acquire when needed. The auto-scaling decisions represented on the x-

axis are taken by an algorithm for keeping track of VM resource utilization and

other metrics (similar to the scheme in [110]). While the attack is being applied,

each of these decisions would always result in “expansion.” As shown, the attack

would consistently stress upon one or more of the basic resources and trigger the

acquisition of all seven units of idle resources. Once this state is reached, there

are no more idle resources available. Now, the auto-scaling algorithm would start

another VM instance on the same server or some other server in the cloud. The

location of the new instance creation is dependent upon various factors including

candidate server identification, VM placement algorithm, future resource require-

ments, etc. Once another instance is started, there will be two parallel instances

that are serving the incoming requests for the same service. Assuming that there

is no DDoS mitigation service in place as the attack is being continued, this will

also exhaust the resources available for the newly created instance, resulting in

the creation of more and more instances.
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Figure 3.3: State Transition in Cloud Auto-scaling

Theoretically, it may eat up all the resources of the cloud or all the resources

allocated to the victim VM’s owner. Finally, the web server in consideration

would reach a state where service denial would happen (represented by a red star

in Figure 3.2).

In practice, a VM may not choose a model based on this discussion. Instead of

creating more instances, it may choose migration to another server with more idle

resources or a hybrid strategy combining all these approaches. Even in this case,

the convergence from EDoS to DDoS will follow the same path. There are two

matrices that are important to extend our discussion. Both these matrices are

used in the next section for the development of the system model.

1. Time to reach DoS: The time required to reach a DDoS attack in the cloud

will be higher than that in a traditional infrastructure (as there is only EDoS

between auto-scaling decisions 1 and 7, and the service may be able to serve the

requests).

2. Attacker target: If the attacker’s aim is not toward service denial, it may

send requests at a lower rate to realize the EDoS attack, which would economically

harm but would not converge to DDoS.
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3.3 System Model

Considering an infrastructure cloud C that has Pn physical servers (similar to

Figure 3.1), we can represent each individual server as

Pi, i = 1, 2, .......n. (3.1)

Similarly, the set of VMs that will actually run on these machines is Vm and these

VMs are represented as

Vj, j = 1, 2, .......m. (3.2)

Each machine Pi may have p resource types available. Similarly, a VM, Vj, may re-

quire q resource types using virtualization. Therefore, a physical server’s resources

will be

Pik, k = 1, 2, ......p resource types.. (3.3)

Similarly, a VM’s resources would be represented as

Vjl, l = 1, 2, ......q resource types. (3.4)

Usually, resource types are the CPUs (C), memory (M), disk space (D), and band-

width (B). Additional resources can be added as per need. Therefore, a host Pi

will have

Pi1 = Ci, Pi2 = Mi, Pi3 = Di, and Pi4 = Bi. (3.5)

Similarly, a VM Vj will have

Vj1 = Cj Vj2 = Mj Vj3 = Dj, and Vj4 = Bj. (3.6)

The total resource capacity of a physical host would be the total resources available

at the host

Cap(Pi) = (Ci,Mi, Di, Bi). (3.7)

Similarly, the resource capacity of a VM would be the resources allocated to it

Cap(Vj) = (Cj,Mj, Dj, Bj). (3.8)



Chapter 3. DDoS attacks in Cloud Computing: Collateral Damage to Non-targets 53

The additional resource requirement of a VM, Vj, would be (positive for expansion

and negative for shrinking)

Require(Vj) = (C ′
j,M

′
j, D

′
j, B

′
j). (3.9)

VM placement activity is performed while the VMs arrive in the cloud. Assume

that the maximum number of VMs that a hypervisor can support is r. Out of the

whole set of VMs Vj, only a few VMs in the subset Vs, s=1, 2,......r, can be placed

on a server Pi, if

Cap(Pi) ≥
r∑

s=1

Cap(Vs). (3.10)

Moreover, all of the following should also hold:

Ci ≥
r∑

s=1

Cs (3.11)

Mi ≥
r∑

s=1

Ms (3.12)

Di ≥
r∑

s=1

Ds (3.13)

Bi ≥
r∑

s=1

Bs. (3.14)

The requirement of VMs is met by idle resources. If the subset Vs is successfully

placed on Pi, then the idle resources on Pi would be

Idle(Pi) = Cap(Pi)−
r∑

s=1

Cap(Vs). (3.15)

Moreover, once the resources are allotted to VMs, during their runs, they will

be continuously monitored using an auto-scaling algorithm. Additional resource

requirement (Equation 3.9) will be considered for the fulfillment (out of idle re-

sources calculated in Equation 3.15) if the following holds true:



Chapter 3. DDoS attacks in Cloud Computing: Collateral Damage to Non-targets 54

Idle(Pi) ≥
r∑

s=1

Require(Vs). (3.16)

Similarly, the idle resources of a VM should be removed to help the economic

viability of cloud solutions. This removal will add the idle resources to the idle pool

of resources of the cloud to further allot them to needy consumers when needed.

An “overload” state would arise if one or more equations out of equations 3.11,3.12,

3.13m and 3.14 do not hold true for one or more VMs. Figure 3.3 shows a detailed

depiction of resource scaling and shrinking in a cloud infrastructure. Equation 3.17

shows how the overload, underload, and normal load states affect Cap(Vs) using

the auto-scaling strategy. U is a utilization metric usually based on CPU usage;

however, it may be a different metric based on one or more similar matrices.

Identifying “overload” or “underload” conditions is usually decided by the user

requirements and by the static and dynamic thresholds such as CPU utilization,

response time of the web application, and file upload time [19]. Vadd and Vremove

are dependent upon the requirement and supported scaling techniques.

Cap(Vs) =


Cap(Vs) + Cap(Vadd) if U >= Uoverload.

Cap(Vs)− Cap(Vremove) if U <= Uunderload.

Cap(Vs) if U = Unormalload.

(3.17)

Auto-scaling would perform one of the following three possibilities or a combina-

tion of them.

1. Vertical scaling: In this scaling method, resources are added on top of the

VM at the same physical server. These resources are added from the Idle(Pi)

pool of resources on server Pi. In the presence of an attack, Equation 3.16

may not hold true after regular vertical scaling. In that case, either horizontal

scaling or migration is the only available option to respond to the demand.

2. Horizontal scaling: In this strategy, usually a cloned instance of the VM is

created on a server other than Pi. This scaling strategy is only applicable to

multi-instance applications with load balancing scheme in place. Most of the

cloud providers use horizontal scaling by quickly cloning the VM instances.

The newly created instance will have standard resources from the pool of

instances that the cloud provider supports.
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Finding out a candidate physical server Pcandidate to start a cloned VM

instance is part of the VM placement problem. A large number of ap-

proaches [23] are available to find a server that supports the required re-

sources for a new VM instance by justifying the requirements with the idle

resources on the server. A minimum resource requirement of a candidate

server has the required idle resources to support the VM instance (eq. 3.18).

Idle(Pcandidate) ≥
r∑

s=1

Require(Vs). (3.18)

3. Migration to another server: This method is quite similar to horizontal

scaling except that it does not require the creation of an instance. The same

running instance is migrated to another server where the required resources

are available (Equation 3.18). Therefore, the problem of identifying a candi-

date server remains the same as in the case of horizontal scaling. There are

multiple factors that need to be considered before performing a migration.

Some of these factors include the possible future requirements of resources,

consequent migrations or swaps, and the migration costs.

3.4 Motivation and Planning of the Characterization

In this section, we present the motivation and planning of the experiments to

characterize and quantify the effects. The major aim of these experiments was

to see whether the non-target stakeholders of a cloud infrastructure are affected

by a DDoS attack. Additionally, the aim of these experiments was to quantify

and assess the damage caused. We have identified all the important actors in the

DDoS attack scenario in the cloud (also shown in Figure 3.1). These important

components are listed in Table 3.1.

The impact characterization experiments were planned in such a manner that

the following four categories of effects could be observed in detail: performance

issues, additional costs incurred, indirect effects, and effects that are invisible at

the moment but have a long-term impact.

1. Performance: The performance of a hosted service in a cloud may have

multiple factors to measure performance or service quality. It may range

from response time to number of concurrent users, timeouts, failures, and

number of sessions.
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Stakeholders Attack target

Victim server Direct

Victim server owner Direct

Users of victim VMs Direct

Co-hosted VMs Collateral

Host physical server Collateral

Other physical server(s) in the cloud Collateral

VMs on other hosts Collateral

Network and network devices Collateral/direct

Users of co-hosted VMs Collateral

Cloud provider Collateral/direct

Cloud customers Collateral

Table 3.1: DDoS in the Cloud: Stakeholders

Accessibility and timely response are two of the most important factors for

a web service. These factors are based on other factors including the design

of the web page, server performance, and network bandwidth. Conversion

rate and web reputation are generally associated with the performance of

web service response time [111, 112]. The major aim of our experiments

was to determine the performance penalties on all components of a cloud

platform while an attack was present. Factors that affect performance include

arrival rate of incoming requests, fewer resources, and other performance-

deteriorating functions like migration and swaps.

2. Costs: Cloud computing infrastructure is one of the most sought-after tech-

nology platforms for enterprises today. This is mostly due to the cost benefits

it provides to VM owners and the resultant return on investment (ROI) [113].

In “pay-as-you-go” pricing models, costs are directly associated with re-

sources used. CPU, memory, storage, and bandwidth are four important

resources that are used in the cost calculation. This is an important factor

to look for when considering the economic aspects of EDoS.

3. Collateral/indirect effects: These are the effects that are to be quantified

on the non-targets, which are components of cloud architectures except the

victim VM. The effects of the interest include both performance and cost-

based effects.

4. Invisible effects: These are effects that are not visible in the first instance

when the attack has appeared. End-user satisfaction, quality of service,

downtime impact on business and long-term impact on reputation, penalties,
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and disputes are a few of the important impacts that are not visible directly

while the attack is occurring.

In most of the instances, these effects are not measurable as their real impact

is dependent upon multiple factors including business agreements and time.

3.5 Experimental Design and Results

Effect quantification is dependent upon multiple factors such as the size of the

cloud, applications, resource allocation strategies, type of attack, and attack strength

and its duration. For an effective understanding and classification, the following

two experiment sets were planned. The first experiment was planned on a single

physical server hosting multiple VMs to quantify server level local effects. The

second experiment set was a cloud-scale experiment that was conducted to see the

effects of DDoS/EDoS on cloud infrastructure as a whole. This would allow us to

see the attack effects from both a local and an abstract perspective.

Server 1

Attacker 1

Attacker 2

VM 1
VM 2

Dom 0Non-attacker
     Client

Figure 3.4: Experiment Setup 1: Single Physical Server

3.5.1 Experiment Set 1: Single Physical Server

The main aim of this experiment was to study the attack impact on a DDoSed

victim server, co-hosted VMs, and the physical server hosting these VMs. This ex-

periment was conducted using the setup shown in Figure 3.4 and the configuration

given in Table 3.2.
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Item Configuration

Physical server HP EliteDesk i7 3 GHz

Total CPUs (4 Cores, 8 VCPus)

Total memory 4 GB

Hypervisor XenServer 6.2

Host/Guest/Attacker OS Ubuntu 14.04 Server

Host CPUs 4 VCPUs (any CPU)

Host memory 732 MB

Guest configuration As specified in Figure 3.5

Guest application Apache2

Attackers Dual Core (2 GB)

Attacker application ApacheBench2

Request concurrency 1/10/50/250 concurrent

Total requests 1000 in each set

Request size 2 MB

Network 100 Mbps

CPU Affinity Pinned as specified in Figure 3.5

Table 3.2: Experiment Setup 1: Single Physical Server

For this, a web application’s performance was compared when it was hosted alone

(Experiment 1A), hosted with another VM with a similar load (Experiment 1B),

and hosted with another VM that was under attack (Experiment 1C). These three

experiments would enable us to understand the performance variations after the

application’s co-hosted VM started suffering from a DDoS attack. A test would

comprise 1000 requests to be sent by clients to the web server. These requests

would be sent to the web server with different concurrent requests (1/10/50 re-

quests/s representing low/moderate/high load, respectively).

The attack consisted of 2000 requests (1000 requests each from two attackers).

Each attacker was sending these requests with a concurrency of 250 requests, each

of which generated a very heavy load for the given resources. The attacker traffic

was planned using the guidelines given in the popular literature [41].

3.5.2 Results: Single Physical Server

The completion time of each test is shown in Figure 3.5 and Table 3.3 for various

resource combinations across the three tests. For a web server serving static pages,

the basic resources are the bandwidth and disk reads/transfers. Therefore, there

is not much impact of increasing CPUs and memory. In the case of a dynamic web

server, the basic resources may be extended to CPU cores and memory. Results

showed that there was a significant increase in the completion time of the test due
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Configuration Experiment Experiment 1B: Experiment 1C
R: Requests 1A Two VMs Two VMs &
V: vCPUs VM1 (attacked)

M: Memory (MB) F: Request failures

R V M TVM1 TVM1 TVM2 TVM1 F TVM2

1 1 512 181.9s 364.3s 351.2s 491.0s 0 587.7s

1 2 512 181.9s 357.8s 355.8s 432.5s 90 587.0s

1 3 512 181.8s 356.5s 356.7s 457.8s 0 587.3s

1 4 512 181.8s 357.0s 357.6s 427.4s 357 586.8s

1 1 1024 181.7s 356.6s 356.9s 491.7s 0 587.5s

1 2 1024 181.6s 356.6s 356.7s 451.9s 0 587.0s

1 3 1024 181.8s 357.9s 355.9s 501.9s 0 588.4s

1 4 1024 181.8s 356.9s 357.3s 508.5s 2 588.3s

10 1 512 178.7s 343.9s 349.8s 589.5s 468 357.3s

10 2 512 178.8s 355.3s 356.2s 657.4s 327 357.1s

10 3 512 178.8s 357.3s 357.3s 252.7s 0 357.3s

10 4 512 178.8s 343.3s 357.5s 200.5s 96 357.3s

10 1 1024 178.8s 354.1s 357.4s 254.0s 0 357.4s

10 2 1024 178.7s 357.3s 357.4s 578.1s 864 357.1s

10 3 1024 178.7s 355.5s 356.2s 584.0s 825 357.2s

10 4 1024 178.7s 327.7s 357.5s 225.5s 54 357.6s

50 1 512 178.9s 357.7s 357.5s 252.6s 381 357.3s

50 2 512 178.8s 351.8s 351.8s 250.4s 396 357.0s

50 3 512 178.9s 353.4s 353.4s 178.8s 0 356.3s

50 4 512 178.9s 331.3s 317.4s 179.0s 18 309.7s

50 1 1024 179.0s 331.8s 328.6s 177.9s 75 351.2s

50 2 1024 178.7s 291.8s 291.6s 221.9s 387 357.3s

50 3 1024 178.8s 343.7s 343.6s 242.4s 387 357.0s

50 4 1024 178.8s 343.2s 313.4s 178.9s 15 344.0s

Table 3.3: Experiment 1: Comparison of Test Completion Times

to contention. The resource contention race became tough from Experiment 1A to

Experiment 1B and even tougher in Experiment 1C. Similarly, a significant rise can

be seen in Table 3.4 for data transfer rate, connection times, and requests/second.

At a later stage, the test completion time decreased owing to request failures.

Therefore, victim VM1 could not respond to many of the requests (failures listed in

Figure 3.3). This shows the visible effects on the victim server and co-hosted VMs.

Other than performance interference by a DDoSed VM, the behavior would trigger

auto-scaling (based on the increased response time and requests), resulting in

economic losses to the co-hosted VMs even though they were not directly DDoSed.
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Figure 3.5: Experiment 1: Comparison of Test Completion Times

Experiment, Transfer Rate Served Connection Times (ms)
VM (Kbytes/s) Requests/s Min Mean +/-SD Median Max

1A, VM1 11,260.32 5.5 180 182 2.4 181 223

1B, VM1 5832.58 2.85 181 351 34.6 357 431

1B, VM2 5621.92 2.74 181 364 42.7 357 602

1C, VM1 4171.77 2.04 10,811 107,510 38,643.3 107,256 389,555

1C, VM2 3485.17 1.7 564 588 13.1 585 726

Table 3.4: Comparison of Performance Metrics in Experiment 1

3.5.3 Experiment 2: Cloud Scale

To characterize the overall impact of DDoS attacks in an infrastructure cloud,

we conducted a comprehensive cloud-scale experiment. The setup is as shown

in Table 3.5 and is similar to that shown in Figure 3.1. The major aim of this

experiment was to study the effects on the cloud after some or more DDoSed VMs

were introduced in the cloud. The authors of CloudSim [23] developed multiple

schemes related to host overloading detection, VM selection for migration, host

underloading detection, and VM placement, and tested them with PlanetLab and

random traces. As shown in Table 3.5, there are five overload detection algorithms

and four VM selection algorithms for migration implemented by Beloglazov and

Buyya [23], making 20 combinations in all by choosing these algorithms (5*4).

These combinations are governed by a few constants and input parameters, which

were attached to their names by Beloglazov and Buyya [23], like iqr-mc-1.5. While

aiming to effectively show the effects, we realized that this would be an ideal setup

to use as it can help evaluate the effects of DDoS/EDoS on all these strategies to

get a comprehensive insight.
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Item Configuration

Simulation environment CloudSim 3.0.3

No. of servers 800

VM Traces “PlanetLab” traces of 3 days

No. of VMs in the cloud Set 1: 1052 VMs (03-03-2011)
Set 2: 1516 VMs (22-03-2011)
Set 3: 898 VMs (06-03-2011)

Server 1. HP ProLiant ML110 G4
configurations Intel Xeon 3040, 2 cores

1860 MHz, 4 GB (400 servers)
2. HP ProLiant ML110 G5
Intel Xeon 3075, 2 cores
2660 MHz, 4 GB (400 servers)

Overload detection THR: Threshold
algorithms MAD: Median absolute deviation

IQR: Interquartile range
LR: Local regression
LRR: Robust local regression

VM Selection MMT: Minimum migration time
algorithms MC: Minimum correlation

RS: Random selection
MU: Minimum utilization

Other algorithms DVFS: Dynamic voltage
frequency scaling
NPA: Non-power aware

Table 3.5: Experiment Setup 2: Cloud Scale

To conduct real quantification and evaluation, we used PlanetLab traces com-

prising the CPU utilization of VMs with an interval of 5 min. Three sets (three

different days) were chosen in these experiments, indicating low (898 VMs), mod-

erate (1052 VMs), and high (1516 VMs) load test cases. The average utilization

in all of the PlanetLab traces was below 50%. The DDoSed VMs were introduced

by inserting VMs with heavy utilization (100%). It is well established that CPU

utilization of this order is achieved during DDoS attacks on computational re-

sources [114]. Two most important metrics for evaluating the performance of a

cloud, energy consumption and VM migrations, were evaluated by introducing a

few or more DDoSed VMs.

3.5.4 Results: Cloud Scale

The results of three sets of VM traces are shown in Figure 3.6, 3.7 and 3.8. A few

result items for set 1 (1052 VMs) are given in Table 3.6 for reference to the charts.
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(a) VM Migrations

(b) Energy Consumption

Figure 3.6: Results of Experiment 2: Set 1 (1052 VMs)

Both energy consumption and number of VM migrations were plotted with dif-

ferent numbers/shares of DDoSed VMs among the normal VMs and 20 sets of

overload detection and VM selection algorithms. The non-power-aware scheduler

showed 2410 kWh of consumption for all combinations, and DVFS ranged between

600 and 1200 kWh from 0 to 100% of DDoSed VMs (not plotted in the charts).

The energy consumption charts show an almost linear increase with the increase

in the DDoSed VMs in all the strategies.

Usually, energy consumption is a function of CPU utilization and that is evident in

the charts. Similarly, service pricing/costs based on energy may also be calculated.

The number of VM migrations was increasing till a certain point (5-10% of DDoSed

VMs) and then it started decreasing and reached a minimum number of migrations.

The reason for this increase was the introduction of DDoSed VMs at multiple

servers in the cloud, followed by the overload situation of VMs given in Equation

3.11,3.12, 3.13, 3.14, and 3.15 requiring migrations (creation of new instances was

not implemented in the simulation environment).

After having 10-20% of attacked VMs, the number of overloaded VMs increased

but the places or other candidate servers for hosting these VMs decreased. Mostly,

the reason is that the other servers were also getting stressed and were not in a

position to support the requirements of incoming migratory VMs (Equation 3.16).

With an insertion of 5-10% of attacked VMs, the corresponding increase in the

number of VM migrations was near 50% (23K to 34K).
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(a) VM Migrations

(b) Energy Consumption

Figure 3.7: Results of Experiment 2: Set 2 (1516 VMs)

(a) VM Migrations

(b) Energy Consumption

Figure 3.8: Results of Experiment 2: Set 3 (898 VMs)

Cloud-scale DDoS attacks and their possibility cannot be predicted, at least for

public clouds. There are multiple recent incidents related to Amazon, Great-

fire.org, Linode, and Rackspace, which are discussed in Section 3.1. Additionally,

multiple works such as [115–117] have strongly reported and evaluated the conse-

quences of cloud-scale attacks.
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Energy Consumption (kWh)

Algorithms 0 1 5% 10% 20% 30% 50% 100%

DVFS 803.91 788.92 794.81 870.54 906.79 1000.49 1067.91 1205.67

iqr-mc-1.5 177.1 179.9 229.69 314.8 467.58 586.54 749.15 1077.42

mad-mc-2.5 176.13 177.45 227.01 311.05 461.81 583.35 747.78 1077.42

thr-mu-0.8 206.73 186.33 243.88 373.27 631.33 878.07 1037.31 1515.85

No. of VM Migrations

Algorithms 0 1 5% 10% 20% 30% 50% 100%

DVFS 0 0 0 0 0 0 0 0

iqr-mc-1.5 23,035 23,881 33,924 29,542 24,142 18,717 10,796 1784

mad-mc-2.5 23,691 24,452 35,828 28,801 22,985 18,343 12,534 1784

thr-mmt-0.8 26,634 30,825 37,323 28,113 4119 5133 5267 1392

Table 3.6: Experiment 2: DDoS Effects on Set 1 of 1052 VMs

3.6 Collateral Damages and Contributors: A Discussion

The experiments in Section 3.5 have shown that the indirect effects on other com-

ponents of the cloud must not be neglected. The traditional DDoS mitigation

mechanisms would not help here as the cloud context would require control over

resource provisioning and auto-scaling. The following is a summary of the ef-

fects that appeared during the experiments, which should be kept in mind while

developing services and mitigation solutions in the cloud.

1. Victim VM: Economic losses that may ultimately reach service denial; un-

necessary resource buying; performance issues such as low throughput, high

response time, and request failures; service downtime; and short-term and

long-term business and reputation losses.

2. Co-hosted VMs: Indirect EDoS, unnecessary resource buying and perfor-

mance interference, unnecessary migration/VM instance creation, and per-

formance issues such as low throughput, high response time, and request

failures.

3. Host physical server: Resource overload situation and higher power consump-

tion.

4. Other physical server(s) in the cloud: Indirectly affected by migrated VMs

and VM instance creation, which may result in overload.

5. VMs on other hosts: Indirectly affected by migrated and new VM instances

that became co-hosts to these VMs.
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6. Cloud as a whole: Heavy energy consumption, running costs, cooling costs,

VM migrations, service-level agreement (SLA) violations, and business losses.

7. Network and network devices: Heavy bandwidth consumption, network losses,

and poor quality of service.

8. Users of victim VMs: High response time, poor quality of service, service

downtime, and related business/reputation impacts on dependent services.

9. Users of co-hosted VMs: High response time, poor quality of service, service

downtime, and related business/reputation impacts on dependent services.

10. Cloud customers: Business losses, SLA violations, service health, and busi-

ness difficulties; the cloud could have accommodated and run more VMs;

requests to create additional VM instances for existing customers might not

be fulfilled.

In the following section, we identify the specific contributors to the characterized

collateral damages. These observed scenarios/effects are the major reasons for

these effects.

3.6.1 Performance Interference

Performance isolation is a property provided by virtualization [48]. Resource con-

tention among VMs for the basic resources and the resulting performance con-

tention are also important effects to be considered. Performance contention is

an outcome of resource sharing. In the presence of a DDoSed VM, which may be

mainly stressing a specific resource, say, a disk data transfer, co-hosted VMs would

also experience difficulty regarding turnaround time for disk transfers. Web ser-

vices are usually considered mixed load applications, and, hence, this contention

may be visible for multiple resources such as the CPU, disk, and bandwidth.

3.6.2 Resource Race Among VMs

Let us take the case of server 1 in Figure 3.1. This server is running four web

server VMs that belong to four different organizations or owners taking advantage

of the multi-tenant cloud. When VM1 is DDoSed by attackers, it will ask for more

resources and these will be added using auto-scaling.
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If the attack continues, it will ask for more resources again and again, thus ac-

quiring the maximum that is available on server 2 for a VM. Finally, VM1 will

be flagged for either additional instance creation or migration at other servers

(Figure 3.3). At the same time, there may be a stage where other co-hosted

VMs—VM2, VM3, and VM4—have some real requirement for resources because

of real web requests and will ask for the same. Obviously, this requirement cannot

be met by the same physical server and these VMs may also be flagged for either

migration or additional instance creation on some other servers.

Creating another instance or migrating to another server is an advanced memory

transfer/copy process and incurs a downtime. Additionally, they incur resource

usage, overhead costs, and downtime of the services. Although resource race is

part of a multi-user, multi-tenant system, this fake race, however, appeared only

because of one DDoSed VM on the server. The co-hosted VMs that are not

a victim of the attack may also need to get migrated or start another instance

because of this situation.

3.6.3 VM Placement and Load Balancing

Most of the VM placement algorithms place VMs in a cloud using an optimization

method such as dynamic bin packing [118]. Live VM migration is also used as

one of the activities of auto-scaling (Figure 3.3). As discussed in Section 3.6.2,

DDoSed VMs may result in unnecessary migrations of one or more VMs. There

are two possibilities: first, the DDoSed VM may be migrated as a direct effect

of DDoS; second, other VMs may be migrated owing to the decision of the mi-

gration decision-making algorithms such as minimum migration time (MMT) and

minimum utilization (MU) [23]. In the worst case, there might be a swap of VMs

or multiple migrations/swaps (reshuffles) among physical servers for an effective

load management and resource allocation. To summarize, the following detailed

consequences may occur:

1. New instance/clone creation: In case the auto-scaling algorithm chooses

to create a new instance for a DDoSed VM, the effect will be epidemic and

will adversely affect many VMs and the network bandwidth. This can be

seen in Figure 3.9a, where the VM under attack (on server 1) is dynamically

scaled by creating VM instances on server 2 and server 3. In case a new

instance is created for other VMs, obviously, they will be charged for it,

resulting in an “indirect DDoS/EDoS.”.
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2. Effect spread and migrations: A DDoS VM, if migrated owing to the

“overload” situation, and if the attack continues, will be migrated again soon

to some other server and will continue getting migrated. This will spread the

additional effects on other co-hosted VMs and servers epidemically. This sce-

nario is shown in Figure 3.9b, where the VM under target is getting migrated

from Server 1 to Server 2 and again to Server 3.

A.

B.

C.

Server 1 Server 2 Server 3

Server 1 Server 2 Server 3

Server 1 Server 2 Server 3

(a) Effect Spread and Instance Creation

A.

B.

C.

Server 1 Server 2 Server 3

Server 1 Server 2 Server 3

Server 1 Server 2 Server 3

(b) Effect Spread and Migrations

Figure 3.9: Contributors to Collateral Damages (starred VM is the victim VM)

3. Migrant selection: It may happen that VMs, except the victim VM, may be

selected for migration to other servers. This will directly affect the services

offered by them owing to migration cost, downtime, and related overheads.

Moreover, if they are migrated because of fake alarms such as a higher re-

sponse time for a web server, these VMs will suffer from economic losses

indirectly, as they are buying extra resources. This extra buying is due to

the shared resource being stressed by the co-hosted DDoSed VM.

4. Migrations, swaps, and shuffles: If migrations are converted into VM swaps,

it will be a fatal and exhaustive effect for multiple physical servers and VMs.

VM swaps are a reality of cloud environments and are needed if a migration

is not able to cope with the requirement. A load balancing heuristic is needed

to balance the load between two or more physical servers by migrating VMs

in between [119]. Large performance penalties will appear on the network

owing to the migrations/swaps.
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3.7 Solution Space

In this section, we give a detailed guideline and direction for solution design. There

are a few recent contributions that meet one or a few of the defined requirements.

We refer to them in each of the requirement in which they have made a contribu-

tion. However, there is an immense need for solution development that takes all

these aims into consideration. We draw lessons from the effect characterization

studies given in this work to design this solution space. The following are the

major requirements of an efficient DDoS mitigation solution in the cloud, which

also aims at minimizing the indirect effects of DDoS attacks on other stakeholders.

1. Strong isolation: Performance isolation and resource isolation are two areas

that require a thorough relook and design consideration to achieve a strong

isolation. To achieve this, we need fair resource sharing and accounting.

Pinned or dedicated resources are also one important alternative to provide

isolation; however, it is a costly solution that is limited to a few resources

such as CPUs and bandwidth [48]. Similar requirements for a strong isolation

are provided in [43].

2. Victim separation: Cloud incident management systems should handle

both incoming DDoS to a VM and any malicious internal VM sending DDoS

traffic to an outside network. We need mechanisms at multiple levels to

identify the victim and separate it from the other tenants to minimize the

effects. Reserved resources, shutdown, and backup servers are a few available

solutions in this direction. The solutions provided by the authors in [46,

54, 92] are some of the important contributions that advocate additional

resources for mitigation. The authors in [91] provide a victim separation

method that migrates the server to backup resources and isolates the service.

Additionally, the server is migrated back to its original resources once the

attack is over. This approach is similar to shutting the server down, where

no efforts are spent to stop the attack. The authors in [97] also provide

a backup resource based on a low-cost solution to use resources over the

untrusted cloud.

3. DDoS-aware auto-scaling: We can see in both the experiments and the

system model that the major cause of EDoS attack is incorrect decisions made

by the auto-scaling algorithm. Auto-scaling algorithms must be designed

by keeping DDoS utilization surges in mind. It has been quite a difficult

problem to differentiate DDoS traffic from legitimate traffic. However, it is
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Figure 3.10: Solution Space: DDoS Attack Mitigation and Minimization of Collateral
Damages

comparably easier to decide the presence of an attack. This fact may help

in devising EDoS-aware auto-scaling algorithms [65]. The authors in [65]

have provided a solution that uses the presence of the DDoS attack and

subsequently decides whether the requirement is due to legitimate traffic or

to attack traffic. This helps in wisely taking auto-scaling decisions, while at

the same time serving legitimate customers.

4. Collaborative solutions: Internet service provider, cloud/hypervisor, net-

work, VM, and application are the five layers of the solution space that, if

done collaboratively, can detect and mitigate the attack effects with high

assurance. Multi-level solutions with one or more of these levels have been

tried by the solutions in [46, 92, 120]; however, efforts are needed to minimize

the additional effects proposed in this work.

5. Verifiable and fine-grained accounting: Issues related to loss sharing

and dispute resolution relate to proper accounting. Most of the cloud players

in the market have fixed pricing models that are based on hourly metering.

There is an immense need to have fine-grained and verifiable (at the VM end)

accounting methods that show the real resource usage. This is especially

needed for the resources that are shared. This will help in implementing

the pricing models that follow the “pay-as-you-go” billing models. A few

important solutions in these directions are given in [121–123].

We have provided an example solution that has the required ingredients to address

these requirements in Figure 3.10. We have made an effort to incorporate all the

requirements given in 3.7 in this design.

One important observation is that the past contributions in the literature mostly

target traffic differentiation to identify the attackers and block them. On the other

hand, we argue that, to overcome the collateral damages, we need to have other
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important features in addition to traffic differentiation. The primary requirement

of our solution is a strong isolation among the co-hosted VMs. This requires no

resource contention and performance interference.

1. A resource increase trigger will invoke the auto-scaling algorithm while the

attack is in place.

2. Now the auto-scaling algorithm, which is DDoS aware, would ask the attack

decision module to check the presence of the attack.

3. The attack decision module has a multilevel information and mitigation system

in place, which may help in providing solutions at all the ends.

4. This information is processed and sent to the attack decision module to take a

decision.

5. Once it has been detected that there is an attack, the decision module may

want to trigger a few important processes.

(A) There is no resource increase to serve the attack traffic. However, there might

be a resource increase required to serve the new benign traffic or fasten the miti-

gation process.

(B) The victim should be separated with a dedicated resource plan, in which re-

sources are not shared with any other VMs.

(C) Traditional traffic-based filtering can be applied to do low-level mitigation.

6. If there is no attack, then the auto-scaling scheme may take decisions according

to its traditional auto-scaling practices to maintain service availability.

As our study is a characterization and effect orchestration study, we leave the

evaluation and analysis of the solution space open for future research.

3.8 Conclusion

This work provides an insight into the effects of DDoS attacks in cloud computing.

In addition to the obvious targets, which are either a victim server or a network,

we have argued and shown that almost all the components and stakeholders of a

cloud architecture are affected by a DDoS attack. Attack quantification depends

on many factors, including the strength of the DDoS attack, victim application,

and resources. We have developed a system model of cloud computing resource

allocation to help in understanding the role of auto-scaling algorithms in a DDoS

attack and its success. This model has also detailed the resource “overload” state

of a VM under a DDoS attack and its possible spread using vertical scaling, hor-

izontal scaling, and migrations. Furthermore, features such as auto-scaling, mi-

gration, multi-tenancy, resource race, performance interference, and isolation have
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been identified. These features multiply the impact of DDoS in virtualized in-

frastructure clouds. It has been shown that multiple unrelated and non-targeted

VMs, servers, and users are also affected by a DDoS or EDoS attack in the cloud.

An effort has also been made to differentiate and correlate DDoS and its economic

version, EDoS, with the help of factors such as the time to reach DoS and attacker

targets. Attack effect spread, migrant selection and overhead of cloning, and mi-

gration and swaps were discussed to quantify these effects on experiments and

their planning. We kept performance issues, costs, overhead, and invisible effects,

and their assessment as major objectives of the experiments. To understand the

effects from a microscopic view, we conducted a single-server experiment to de-

termine the effects on the victim server and the co-hosted VMs. Additionally, to

have a detailed abstract view, we performed cloud-scale simulations to determine

the consequences of DDoS attacks using real workload traces of PlanetLab.

Various algorithms of VM placement, VM migration, and resource allocation were

configured with various shares of DDoSed VMs in the workload. These experi-

ments have given an insight into the multiple indirect impacts of DDoS attacks

on non-targets such as co-hosted VMs, host physical server, neighboring physical

servers, cloud as a whole, network and network devices, and end users of all the

services. Performance, cost, power, and various overheads were the major effects

that were determined from these experiments. This study provides a strong mo-

tivation toward re-examining the design of cloud resource allocation algorithms

and strong performance isolation. Additionally, systematic and specific efforts are

needed in the direction of mitigating EDoS and DDoS attacks in cloud platforms.

In the end, we provide a solution space and guidelines by creating a line of re-

quirements for an efficient solution. We kept collateral damages in mind while

designing these requirements. We assure the suitability of the solution space with

the help of individual contributions made in the past. We keep the real evaluation

of this design open to future contributions from the security research community.

Smokescreening, malware spread, dispute resolution, IT chargeback, SLA designs,

and loss sharing are some of the most important aspects that are completely open

while looking at DDoS attacks in cloud computing.

In the next chapter, we describe our “DDoS Aware Resource Allocation in Cloud

(DARAC)” approach which aims to correct the decisions of traditional auto-scaling

algorithms in a manner such that the victim VM does not lead to a DDoS attack.

The issue of collateral damage due the DDoS attacks among VMs, have been

extended to the level of victim operating system in Chapter 4, 5, and 6.





Chapter 4

DDoS Aware Auto-scaling in

Cloud

4.1 Introduction

One of the important characteristic of cloud is elasticity of resources, which enables

cloud based services to be scaled to a large magnitude. We see in Chapter 3 that

DDoS attacks are successful on cloud services as they dynamically scale their

servers in magnitude. DDoS attacks have a different behavior when targeted to

cloud. They may not disrupt the target services immediately but may stress

consumer’s monetary strength. This has been attributed as fraudulent resource

consumption in [124]. Cloud consumer, in anticipation that the resource utilization

trigger as genuine need, may scale the server and would be trapped in this catch.

These types of attacks were first coined by Christopher Hoff in 2008 as Economic

Denial of Sustainability (EDoS) attacks. Subsequently, DDoS attacks on cloud was

picked up in [124] where the authors explains the fraudulent resource consumption

as a threat to cloud consumers.

In this chapter, we argue that DDoS attacks on the cloud should be treated dif-

ferently. Cloud DDoS attacks cannot be detected and mitigated as if they are

traditionally addressed in a fixed and dedicated server infrastructure. We propose

that cost and performance aspects are essential parameters in detecting and mit-

igating such types of attacks. We propose a novel mitigation scheme, which takes

auto-scaling decisions on the basis of a real requirement of legitimate traffic by

“falsifying” the attacker traffic. This is achieved by identifying legitimate requests

and their share in auto-scaling decisions. Our novel attack mitigation strategy,

73
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DARAC (DDoS Aware Resource Allocation in the Cloud), which is tuned to take

correct auto-scaling decisions by ascertaining the legitimate traffic load supported

by server capacity planning. After filtering the attack traffic, we calculate the

share of legitimate clients in resource addition/buying and make subsequent ac-

curate auto-scaling decisions. Our testbed evaluation results on real situations

demonstrate considerable improvement in the average response time of the victim

web-service under attack.

We organize the rest of the chapter as follows: Section 4.2 discusses DDoS attacks

in cloud and initial experiments to show the effects of DDoS attacks on cloud

computing. Section 4.3 details various requirements of an effective solution to

DDoS attacks in cloud computing. Section 4.4 enumerate our proposed strategy

towards DDoS mitigation. We show detailed evaluation of our proposed approach

and related experimental results in Section 4.5. In Section 4.6, we detail various

salient features and shortcomings of our proposed approach. Finally, in Section 4.7,

we conclude the chapter.

4.2 Auto-scaling during DDoS Attacks in the Cloud

Services in the cloud can be scaled up or scaled down using an auto-scaling utility.

This utility may become a target of the DDoS attackers, who may send a huge

number of requests that may result in scaling resources up and cause massive

losses to the cloud consumers. An on-demand cloud service will scale virtual

servers based on the resource demand. However, these fake resource claims will

force the cloud consumers to pay for the fraudulent traffic. Initially, when the

servers face the attack, the usage based bill starts rising. When the service level

agreement (SLA) gets saturated for the maximum allowed resources, the EDoS

attack transforms into the DDoS attack. We performed real attack experiments

which illustrate this effect in detail. We show the experimental attack scenario in

Figure 4.1. We list various configurations and details of the resources used in this

experiment in Table 4.1.

Virtual Machines in a cloud are usually bound by an SLA between a cloud service

provider and a cloud consumer. An auto scaling policy [19][107][109] is one of the

most important aspect of an SLA. There is a range of auto-scaling policies detailed

in the literature and used in the production environments [125]. Few providers use

customized policies where users can specify the underload and overload conditions.

Auto-scaling methods add more resources or removes the idle resources from the



Chapter 4. DDoS Aware Auto-scaling in the Cloud 75

     Attack Server     Victim Server

Attack VM  Target VM

 Benign 
 Sender

 Attack Requests

Autoscaling

Figure 4.1: Experimental DDoS Scenario

VM based on the the underload and the overload conditions. We are using one

such simple policy which sets these utilization thresholds to 70% (“overload”) and

30% (“underload”). This auto-scaling algorithm runs in the background on the

hypervisor and monitors the resource utilization of hosted VMs. If the average

of CPU utilization in last one minute exceeds the threshold of “overload” state

by attaining more than 70% of utilization, one additional VCPU is hot plugged

to support the load. Similarly, if the memory utilization exceeds the threshold of

70% (“overload” state) usage for last 1 minute then an additional chunk of 1GB

memory is added to the VM. This resource addition (VM expansion) continues as

long as the SLA (costs and resource caps) supports the expansion. The same is

true for the idle resource removal, where utilization threshold of “underload” state

is 30%. If the utilization goes below this level, auto-scaling mechanism removes

a fixed amount of memory say 1GB and/or one vCPU. Auto-scaling will account

and bill only for the resources which are used to follow the principles of “pay-as-

you-go” accounting. It is important to note that the auto-scaling policy may not

be optimal in terms of resource usage and cost considerations. However, for our

work, we wanted to have a basic auto-scaling policy that can help us in analyzing

the impact of DDoS. We describe the auto-scaling policy used in our experiments

in Table 4.1.

The attack VM and the target VM are run on two different Dell PowerEdge

physical servers which are connected through a 1 Gbps network switch. The attack

VM is running Apache Benchmark tool-set (ab2) which sends the attack traffic

to the target web-service on target VM. The attack concurrency is 500 requests

for a total of 10000 requests. The attack frequency is set in conformance to the

similar popular real attack traces in [41]. The target VM is hosting a web-server
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Item/Resource Configuration Settings/Values

A
tt

a
ck

er
S
et

ti
n
g
s

Physical Server Dell PowerEdge R630
Intel(R) Xeon(R) CPU E5-2670
v3, 4 processors (12 cores each)
memory 96 GB

Attack service ApacheBench2
Configuration 4 vCPUs and 4 GB
Traffic rate 500 concurrent requests

(Total 10000 requests)

V
ic

ti
m

S
et

ti
n
g
s Physical server Dell PowerEdge R630

Intel(R) Xeon(R) CPU E5-2670
v3, 4 processors (12 cores each)
memory 96 GB

Victim service Dynamic image conversion service
Configuration 1 vCPUs and 1 GB

A
u
to

-s
ca

li
n
g

P
o
li
cy Initial Resources vCPUs=4 and Memory=4GB

Min to Max Memory 4 GB to 16 GB
Min to Max vCPUs 4 vCPU to 16 vCPUs
Monitoring Period 1 minute
Condition for Overload 70% Utilization
Condition for Underload 30% Utilization
Increase-Decrease Factor 1 GB and 1 vCPU

O
th

er
S
et

ti
n
g
s Benign Service 4 vCPUs and 4 GB

Traffic rate 1 concurrent web request
(Total 100 requests)

Operating System Ubuntu 14.04
Network Speed 1 Gbps
Hypervisor XenServer 6.5

Table 4.1: Experimental Configuration for the Impact Analysis of DDoS Attacks on
Auto-scaling

which is running a dynamic php website which converts an image of size 1MB

from JPEG to PNG format. The website under attack is a generic representation

of most common dynamic websites these days. We also have a benign sender in

the experimental setup which is an additional VM running on a different physical

server. A benign sender represents the benign traffic of 1 concurrent request for

a total of 100 requests. The benign sender is configured in such a manner that

it waits for the response to come for a very long period (1000s). This setting

helps us in knowing the attack state and the service response behavior during an

attack. We synchronized the attack experiments in such as manner that the attack

requests and the benign requests are sent at the same time.

We show the behavior of the auto-scaling algorithm by observing various impor-

tant parameters during attack in figures 4.2a, 4.2b, 4.3a, and 4.3b. Once the

attack starts, the CPU utilization reaches 100% (400% for 4 vCPUs). The usage

remained 100% for the whole duration of the attack thereafter. We can see that

despite providing extra resources in the form of vCPUs, the usage didn’t fall. In
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Figure 4.2: Behavior of Auto-scaling during a DDoS Attack: vCPU Expansion
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Figure 4.3: Behavior of Auto-scaling during a DDoS Attack: Memory Expansion

Figure 4.2b and Figure 4.3b, we see that the target VM is hot plugged with an

additional vCPU and memory after every minute of observation till the maximum

available resources or the cap is reached. In our experiments, we set the resource

cap (maximum allowed resources to a VM) as 16 vCPUs and 16 GB of main mem-

ory. The benign sender used in our experiments sends one concurrent request

for a total of 100 requests. We run the above experiment for 1000s and we see

that the initial first requests was failed due to the time-out of 1000s. We did not

observe the effects further from the experiment after the experiment period was

over. Similarly, due to the attack, the memory usage exceeds the threshold of 70%

utilization (∼85%-100%) and the auto-scaling algorithm keeps adding more mem-

ory every minute. We observe a main memory increment by a factor of 1GB after

every overload trigger. We also show the behavior of the auto-scaling algorithm in

the form of resource increase triggers in Table 4.2. In this table, after 60s of heavy

CPU utilization and memory utilization, the auto-scaling algorithm takes the first

decision to add resources. The auto-scaling algorithm adds an additional vCPU

at 84s and an additional chunk of main memory at 89s. We also see that a similar
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Auto-scaling Time (s) Expanded Time (s) Expanded
Trigger vCPUs Memory

No Trigger 0 (start) 4vCPUs 0 (start) 4GB

1 84 5vCPUs 89 5GB

2 188 6vCPUs 194 6GB

3 254 7vCPUs 259 7GB

4 319 8vCPUs 324 8GB

5 384 9vCPUs 389 9GB

6 449 10vCPUs 454 10GB

7 514 11vCPUs 519 11GB

8 579 12vCPUs 584 12GB

9 644 13vCPUs 650 13GB

10 710 14vCPUs 715 14GB

11 775 15vCPUs 782 15GB

12 840 16vCPUs 849 16GB

Table 4.2: Auto-scaling Triggers and Resource Changes

trend is continued till the scaled resources reach the resource limit. We see that

the DDoS attack forced the cloud consumer to buy more and more resources. By

doing this incremental resource buy-in and the fraudulent resource consumption,

the cloud consumer also faces the economic sustainability issues. In the attack

experiments presented above, we focus on vertical scaling. On the other hand, if

the SLA has “unlimited” addition of resources with horizontal scaling [125], then

instead of adding more resources on the same server, the cloud may start more

VM clones/instances on other servers or even migrate the server to a “resource

spacious” server. This will be economically disastrous as the cloud consumer will

face heavy bills for these extra instances generating no revenue. We discussed the

aspects related to the vertical and horizontal scaling in Chapter 3.

4.3 Need of Effective Mitigation

We argue that the real problem behind the success of DDoS in the cloud is due

to fake resource allocation and consumption. If “auto-scaling” can differentiate

between the malicious traffic and benign traffic and estimate their individual shares

in triggering the resource allocation, we believe that such attack can be stopped.

Auto-scaling in the cloud is an attempt to keep the cloud resources (for example,

VM instances) aligned with the increase or decrease in the requirements of the

running application, so that the application is available and can scale as per the

demand. It also ensures that the application owner has to pay excess charges only
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for the hours of high usage. The following equation gives a formal representation

of an auto-scaling policy.

C(VM) =


+C(VMadd) if VMstate = over − load.

−C(VMremove) if VMstate = under − load.

No Change if VMstate = normal − load.

(4.1)

Resource capacity of a service is represented by the amount of resources available

on the VM instance hosting the service. We represent it by the function C(). In the

case of an over-load state of the VM under consideration, a dynamic auto-scaling

strategy would go for immediate addition in the form of VMadd. These can be in

the form of resources on top of a VM or a separate VM instance on a physical

server. Similarly, in case of under-load state, VMremove resources are removed.

Auto scaling policies provided by the leading cloud providers [19, 110, 125, 126]

can be categorized into following three categories:

1. Manual auto-scaling: Manual auto scaling is the most elementary auto

scaling policy where the application owner can manually spawn or destroy

the capacity up to a maximum or minimum threshold respectively. This

requires manual monitoring of the application metrics and a scale up or

down as per the need [127][128].

2. Scheduled auto-scaling: Cloud resources can be increased or decreased

based on a schedule. This helps in scaling for already known changes in the

traffic pattern of the application. A use case for such a scaling policy can

be a scheduled e-commerce sale, the duration of which is known in advance.

If huge traffic is anticipated during the sale then the application owners can

schedule an auto scaling out before the expected peak and auto scaling in

post peak [129][128][130].

3. Dynamic auto-scaling: Auto scaling methods are triggered to scale when

a threshold of a resource utilization metric is crossed by a VM. An example

metric is the average CPU utilization for a time period. If the CPU uti-

lization is more than 80%, it will result in the spawning of an additional

VM instance. Similarly, if the CPU utilization is less than some threshold

( 30%) for a certain duration, it shrinks the capacity by removing one VM

instance [131][132][128][130].

While all the categories of auto scaling policies discussed above try to address

the common concern of scaling an application against the load or traffic variation,
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none of them can evaluate how genuine is the increase in demand. Auto scaling to

serve malicious traffic can seriously inflate the bills for the application owners and

can threaten their financial existence. Solutions based on Turing tests [52][133],

traditional rate based [74][134], threshold based [68] and anomaly detection meth-

ods [69][124], may not be enough to mitigate these attacks. In addition to these

methods, we argue that a few vital features are needed in an ideal solution for

the cloud. Based on the above discussion and the experimental observations, we

propose the following requirements for an effective DDoS attack solution in cloud

environments.

� R1. Segregation Accuracy: Most of the DDoS detection mechanisms

are employed at the network gateways or at the application gateways that

perform load balancing among multiple VM instances. Usually, these detec-

tion mechanisms rely on traffic or request segregation methods to identify

malicious traffic to drop and genuine traffic to allow/accept. A segregation

function should be able to perform this task with high accuracy which es-

sentially means that it should minimize the false identification of genuine

requests as attack requests and vice versa.

� R2. Identify Actual Resource Requirement: The overall framework

of resource allocation should be able to determine the exact amount of re-

sources needed to support the service to meet the quality of service or SLA

requirements. It is quite difficult however to calculate and provide the ac-

tual set of resources in the needed to meet requirements. However, the cost

implications are directly proportional to the amount of the resources added

so it is an important requirement.

� R3. Availability to genuine users: The immediate effect of most DDoS

attacks is towards “Service downtime” which essentially means that the ser-

vice will be unavailable to all the users. We understand that during the attack

and post-attack detection, the service to genuine users should be provided

promptly as if there was no attack.

� R4. Genuine auto-scaling triggers: We see that most of the auto-scaling

methods are primarily based on an indirect resource utilization metric such

as CPU or memory or bandwidth utilization. We also saw in the attack

experiments that these indirect auto-scaling triggers do not give correct in-

formation about the real resource need.
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Requirement R1 is usually a key solution ingredient among many of the DDoS

detection solutions presented in the past [68][57][74]. R2 is specifically needed for

the utility computing models to tackle the consequences of EDoS. Requirement R3

is an aspect which has not been addressed by the state of the art solutions. As the

server under attack, gets busy in attack mitigation, it does not really find resources

and time to take care of legitimate customers. Mitigation solutions should also

work to maintain service to legitimate customers, but, there is no specific reported

work towards this problem in the literature. Requirement R4 is related to the

requirement R2 and may help in minimizing the effects of fraudulent resource

consumption. In the next section, we describe how the requirements R1-R4 helps

us in framing our proposed solution.

4.4 DARAC: DDoS Aware Resource Allocation in Cloud

We propose a novel technique which helps in mitigating DDoS attacks in cloud

computing. We term our solution as DARAC (DDoS aware resource allocation in

cloud). This solution considers all the identified requirements (R1, R2, R3, and

R4) into account in the following manner:

1. R1: For the purpose of traffic evaluation and attack traffic blocking, we

used a popular and generic connection based attack detection mechanism,

ddos-deflate [87]. We use this detection mechanism with its default settings

where it detects and blocks a source IP address if it creates more than 150

connections. As the novelty of our idea contributes towards requirements

R2, R3 and R4 for an effective solution, we do not provide our own traffic

segregation method for this purpose. We believe that any other existing

method can be used to perform the traffic segregation activity.

2. R2: DARAC provides a mechanism by which the “auto-scaling” mechanism

of the cloud will always ask DARAC, whether to add resources or not. This

is supported by the attack detection mechanism mentioned in point 1 above.

In particular, once the attacker traffic is dropped, the features of legitimate

traffic recorded in the last 1 minute helps in deciding whether the additional

resources are needed. This is intelligent auto-scaling mechanism which is sup-

ported by our novel capacity planner (automated capacity planning module

(ACPM))”.
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Figure 4.4: DARAC: Mitigation Mechanism

3. R3: The automated capacity planning module keeps track of both the re-

quired quality of service to users and the desirable resources. This is very

important in order to serve legitimate customers well. Required QoS and

corresponding resources (in terms of CPU, memory, disk and bandwidth)

can be stored using a dry stress run or can be learned using machine learning

techniques [135].

4. R4: In DARAC, we do not directly address the requirement R4 for identify-

ing genuine triggers to auto-scaling. However, our solution supplements this

requirement by not relying entirely on a direct metric such as CPU utiliza-

tion. We first check the genuine load using our capacity planning module

which then gives us a trigger about the requirement for auto-scaling.

4.4.1 DARAC Approach

Figure 4.4 shows step-by-step details of DARAC. The steps are as follows:

1. An auto-scaling trigger, which is discussed in section 4.2, is an event in

which auto-scaling method increases or decreases the resources of the VM

under consideration. The resource increment may be due to a DDoS attack

or may be due to the real resource requirements.

2. Auto-scaling requests the DARAC module to evaluate the situation. Specif-

ically, auto-scaling triggers the “Traffic Evaluator” module in DARAC to

assess the traffic using segregation.

3. Traffic Evaluator checks if there is an attack. This is done on the basis of

segregation based on ddos-deflate and blacklisted IPs are collected and

passed to step 4.
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4. If there are attacker IPs available in the traffic analysis, they are dropped

and added to the blacklist.

5. If there is no attack, DARAC directly considers the overall traffic as le-

gitimate traffic and passes the legitimate traffic statistics to the “capacity

planner” module.

6. Remaining traffic which is actually legitimate traffic is used to calculate the

frequency at which the real traffic is coming in.

7. The calculated legitimate traffic is then sent to the “capacity planner” mod-

ule.

8. The capacity planner (ACPM) module sees the traffic and consults its ca-

pacity plan to get the resources required to support the service quality. The

resulting resource capacity is then sent to the auto-scaling algorithm in hy-

pervisor/cloud manager.

9. The auto-scaling algorithm now checks the SLA compatibility or resource

caps and decides whether the required resource change can be made. Addi-

tionally, resource availability is also checked to see if the required amount of

resources are available on the same server.

10. The required resource change is made by auto-scaling.

11. The required resource change becomes effective.

DARAC performs steps 2 to 8 in the VM and steps 1, 9 and 10 using the hypervi-

sor. This is a solution which takes both levels of control into account. This is also

important from the perspective of the VM owner’s right to decide the resource

requirement and privacy of traffic statistics. The VM owner may want to have

different QoS levels, resource needs and cost constraints while planning capacity

specific to their application requirements. Based on these reasons, the separa-

tion has been made. The two most important modules of DARAC are further

elaborated as follows.

4.4.2 Traffic Evaluator Module

Traffic evaluator module segregates the legitimate traffic from the attacker traffic.

After identifying the attacker sources, these identified sources are added to the
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blacklist in the iptables firewall. After this, the traffic evaluator module calcu-

lates the frequency of legitimate traffic that has arrived in the time frame under

consideration. For capturing the traffic, we use the web-server logs to see the le-

gitimate traffic. In our proposed approach the incoming traffic is always recorded

consistently but the evaluation and drop is not a continuous process. It is purely

a trigger-based approach where auto-scaling flags the traffic evaluator module.

4.4.3 Automated Capacity Planning Module (ACPM)

Capacity planning in the cloud is a process of determining the requisite amount

of cloud resources to serve the varying demand of an application. The outcome

of the capacity planning process is a capacity planning table having resource re-

quirements for different set of incoming requests. Therefore, the capacity planning

table is dependent on the nature of the tasks executed by the VM. For instance,

capacity planning for a static web server may require more disk I/Os, memory, and

network bandwidth with low CPU requirements. On the other hand, a high perfor-

mance computing (HPC) scientific application may have bigger memory and CPU

requirements with low network requirements. An auto-scaling algorithm which

works on indirect indication of the load (in terms of resource utilization) on the

web-service may unnecessarily increase or decrease the resources. Our proposed

capacity planning module helps in correcting the resource scaling methods to have

a direct and visible indication of the load in terms of the concurrent requests (re-

quests coming at the same time). To achieve this goal, we propose an automated

capacity planning module (ACPM) preparation algorithm (shown in Algorithm 1).

The proposed ACPM module can be more beneficial for unskilled small and

medium enterprise (SME) users by helping them to prepare an automated server

capacity planning table based on the recent incoming traffic load. The proposed

algorithm takes few essential key inputs from a user planning the server capacity.

A user has to specify minimum and maximum (possible) number of concurrent

requests (Cmin and Cmax) it is expecting, and minimum and maximum resources

(resource cap) it can acquire for the VM under consideration (Rmin and Rmax).

In addition a user should also need to specify the quality of service expectation

from the service. Page load time or request response time is one of the most useful

factor in determining the service quality. We take the expected response time

(Srequired) from the user as the quality determination parameter in the capacity

planning algorithm. Page load time or the response time is an important criteria



Chapter 4. DDoS Aware Auto-scaling in the Cloud 85

Algorithm 1: Automated Capacity Planning Module’s Table Preparation Algorithm

ACPM;
Data: INPUT:
Rmin= minimum available resources,
Rmax= maximum available resources (resource cap),
Cmin= number of minimum concurrent requests,
Cmax= number of maximum concurrent requests,
Srequired= required response time, and
W = web-service;
OTHER VARIABLES:
Rnow= current resource assignment to the VM,
Cnow= number of concurrent requests to be sent,
Srecorded= recorded response time,
Rstep= resource increase step size, and
Cstep= number of concurrent requests increase step size;
Result: ACPM Table
Start;
Set Cnow = Cmin;
Set Rnow = Rmin;
while Cnow <= Cmax do

while Rnow <= Rmax do
Send Cnow requests to the service W and record Si

recorded, where i=1,2,...Cnow;
. Comment: Si

recorded is recorded for individual Cnow requests. Optionally, to save time the internal

loop can be broken if the Si
recorded is not recorded within a threshold ;

if average(Si
recorded, Cnow) <= Srequired then

. Comment: Based on the need, we can also replace the above statement with “if

(all below(Si
recorded, Srequired, Cnow) == TRUE )” ;

Record Rnow to the ACPM Table for Cnow;
else

Set Rnow = Rnow + Rstep;
end

end
if ACPM Table has an entry for Cnow then

Set Cnow = Cnow + Cstep;
end
else

Show “Resource cap has reached”;
Show ACPM Table with resource entries from Cmin to Cnow;

end

end

end

which affects a range of important factors such as customer attention and the

business outcomes in the form of transactions. The permissible range of request

response time is between 1s to 10s. Reports such as [136] state few important

aspects related to page response times based on a study conducted in 2011. The

authors observed that if the response time of website is less than 5 seconds than
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Algorithm 2: Function average() computes the numerical average of all the recorded
response time values (Si

recorded) for Cnow requests

FUNCTION average();
Data: Si

recorded, where i=1,2....Cnow= recorded response time,
Cnow= connection requests;
Result: Average of Si

recorded values
Start;
Sum = 0;
for each i=1 to Cnow do

Sum = Sum + Si
recorded

end

Show Sum
Cnow

Algorithm 3: Function all below() checks whether every individual request i among
the concurrent requests Cnow has a recorded response time (Si

recorded) below the required
response time (Srequired)

FUNCTION all below( );
Data: Si

recorded, where i=1,2....Cnow= recorded response time,
Srequired = required response time,
Cnow= connection requests;
Result: TRUE/FALSE
Start;
for i=1 to Cnow do

if Si
recorded <= Srequired for all i then

Show TRUE;
else

Show FALSE;
end

end

end

the web-site is faster than the 25% of the websites across the globe. Similarly, if

the response time is below 2.9 seconds, than it is ahead of 50% of the websites

across the Internet. On the other hand, report in [137] states additional interesting

relations about the response times of the page and the business opportunity. The

author says that every extra second of the response times may deter the web-user

to return to the website. This aspect is termed as page abandonment. Addition-

ally, based on a survey, the authors state that more than three quarters of the

web-users across the globe expect a web response time less than 4 seconds.

Based on the user inputs, the Algorithm 1 runs and prepares a capacity plan-

ning table which has entries for various set of concurrent requests and required

resources. Our proposed algorithm automatically prepares the desired capacity

planning table with minimum user intervention. On the other hand, the same
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algorithmic procedure allows a lot of flexibility in terms of reconfiguration to suit

various needs. The algorithm can run on a client machine connected to the web-

service under consideration. We show the execution scenario and the capacity

planning table preparation on a benchmarking client in Figure 4.5.

     Physical Server 1     Physical Server 2

 Target VM

 Concurrent Requests

Client VM

Recorded Response Times

ACPM Table

Requests Resources

Benchmark 
Application

Target 
Application

C2

C1 R1

R2

C3 R3

Figure 4.5: Automated Capacity Planning Table: Preparation Scenario

Now, let us understand the ACPM table preparation algorithm in detail. Algo-

rithm 1 starts with the minimum resources (Rnow = Rmin) which are applied to the

VM hosting target web-service W . Now, we use a benchmarking application such

as Apachebench (ab2) to send Cnow requests to the target web-service W . Initially,

we set Cnow to minimum number of concurrent requests (Cmin) which is specified by

the user. We also configure our benchmarking application to record the response

time for each one of the Cnow requests individually (Si
recorded, where i=1,2,...Cnow).

Optionally, for optimized benchmarking, if we do not get the Si
recorded responses

within a target period such as (K * (Srequired)), we may stop the benchmarking for

the current resource assignment. This means that the current resource assignment

could not match the required service quality by serving the requests within period

K * (Srequired). A small value of K (e.g. K=2) will quickly break the loop and also

quickly prepare the capacity planning table by saving time and moving to next

set of resources. A higher value of K will help if the user is interested in a average

service quality. Once we receive the recorded response time for each individual

request (Si
recorded, where i=1,2....Cnow), we check an important condition which we

can deal in one of the following two ways.

� Condition 1: average(Si
recorded, Cnow): In this case, we compute the av-

erage of the received response times using the function presented in Algo-

rithm 2. This condition allows us to choose resources Rnow where the Cnow
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concurrent requests are served within the Srequired time on the average. How-

ever, this does not necessarily mean that all the requests will be served within

the Srequired time. This condition results into a capacity planning table where

a set of few or more concurrent requests out of Cnow requests may get served

with a response time higher than the Srequired time .

� Condition 2: all below(Si
recorded, Srequired, Cnow): In this condition, we

follow the function presented in Algorithm 3. This function makes sure that

each individual request out of the Cnow requests will be served within Srequired

time. This is a strict condition which will result into a capacity planning table

assuring about the equal service quality to all the concurrent requests.

If we find that the chosen condition (average() vs. all below()) is true for the

current resource assignment Rnow (for requests Cnow), we place the resource entry

in the ACPM table. In the next step, we run the benchmark for Cnow + Cstep

concurrent requests with the same resources (Rnow). This suggests that we may

find the current resource assignment as an appropriate one, even for the increased

concurrent requests. Otherwise, we increase the resources by one step (Rstep) and

repeat the above process once again with the new resources (Rnow=Rnow+Rstep).

The process of increasing step wise resources may continue till we get the re-

quired response time values based on the selected condition (either average() or

all below()). The algorithm will complete its run, if we reach the resource cap

(Rmax), or there is a recorded entry for each set of concurrent requests from Cmin

to Cmax with a step increase (Cstep) in the prepared table. Now, let us come to

an important aspect of the ACPM module preparation algorithm which is about

deciding the Rstep and Cstep. The selection of appropriate values for both the

variables is performed as follows:

� Number of concurrent requests increase step size, Cstep: This vari-

able decides the number of entries we would like to have in the capacity

planning table. For example if we take Cstep as 10 with Cmin = 10 and Cmax

= 300. We will have 30 resource entries for different concurrent requests

such as 10, 20, 30, 40, 50, 60...up to 300. It is obvious that having very

small Cstep size will also increase the size of the capacity planning table and

the table preparation time. On the other hand, a very large Cstep may not

help in getting the effective use of capacity planning exercise. We also see

that a variable Cstep value may provide a balanced solution for cases such as

a capacity planning table with Cmin=10 and Cmax= 500. In this case, for
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entries from Cnow, 10 to 100, Cstep may chosen as 10. On the other hand, for

higher concurrent request entries such as 100 to 500, Cstep may be chosen as

50 or 100. While preparing the capacity planning tables for our experiments,

we used a variable Cstep utilizing this example.

� Resource increase step size, Rstep: Virtual machine monitors help in

increasing and decreasing the resource vertically (on top of the same VM)

with the help of resource hot-plugging features of virtualized resources such

as vCPUs, memory, network cards and disks. A step can be configured as

an increase/change in all the resources in a single go. For example, a step

increase in all the resources can be addition of 1 vCPU, 1 GB memory, 1

Gbps additional network bandwidth, and 10GB expansion in the storage.

On the other hand, a step can also be configured to increase/change in the

individual resource such as vCPU addition by 2 vCPUs to memory addition

by 1 GB. This single resource step may be beneficial to see the real need of

the application. For example, a static web application may not need vCPU

increase but the increase in the memory and disk. While preparing the

capacity planning tables for our experiments, we implemented the resource

increase step using increase in a single resource at a time.

While increasing the resources, we observed an important factor related to the

resource scaling. Once we increase the resources of a VM, it requires some time

before the new resources are available for use by the VM. In other words, VMs

take a little time before the resource are actually adapted into the system. The

observation is also applicable to the resource reduction operation. We observe that

this time is also affected by the kind of activities the guest operating systems is

performing at the time of resource change. In the case of heavy memory usage,

decreasing memory will take greater time as compared to increasing memory owing

to the immediate operations to shrink the memory (page-out to the swap space).

In the case of vCPUs, the task migration and load balancing operations will occur.

We term this time period as “resource realization time (RRT)” as this is the time

required before a resource change is realized in the system. In order to show

the efficacy of our argument, we conduct a set of experiments with two basic

resource vCPUs and main memory. We perform various sizes of resource increase

and decrease operations on these two resources and observe the time when these

resource changes are realized in the guest operating system running on top of the

VM. We show the outcome of this experiment in Table 4.3.
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vCPUs (from) vCPUs (to) RRT Memory (from) Memory (to) RRT

1 vCPUs 2 vCPUs 0.611s 1 GB 2 GB 8.141s

1 vCPUs 4 vCPUs 0.823s 1 GB 4 GB 7.214s

4 vCPUs 8 vCPUs 0.389s 4 GB 8 GB 9.211s

8 vCPUs 12 vCPUs 0.366s 8 GB 12 GB 13.213s

12 vCPUs 16 vCPUs 0.253s 12 GB 16 GB 9.192

1 vCPUs 8 vCPUs 0.479s 1 GB 8 GB 10.206s

1 vCPUs 16 vCPUs 0.817s 1 GB 16 GB 15.253

2 vCPUs 1 vCPUs 3.453s 2 GB 1 GB 10.563s

4 vCPUs 1 vCPUs 2.623s 4 GB 1 GB 10.204

8 vCPUs 4 vCPUs 3.756s 8 GB 4 GB 15.218s

12 vCPUs 8 vCPUs 3.753s 12 GB 8 GB 5.190s

16 vCPUs 12 vCPUs 3.758s 16 GB 12 GB 5.237s

8 vCPUs 1 vCPUs 7.480s 8 GB 1 GB 12.324s

16 vCPUs 1 vCPUs 17.204s 16 GB 1 GB 15.334s

Table 4.3: Experimental Results Showing Resource Realization Time (RRT) in Var-
ious Resource Change Cases

We see that the resource increase and decrease changes require a considerable time

and any new decision of resource change should also wait for the resources (from

the last change) to be really applicable. The RRT time ranges between less than

a second to as high as 15 seconds. In case of multiple resource changes in a single

step it may be even more. In the capacity planning preparation algorithm, while

changing the resources, we wait for around 30 seconds before sending any new

requests to use the realized resources. We believe that the proposed algorithm can

also be used where horizontal scaling (resource increase in the form of additional

VM instances). Additionally, the proposed algorithm may also be useful for a

user/provider who is not sure about the resource needs and is interested in getting

the resource requirements without having any resource limitations (Rmax).

Now, in the next section, we detail the preparation of capacity planning tables for

few important web-service cases.

4.4.4 Capacity Planning: Use cases

We use the Algorithm 1 to prepare ACPM capacity planning tables for following

cases.

1. Dynamic image conversion website with the image size 500KB

2. Dynamic image conversion website with the image size 1MB

3. Static image download website with image size 1MB
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4. Static image download website with image size 2MB

We use the scenario shown in Figure 4.5 to prepare the capacity planning tables

for the above four cases. We list different set of variables and their possible values

used in the preparation of capacity planning in Table 4.4. We see that concurrent

Resource No. of Combinations Details of Combinations

Request/s 23 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80,
90, 100, 120, 140, 160, 180, 200, 300, 400, 500
(with a variable step of 5, 10, 20 and 100)

vCPUs 16 1 vCPUs to 16 vCPUs (with a step 1 vCPUs)

Memory 16 1GB to 16 GB (with a step of 1 GB)

Hard disk 1 100 GB (fixed size)

Network 2 100Mb/s and 1000 Mb/s

Table 4.4: List of Resources and their Possible Values

requests have 23 sets with variable step size (Cstep). For vCPUs and main memory

of a VM, we have a total of 16 sets if we try all possible combinations with a step

size (Rstep) of 1GB. The infrastructure available with us could only allow use to

change the values of network bandwidth between two values (100Mb/s and 1000

Mb/s). However, with the features such as Link aggregation [138], the network

bandwidth can also be expanded to more higher values. We did not change the

disk size because of hardware limitations where the on-the-go disk scaling was not

possible. On the other hand, the four cases above does not have much impact of

disk resource as the image conversion site and image download site mostly perform

all the work in the main memory and does not store any outcome in the disk except

the experimental results. We take a fixed size disk of 100GB. In the worst case,

a run of Algorithm 1 will execute a complete set of 11776 steps (23 concurrent

request steps * 16 vCPU steps * 16 memory steps * 2 network steps). It will take

a huge time of more than 32 hours even if we break the internal loop in 10 seconds

(K* Srequired with K=2 and Srequired =5 seconds). To improve this, we propose

following practical enhancements in Algorithm 1 while executing it for the above

cases.

1. We should not always test and find suitable resources for the Cnow requests

starting from the minimum resources. If an resource entry (R1) for Cnow is

found then the resource entry for Cnow + Cstep will be found in the resources

greater than or equal to R1. We already support this enhancement in the

Algorithm 1.
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Request/s vCPUs Memory Network

5 2 vCPUs 4 GB 100Mb/s

10 2 vCPUs 4 GB 1000Mb/s

15 3 vCPUs 5 GB 1000Mb/s

20 4 vCPUs 6 GB 1000Mb/s

25 5 vCPUs 6 GB 1000Mb/s

30 6 vCPUs 6 GB 1000Mb/s

35 7 vCPUs 7 GB 1000Mb/s

40 7 vCPUs 8 GB 1000Mb/s

45 9 vCPUs 10 GB 1000Mb/s

50 10 vCPUs 10 GB 1000Mb/s

55 11 vCPUs 12 GB 1000Mb/s

60 12 vCPUs 12 GB 1000Mb/s

65 14 vCPUs 13 GB 1000Mb/s

70 15 vCPUs 15 GB 1000Mb/s

>70 16 vCPUs 16 GB 1000Mb/s

Table 4.5: Capacity Planning Table for Dynamic Site: Image Size 500KB

2. While assigning resources to the target application, the main memory should

always be allotted by giving at least 1GB memory per vCPU. For example,

if we allot 8 vCPUs to the target application than the minimum memory to

start the benchmarking would be 8 GB.

3. For few initial requests such as 5 concurrent requests to 10 concurrent request

the network bandwidth of 100 Mb/s gives the required results. For higher

values of concurrent requests, the outcome of using 100Mb/s does not give

desired results (Srequired). By just using only one network bandwidth step

of 1000Mb/s, the worst case execution of the Algorithm 1 reduces to the

half. However, in the case of hardware support for the network scaling, this

optimization is not useful.

4. In the cloud accounting and metering models, the cost of resources usually

follows a generic relation where vCPUs and memory resources are costlier

than all the other resources such as storage and bandwidth. This relationship

can also help in minimizing the step sizes and subsequently narrow down the

focus to computational resources or memory resources.

We show the prepared capacity planning tables in Table 4.5 for dynamic site

(500KB), Table 4.6 for dynamic site (1MB), Table 4.7 for static site (1MB), and

Table 4.8 for static site (2MB). Similarly, we also show the response time behavior

of different target services in Figure 4.6 (500KB dynamic site), Figure 4.7 (1MB

dynamic site), Figure 4.8 (1MB static site), and Figure 4.9 (2MB static site).
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Request/s vCPUs Memory Network

5 4 vCPUs 8 GB 100Mb/s

10 4 vCPUs 8 GB 1000Mb/s

15 5 vCPUs 8 GB 1000Mb/s

20 7 vCPUs 8 GB 1000Mb/s

25 8 vCPUs 8 GB 1000Mb/s

30 10 vCPUs 10 GB 1000Mb/s

35 11 vCPUs 12 GB 1000Mb/s

40 12 vCPUs 12 GB 1000Mb/s

45 14 vCPUs 16 GB 1000Mb/s

>45 16 vCPUs 16 GB 1000Mb/s

Table 4.6: Capacity Planning Table for Dynamic Site: Image Size 1MB

Request/s vCPUs Memory Network

5 1 vCPUs 1 GB 100Mb/s

10 1 vCPUs 1 GB 1000Mb/s

20 1 vCPUs 1 GB 1000Mb/s

30 1 vCPUs 1 GB 1000Mb/s

40 1 vCPUs 1 GB 1000Mb/s

50 1 vCPUs 2 GB 1000Mb/s

60 2 vCPUs 2 GB 1000Mb/s

70 2 vCPUs 2 GB 1000Mb/s

80 2 vCPUs 2 GB 1000Mb/s

90 2 vCPUs 2 GB 1000Mb/s

100 2 vCPUs 2 GB 1000Mb/s

120 3 vCPUs 3 GB 1000Mb/s

140 3 vCPUs 3 GB 1000Mb/s

160 3 vCPUs 6 GB 1000Mb/s

180 3 vCPUs 12 GB 1000Mb/s

200 4 vCPUs 12 GB 1000Mb/s

300 6 vCPUs 16 GB 1000Mb/s

400 10 vCPUs 16 GB 1000Mb/s

500 14 vCPUs 16 GB 1000Mb/s

>500 16 vCPUs 16 GB 1000Mb/s

Table 4.7: Capacity Planning Table for Static Site: Image Size 1MB

Amongst the above four cases, we prepare the capacity planning table for the case

of dynamic site with image size of 1MB using the average() function in the Algo-

rithm 1 and Algorithm 2. Similarly, we use the same condition of using average()

function in the case of static site having 1MB as the image size. This means that

the capacity tables for these cases fulfill the requirement of of having the aver-

age response time less than the required response time (Srequired). The other two

cases are prepared using the function all below() described in Algorithm 1 and

Algorithm 3. We show the response time behavior of all the four cases in differ-

ent graphs. We show the response time behavior of dynamic website with image
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Request/s vCPUs Memory Network

5 1 vCPUs 3 GB 100Mb/s

10 1 vCPUs 4 GB 1000Mb/s

20 1 vCPUs 4 GB 1000Mb/s

30 1 vCPUs 4 GB 1000Mb/s

40 1 vCPUs 4 GB 1000Mb/s

50 1 vCPUs 4 GB 1000Mb/s

60 2 vCPUs 6 GB 1000Mb/s

70 2 vCPUs 6 GB 1000Mb/s

80 3 vCPUs 6 GB 1000Mb/s

90 4 vCPUs 6 GB 1000Mb/s

100 6 vCPUs 6 GB 1000Mb/s

120 6 vCPUs 12 GB 1000Mb/s

140 6 vCPUs 12 GB 1000Mb/s

160 8 vCPUs 12 GB 1000Mb/s

180 10 vCPUs 12 GB 1000Mb/s

200 12 vCPUs 12 GB 1000Mb/s

>200 16 vCPUs 16 GB 1000Mb/s

Table 4.8: Capacity Planning Table for Static Site: Image Size 2MB

size of 1MB in Figure 4.7. In these graphs, we show the response time behavior

with different Cnow entries available in the capacity planning table. In addition,

we also show the response time behavior of the entries which forces the ACPM

module preparation algorithm to complete the execution. We show the terminal

conditions of the Algorithm 1 in last section. These conditions include reaching

Cmax value, Rmax value, or reaching a Cnow value where the Srequired is not found

by any of the resource assignments up to Rmax. Now, we discuss the details of the

prepared capacity planning tables in the following:

Case I: Dynamic image conversion website with the image size 500KB:

We show the capacity planning table for this case in Table 4.5, and the response

time behavior of the site for various concurrent request sets in Figure 4.6. In this

case, we specified 5 seconds as the value of required response time (Srequired). We

set the benchmarking test to expect a resource assignment for the inclusion in

capacity planning table if the recorded response for each request out of all the

concurrent requests have a recorded response time less than or equal to 5 seconds.

We achieve this requirement by using function all below() in Algorithm 1. The

resultant capacity planning table has entries for concurrent requests between 5

requests to 70 requests. The benchmarking test for 75 concurrent requests did

not fulfill the condition of all below() with the maximum available resources. We

show the response time behavior for this case (Cnow = 75) in Figure 4.6o.

Case II: Dynamic image conversion website with the image size 1MB:
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(a) Dynamic Server (500KB): 5 Concur-
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(b) Dynamic Server (500KB): 10 Con-
current Requests
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(c) Dynamic Server (500KB): 15 Con-
current Requests
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(d) Dynamic Server (500KB): 20 Con-
current Requests
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(e) Dynamic Server (500KB): 25 Con-
current Requests
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(f) Dynamic Server (500KB): 30 Con-
current Requests

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 5  10  15  20  25  30  35

R
es

po
ns

e 
T

im
e 

(m
s)

Request

Response time for concurrent requests

(g) Dynamic Server (500KB): 35 Con-
current Requests
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(h) Dynamic Server (500KB): 40 Con-
current Requests
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(i) Dynamic Server (500KB): 45 Concur-
rent Requests
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(j) Dynamic Server (500KB): 50 Con-
current Requests
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(k) Dynamic Server (500KB): 55 Con-
current Requests

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10  20  30  40  50  60

R
es

po
ns

e 
T

im
e 

(m
s)

Request

Response time for concurrent requests

(l) Dynamic Server (500KB): 60 Con-
current Requests
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(m) Dynamic Server (500KB): 65 Con-
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(n) Dynamic Server (500KB): 70 Con-
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(o) Dynamic Server (500KB): 75 Con-
current Requests

Figure 4.6: Recorded Response Time Behavior of Dynamic Server: Image Size 500KB

We show the capacity planning table for this case in Table 4.6 and the response

time behavior of the site for various concurrent requests in Figure 4.7. The tar-

get application in this case is much resource intensive as compared to the Case

I and converts an image of 1MB from one format to the other. In this case, we

specified the required response time as 7 seconds as average response time of the
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Figure 4.7: Recorded Response Time Behavior of Dynamic Server: Image Size 1MB

concurrent requests. Hence, we specify the condition using function average()

in Algorithm 1. Subsequently, the capacity planning table has entries between 5

concurrent requests and 45 concurrent requests. We keep an entry in the capacity

planning table having maximum resources reserved for concurrent requests greater

than the 45 requests.

Case III: Static image download website with image size 1MB: We show

the capacity planning table for this case in Table 4.7 and the response time behav-

ior of the site for various concurrent requests in Figure 4.8. The target application

in this case is a static image download web-site, therefore, the capacity planning

table in this case has large number of entries with concurrent requests as high as

500 concurrent requests meeting the required average response time of 3 seconds

(using average() function in Algorithm 1). In this case, the next higher number of

requests (600 concurrent requests) could not be met by the maximum resources.

Therefore, we keep an entry for the maximum resources for any number of con-

current requests beyond 500 concurrent requests.

Case IV: Static image download website with image size 2MB: We show
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Figure 4.8: Recorded Response Time Behavior of Static Server: Image Size 1MB

the capacity planning table for this case in Table 4.8 and the response time be-

havior of the site for various concurrent requests in Figure 4.9. In this case, we

wanted the target web-site’s capacity planning table should provide resources for a

required response time of 4 seconds using all below() function. The capacity plan-

ning table in this case has entries as high as 200 concurrent requests. In this case,
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Figure 4.9: Recorded Response Time Behavior of Static Server: Image Size 2MB

the maximum resources (Rmax) could not meet the requirements of 300 concurrent

requests. We keep a resource entry in the capacity planning table for the cases of

concurrent requests beyond 200 requests with resource assignment of maximum

resources. The user can readily use the prepared capacity planning tables with the

modified auto-scaling algorithm which relies on incoming legitimate traffic instead
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Item/Resource Configuration Settings/Values

A
tt

a
ck

er
S

et
ti

n
g
s

Physical Server Dell PowerEdge R630
Intel(R) Xeon(R) CPU E5-2670
v3, 4 processors (12 cores each)
memory 96 GB

Attack service ApacheBench2
Configuration 4 vCPUs and 4 GB
Traffic rate 500/200 concurrent requests

(Total 10000 requests)

V
ic

ti
m

S
et

ti
n

g
s Physical server Dell PowerEdge R630

Intel(R) Xeon(R) CPU E5-2670
v3, 4 processors (12 cores each)
memory 96 GB

Victim service Dynamic image conversion service
Configuration As per DARAC policy

D
A

R
A

C
A

u
to

-s
ca

li
n

g
P

o
li

cy Initial Resources vCPUs=4 and Memory=8GB (1MB case)
vCPUs=2 and Memory=4 GB (500KB case)

Min to Max vCPUs 2 vCPU to 16 vCPUs (500KB case)
Min to Max vCPUs 4 vCPU to 16 vCPUs (1MB case)
Min to Max Memory 4 GB to 16 GB (500KB case)
Min to Max Memory 8 GB to 16 GB (1MB case)
Monitoring Period 60 seconds
Condition for Overload 70% Utilization
Condition for Underload 30% Utilization
Increase-Decrease Factor As per ACPM Table 4.5 ((500KB case))

As per ACPM Table 4.6 ((1MB case))

O
th

er
S

et
ti

n
g
s Benign Service 4 vCPUs and 4 GB

Traffic rate 1/10/20/50 concurrent web requests
(Total 100 requests)

Operating System Ubuntu 14.04
Network 1Gbps
Hypervisor XenServer 6.5

Table 4.9: Experimental Configuration for the Evaluation of DARAC (DDoS Aware
Resource Allocation) Approach in the Presence of DDoS Attacks

of fully relying on a resource utilization based indirect mechanism.

4.5 Evaluation of DARAC

We now detail the experimental evaluation of our proposed DDoS aware resource

allocation mechanism. To achieve this, we use our propose approach in the pres-

ence of DDoS attacks and record various metrics to observe its performance and

behavior. As we focus on the auto-scaling mechanism’s performance during DDoS

attacks, we show various results related to the DDoS aware resource allocation

mechanism which uses our capacity planning modules detailed in Section 4.4.3

and Section 4.4.4. For a comprehensive experimental evaluation, we use the attack

settings and configuration of various resources as detailed in Table 4.9. The most

important parameter in these settings is the modified DDoS aware auto-scaling

algorithm. The modified algorithm in this case works as per the steps described
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in Figure 4.4 in Section 4.4.1. Figure 4.4 shows that the DARAC algorithm on

receiving an overload trigger (> 70% CPU utilization) it will ask the traffic evalu-

ator module about the presence of the DDoS attack and the segregated legitimate

traffic. DARAC will then ask the ACPM capacity planning module about the

resource requirement of the legitimate traffic. DARAC then applies the resultant

response received in the form of resources to the victim service.

We use two kinds of attack traffic sequences in the evaluation experiments: 500

requests concurrency and 200 request concurrency. We configured both the attack

traffic sequences to send the concurrent requests for a total 10000 requests. In our

evaluation experiments, the attack requests are sent simultaneously with the be-

nign requests. The attack traffic in this case is sent from a single attacker machine

for effective attack detection time calculations and subsequent comparison among

the number of experimental sets. We send benign traffic from a benign sender VM

with four different traffic frequencies (1/10/20/50 concurrent requests for a total

of 100 requests).

To have good coverage of the attack experiments, we use two different dynamic

websites as attack targets (victim service). In one set, the target website performs

the image conversion of 500KB image. In another experimental set, the target

website performs the same operation on images of 1MB size on each request. We

provide initial resources to the VMs hosting these target services by following the

capacity planning tables described in Section 4.4.4. For 500KB service, we set the

initial resources to the planned capacity for the minimum Cmin entry in Table 4.5.

Hence, we set it to the resource entry for 5 concurrent requests (2vCPUs, 4GB

and 100Mb/s). On the other hand, we set the initial resources of the 1MB victim

service as per Table 4.6 which shows resource entry (4vCPUs, 8GB and 100Mb/s)

for 5 concurrent requests. Similarly, subsequent resource changes and the max-

imum resources are also set using the capacity planning tables in Table 4.5 (for

500KB service) and Table 4.6 (for 1MB services).

We conduct a total of 16 attack experiments where we perform 8 experiments each

on 1MB and 500KB service. Out of these 8 attack experiments, we set the attack

frequency of four attack experiments to 200 concurrent requests for a total of 10000

requests. Other four experiments have attack frequency set to 500 concurrent re-

quests for a total of 10000 requests. We perform each of these four experiments

using benign frequencies with a rate of 1/10/20/50 concurrent requests for a total

of 100 requests.

We observe following important metrics to ascertain the efficacy of our proposed

approach.
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1. Resource Increment Trigger: The time at which the first auto-scaling

trigger comes up in the form of resource over-load trigger due to the average

utilization of more than 70% in last one minute.

2. Resource Decrement Trigger: The time at which the first auto-scaling

trigger comes up in the form of resource under-load trigger due to the average

utilization of less than 30% in last one minute.

3. Attack Detection Time: The time at which the traffic evaluator (using

tool ddos-deflate) detects the incoming DDoS attack and adds the attack

sources to the blacklist (iptables firewall in our experimental setup).

4. Resources after the Increase and Decrease Resource Triggers: We

see the resultant resources after the increase and decrease trigger received by

the modified DDoS aware auto-scaling algorithm.

5. Response Time to the Benign Traffic: As described earlier, we send four

different benign traffic sets with frequencies 1/10/20/50 concurrent requests

for a total of 100 requests. We record the response time behavior to these

benign concurrent requests.

4.5.1 Results

In this section, we present the detailed experimental results and the related in-

ferences. We show the resource increase and decrease trigger times, attack de-

tection times, and resource changes after the triggers for different experiments in

tables 4.10, 4.11, 4.12, and 4.13. Similarly, we show the response time behavior

and the resource change behavior for different experiments in the graphs shown in

figures 4.12, 4.10, 4.13, and 4.11.

Benign Detection Increase vCPUs Memory Decrease vCPUs Memory
Requests Time Trigger (after) (after) Trigger (after) (after)

1 38.39s 83s 2 4GB 340s 2 4GB

10 36.93s 82s 2 4GB 341s 2 4GB

20 37.34s 84s 4 6GB 340s 2 4GB

50 37.40s 84s 10 10GB 400s 2 4GB

Table 4.10: Various Metrics during an Attack using 200 Request Concurrency and
Total 10000 Requests with DDoS Aware Resource Allocation on a Dynamic Web-site

with an Image Size of 500KB

In the case of 500KB target service, we show various metrics in Table 4.10 where

the attack traffic is set to the attack frequency of 200 concurrent requests for a
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Benign Detection Increase vCPUs Memory Decrease vCPUs Memory
Requests Time Trigger (after) (after) Trigger (after) (after)

1 41.43s 83s 4 8GB 400s 4 8GB

10 40.12s 85s 4 8GB 341s 4 8GB

20 40.46s 84s 7 8GB 383s 4 8GB

50 41.52s 84s 16 16GB 350s 4 8GB

Table 4.11: Various Metrics during an Attack using 200 Request Concurrency and
Total 10000 Requests with DDoS Aware Resource Allocation on a Dynamic Web-site

with an Image Size of 1MB

Benign Detection Increase vCPUs Memory Decrease vCPUs Memory
Requests Time Trigger (after) (after) Trigger (after) (after)

1 40.93s 84s 2 4GB 945s 2 4GB

10 39.41s 80s 2 4GB 934s 2 4GB

20 38.40s 83s 4 6GB 956s 2 4GB

50 38.40s 83s 10 10GB 956s 2 4GB

Table 4.12: Various Metrics during an Attack using 500 Request Concurrency and
Total 10000 Requests with DDoS Aware Resource Allocation on a Dynamic Web-site

with an Image Size of 500KB

Benign Detection Increase vCPUs Memory Decrease vCPUs Memory
Requests Time Trigger (after) (after) Trigger (after) (after)

1 40.23s 84s 4 8GB 900s 4 8GB

10 38.40s 83s 4 8GB 893s 4 8GB

20 39.86s 80s 7 8GB 851s 4 8GB

50 42.35s 84s 14 16GB 955s 4 8GB

Table 4.13: Various Metrics during an Attack using 500 Request Concurrency and
Total 10000 Requests with DDoS Aware Resource Allocation on a Dynamic Web-site

with an Image Size of 1MB

total of 10000 requests. As soon as the attack is launched the CPU and memory

utilization of the target service reaches beyond (> 70%) and a resource increase

trigger is generated after the first one minute of the attack (83s). The DARAC

triggers the traffic evaluation module. The traffic evaluation module could detect

the attack in around 38s. After the attack detection, the attack sources are added

to the firewall and already established connections are removed. The DDoS aware

resource allocation algorithm after consultation with the traffic evaluator module

gets the legitimate traffic rate which is (1/10/20/50) in four different attack cases.

Practically, the received traffic values from the traffic evaluator module are not

exactly the same as the sent traffic, however they are quite similar with minor

differences due to their different arrival times to the interface. The DARAC re-

source allocation mechanism shows desired results by changing the resources in

consonance to the benign frequency. In the case of benign traffic of 1 request

and 10 request concurrency, we did not change the resources after receiving the
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Figure 4.10: Response Time and Auto-scaling Behavior during an Attack using 200
Request Concurrency and a Total 10000 requests with DDoS Aware Resource Allocation

on a Dynamic Web-site with an Image Size of 1MB

increase trigger. On the other hand, in the case of 20 and 50 requests, we change

the resources to the equivalent entry of 20 and 50 concurrent requests by using

the capacity planning table shown in Table 4.5. We show the response time be-

havior of the target service in different graphs in Figure 4.12. The service under

the attack becomes unavailable due to the attack and request response time for

the initial requests become huge. Even after, the attack detection at 38s, the at-

tack effects do not disappear and the resource utilizations remains high. We keep

on receiving the auto-scaling increase triggers after every minute of observance.

We see that the resource utilization triggers a “lower utilization trigger” (using

resource utilization below 30%) between 340s to 400s in different cases. The first
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Figure 4.11: Response Time and Auto-scaling Behavior during an Attack using 500
Request Concurrency and a Total 10000 requests with DDoS Aware Resource Allocation

on a Dynamic Web-site with an Image Size of 1MB

batch of concurrent benign requests are served in a relatively short period of time

as the attack effects were not completely formed and visible. After 340s to 400s

the response time behavior becomes normal and the service becomes available to

serve the requests. The response time behavior graphs show the response time

behavior of the benign traffic which has initial peaks of around 340s to 400s. We

gather these peaks by configuring the benign sender to collect the response for a

longer time (∼1000s).

We show the results of attack set using the higher attack frequency of 500 con-

current requests with a total of 10000 requests in Figure 4.13 and Table 4.12. In
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Figure 4.12: Response Time and Auto-scaling Behavior during an Attack using 200
Request Concurrency and a Total 10000 requests with DDoS Aware Resource Allocation

on a Dynamic Web-site with an Image Size of 500KB

these attack cases, most of the observed metrics related to the resource changes

are quite similar to the 200 request concurrency case discussed above with 500KB

target site. However, we make two important observations during these results.

The response time behavior shows peaks which are quite huge as compared to the

case of 200 request concurrency. These peaks reaches the response time values as

high as 950s. The other important observation is related to the legitimate request

behavior. After receiving the first trigger at ∼ 84s, the legitimate requests were

not regularly received from the victim service. We configured the victim service

in such a manner that the traffic evaluator send the legitimate traffic values after
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Figure 4.13: Response Time and Auto-scaling Behavior during an Attack using 500
Request Concurrency and a Total 10000 requests with DDoS Aware Resource Allocation

on a Dynamic Web-site with an Image Size of 500KB

each minute. However, in the attack case of 500 request concurrency, we could

not receive these values regularly but intermittently. The resource trigger and the

subsequent resource changes are quite similar to the above case and the DARAC

does not increase the resources in the case of benign requests with 1/10 request

concurrency.

Now, let us see the experimental results of the victim service having 1MB size

for the image conversion. In brief, the observed metrics were quite similar to

the above cases of 500KB website. The DDoS aware resource allocation algorithm
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makes correct auto-scaling decisions and we could see that the resource changes are

in conformance to the capacity planning tables for 1MB dynamic victim service.

We show the observed metrics in the Table 4.11 and response time and resource

changes graphs in Figure 4.10 for the attack frequency of 200 concurrent requests.

The attack detection time, increase trigger, and decrease trigger are quite similar

to the case of 500KB victim size for the same attack frequency. The response

time behavior shows response peaks of ∼ 350s to 400s. The DARAC resource

allocation algorithm shows the desired results by changing resources as per the

capacity planning tables. The DARAC algorithm do not increase the resources

in the cases of 1/10 concurrent requests and changes the resources in the case of

20/50 concurrency.

In the case of attack frequency of 500 concurrent requests for 1MB victim ser-

vice, the results are quite similar to the similar case of 500KB victim service

(Table 4.13). However, the response time peaks are quite higher and reaches up

to ∼900s. We show this behavior in Figure 4.11. The DARAC behavior also

performs the desired behavior by not changing the resources in the cases of 1/10

concurrent requests. On the other hand, resource changes (increases) are made in

the cases of 20/50 concurrent requests using the capacity planning table shown in

Table 4.6. On the other hand, we see a denial on legitimate request values (sent

by the traffic evaluator module running in the victim service) are not received reg-

ularly. The frequency of getting these values is even smaller as compared to the

200 concurrent request case. In this case, our proposed approach in the current

configuration does not make any decision and stick to the current resources.

After observing the effect of denial on the legitimate request frequency information

transmission by traffic evaluator, we could see that the victim VM under attack is

also non-responsive for most of the duration. Post attack analysis reveal that the

DDoS attack resulted in to a lot of heavy resource usage and resultant resource

contention. This heavy resource contention did not allow the computation of cur-

rent legitimate frequency and its transmission. On the other hand, in the current

attack experiments, DARAC could achieve the desired results by having resource

changes as per the capacity planning tables prepared using ACPM module prepa-

ration algorithm (Algorithm 1). DARAC could also show the required response

time for the benign requests after the attack effects disappear.
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4.6 DARAC Defense: Discussion and Issues

In this section, we will elaborate few very important issues related to the working

of DARAC and associated aspects. These issues also describe salient strengths as

well as shortcomings of our proposal.

1. DDoS aware resource allocation : We could observe in the experimental

evaluation detailed in Section 4.5 that the DARAC approach achieves impor-

tant requirements set in the Section 4.3. We meet the segregation accuracy

using the traffic evaluator module (R1). We fulfill the requirement R2 by

identifying the actual resource requirement using automated capacity plan-

ning module. The ACPM module also helps in ascertaining the availability

to the genuine/legitimate users. We meet the requirement of giving genuine

auto-scaling triggers using legitimate requests received.

2. Response time behavior : The response time behavior is up to the ex-

pected level once the attack effects are over. During the attack (even after

the attack detection time), the attack effects were visible and the response

time to the legitimate requests was also not within the required response

time limit. However, once the attack effects are over, the response times

are within the required response time limits specified during the capacity

planning table preparation.

3. ACPM module issues : We believe that the the current implementation

of ACPM module has few important limitations, which on rectification may

improve the performance further. We presented a calculation about the time

required for the meta-data generation (in capacity planning table prepara-

tion) in Section 4.4.4. We save the recorded response time values in different

files for each step. Though, we delete this temporary meta-data, once we

create the final capacity planning table. We still believe that a temporary

database can save a lot of efforts of generating and saving files. Similarly,

our ACPM module in the current implementation supports similar kind of

(or a single kind) concurrent requests. In reality, the dynamic web-servers

offer different kind of request-response at the same time. The current imple-

mentation of ACPM does not support the mixed set of concurrent requests.

4. Traffic evaluator module : We are using a generic traffic evaluator module

in our experiments. We believe that it can be replaced with any other traffic

evaluation module with more sophisticated DDoS detection mechanisms as

per the need.
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5. Legitimate request retrieval : We believe that the current implementa-

tion of the mechanism to retrieve the legitimate request concurrency can be

improved. Mechanism with the support of hypervisors or network devices

(SDN switches) may help to have quick and accurate evaluation in the pres-

ence of service downtime. These mechanisms may also become helpful when

the legitimate request values are intermittently unavailable. Additionally,

the current mechanism asserts that the recent past behavior of concurrent

requests will be repeated in the recent future. However, in the case when the

traffic features (such as variable frequency of legitimate traffic) are changing,

this assertion may not hold.

6. Undetectable Attacks : The proposed DDoS aware resource allocation

mechanism is dependent on the accurate traffic segregation. For the cases,

where the attacks remain undetected, the segregation will also report a huge

number of requests as legitimate requests. In that case, it will quickly reach

to the maximum resources leading to DDoS.

7. Service downtime : The service downtime in the experimental evaluation

ranges between 300s to 1000s. On the other hand, the attack requests were

detected and blocked in a small time ∼ 40s. We see that we require mech-

anisms to clear the established attack connections and the heavy resource

contention to decrease the downtime. We discuss more methods to further

decrease the service downtime in Chapter 5, Chapter 6, and Chapter 7.

8. Controlled auto-scaling effects on providers: At first glance, it may ap-

pear that the controlled auto-scaling results in monetary and business losses

for the cloud service providers (CSP). However, the minimization of attack

effects and intelligent dynamic scaling would result in attack effect free cloud

network. We saw in Chapter 3 that DDoS attacks may result in collateral

damages affecting many stakeholders of cloud computing infrastructure in-

cluding network and co-hosted VM tenants.

9. Overhead of attack awareness: The attack awareness requires a negligible

effort in terms of any computation complexity or performance perspective

as the auto-scaling decisions making logic and the traffic filtering logic is

not changed. However, there might be a delay where a genuine resource

requirement appears while there is no attack. This may also result in a few

application performance issues.

10. Horizontal Scaling: The experimental evaluation in this work has only

considered the cases of vertical scaling. However, the evaluation is equally
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applicable to the case of horizontal scaling where more VM instances can be

added and removed as per the auto-scaling strategy (Equation 4.1).

11. Dynamic scaling limitations: Many production solutions on DDoS at-

tack resiliency advocate of immediate resource scaling to expedite the overall

attack absorption and mitigation [5] [139]. However, scaling may bring ad-

ditional costs which may result in a huge penalty for undetectable attacks

with longer durations.

4.7 Conclusion

In this chapter, we argue that the on-demand resource allocation capability also

known as auto-scaling is an important process. Auto-scaling may spread the ef-

fects of DDoS attacks and increase the financial damages in the cloud computing

environments. We performed real attack experiments to measure the overall attack

effects on a victim service and observed that the fake resource utilization and sub-

sequent resource addition results in EDoS, ultimately converging to DDoS. Based

on these experiments, we analyze the requirements of DDoS attack mitigation in

the cloud computing environment. These requirements form the basis of our pro-

posed approach DARAC, which helps in customizing auto-scaling to minimize the

attack effects.

There are three important aspects of DARAC which make it quick and effective

DDoS mitigation solution for cloud computing: (a) the capacity planning module

to ascertain the real resource requirements based on the legitimate requests, (b)

correct DDoS aware auto-scaling, and (c) service availability to legitimate users

during attack. The novelty of our work lies in the auto-scaling strategy with ca-

pacity planning for the services. we show detailed experimental results with wide

coverage of attacker and benign traffic sets. Evaluation results show the efficacy of

DARAC in the attack detection, blocking attacker traffic, managing the response

time behavior of legitimate users, and stopping EDoS culmination by DDoS aware

resource allocation. As discussed in Chapter 3, the collateral damages in the cloud

are mostly visible due to the multi-tenant nature of the cloud. We show in the

Chapter 5 that at the fine grain level, these collateral damages mostly occur due

to the shared resources and resultant resource contention. In the next chapter, we

extend the issue of collateral damages among VMs to the level of victim operating

system.



Chapter 5

Service Resizing for Quick DDoS

Mitigation

5.1 Introduction

Many of the recent DDoS mitigation solutions utilize a large amount of resources

available in cloud using quick resource scaling [46][54][97][92]. Cloud service providers

also recommend the use of resource scaling techniques to perform efficient and

quick DDoS mitigation [63]. In resource scaling techniques, more and more re-

sources are given to the affected victim service such that it can handle the incoming

attack and carry out the attack mitigation quickly.

The resource scaling comes with the cost of additional resources that subsequently

has impact on the budget/sustainability of the victim enterprise. Controlling cost

is very important for the SMEs (Small and Medium Enterprises) owing to the

limitations on their budgets. Practically, the DDoS attack mitigation costs should

be less than the losses arising due to the attack without having mitigation in

place. Additionally, the resource scaling strategies should be able to identify the

real resource requirements. The auto-scaling service should be able to discard the

fake resource alarms generated due to DDoS attacks. In Chapter 4, we show a

DDoS aware resource allocation algorithm that only scales when there is a real

requirement.

In this chapter, we critically examine much finer grain performance issues of DDoS

mitigation process. These performance issues arise at the level of the victim service

running on top of an operating system in the form of a process. These performance

111
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issues are related to the resource availability during DDoS attacks and the differ-

ence in the resource usage of variety of DDoS attacks. We show the DDoS attack

dynamics and highlight important issues by doing real attack experiments on cloud

services.

Based on our attack experiments, we observe that DDoS attacks may take differ-

ent shapes based on the attack features and available resources on the server. In

most of the real incidents, DDoS attacks take a form of “extremely unavailable

DDoS (extreme DDoS)”. In this case, all the services (including the victim ser-

vice) become inaccessible to perform the attack mitigation and subsequent service

recovery. In these cases, owing to the heavy resource contention among the attack

request processing and other system services, the DDoS mitigation methods may

not get a chance to act and perform timely mitigation. Adding more and more

resources to the victim service as part of resource scaling may not always help in

the mitigation. In cloud computing, resources always come with a cost and the

mitigation methods should spend resources carefully.

In this chapter, we provide a novel DDoS mitigation support and resource manage-

ment framework which provides support services to the DDoS mitigation mech-

anisms to perform quick and sustainability aware mitigation on cloud services.

With the proposed framework, we aim to minimize the service downtime, the mit-

igation time, and attack cooling down period. We address the “sustainability”

or the cost aspect by using the available resources within the service instead of

resource scaling. We argue that during “extreme DDoS”, sacrificing the resources

by the victim web-service and utilizing those freed resources for the DDoS mitiga-

tion service can provide a quick, sustainability aware in-resource mitigation. We

achieve these performance goals by providing two important features, (i) Resource

shrinking and expanding and (ii) TCP tuning.

The rest of the chapter is organized as follows: We detail the DDoS attack mitiga-

tion and attack dynamics in cloud computing in Section 5.2. In the Section 5.3, we

illustrate the various attack instance on a cloud-based service and different aspects

of DDoS attacks in cloud computing. Our novel contributions are highlighted in

detail in Section 5.5. In Section 5.6, we evaluate the proposed technique with

various experiments and analyze the results. Finally in Section 5.7, we conclude

and discuss the possible future directions.
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Figure 5.1: DDoS Attack in Cloud

5.2 DDoS Attack and Mitigation in Cloud Services: State

of the Art

We show the DDoS attack scenario in Figure 5.1. Cloud computing infrastructure

consists of multiple high capacity physical servers connected with high speed net-

working. The physical servers are managed by a cloud middle-ware framework to

support mechanisms such as resource allocation and management, fault tolerance,

and resource accounting. In most of the cases, the physical servers are virtualized

to host and run virtual machines. These VMs are resource abstractions of physical

servers to support easy deployment, multi-tenancy, improved resource utilization

and other services like service migration, backup-recovery and cloning. Cloud VMs

run a variety of services such as web, ftp, and database servers to HPC applica-

tions. The DDoS attackers targeting cloud services may follow a traditional DDoS

attack model, where a command and control (C&C) server directs large number of

bots to send the attack traffic. The consequence of such attack is usually “service

denial” to the legitimate users. There are incidents of using the “DDoS-for-Hire”

services [140] as an inexpensive attack infrastructure to launch the DDoS attack.

In Figure 5.1, we also include cloud originated attacks to show the attackers utiliz-

ing cloud capabilities [39]. Other attack infrastructures include malware infected

computers, phones and servers.

The attack effects and the losses distinguish a cloud targeted DDoS attack from a

DDoS attack targeted at fixed on-premise service. These effects include sustain-

ability/economic losses owing to the auto-scaling, the collateral damages due to

multi-tenancy to non-targets, and the additional costs of attack mitigation [92].

There is a number of attack incidents, in which the victim services face heavy
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economic losses during and after the attack. For most of the small and medium

enterprises (SMEs), a huge cost of DDoS attack mitigation cannot be justified.

If we see the trends of 2015, more than 84% of the reported DDoS attacks were

having peak bandwidth less than 1 Gbps. Similarly, more than 46% of the target

services were web-services offering business and enterprise web-services [2].

A very similar trend is shown by “DDoS for Hire” services, where the maximum

attack bandwidth is around 1 Gbps [140]. At the same time, more than 33% of the

reported DDoS attacks target cloud infrastructure based services. Additionally,

most of the organizations are running less than 50 VMs in public clouds based

on their scale and adoption patterns [141]. These facts provide very important

insight which is useful for designing DDoS mitigation solutions for a majority of

DDoS victims.

As most the DDoS attacks with small attack footprint target SMEs which have

a limited infrastructure based on their requirements and budgets. Therefore, we

require DDoS mitigation solutions that are aware of organizational sustainability.

These solutions should continue to provide safety from the attack related effects

with minimum downtime of the services.

5.2.1 Generic Defense Architecture

DDoS solutions in the research literature and the marketplace mostly follow a

generic solution architecture. Most of the DDoS mitigation methods are traffic

evaluation based processes where the principal aim of the process is to differentiate

attackers and the victim source addresses by a segregation function F(Traffic).

We show a generic DDoS mitigation mechanism in Figure 5.2.

Benign Requests

Attack Requests

Segregation
Function
F(Traffic)

     Drop the requests based on R

     Add/remove rules to ruleset R

   Drop established attack connections

Overall Traffic

Serve Requests

1

2

3

4

Figure 5.2: Generic Architecture of DDoS Defense Mechanisms
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A DDoS mitigation method will have following major activities:

1. Segregation: F(Traffic) is usually an online algorithm which processes the

incoming traffic and filters the traffic based on features such as request and

connection patterns. These features of benign or attack traffic behavior help

in filtering out the attack traffic. The remaining traffic is assumed to be

legitimate traffic and served by the service. There is a large number of such

segregation functions which are given in surveys on DDoS mechanisms [16].

2. Add/Remove rules: When the function F(Traffic) identifies the attackers,

mitigation mechanism will add the attacker source addresses in the block

rule-set R to enforce the “drop” of incoming attack connections. The firewall

services such as iptables and APF [142] offer services to perform the “block”

and “drop” activities.

3. Drop attack requests: Based on the rules maintained by R, the firewall that

is also a part of the segregation function drops the attack requests.

4. Drop established attack connections: The final important activity that is

dependent upon the output of the segregation function (F(Traffic)) would

close all the established connections involving the attacker addresses. This

activity is usually performed by sending a connection close (e.g. reset) packet

using mechanisms offered by TCP.

The above four activities are online and may run simultaneously, especially for

attack instances that are repetitive in nature or with changing attack vectors. We

would like to highlight the fact that most DDoS mitigation solutions based on

some traffic evaluation follow the above generic architecture. We would also like

to emphasize the fact that our solution framework is flexible and open to use any

segregation function F(Traffic).

5.3 DDoS Attack and its Mitigation: A Real Time Exper-

imental Case Study

In this section, we provide a discussion on the results of few interesting attack

experiments launched and targeted to a set of example web services. To conduct

attack experiments, we create attack instances on a service with the configuration

given in Table 5.1. These attack instances help us in answering few important
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questions related to the DDoS attack defense in cloud services. We deal with these

questions later in this section (with a detailed discussion in Section 5.6) with an

effort to find out the answers in our experiments. The infrastructure available to

the web-service is similar to a “C4 Extra Large” instance on Amazon EC2 which

has 4 vCPUs (64 bit), 7.5 GB RAM. We design the attack traffic by following

the classical work in [41]. The web-service under attack is a representative service

of most of the modern web services. This dynamic web service runs an image

conversion program which converts an image from one format to the other. We

are converting a .jpeg image to .gif images for our experiments. As discussed in

Section 5.2, we are not using a particular mitigation mechanism but a generic

representative of many mitigation methods.

Therefore, the DDoS mitigation mechanism or segregation function (R) becomes

a supplement to our discussions. Any other mitigation method can be used in

place of the mechanism used in this work. We are mostly interested in the cost-

resource dynamics while the mitigation approach carries its activity in the presence

of an attack. In all the experiments, we are using a popular open source DDoS

mitigation mechanism, DDoS-Deflate [87]. This tool is a connection count based

filter mechanism working on top of netstat utility to count connections coming

Resource Configuration

Physical Server Dell PowerEdge
Intel(R) Xeon(R)
CPU E5-2670
v3 @ 2.30GHz

Total CPUs 8 Processors
(4 cores each)

Total Memory 96GB

Hypervisor XenServer 6.5

Vicitm/Attacker/Benign OS Ubuntu 14.04

Victim Service Dynamic Web service
Apache2-PHP

Victim Configuration 4CPUs and 8 GB

Attacker Configuration 2 CPUs and 1 GB

Benign Configuration 2 CPUs and 1 GB

Attacker/Benign Application ApacheBench2

Attack Traffic 500 concurrent requests
(Total 5000 requests)

Benign Traffic 1 concurrent request
(Total 100 requests)

Network 1 Gbps

Table 5.1: Attack Setup
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from each sender. We used this tool in its default configuration which flags an

address as an“attacker” if the address tries to establish more than 150 concurrent

connections. Now, we consider the three attack instances and their impact on a

benign user which is accessing the service.

In the first three attack instances (figures 5.3, 5.4, and 5.5), the victim service is

converting a 500KB file on each incoming request. If the service is not under an

attack, each request usually takes a response time of around∼900ms. Figure 5.3

shows the victim service behavior experienced at benign user’s end when there

were resources similar to C4 Extra Large instance.

In all the experiments, we schedule the attack and benign traffic arrival in such

a manner that they start sending the requests at the same time. Additionally,

we made the request timeout values very high (10000s) to see the attack impacts

without missing any responses to the requests. The attack starts its impact on

the service from the very first request and makes the victim service unavailable

instantly. The DDoS mitigation mechanism starts its work with a frequency run

of each 5 seconds. The attack gets detected and reported after∼36 seconds of
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Figure 5.3: Request Response Behavior during a DDoS Attack (Resources on Victim
Service=4vCPU-8GB)
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the launch of the attack. The total downtime of the victim service is 939s. We

repeat the same attack by giving more resources to the victim service (shown in

figures 5.4 and 5.5). We made this “resource increase” in the CPU resources to see

if the attack mitigation gets fastened. “Resource increase” is also motivated by the

recommendations made by many DDoS mitigation mechanisms which advocate to

use resource scaling during the attack [65, 92]. In the 8vCPUs-8GB and 12vCPU-

8GB victim instances, we see a insignificant difference from the perspective of

the attack detection time, the attack reporting time and the total victim service

downtime.

Now, we initiate the same attack with a change in the victim service’s behavior.

Instead of processing a 500KB image, we use the image size of 2MB. This change

is in consonance with the average page size of the web pages across the globe

from a popular survey [143]. A single request to the web server for this image

takes around 4.5s while there is no attack. We performed two experiments with

the image size of 2MB and the attack configuration as shown in Table 5.1. We

show the resultant request graphs in figures 5.6 and 5.7. In these attack cases,

the service behavior changes completely and the response time becomes very high

owing to the image size. Another important factor of these attack instance is

that we were unable to know the time when the mitigation service detects the

attack. Mitigation service reported the attack only when the attack effects were

completely over.
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The resource usage in the “extreme” attack instances (shown in figures 5.6 and 5.7)

was maximum (CPU and memory usage reaching to 100%). Similarly, no service

was available during the whole attack period, till the time when all the attack

effects subsides. On the other hand, in all the three attack instances (figures 5.3,

5.4 and 5.5), we were able to use the victim server for other services, during the

victim service downtime. Another crucial fact to observe, as in many of the attack

instances, the victim server’s other services (e.g. ssh) also becomes unavailable

owing to the intensity of the attack and the heavy resource usage. We observe

that the attack had lead to the resource starvation for all the services on the

machine.

It is also worth highlighting that the resource starvation or the “resource race”

(as pointed in Chapter 3) was so severe that the mitigation service could not even

report the detection of the attack. We configured the mitigation service to write

the time of mitigation activities such as detection and reporting in a file. The

reporting of these activities was very comfortably performed in the initial three

attack instances. However, in the case of Figure 5.6, the mitigation service could

not even get the file in the memory and write into it. We term this attack scenario

as “extreme DDoS” as there is an extreme service denial at the server.

Figure 5.7 shows a repetitive attack instance where we repeated the attack after

the effects of the first attack are over. Recent attack reports show attack incidents

where attacks are repeated in a “stop-start-cycle” with attack repetition after few

minutes to hours [2]. Repetition may come with changes in the attack vector,

attack sources, and the attack size. In the case of repetition, once the service

is recovered from the first attack, we start the next attack after 10 minutes. In

attack repetition, we see a repetition of effects of the “extreme DDoS”. In the

attack repetition cases, the detection time of the attack is not known and service

is only available after the attack effects are completely over. We summarized the

results of all attack instances in Table 5.2. Attack repetition results are given

in Table 5.3. It is visible that in the repeated attack instances are equivalent to

“two” individual extreme DDoS attacks with a large attack cooling down period.

5.4 DDoS Mitigation Requirements: Discussion

Based on the attack instances and the experimental outcomes, we discuss and de-

sign a set of five important requirements related to DDoS attacks on cloud services.

These requirements are equally relevant to the cases of DDoS attacks to “fixed”
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infrastructure services. Based on these observations and design requirements, we

propose our DDoS mitigation framework in the next section.

5.4.1 R1: DDoS Mitigation in the Presence of Attack

DDoS attacks aim to create “denial” of the victim service. Victim service becomes

unavailable due to the lack of resources and more and more incoming requests. In

the presence of the attack both DDoS mitigation method and the victim service

need more resources that are not readily available. The attack mitigation be-

havior is quite visible when we differentiate a “DDoS” attack and an “extreme

DDoS” attack. In DDoS attack (Figure 5.3), the mitigation mechanism was able

to work in the presence of attack and could perform the mitigation activities like

adding rules, dropping the subsequent connection and terminating the established

attack connections while reporting the attack. On the other hand, in the case of

extreme DDoS attack getting the required resources to perform the activity was

very competitive as resources like CPU time and memory were heavily used by

the web service under attack. Therefore, it becomes difficult for the victim service

owner to monitor the state of the victim service. Providing additional support

in the form of fault-tolerance and recovery is also difficult without accessing the

service. Usually, additional support is given by providing additional instances,

other essential resources like memory, and by monitoring the situation manually

for attacks and vulnerabilities. These support and recovery mechanisms always

require information from the victim server, as without knowing the state and gain-

ing the access, no other supports are useful. We need mechanisms which can help

Attack Resources Time of Time of Downtime Downtime No. of Attack
Attack Attack (Victim (Other requests served

Detection Reporting Service) Services) before detection

DDoS 4vCPU-8GB 36s 0m36s 939s 0s 45

DDoS 8vCPU-8GB 39s 0m39s 943s 0s 394

DDoS 12vCPU-8GB 37s 0m37s 941s 0s 452

Extreme DDoS 4vCPU-8GB Unknown 2315s 2294s 2294s 27

Table 5.2: Various Attack Metrics

Attack Time of Time of Downtime Downtime No. of Attack
in Attack Attack (Victim (Other requests served

Repetition Detection Reporting Service) Services) before detection

Attack 1 Unknown 2388s 2290s 2290s 40

Attack 2 Unknown 2345s 2259s 2259s 42

Table 5.3: Attack Repetition Results
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in providing access to other services and resources for mitigation mechanisms even

in the presence of the extreme DDoS attacks.

5.4.2 R2: Victim Service Availability After the Attack Mitigation

Attack mitigation has multiple facets such as attackers identification, blocking,

and clearing established connections. The time taken by each of these activities

is important to estimate the overall downtime and subsequent service availability

time. We see in Table 5.2 that even though the attack was detected at 38s the

service became available only after a much longer time ( 940s). We term this time

period as “Attack Cooling Down Period, TC” which is the total time taken by the

services to recover after the attack detection. There are a number of contributions

available to perform quick DDoS mitigation; however, there are no contributions

towards quantifying or reducing the TC . Our work makes novel contributions in

the direction of minimizing TC .

5.4.3 R3: Availability of Other Services During the Attack

Most administrators report about the unavailability of any access channel (in-

cluding manual terminal access) to the victim service during the attack. Even

cloud-based mitigation methods require a channel to perform the mitigation at

the victim side. In all the extreme attack instances, the interactive services to ac-

cess the victim server were unavailable. We are also interested in the performance

of other critical services in the presence of an attack to the victim web-service.

Performance of these services can be monitored by considering their availability

(or intermittent availability) and the response time. We detail the availability

aspect of other services in Section 5.6.1.

5.4.4 R4: Effect of Scaling on Mitigation and Sustainability/costs

Most of cloud hosting service providers propose to mitigate DDoS attacks by

scaling the service under attack [54] [91] [92]. In DDoS attack cases, we did not

observe significant change in overall downtime, attack detection and reporting

time even with scaled up resources. On the other hand, an interesting statistics

was observed which is related to the the total “attack” requests served during an

onslaught. If we have more and more resources available on the server, then the

attack requests entering the service queue will rise up before they get classified as
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“attack” requests. In this case, the service will try to respond to more and more

attack requests and make the detection difficult due to the “resource race”.

We look at the size of outgoing bandwidth spent on serving the attack requests

which is directly proportional to the no. of attack requests entered into the system.

In any sophisticated attack, if the attack detection does not take place even after a

long time, and if we infuse more and more resources (anticipating a quick detection

and mitigation), the system will have large number of requests resulting in massive

attack mitigation costs. The attack mitigation costs include the cost of additional

resources in terms of additional physical resources or VM instances and the cost

of the mitigation software. These direct costs exclude the other costs such as

business losses and the cost penalties owing to the service downtime. The incoming

bandwidth to a cloud-based service is free up to an extent; however, the more

expensive outgoing bandwidth may result in severe economic losses [63].

There is a high probability of detecting the attack quickly with very large amount

of resources [92]. Though cloud computing utility models follow hourly pricing

model, still, it may reach to a multi-fold sum of plain hosting costs without any

presence of attacks. Costs of losses may become significant if the attacks continue

for a long period or repeated or launched with additional stealth and sophisti-

cation. On the other hand, a secure remote accessibility to the victim machines

is still needed to employ the support mechanisms. In the case of network lay-

er/overlay based detection this might not be entirely true; however, most of the

application layer methods will surely need the access.

5.4.5 R5: Repeated/prolonged Attacks and Variable Attack Vector

The survey reports in [2] suggests that there were many attack incidents, where

the attacks continue for longer duration and bring variations in attack features. At

times, sophisticated attacks try to defeat the mitigation mechanism by stealth [144].

As per the attack reports by Arbor Networks [2], repeated attacks may come in

a “start-stop cycle” after some intervals. We showed a case of repeated attack

instance in Figure 5.7 and Table 5.3. It is very difficult to anticipate the attack

repetition to prepare the defense. The mitigation mechanisms should be able to

circumvent the attacks as quickly as possible in the presence of repetition. Re-

peated attacks may bring variations from the perspective of attack rate, type,

packets, sources, and the attack duration.
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5.5 Proposed Mitigation Framework

In our attack experiments, we observed that an attack with the same “frequency”

and “intensity” may bring completely different manifestations on two different

victims. On a victim running a light web-service it was mere DDoS, where the

mitigation was quick and without many hurdles. On the other hand a web service

that does more “resource utilization (work) per request” gets deteriorated to have

“extreme DDoS” attack. The survey reports [2] also suggests that most of the

reported DDoS attacks have a peak attack bandwidth of∼1 Gbps with most attack

targets as SMEs. These small targets are very cautious about sustainability and

concerned about the cost of the security solutions. Additional resource scaling

should only be used when required in the mitigation. In the following, we propose

a solution having the following objectives. We decide these objectives considering

the design requirements detailed in the Section 5.4.

1. Minimizing the “Attack Cooling Down Period”, TC .

2. Mitigation with the available resources. Acquiring more resource only when

needed.

3. Handling the prolonged attacks and the attack repetitions.

4. Providing quick resources from the available resources for mitigation in the

presence of an attack.

5. Minimizing the attack consequences like bandwidth costs and isolation penal-

ties.

5.5.1 Shrink-Expand Based Service Resizing

“Resource race” formed owing to DDoS attacks is mostly due to the CPU and

memory resources. To achieve the five objectives listed above, we propose a

novel “service resizing” method which provides more resources to DDoS miti-

gation methods in the presence of an attack. Our proposed method frees the

resources by shrinking the “resource intensive” victim web-service to a minimal

set of resources thus reducing the attack surface. We use OS level processor affin-

ity methods [145][146] to affine the services to few or more processors dynamically.

These methods are accessible using the affinity utilities such taskset.
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Figure 5.8: Resizing Services for DDoS Mitigation

We illustrate the service resizing mechanism in Algorithm 4 and a related func-

tion RESIZE() in Algorithm 5. We also show the process of service resizing in

Figure 5.8. This algorithm works by regularly monitoring two important service

parameters, (i) Request response time, Treq and (ii) Number of established con-

nections = Nest. We assume that the victim service has a defined set of service

capacity parameters that show the maximum supported connections as per the

capacity (Nmax) and an acceptable request timeout at the client end (Tto). Our

algorithm checks these parameters at regular intervals. Attack detection time

would decide the time taken by overall attack mitigation time. The proposed al-

gorithm checks if both the parameters are under control using a condition that

tests them (Treq >= Tto && Nest >= Nmax). If this attack condition becomes true

(as the attack is present) in that case the algorithm will immediately go for service

resizing.

In case of the C4 instance, the resources available to the VM are 4 vCPUs and 8GB

of memory. We resize the services utilizing the CPU affinity utilities available for

compute resources (vCPUs). We will assign the minimum resource MinR = 1 vCPU

to the victim web-service and R-MinR=3 vCPUs to the DDoS Mitigation Service

(DDoSMS) and other services. We argue that the resource shrinking confined to the

minimum resources (in this case 1 vCPU) provides free resources to the mitigation

methods. The presence of the extreme attack is an important information to

proceed with the decision of shrinking. Resource shrinking and expansion will

allow the DDoS mitigation service DDoSMS to get the maximum compute power

which is also isolated from the victim service. After resizing, the attack requests

will be limited to just MinR resources, and the DDoSMS will be able to perform

its activities comfortably using the dedicated resources. Once DDoSMS detects the

attack it will perform all the related activities. Once the attack cooling down
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Algorithm 4: Service Resizing Algorithm (Shrink-Expand)

SHRINK-EXPAND;
Data: Request response time = Treq,
Request timeout =Tto,
Number of established connections = Nest,
Maximum connections as per the capacity = Nmax,
Victim service = WebService
DDoS mitigation service = DDoSMS;
Total resources = R,
Minimum resources to run the WebService = MinR,
Result: Attack Mitigation Successful
initialization;
while (Treq < Tto && Nest <= Nmax) do

Nothing
end
RESIZE(WebService, MinR);
RESIZE(DDoSMS, R-MinR);
while (Treq >= Tto && Nest >= Nmax) do

Nothing;
end
RESIZE(WebService, R);
RESIZE(DDoSMS, R);
Show “Attack Mitigation Successful”

Algorithm 5: Resize() function

RESIZE();
Data: Service S
Resources = M ,
Result: Service S’s new affinity is M
initialization;
Find out all the instances of S;
Change affinity of S to M;

period TC passes the algorithm will succeed in mitigation and resize the services

back to their original form (resources R).

To support our claims, we conducted the experiments again with the proposed al-

gorithms (Section 5.6). We also performed additional experiments to demonstrate

how an “operating system level resizing” may help using separate and isolated

resources. As discussed in the Section 5.2, adding rules to the firewall is an impor-

tant activity during the overall DDoS mitigation activity. In the presence of an

attack (similar to Figure 5.3), we add and remove a number of rules to the firewall.

First, we perform this operation on shared resources with the victim web service.

We also perform the same operation on separate resources to see the impact of
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isolation and separation. We show the results of this experiment in Table 5.4. It is

visible that resource sharing with the victim service under attack results in heavy

performance penalties which are as large as four times the actual time taken using

separate resources (e.g. time required to add/remove 500 rules).

No. of Rules
Shared Resources Separate Resources

Addition Deletion Addition Deletion

100 0m0.381s 0m0.547s 0m0.090s 0m0.097s

500 0m2.095s 0m2.069s 0m0.582s 0m0.590s

1000 0m5.479s 0m4.450s 0m1.505s 0m1.614s

5000 0m50.811s 0m49.552s 0m30.045s 0m30.200s

10000 3m5.560s 2m59.750s 2m22.881s 2m22.743s

20000 11m28.439s 11m29.298s 9m50.675s 9m55.632s

Table 5.4: Firewall: Shared Resources vs. Separate Resources

5.5.2 Minimizing Attack Cooling Down Period using TCP Tuning

We saw in Section 5.3 that the attack cooling down period has a major contri-

bution in the overall service downtime. The process of clearing up “established”

attack connections is an important step in the overall mitigation activity. These

established connections may have both the attack connections and the benign

user connections. However, in the extreme attack cases, the downtime results into

successive timeouts for benign users. Usually, the connection removal activity is

performed by identifying the sequence number and sending an RST (e.g. tcpkill).

We propose a novel methods of “TCP tuning” in which we supported the con-

nection removal activity by tuning two important TCP parameters which help in

clearing the established attack connections quickly. However, to maintain the ser-

vice quality, we reset these parameters back to their original values once the attack

downtime is over. These two parameters are, tcp fin-timeout and tcp retries2 [147].

We set their values to “10s” and “1 retry” respectively.

1. tcp fin-timeout: This parameter decides the time for which sockets will be in

state FIN-WAIT-2. It is an important parameter to assist in the early removal of

attack connections as the victim service has already closed the connections.

2. tcp retries2: This parameter decides the number of retries to be performed

before killing an alive connection.

By setting the above parameters, we may lose some benign connections; however,

loosing some benign connections during attack downtime is reasonable. Victim

service looses the benign connections during the extreme attacks. By employing
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the proposed techniques we show that the reduction in overall downtime, also

results in reduction in the loss of benign connections.

5.6 Evaluation and Results

We perform the following attacks to evaluate the effectiveness of proposed service

resizing algorithm and the TCP tuning technique. We show the detailed results

in Figure 5.9, Figure 5.10 and Table 5.5.

1. Extreme DDoS attack with Shrink-Expand and TCP Tuning

2. Extreme DDoS with Shrink-Expand and without TCP Tuning

3. Extreme DDoS without Shrink-Expand and with TCP Tuning

4. Repeated extreme DDoS attack with Shrink-Expand and TCP Tuning

We compared the results of attacks mentioned above (point 1,2 and 3) with the

extreme DDoS attack instance, discussed in Section 5.3 and Figure 5.6. Similarly,

we compare the attack described in point 4 with the attack incident shown in

Figure 5.7. We show the attack outcome without applying any of our proposed

techniques in Figure 5.9a. We use both “Shrink-Expand” and “TCP Tuning”

techniques to support the DDoS mitigation process in Figure 5.9b. The results

show improvement in all the important parameters such as the attack detection

time, the attack reporting time, the downtime for the victim service and the other

services, and the total number of attack requests served by the victim. When we

only use “Shrink-expand”, the attack detection time is increased to 901s that was

845s when both the techniques were employed. We can also see in the Figure 5.9b

about the response time downfall during the downtime for few requests that is

not available in Figure 5.9c. On the other hand, in case of Figure 5.9d, the at-

tack detection time is increased to more than 950s owing to the unavailability of

“Shrink-expand” mechanism. However, “Only TCP Tuning” setting results into

very small improvement (2118s as compared to 2294s in Table 5.5) in downtime of

victim service which signifies the requirement of isolated resources for the DDoS

mitigation service. We see that quick connection release during the attack (us-

ing TCP tuning) support the isolated resource availability in the presence of the

extreme DDoS attacks.
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(d) Extreme DDoS Attack with TCP Tuning and without Shrink-Expand

Figure 5.9: Evaluation and Results of Shrink-Expand and TCP Tuning (D= Time of
Attack Detection and O= Attack Effects Over)

For the cases of repeated attack incidents, we compared the performance of the

proposed techniques (Figure 5.10b) with the cases in which we do not employ

these techniques (Figure 5.10a and Table 5.3). In these attack cases, we achieve a

performance improvement in the mitigation process with a quick attack detection

and attack reporting. The case of repeated attacks one after another (shown

in Table 5.6), show similar performance metrics to the extreme attack cases (in

Table 5.5).
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(b) Attack Repetition with Shrink-Expand and TCP Tuning

Figure 5.10: Evaluation and Results of Shrink-Expand and TCP Tuning in Case of
Repeated Attacks (D1= Attack 1 Detection Time, O1= Attack 1 Effects Over, S=

Start of Attack 2, D2= Attack 2 Detection Time, and O2= Attack 2 Effects Over )

Attack Resources Time of Time of Downtime Downtime No. of Attack
Attack Attack (Victim (Other requests served

Detection Reporting Service) Services) before detection

Extreme 4vCPU-8GB Unknown 2315s 2294s 2294s 27

Extreme 4vCPU-8GB 845s 845s 1326s 1326s 10
(Shrink-Expand and

TCP Tuning)

Extreme 4vCPU-8GB 901s 901s 1278s 1278s 12
(Only Shrink-Expand)

Extreme 4vCPU-8GB 956s 956s 2118s 2118s 34
(Only TCP Tuning)

Table 5.5: Attack Results after Applying Shrink-Expand and TCP Tuning

Attack Time of Time of Downtime Downtime No. of Attack
in Attack Attack (Victim (Other requests served

Repetition Detection Reporting Service) Services) before detection

Attack 1 840s 840s 1234s 1234s 8

Attack 2 851s 851s 1321s 1321s 12

Table 5.6: Attack Repetition Results after Applying Shrink-Expand and TCP Tuning

5.6.1 Discussion and Issues

Extreme DDoS attacks occur owing to the heavy resource sharing at the level of

operating systems. The virtual machines are usually highly isolated as compared

to the processes at the level of an operating system. The proposed techniques

should not be used and are rather not useful where these resource contentions

are not severe. We discuss following important issues about the proposed scheme



Chapter 5. Service Resizing for Quick DDoS Mitigation 130

considering the evaluation results.

Deciding when to resize : The service resizing is only needed when the service

is facing an extreme attack. Anticipating a DDoS attack to take the shape of

extreme attack depends on the service and the amount of efforts it spends on each

request. Resizing may also result in downtime for benign users in the presence

of low rate DDoS attacks. In this case, we would like to adopt step-wise resizing

(e.g. freeing just 1vCPU for the DDoS Mitigation).

Attack requests in the system : The number of attack requests entered into

the system are directly proportional to the time it takes to detect the attack

source. Therefore, attack detection time will grow due to the increased downtime,

increased network bandwidth spent on attack, and the larger attack cooling down

period.

Network bandwidth : An admission control on the attack requests helps in

achieving the network isolation which leads to the minimization of the collateral

damages and the energy consumption.

Attack strength : The service resizing tries to help in one critical aspect which

is the impact of attack strength. If the attack comes with a minimum rate and

achieves the “extreme DDoS”, increasing the attack rate further will not have any

adverse impact on the service under the attack. Resizing will always bring the

victim web service to the MinR resources.

Availability issues : In the cases of extreme DDoS attacks without using the

proposed techniques, victim service faces a huge downtime. With the help of the

“Shrink-Expand” approach and the TCP Tuning technique, the downtime is re-

duced to achieve the service availability. After the attack is over, the services are

resized back to the original resources to maintain the availability.

Attack repetition : There is no direct and obvious way by which we can know

that an attack is going to be repeated in the future. Therefore, after completing

the mitigation requirements through shrinking, we will again expand the resources.

If there is another attack before this expansion than the web service will remain

shrunk with the minimum resources.

Attacks during downtime: There may be other DDoS attacks (may be even

with a changed attack vector) once the service downtime is reached. In this situ-

ation, the attack mitigation will be quick as compared to the case where “Shrink-

Expand” or TCP Tuning are not utilized because of the resource availability. In

case the attack detection or mitigation is not possible within the available re-

sources, the traditional auto-scaling methods may be used to scale the service.

Overhead of resizing : Shrink-Expand overhead will be similar to the overhead

of moving tasks from one CPU to another CPU using context switches used in
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preemption and global load balancing.

Availability of other services : Other services were not completely available

(intermittently available) in the case of resizing of applications. This is mostly due

to heavy memory usage by the victim service under attack. The service resizing at

the level of memory can ensure the availability of other services. However, owing

to a large decrease in downtime, the services were restored quickly.

Resources available : Traditionally, the resource requirement is not among the

primary aims while designing DDoS mitigations solutions. We could see that

giving more resources may not help in few attack instances unless the resource

contention issues get solved. On the other hand, we could spare 3 vCPUs using

resizing which is equivalent to having 75% of C4 Compute resources (4 vCPUs)

without any additional costs.

5.7 Conclusion

DDoS attacks on cloud services see various trends owing to the nature of the

business model supported by cloud computing. We see a conversion of DDoS

attacks’“arms-race” into a “resource-race” owing to the emergence of cloud com-

puting services. There is an immense need of methods to characterize and mitigate

these attacks on cloud environment.

In this chapter, we conduct real attack experiments on cloud services to critically

observe the overall mitigation activity at the much fine grain level, i.e., at the

resource level. DDoS attacks being resource based attack turn into the “extreme

DDoS” attacks for services with high resource utilization per request. We char-

acterized these extreme DDoS attacks and observed that the resource contention

created by the victim service under an attack may also compromise the DDoS

mitigation service itself. Additionally, in these extreme DDoS attacks, availability

after the attack detection is also affected owing to a longer attack cooling down

period.

To circumvent these problems, we proposed a framework to support the overall

mitigation activity. Our supporting framework puts efforts to provide enough

resources such that the mitigation mechanism can perform its task even in the

presence of extreme DDoS attacks. For this purpose, we perform attack experi-

ments and highlight the need for methods to minimize the service downtime after

the attack detection. We proposed a novel supporting framework which employs
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our processor affinity-based service resizing and the TCP tuning technique during

the attack period to serve two important purposes, (i) providing required resources

to mitigation mechanism, and (ii) minimizing the overall downtime.

We perform detailed experiments to show the efficiency and efficacy of our scheme.

The novelty of our scheme opens up multiple directions of research to visualize

the inter-service relationship on an operating system. Additionally, the behavior

of other unrelated services and providing access to attack mitigation techniques

involving resource scaling, are few other directions which are open and relevant.

Isolation and separation of victim services concerning other basic resources such

as memory, disk, and bandwidth, is another direction which may be extended to

support the proposed work.

In the next chapter, we extend our contributions to minimize the resource con-

tention generated owing to the “extreme DDoS” further to guarantee various re-

source to ensure the availability of other critical services.



Chapter 6

Victim Service Containment to

Minimize Internal Collateral

Damages

6.1 Introduction

DDoS attacks are usually considered as a huge pool of resource intensive requests

which overload the target service resources. The target resources are usually the

basic resources such as CPU cycles, memory and swap usage, I/O operations, and

network bandwidth. Additional application level resources include the number of

simultaneous connections, ports, concurrent sessions, application buffers and other

temporary identifiers. All the co-located processes share the server resources to

achieve their goals. A victim web-service, DDoS mitigation service, logging and

scheduling processes are few examples of such processes running on top of an

operating system.

In this chapter, we provide a novel observation related to the operating system

level resource contention which may arise among the co-located services/processes.

We argue that the services co-located with the DDoS victim service (say a web-

server process) may not provide the expected processing and timely outcome due

to the extensive resource contention formed by the incoming DDoS attack. These

co-located services include all the important services such as DDoS mitigation

service, firewall, and internal security policy services (e.g. SELinux). We show this

phenomenon in our experiments and term it as “internal collateral damage” which

severely affects the co-located non-target services. In this chapter, we show that

133
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DDoS Mitigation methods may not provide the expected outcome and delivery

due to this phenomenon.

To approach the “internal collateral damage” problem, we provide an analysis of

DDoS attacks from the perspective of OS level resource managements. Cloud com-

puting infrastructures usually employ virtual machines (VMs) to ensure a strong

performance and resource isolation. However, the internal operating system level

isolation cannot be governed by the isolation provided by the virtual machines.

In this chapter, we argue that resource isolation among co-located services may

provide quick and efficient DDoS mitigation. We propose a novel approach “Victim

Service Containment” to achieve resource isolation of victim web-service resources.

We perform real-time attack experiments to show that the proposed approach

provides resources availability to all the co-located important services and also

helps in minimizing the overall attack effects and costs. We provide attack cases

and model resource requirements to provide solutions based on the resource control

groups [148]. We also extend the discussion to limit DDoS effects to just the target

service by eliminating or minimizing the additional collateral damages.

The rest of the chapter is organized as follows. Section 6.2 provides the details

about DDoS attack protection at various levels of the cloud architecture. Sec-

tion 6.3 provides details of the experiments showing the novel “Internal Collateral

Damages” phenomenon. We provide a detailed resource management model to

showcase the resource contention problem in Section 6.4. Section 6.5 provides the

proposed design to eliminate the internal collateral damages. Section 6.6 provides

the details of the evaluation to show the efficacy of the proposed solution. We also

discuss the features of the proposed solution and various aspects related to DDoS

mitigation in Section 6.2. We provide conclusions in Section 6.7.

6.2 DDoS Attack and Protection in the Cloud

A command and control (C & C) attack server coordinates the DDoS attacks

with the help of a large group of malware infected network of computers. These

computers are also known as “bots”. The modern cloud infrastructure can also

be used as a attack infrastructure with the emergence of pay-as-you-go “DDoS for

hire” services. The impact of these attacks depend upon various attack dimen-

sions. These attack dimensions include attack frequency, attack duration, type

of attack packets, number of sources, target victim services, etc. On the other
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hand, the primary objective of the victim web-service is to remain available to

serve the customers. In Figure 6.1, we consider three important cloud architec-

ture junctions, where the DDoS detection and mitigation mechanisms are usually

employed. These three junctions are cloud network edge, host physical server’s

virtualized network and the victim VM’s own network and application.

VM

VM

VM

Attackers

Cloud
Computing 
InfrastructureVM

VM

VM

Victim Service 
      Owner

Genuine Service
          User 

Victim 
   VM

1

2

3

Figure 6.1: DDoS attacks targeted at cloud services

Most of the DDoS attack detection mechanisms work on top of the traffic filters,

access pattern anomaly detections or other detection mechanisms based on attack

related behaviors. There are many recent detection methods which in addition

to relying on traffic filters also utilize the cloud resource management and auto

scaling capabilities [92] [46]. We propose the following essential requirements for

effective DDoS mitigation in victim cloud services:

R1. Quick attack detection and mitigation with minimum downtime

R2. Sustainability/budget aware mitigation

R3. Minimum collateral damages

Requirements R1 and R2 are quite important from the perspective of the mit-

igation costs and the availability of resources. The victims’ organizations are

much more concerned about the costs of DDoS mitigation solutions as the miti-

gation costs directly affect their IT and security budgets. On the other hand, we

can achieve the minimization of the service downtime and the subsequent savings

through quick DDoS mitigation. The requirement R3 is important from the per-

spective of minimizing the effects to non-targets and attack spread. We showed

in Chapter 3 that DDoS attacks in cloud computing may also affect the co-hosted
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VMs and the associated services run by these VMs. We also discussed that the

effective mitigation can be achieved by minimizing the overall attack effects using

stronger isolation and victim service resource separation.

We extend the notion of resource isolation from hypervisor level to individual VM

and OS level. Each server operating system usually runs a number of utilities to

support the overall working of the victims’ service in addition to its protection,

maintenance and recovery. We show a typical set of services provided by each

server operating system in Figure 6.2. On a server OS, these co-located services

support the main service such as a web-service by offering services related to

the service health, backup, and monitoring. None of the co-located services are

DDoS 
Mitigation
Service

Firewall Remote 
Access 

Victim
Service

Update 
Services

Logging
Access
Control 

Backup
Anti
Virus

Figure 6.2: Various essential services on a typical server operating system

directly accessible by a web-service user or an attacker. The VM owner accesses

required services using a “remote access” service. These services include update

services for server software, security software patches, firewall, DDoS mitigation

service, backup services, logging services, and all the other services available on

the operating system. Many of these services are critical to the system availability,

security, and fault tolerance. Ideally, these services should always be available and

remain unaffected by the DDoS attacks on victims’ web-service. The availability

of these co-located services even during the DDoS attack period would assist in

the following activities:

I. System state awareness: The administrator can identify the real cause of

web-service unavailability with the help of other services. If the services such as
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remote access becomes unresponsive and unavailable, the administrator has no

other methods available to access the VM. Additionally, if the services such as

DDoS mitigation service is unavailable owing to heavy resource usage by victim’s

web-service, we may observe unwanted delay in the overall mitigation activity

leading to increased losses. Therefore, the system state awareness is one of the

most important and primary requirement to achieve any mitigation objectives.

II. Helping the critical situation: The co-located services also help in the

critical state formed by the attack or other faults. The availability of such co-

located services helps in providing additional assistance such as fault tolerance

by backup servers, additional resources using auto scaling, VM migration, load

balancing, and application backups. At times, the mitigation process may also

require manual intervention to recover from the attack. There are many recent

DDoS attacks, known as “Smoke-screening attacks” [149] that launch other severe

attacks such as “data theft” behind the massive DDoS attacks. The success of

smoke-screening attacks lies in the heavy consumption of victim resources during

the attack. These consumed resources may include the computing resources as

well as manpower resources to help the attack mitigation.

The above requirements may also help in minimizing the smoke-screening attacks if

other services looking after data breaches remain available during the DDoS attack

and react to the situation. For example, assume DDoS attack A1 is targeting

a service s1 running on a VM. Service s2 is there to take care of some other

important attacks such as data breaches. There is a smoke-screening attack A2

that bypasses the service s2 on the same VM. As the service s2 is no more available

owing to the internal collateral damages. In this case, the attack A2 might become

successful as the service s2 is unavailable for the required protection. We discuss

the resource contention scenario further in Section 6.4.

6.3 DDoS Attack Mitigation: A Closer Look

In this section, we extend our discussion on DDoS attack mitigation and its re-

source requirements. To quantify this, we perform experiments to critically analyze

the attack launch and subsequent attack mitigation. We show the experimental

setup in Figure 6.3 and experimental configuration settings in Table 6.1. In the

experimental setup, we have a victim VM hosted on one physical server and an

attack VM hosted on another physical server. The main motivation to conduct

this experimental attack study is to see the effects of DDoS attacks on important
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and critically required co-located services. These co-located services are running

on victim operating system in the form of processes. We prepare the target service

by giving resources equivalent to an Amazon EC2 “C4 Extra Large” instance [150].

Our target services is representative service of most of the dynamic web services.

This dynamic web service converts images of specified size from JPEG format to

PNG format. For our experiment, we are using the input image of size of 1 MB.

We used other image sizes to perform detailed comparison with the proposed solu-

tion in Section 6.5. These image sizes are representative sample of websites across

the globe [143].

Victim VM Host Server

DMS

SSHd

Others

Victim

Victim 
  VM

Attack 
requests 

Genuine 
request
response 

      SSH login 
requests-response
           test  

Victim: Web service under attack                   SSHd: Daemon handeling SSH login requests
DMS: DDoS Mitigation Service                      Others: Other processes/services

Attacker

Attack
  VM

Attack Server

Figure 6.3: Experimental setup for DDoS attack analysis

Component/Resource Configuration Settings

Victim host physical server Dell PowerEdge R630, Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz

Resources on physical server 8 processors (4 cores each), total memory 96GB

Virtual Machine Monitor/Hypervisor XenServer Version 6.5

Victim, attacker, benign operating systems Ubuntu Version 14.04

Victim service Image conversion web service

Victim VM configuration Processors 4 vCPUs and 8 GB Memory

Attacker VM configuration Processors 2 vCPUs and 4 GB Memory

Benign VM configuration Processors 2 vCPUs and 4 GB Memory

Attacker and benign traffic launch application ApacheBench2

Attack traffic rate 500 concurrent requests (for a total of 5000 requests)

Benign traffic rate 1 concurrent request (for a total of 100 requests)

Network 1Gbps

Other services for availability test SSH to have remote login-logout one after another during attack period

Table 6.1: Configuration settings for the attack experiments

To see the impact on the availability of other services inside the victim VM, we

use a DDoS mitigation service to detect and report the attack. Instead of using

any sophisticated DDoS mitigation service, we use DDoS-Deflate [87] which is a

connection count based attack detection and filtering service. We use this tool with

its default settings. These settings allow this tool to identify attackers who are

establishing more than 150 connections with the server. The reason behind using
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this simple detection mechanism is to maintain the applicability of our experiments

to any other tool. Therefore, any other DDoS mitigation service can also be used

in place of DDoS-Deflate. We performed this attack experiment to closely observe

the attack effects such as the attack detection time, overall service downtime and

effects on other services.

Instead of sending attack requests from large number of sources, we are sending

attack requests from a single source. This enables us to see invariability of attack

detection time values reported in the experiments. In case of multiple sources the

attack detection times vary depending upon the connection establishment times

and share of established connections by each source. We consider “SSH” service as

an important co-located service for impact evaluation. SSH is also an important

utility for remote monitoring and support system for the administrator. In SSH

test, the VM owner sends a SSH session request to the victim server and if the

session is granted, it logs out from the session immediately. This test is done for

500 SSH login-logout cycles and starts at the same time of the attack launch.

We tried to keep the attack scenario real by using a dynamic service attacked by

a DDoS attack and the victim owner trying to access the victim’s machine using

SSH service. To check the availability of the target machine, a genuine user sends a

request, one after another to the victim’s service for a total of 100 requests during

the attack period. We launch the DDoS attack on the victim’s service by sending

500 concurrent attack requests. We create the attack traffic on the basis of the

requirements given in [41]. The attack traffic, genuine traffic and SSH traffic are

sent simultaneously to the victim’s VM. We show the attack results and associated

quantified metrics in Table 6.2. In Figure 6.4a, we illustrate the response time

behavior of the victim web service. We show the SSH login-logout completion time

in Figure 6.4b. The DDoS mitigation technique could detect the attack source

Attack Victim Service SSH Maximum Minimum Average
Reporting Unavailability Unavailability Response Response Response
Time Time Time Time (SSH) Time (SSH) Time (SSH)

39s 945s 517s 186.830s 0.129s 1.226s

Table 6.2: Various Metrics: DDoS attack experimental study

based on its policies after 39s of the attack being launched. Subsequently, the

victim service becomes unavailable for a period of 945s. The graph in Figure 6.4a

represents the request-response behavior at the benign senders’ end. The benign

sender sends a total of 100 requests with one concurrent request at a time. These

graphs show the times when each request (1st request to 100th request) is served one
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Figure 6.4: Behavior of co-located services during attack

after another. The X-axis in Figure 6.4a shows the “Request time” at which the

benign sender sends the request. The DDoS mitigation service performs following

major activities during the attack period:

1. Count based filtering based on the number of connections

2. Adding rules to the firewall to reject the attack traffic involving the detected

sources

3. Cleaning the established connections involving detected attack sources

After detecting the attack, the mitigation service adds rules to the firewall and

drops all the tcp connections involving the attackers. The SSH service was not

available for more than 500s which includes few intermittent responses near average

response time (∼ 1s) (also see downtime spikes in Figure 6.4b). This gives a clear

indication of unwanted effects on the other important services. In addition to all

these observations, the victims’ VM was not responsive on the XenCenter interface

that makes the service unavailable even for direct interactions in the data center.

We attribute resource contention among services as the major reason behind such

attack effects.

We term these attack effects as “internal collateral damages”. These services

are co-located at the level of operating system and the fair sharing provided by

CPU or device scheduler does not provide the required resource isolation among

these services. The severity of resource race created by the DDoS attack is such

that, even the VM interface is not available. We attribute the observed resource

contention to the most basic resources such as CPU, memory, network and disk

resources which are required by all the services, though in different proportions

at different times. In Section 6.4, we model the operating system level service

requirements which will be used in the design of our proposed solution.
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6.4 DDoS Attack Mitigation: Modeling OS level require-

ments

In this section, we provide an abstraction of operating system level resource race

and contention formed among the running OS services. We also elaborate the

resource exhaustion states and the resulting resource contention. This discussion

is also applicable to the traditional operating systems that are not running on

top of virtual machines/clouds. A cloud infrastructure runs a number of physical

servers (Pi, i = 0, 1, ... n). These servers host various services (Sk, k = 0, 1, ...

m). A service Sk in turn runs various VM instances (Ij, j =0, 1, ... p) to host and

manage the cloud based services. A Victim’s VM which is affected by a DDoS

attack would result into a stressing condition of one or more of its resources. The

exhaustive set of these bottleneck resources include CPU, memory, swap, disk I/O

operations, bandwidth, and number of connections/ports.

The DDoS attacks may also choose to exploit any general and weak target resource

or utility which is an application level resource such as a temporary buffer created

by a programmer. This buffer may be exhausted by some specific requests or a

higher frequency of requests even in the presence of availability of other ample

resources. Each physical server has following shared resources: CPU, memory,

bandwidth, and disk. We represent these resources using C for CPU, M for memory,

B for bandwidth, and D for disk. Any other resource of interest is represented by

O for other. We define a function Resources(entity) which provides the available

resources of an entity such as physical server and a virtual server.

Resources(Pi) =< Ci,Mi, Di, Bi, Oi > . (6.1)

Resources available on each VM instance is a subset of the resources available on

physical server.

Resources(Ij) =< Cj,Mj, Dj, Bj, Oj > . (6.2)

The type of virtualization and resource sharing techniques decide the actual re-

source allocation to VMs. To have a generic view, the allocation of the CPU (C)

resources are usually represented as number of processors. In case, the VMs share

processors, the C resource can represent the CPU shares or the CPU time. On

the other hand, resource such as memory (M) and disk (D) are allocated among

the hosted VM instances with clear limits on the size. Bandwidth (B) is the total
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throughput on NIC which is limited and shared using network virtualization tech-

niques. The requirements of the hosted instances can only be met, if the sum of

individual instance requirements are less than or equal to the resources available

on the host physical server. If there are two VM instances I1 and I2 to be hosted

on Pi, following Equation 6.3 must hold:

Resources(Pi) ≥
2∑

j=1

Resources(Ij) + Resources(H). (6.3)

The Resources(H) represents the requirements of the host operating system H

on a physical server. Equation 6.3 should also hold true for individual resources

such as the sum of the individual resource requirements (for example CPUs, C)

of each instance should be less than or equal to the individual instance’s CPU

requirements. If this equation does not hold true, the auto-scaling algorithm will

be triggered to find and provide more resources. These resources can be acquired

using migration or creating more VM instances at other physical servers. After

observing the effects of DDoS attack cases (Section 6.3), we estimate that the

resource race taking place at the level of individual processes should also be taken

into account. On the other hand, each VM Instance Ij runs a complete operating

system to support the service. The two most important primitives at the level of

operating system are processes and resources. These processes include the system

processes, daemons, and other application processes. We represent these processes

or services by pl, l = 0, 1,...q. Among these processes, victim service (pv), DDoS

mitigation service (pd) and other set of processes po, are of primary interest to our

discussion. Let us take an example of a DDoS attack which impacts the resources

such as CPU, memory, and a number of network connections. At any given point

in time during the attack, the resources available with the victim process under

attack are:

Resources(pv) =< Cv,Mv, Dv, Bv, Ov > . (6.4)

The above resource requirement does not show resources occupied by the service

at all times. It just represents the need of a service during a given point in time.

During the attack, the victim’s service will be stressing one or more resources

such as CPU, memory, and connections to their maximum. At the same time,

the VM owner would want the DDoS mitigation service to act on the situation

and perform the detection. Similarly, the other important services such as remote

access (ssh) or other linked services such as firewall need to act on time. The
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resource requirement of DDoS Mitigation Service (pd) and other important set of

processes po during the attack period would be:

Resources(pd) =< Cd,Md, Dd, Bd, Od > . (6.5)

and

Resources(po) =< Co,Mo, Do, Bo, Oo > . (6.6)

We can also write

Resources(Ij) ≥ Resources(pv) + Resources(pd) + Resources(po). (6.7)

If we rewrite Equation 6.7 for individual resources during the attack duration t.

Cj ≥ Cv + Cd + Co. (6.8)

Mj ≥Mv + Md + Mo. (6.9)

Dj ≥ Dv + Dd + Do. (6.10)

Bj ≥ Bv + Bd + Bo. (6.11)

Oj ≥ Ov + Od + Oo. (6.12)

As the resources such as memory or CPU are usually not dedicated in their en-

tirety to a single process (unless it is pinned). Not fulfilling one or more of the

above equations, is the real cause of delayed action by DDoS mitigation (pd) and

unavailability of other services (po) during the attack. In addition, the resource

consumption behavior of a DDoS mitigation service is also multi-resource (using

CPU, memory, disk, and network). Therefore, the resource contention occurs

among these services. From the CPU scheduling perspective, it appears that the

resources will be fairly given to each process based on their priority, however the

multi-resource and interlinked resource requirements show the internal collateral
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damages.

The major reason for adoption of virtualization technology as an enabler for cloud

computing is owing to the features such as performance isolation among VMs and

multi-tenancy. However, virtualization of resources has no major role to play,

while the internal performance isolation among processes is considered. The op-

erating system scheduling strategies and resource management activities remains

mostly same for operating systems running on both virtual machines and physical

machines.

Cloud platforms use the auto-scaling algorithms to govern and facilitate the on-

demand dynamic resource allocation in terms of horizontal and vertical scaling.

These algorithms monitor various resource usage metrics and based on the resource

triggers, they provide resources or withdraw the idle resources. Giving more re-

sources to solve the problem of internal collateral damages among processes, would

not be suitable for the following reasons:

I. Auto-scaling algorithms operate as cloud-level or hypervisor-level resource

allocation primitives. The resource requirements of individual processes in-

side the VM, will not be visible to the auto-scaling methods. Additionally,

auto-scaling algorithms add additional resources on top of a VM and not to

individual processes or services running inside a VM.

II. Many of the existing solutions [92] advocate the application resource scaling

to absorb the DDoS attack. However, the resource scaling may not neces-

sarily help to mitigate quickly and provide timely resources to pd and po.

The additional resources and instances will also face a similar situation as

the victim’s service under attack and will also overload the added resources.

The additional resource can surely become useful for the mitigation processes

if the pd process can use it readily.

DDoS attack attributes such as attack duration and attack scale also decide the

attack effects and resultant impact on the victim service. Based on our experi-

mental study and the above discussions, below are the major requirements for an

effective solution to internal collateral damage.

I. Strong Internal Isolation: An effective solution should provide a strong

resource and performance isolation among processes. Performance isolation

should be guaranteed for processes that are used in ensuring the availability
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and attack mitigation capabilities in a victim’s server. Strong isolation can

also be ensured by having resource usage limits.

II. Resource Availability: Resource requirements to maintain availability is

directly related to the requirement I above on strong internal isolation. How-

ever, the availability of required resources should be ascertained for each pro-

cess. Capacity planning and server consolidation areas have a large number of

approaches [135] dealing with the actual resource requirements of co-located

virtualized servers. Similar solutions can be extended to ensure the timely

resource availability to DDoS mitigation and other related services.

III. Service Performance: The victim service performance for benign users

should not be affected owing to the solution targeting the above requirements.

This metric is important as the service quality should not be hampered by

the implementations for isolation and availability.

We will use these requirements as the basis of our proposed solution design in the

next section.

6.5 Victim Service Containment: Proposed Solution

Based on the effective solution requirements discussed in the last section, we pro-

pose a novel solution using the resource containment of the victim process groups at

the level of operating system. The primary idea of this solution lies in ascertaining

the required resource share for each service. However, in the presence of DDoS at-

tacks, the real requirement is to ascertain and fix the minimum resources required

for services (except victim service), to remain available and produce the required

and timely outcome. The resource contention situation arising out of DDoS at-

tacks is the major cause behind the unavailability. Operating system schedulers

try to achieve these requirements by employing various scheduling primitives and

access primitives such as process groups. However, they do not provide the strong

guarantee about the control against situations such as “internal collateral dam-

ages”. The proposed algorithm is a proactive approach for resource calculation.

This algorithm evaluates the resource requirements of all the services (except the

victim service), while the service is not under attack. Resource containment limit

is defined by keeping the resource requirements of all the services (except victim

service) as minimum required resources for the rest of the system. The remain-

ing resources become the upper limit or resource containment limit for the victim
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web-service. The proposed method “Victim Service Containment” is detailed in

Algorithm 6. We describe our proposed solution using Figure 6.5. We show a

rectangle to represent all the available resources on the virtual machine. In Fig-

ure 6.5(i), while the status is “no attack presence”, there are ample resources

available on the virtual machine.

p

(i) (ii) (iii) (iv)

v
p
op

v
p
o

p
v

p
o p

v
p
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Figure 6.5: Victim Service Containment (V is victim service and O is all other ser-
vices), (i) Normal operation, (ii) During DDoS attack, (iii) After “Victim Service Con-
tainment” during DDoS attack, and (iv) No containment for other services during

normal operations

Algorithm 6: Victim Service Containment

Victim Service Containment;
Data: Total available resources Resources(Ij) =< Cj ,Mj , Dj , Bj , Oj >
Victim Service pv
Result: Resource limit, L for victim service (pv)
initialization;
Show L = Resources(Ij)−ResourcesNoAttack(Ij);
end

During a DDoS attack, the resource usage reaches its maximum for one or more

resources and the victim’s service occupies or uses most of the resources and hence

the other services do not get the necessary resources in a timely manner. Once the

resource containment method is applied, we define a maximum limit of resource

usage for the victim’s service which it will not be allowed to exceed (dashed line in

Figure 6.5(iii)). It is important to note that this limit has no effects on the other

services and they may still use the available resources (Figure 6.5(iv)).

For our DDoS attack experiments, we evaluated resource requirements for CPU,

memory, disk and network bandwidth. Similarly, the proposed algorithm 6, can

be extended to evaluate the resource requirements for other fine grain resources.

The most important phase of the algorithm is to identify the resource require-

ments of all the services prior to a real DDoS attack. Server consolidation strate-

gies in cloud computing provide optimization algorithms to allocate resource to

VMs. Our major concern is to provide performance isolation and resource avail-

ability inside a VM, therefore, we calculate the resource requirements (limit L =

Resources(Ij) − ResourcesNoAttack(Ij) in the algorithm) taking these aspects

into consideration. Each resource can be controlled and shared using multiple
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dimensions. For example, a CPU can be distributed using “shares” and also as

dedicated CPUs. Similarly a disk can be divided from the perspective of disk size

based distribution as well as maximum read and write speed shares. We take the

specific example of the VM under consideration in the attack experiment shown

in Section 6.3. We also show the specific resource limits, we enforced.

I. CPU: The CPU requirements of the complete operating system are around

5%-20% for each of the four CPUs while there is no attack. This sums to around

20%-80% out of the total 400% covering all the four processors which equates

to one processor out of four processors for other services. Therefore, to have a

stronger isolation, we give a limit of 3 processors to the victim’s service so that

one processor is always available for all the other services.

II. Memory: The memory limit for the victim’s service is defined by keeping the

minimum memory usage by the operating system, when there is no attack. We did

not include the requirements of victim web-service into consideration while calcu-

lating the memory requirements of the complete system. The total VM memory

is 8GB. The memory usage while there is no attack is 1.6 - 2GB which gives an

overall memory limit of 6GB.

III. Disk: We controlled the disk read and write speeds for the victim’s service.

The maximum read and write speeds of the storage disks using IO benchmarks

is around 75-80 MBps. Looking at the memory occupancy (75%), we decided to

limit the speeds to 60 MBps which is 75% of the maximum read and write speed

of 80 MBps.

IV. Network: Network traffic can only be prioritized using the control group

facilities. Therefore, we gave top priority to all the other traffic and the next

priority to victim’s service’ traffic.

Applying the proposed algorithm also changes the the overall service performance.

Once the limit L is defined by the victim service containment algorithm, the

resource limit can be enforced in the following two ways.

A. Limiting from the available resources: We used this approach to limit the

available resources in the resource limits we calculated previously. One disadvan-

tage of this approach is that it may limit the performance of the victim’s service

owing to the resource constraints which restricts to lower amounts of resources as

compared to the earlier limit (or no limit) for all the resources.
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B. Scale to get more resources: In this case, the resources required for the

whole operating system including all the services for attack free cases can be added

over and above the VM resources. The victim’s web service can be limited to the

resources which were already available. The additionally scaled resources (on top)

can be used by the other services as a minimum resource guarantee. This will

provide both the advantage of victim’s service performance as well as resource

containment. The additional cost of added resources is a factor while opting for

this approach. We also showcase the effects of scaled resources in Section 6.6.1.

Note the proposed solution as initially described only applies when one service

is attacked. We address the situation where other services are also attacked in

Section 6.6.2.

6.6 Results and Discussion

We evaluate the “Victim Service Containment” algorithm by observing various

metrics related to the victim service and the co-located services during the DDoS

attack. We employed the experimental setup as shown in Figure 6.3. Our major

focus is towards DDoS mitigation service and SSH service. To achieve this, we first

launch the attacks against target VM, while there is no victim service containment

in place. We use three different services (500KB, 1MB and 2MB image size for

conversion) to see these effects. After this, we employed our proposed approach

(algorithm 6) to apply the resource containment on victim’s web-service. We show

the collective results of these attack experiments in Table 6.3 and Table 6.4.

Target Attack Attack Service Service SSH SSH
Web Service Reporting Reporting Down Down Down Down
Type Time Time Time Time Time Time

(No VSC) (With VSC) (No VSC) (With VSC) (No VSC) (With VSC)

500KB 37s 40s 943s 346s 0s 0s

1MB 39s 38s 945s 375s 517s 0s

2MB 2040s 41s 2383s 2801s 1959s 0s

Table 6.3: Various performance metrics: before and after the “Victim Service Con-
tainment (VSC)”

We show the victim’s service response time and SSH response time in Figure 6.6

and Figure 6.7 respectively. We discuss the results and observations with respect

to important evaluation metrics in the following:
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Target Max. Max. Min. Min. Avg. Avg. VM VM
Service Response Response Response Response Response Response Interface Interface
Type Time Time Time Time Time Time

No VSC With VSC No VSC With VSC No VSC With VSC No VSC With VSC

500KB 0.363s 0.267s 0.127s 0.131s 0.148s 0.152s Not available Available

1MB 186.8s 0.284s 0.129s 0.130s 1.226s 0.149s Not available Available

2MB 765.2s 0.298s 0.129s 0.134s 4s 0.154s Not available Available

Table 6.4: SSH performance: before and after the “Victim Service Containment
(VSC)”
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Figure 6.6: Service response time during attack before and after containment

A. DDoS mitigation service performance: To see the performance of DDoS

mitigation service, we monitor the attack reporting time and victim service avail-

ability time. Attack reporting time is when the DDoS mitigation service detects

the attacker IPs and adds them to the firewall. After the containment, the attack
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Figure 6.7: SSH response time during attack before and after containment

reporting time in these attack cases should be small as the detection criteria is im-

mediately fulfilled by the number of connection requests launched by the attacker.

However, the attack reporting time is quite high (2040s) for page size 2MB which

gives a clear indication of resource contention faced by DDoS mitigation service

(Figure 6.6e and Figure 6.6f). As the amount of resource contention generated

by victim’s service, serving image conversion for 500KB and 1MB is not signifi-

cant, the attack reporting time for these services is only around 40s. The victim’s

service availability time is greatly minimized in the cases of victim service serv-

ing 500KB and 1MB conversions (figures 6.6a, 6.6b, 6.6c and 6.6d). However, for

2MB image size, the victim’s web service is unavailable for an additional period as

compared to the case of “no service containment”. This is due to the fact that the

resource limits imposed on victim’s service provides limited amount of resources
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compared to the resources available in the case of “no service containment”. This

issue can be resolved by selecting for approach “Scale to get more resources”. We

also performed the attack experiments using the scaled resources and detailed the

results in next subsection 6.6.1. On the other hand, the victim’s service becomes

available after the attack reporting time by terminating the attack connections in

all the three cases. Additionally, the victim service availability time for the cases

of 500KB and 1MB image conversion services has reduced from 943s to just 345s

after the service containment.

B. SSH service performance: Our proposed solution solved the issues with

the availability of co-located services during the attack period. We show the

availability aspect by the performance of SSH service “login-logout” response time

in Figure 6.7. We show the average, minimum and maximum response times

observed for the SSH service in Table 6.4. In the extreme resource contention

case (2MB image conversion service), the SSH service was not available for more

than 1959s out of the total downtime of 2383s. Similarly, for the case of 1MB

service, the SSH unavailability time is around 517s. On the other hand, the SSH

unavailability time for attack case on 500KB image service is 0s which means that

the SSH services was available throughout the attack period. However, the SSH

service has been affected in having peaks in the response time during start of

the attacks (Figure 6.7a). These peaks were resolved up to a certain extent after

service containment (Figure 6.7b).

C. Availability of VM interface: We also use the responsiveness of the VM

interface on the server side (XenCenter Interface) as an important criteria during

the attack period. As the attack mitigation often requires remote as well as manual

intervention to the victim’s computer to see the real cause of the situation. We

showed the availability/responsiveness of the VM interface during various attack

cases in Table 6.4. We observed that the availability issue of VM interface is

completely solved by the resource limits posed by the victim’s service containment.

6.6.1 Scale to get more resources

We observed that the resource containment approach adversely affects a much

important performance metric (service downtime) in the case of 2MB image size

(Figure 6.6f and Table 6.3). In this section, we show the results of additional

experiment to see the effects of “scaled resources”. These scaled resources are

equivalent to the resources deducted or removed from the victim service during
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the resource containment mechanism. Now, we assign five vCPUs to the victim

VM with a containment limit of four vCPUs to the victim web service process

groups. Additionally, we assign 10 GB of main memory to the victim VM with a

containment limit of 8GB to the victim web service process groups. We remove

the containment limits on disk read and write speeds and maintain the network

priority as configured in the containment. By adding the resources on top, we

equated the victim VM’s resources to what it already had before the victim ser-

vice containment. We show the attack experiment results in Figure 6.8. We also

present a detailed comparison of various performance metrics in all the three con-

figurations in Table 6.5. These three configuration cases are related the service

performance before the containment, with the containment, and with the scaled

resources and containment. We observe that the additional resources help in re-

solving the adverse effect on the overall service downtime. The service downtime

is decreased from 2801s to 1920s that is even better than the service downtime

before (2383s). The other performance metrics are quite similar to the cases of

victim service containment alone (Table 6.5).

Performance Metric Before With VSC With VSC and Scaled Resources

Attack Reporting Time 2040s 41s 41s

Service Downtime 2383s 2801s 1920s

SSH Downtime 1959s 0s 0s

Maximum Response Time (SSH) 765.2s 0.298s 0.368s

Minimum Response Time (SSH) 0.129s 0.134s 0.147s

Average Response Time (SSH) 4s 0.154s 0.164s

VM Interface Availability Not available Available Available

Table 6.5: Various performance metrics before and after VSC and scaled resources

6.6.2 Other important aspects

Now, we discuss various aspects related to the DDoS mitigation process in con-

nection with the proposed service containment algorithm.

I. Disadvantages of resource limits: The resource limits we put during con-

tainment, might not be the most appropriate limit for the different applications.

The proposed algorithm is flexible to use with different requirements for differ-

ent applications, however, the resource limit will be independent of the incoming

attack features. One obvious disadvantage of the containment is on the perfor-

mance of the victim’s service, if the resource limit is applied on the available

resources. However, this can be easily resolved by having additional resources on

top of the VM resources already available with additional cost (also discussed in

Section6scaledresources). On the other hand, all the other co-located services have
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Figure 6.8: Service/SSH response time during attack before and after scaled resources

no resource limits as they can use any amount of the available resources. The re-

source limits for other process groups can also be decided, if there are incidents of

resource contention by them. Previous overhead studies show that there is a small

overhead of memory containment limits owing to the fine grain monitoring [151].

II. Cloud level collateral damages: The collateral damages shown in Chap-

ter 3 are due to the resource race and contention among co-hosted VMs. Most

of the resource contentions are owing to the shared or virtualized nature of the

resources. We showed that the elimination or minimization of resource contention

at operating system level, may also help in achieving positive results outside the

VM. Additionally, we provided the attack cases, where the resource contention is

extreme for CPU, memory and disk resources. In these attack cases, resolving

internal collateral damages, may lead to the minimization or elimination of the

collateral damages among the co-hosted VMs.
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III. Victim separation: The collateral damages due to the DDoS attacks are also

extended owing to the victim’s service running multiple VM instances of the same

service on different servers using load balancing. Victim’s VM separation may give

the desired results of minimization of collateral damages owing to the removal of

resource contention among VMs. However, in the proposed approach, the effects

are minimized to the victim’s VM itself. We extended the victim separation and

minimized the effects to the other services.

IV. Fixed Infrastructure Protection: The proposed solution also applies to

services not running on virtualized or cloud platforms. Resource containment can

be directly applied to the host operating system to perform quick DDoS mitigation

and ascertain the availability of all the other services.

V. Proactive vs. Reactive Implementation: In the proposed victim’s service

containment approach, we used the proactive implementation, where the resource

containment limits are calculated and imposed on the victim’s service. Hence,

the method “Victim Service Containment” is enabled all the time. Triggering the

“Victim Service Containment” approach just during the attack (reactive imple-

mentation) can also be used if the resource limits are already calculated for other

services. However, applying containment limits while the resource in consideration

(such as memory) is already at the maximum utilization is difficult to achieve as

it requires the usable memory for the victim process to be shrunk. Therefore, we

used a proactive approach in our approach.

VI. Smoke-screening attacks: There are multiple recent incidents of “smoke-

screening attacks”, where DDoS attacks are used to bring down the organizational

resources. Behind the scene, other severe cyber attacks are launched on the vic-

tim services. We relate the problem of “internal collateral damages” with these

attacks, as in the presence of DDoS attacks almost all the resources are used up to

their maximum limits and create a contention for services. We have firewall and

other access control primitives such as SELinux to stop and report these attacks.

However, these services may not be available and may not give the desired and

timely outcome owing to the heavy resource contention. The proposed resource

containment methods take care of these attacks, by ascertaining the availability

of services, which have capabilities to stop/detect the real attack underneath the

DDoS attack.

VII. Contention formed by other services: In the proposed approach, we

aimed at the resource containment of the victim’s service. However, there might

be instances where the resource contention is developed by the services other than
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the victim’s service. This might be due to the faulty code, resources or a real

attack on the other co-located service. There are also recent attack incidents,

where DDoS attacks are targeted at DDoS detection tools [152] to slowdown the

mitigation. In this case, multiple resource containment groups may be formed to

help in this situation by anticipating the possible target services.

6.7 Conclusion

In this chapter, we show a novel resource contention phenomenon, “internal col-

lateral damage” which is observed in the presence of DDoS attacks on the cloud

services. Our real-time attack experiments demonstrate that these attacks may

severely affect the timely and expected outcome of the critical services such as

the DDoS mitigation service. We observed the attack effects on co-located SSH

and VM interface services which are mandatory tools for last resort manual ac-

cess for control. Both the services also become unavailable owing to the resource

contention generated by the victim service. The external auto-scaling methods

working from outside the target VM, would not help in the mitigation due to the

resource contention problems at the process level.

We model the DDoS mitigation activity as an OS level resource management prob-

lem. We show that the victim service is responsible for the resource contention

due to its heavy resource usage for one or more resources such as CPU, memory,

disk, and bandwidth including other application resources. To overcome these

issues, we propose a novel victim resource containment method by which the rest

of OS services including critical services such as DDoS mitigation service and re-

mote log-in service remain available irrespective of the presence of any severity of

DDoS attacks. We develop an illustrative example of “Victim Service Contain-

ment algorithm” and address the service unavailability problem. Experimental

attack results demonstrated the efficacy of our proposed solution leading to the

overall improvement of attack reporting and service availability. This novel at-

tack characterization also opens up multiple issues related to DDoS mitigation,

resource management activity and availability of other services.

In the next chapter, we detail our novel resource management approach which sac-

rifices the contended resources as soon as the possibility of the attack is detected.

We make the resources available with the help of minimizing the metric resource

utilization factor. These resources help in absorbing, detecting and mitigating the

attack as quickly as possible and recover the service back to operation.





Chapter 7

Scale Inside-out: Rapid DDoS

Attack Absorption and Mitigation

7.1 Introduction

The distributed denial of service (DDoS) attacks in cloud computing requires quick

absorption of incoming attack data. DDoS defense methods primarily work on-

line and perform a threshold based anomaly detection in the incoming traffic

which follows learning based on past attacks/traffic. Attack data absorption is

an important milestone before triggering any analytical threat intelligence activ-

ity [153] [154] [155]. Many of the recent solutions are based on the dynamic

resource scaling which advocate to use quick deployment of enormous resources to

absorb the attack as quickly as possible [5] [139]. The resource scaling comes with

an additional cost which may prove to be a huge disruptive cost in the cases of

longer, sophisticated, and repetitive attacks. These solutions achieve the quick at-

tack absorption by minimizing the attack surface. We discussed in Chapter 5 and

Chapter 6) that the effects of the attack depend upon the target application re-

source usage, as the attacks may result into an extreme resource contention which

may affect the attack absorption and subsequent threat mitigation adversely.

In this chapter, we address an important and related problem, whether the resource

scaling during attack, always result in rapid DDoS mitigation? For this purpose,

we conduct real-time DDoS attack experiments to study the attack absorption

and attack mitigation for various target services in the presence of dynamic cloud

resource scaling. We found that the activities such as attack absorption which

provide timely attack data input to attack analytics, are adversely compromised

157
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by the heavy resource usage generated by the attack. We show that the operat-

ing system level local resource contention, if reduced during attacks, can expedite

the overall attack mitigation. The attack mitigation would otherwise not be com-

pleted by the dynamic scaling of resources alone. We conceived a novel relation

which terms “resource utilization factor” for each incoming request as the major

component in forming the resource contention. To overcome these issues, we pro-

pose a new “Scale Inside-out” approach which during attacks, reduces the resource

utilization factor to a minimal value for quick absorption of the attack. The pro-

posed approach sacrifices victim service resources and provides those resources to

mitigation service in addition to other co-located services to ensure resource avail-

ability during the attack. We also provide a formal model of attack absorption

and outline its major requirements in this chapter.

The rest of the chapter is organized as follows. Section 7.2 shows the relationship

between cyber threat intelligence and attack absorption in attack mitigation. We

show our initial attack experiments to prepare the requirements of effective miti-

gation based on the important observations in the attack outcomes in Section 7.3.

We give a formal model of resource utilization factor and its role in the attack mit-

igation process in Section 7.4. In Section 7.5, we describe the proposed approach

and its detailed working. We give experimental evaluation in Section 7.6. Sec-

tion 7.6 also provides a detailed discussion on the outcomes and their applicability.

Finally, we conclude our work with a light on the future work in Section 7.7.

7.2 Cyber Threat Intelligence in the Cloud

In Figure 7.1, we present a generic information flow diagram showing the DDoS

attack source, participants, target infrastructure and cyber threat intelligence to

combat any possible attacks. A command and control server coordinates these

DDoS attacks using a large number of possible attack sources in the form of bot

run zombie computers. The attack sources may include phones, servers, desktops,

PDAs, cloud VMs or more recently other Internet of Things devices (IoT). After

the emergence of cloud computing, there are attack incidents which are even utiliz-

ing cloud resources (BotClouds) to originate such attacks as a service [39]. Cyber

threat intelligence related to the class of DDoS attacks may intend to provide

a complete security framework which involves implementing methods to prevent,

detect and recover from DDoS attacks.
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Figure 7.1: Cyber Threat Intelligence and the Role of Attack Absorption

7.2.1 Input to Threat Intelligence

The detection methods are mostly functions used to identify patterns in the in-

coming traffic and logs [153]. Attack data collected from the victim server file

system/logs may be supplemented by other collected data from other parts of the

overall network. Additional important inputs to the threat intelligence include se-

curity analytics in the form of security knowledge based updates about the newer

threats and methods. Additional on-demand compute, storage, and bandwidth

resources might also be provided as inputs to perform the attack analytics, asso-

ciated computation, maintain the availability, fasten the attack absorption, and

recovery. In many of the large scale and sophisticated attacks, human intervention

is also required to achieve the goals of threat intelligence. Attack absorption is

one of the most important aspect for our work and a key ingredient to the success

of timely and efficient attack mitigation and subsequent service availability.

7.2.2 Threat Intelligence Outcomes

The outcomes of the threat intelligence activity include the identified attacks, the

attack sources, and the attack vulnerabilities [153]. Attack mitigation methods

will block the attack sources to send any incoming traffic further and drop any

already established attack connections. Service recovery to gain availability may

require some time due to a range of attack mitigation activities. If the attacks

remain present for longer duration or remain undetected due to the stealthy and

sophisticated nature, it may even delay the recovery further. We show in Figure 7.1

about additional outcomes in the form of new and incremental “threat knowledge”

which updates the existing knowledge base of threat intelligence. To extend our

discussion towards the major findings of our work, we expand the discussion of the

generic cyber threat intelligence towards real attack analytics. We detail the real
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attack experimental study with critical aspects of attack absorption, mitigation

and recovery in Section 7.4.

7.3 Real-time Attacks: Critical Aspects

The cyber threat intelligence flow illustrated in Figure 7.1 shows attacks origin,

generation, attack target, and attack mitigation. In this section, we describe

the attack dynamics from its origin to detection and mitigation with the help of

attack experiments. To conduct these experiments, we use an attacking cloud and

a victim cloud running VMs as attack and defense infrastructure respectively. We

show various configuration settings related to the attack experiments in Table 7.1

and the experimental setup in Figure 7.2. The victim service is a dynamic file

conversion website which converts an image from one format to another format

on each service request. In this set of experiments, we are using .jpeg images of

size 2MB which gets converted to a .png image. By using an image conversion

application as a test site we could approximate a real web-server behavior. The

test web application uses most of the server resources such as CPU, memory, disk

and the bandwidth.

     Attack 
Infrastructure

    Victim 
Infrastructure

Attack VM Victim Web Service
Benign User

Administrator
(SSH)

Figure 7.2: Experimental Setup

We extend the test service to its variants in later experiments in Section 7.6 to

showcase different aspects of cloud computing resource scaling during attacks. We

send attack traffic with 500 concurrent requests from a single attack VM. We do

not send the attack traffic from multiple sources to achieve a deterministic attack

detection time over multiple repetitions of the experiments. In case of multiple

sources, the attack detection time varies depending upon the connection share of

each attack source in the total number of established connections at victim server

end. Moreover, the main focus of our experiments is on the attack absorption
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Physical server Dell PowerEdge R630
Intel(R) Xeon(R) CPU E5-2670
v3, 4 processors (12 cores each)
total memory 96GB

Service ApacheBench2
Configuration 2 vCPUs and 4 GB
Traffic rate 500 concurrent requests

(Total 5000 requests)
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ti
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gs

Physical server Dell PowerEdge R630
Intel(R) Xeon(R) CPU E5-2670
v3, 8 processors (4 cores each)
total memory 96GB

Service Image conversion web service
Configuration 4 vCPUs and 8 GB (Set 1)

8 vCPUs and 16 GB (Set 2)
16 vCPUs and 32 GB (Set 3)

O
th

er
S

et
ti

n
gs

Benign Service 2 vCPUs and 4 GB
Traffic rate 1 concurrent web request

(Total 100 requests)
SSH request response cycles
(Total 500 requests)

OS Ubuntu 14.04
Network Speed 1Gbps
Hypervisor XenServer 6.5

Table 7.1: Attack Experiment Details

and subsequent attack mitigation at the victim side processes. The launch of the

attack is motivated by [41], where authors made important comments about the

major portion of a large number of attack traces (around 12000 traces). More

than 38% of uniform random attack events and 46% of all the attack events had

an estimated rate of 500 requests per second or more. We see similar attack

experiments in many other contributions such as [92].

To demonstrate the service availability behavior of the victim service under attack,

we use a host to send benign traffic by sending one concurrent request for a total

of 100 requests. We are also interested in the behavior and performance of other

critical services which are co-hosted with victim service on the same VM. For this

purpose, we design a test to assess the availability of secure shell (ssh) by sending

a ssh session request, establishment, and session close cycle. SSH test represents

the communication medium by which the VM/victim service owner connects to

the service. We scheduled the attack experiments in a manner such that the attack

traffic, benign traffic, and ssh requests are launched at the same time. We also
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aim at analyzing the performance dynamics of the attack absorption activity and

other important attack mitigation and availability concerns while the victim VM

gets more resources. For this purpose, in Set 1 experiments, we provide resources

equivalent to an EC2 “C4” instance [150]. In Set 2, we expand these resources

to see the attack dynamics with resources twice of C4 resources. We term Set

2 resources equal to two C4 instances. We expand these services to as high as

four times as that of the basic C4 resources in Set 3 which are equivalent to four

C4 instances. Instead of scaling the resources dynamically while the attack is

present, we do three separate attack experiments to observe the effects on service

downtime, attack detection time, and performance of other services. We study

the attack mitigation behavior by placing a generic DDoS mitigation mechanism

in place.

We use “DDoS-Deflate” which is one of the popular open source DDoS mitigation

tools that detects the attacks sources on the basis of a threshold on maximum

number of connections [87] by a source. The detected attack sources are then

suitably blocked by a firewall such as iptables [142].

While performing the attack experiments, we keep a close eye on attack absorption

behavior of the victim VM and the DDoS mitigation service. We achieve this by

keeping track of various metrics such as attack detection time, attack reporting

time, downtime of victim service, service response time, number of attack requests

served before the attack detection, downtime of ssh service, and response time

behavior. One more behavior for which we are particularly interested to see the

attack absorption behavior is the number of established connections during the at-

tack period. Connection establishment depends on the server resources availability

and the duration of connection cycle which consists of connection-establishment

and connection-close cycle. We will detail about this important factor while dis-

cussing the attack dynamics in Section 7.4.

7.3.1 Observations

Figure 7.3a shows the behavior of victim service response time for the requests sent

by the benign sender. As soon as the attack starts, service reaches the downtime

and the response times become very high (Table 7.2). In the experimental setting,

we changed the behavior of benign sender in such a manner that it waits for the

longer responses to come without getting timed out. The response time behavior

is having a large downtime and huge peaks in responses in Set 1. Set 2 with



Chapter 7. Scale Inside-out: Rapid DDoS Attack Absorption and Mitigation 163

Resources Time of Time of Downtime Time to Maximum Minimum Average
Attack Attack of Victim complete Response Response Response
Detection (s) Reporting (s) Service (s) the requests (s) Time (s) Time (s) Time

Set 1 Unknown 2481 2481 2911.34 1507.68 4.053 29.11

Set 2 Unknown 931 931 1367.19 593.371 4.065 13.67

Set 3 41.58 41.58 971 1384.13 956.895 4.071 13.8413

Table 7.2: Performance of DDoS mitigation service during attacks

Resources Downtime Time to Maximum Minimum Average
of ssh complete Response Response Response
service (s) ssh requests (s) Time (ssh) (s) Time (ssh) (s) Time (ssh) (s)

Set 1 2269.46 2373.15 706.4 0.15 4.7463

Set 2 864.2 940.657 254.88 0.147 1.88131

Set 3 0 83.309 0.475 0.145 0.166618

Table 7.3: Performance of SSH request-response behavior during attacks

increased resources settles the downtime from a huge 2481s to 931s which is quite

similar in the case of Set 3. An important factor to consider related to the attack

mitigation performance is attack reporting time. Set 1 and Set 2 victim VM is

not responsive for the whole downtime and the reporting of attack detection time

is unknown.

We configured the DDoS mitigation service to notify the attack detection in an

attack log file once the attackers are identified from the traffic. However, the huge

resource usage during the attack did not allow the access to VM interface and

the reporting time remains unknown till all the attack effects are over. DDoS

mitigation service achieved the attack reporting in the case of Set 3 resources.

The behavior of other co-hosted services (inside the same victim VM) as demon-

strated by Figure 7.3b and various performance metrics in Table 7.3. The SSH

service though not the real direct target of the DDoS attack, faces downtime and

performance penalties in the later part of the web-service downtime. SSH service

downtime and response time see a decremental trend from Set 1 to Set 3.

Set 3 having the highest resources (four times the Set 1 resources) sees no downtime

of the SSH service, though there are response times which are as high as thrice

of the minimum response time. In Figure 7.3c, we show the total number of

connections at the victim service end since the start of the attack. Number of

connections remains around 500-600 for all the three sets. However, for the Set 1

and the Set 2, the number of connections are unknown as the victim VM became

non-responsive and values were not retrieved after 40s-50s. Set 3 stays at∼500

connections for most of the duration and then a step-wise decrease is observed till

all the attack effects are over. We made the following observations during attack

experiments.
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Figure 7.3: Attack effects with varying resources

1. Resource Contention during attack: Non-responsive VM, unknown attack

detection time, unknown number of connections, and huge peaks in SSH request-

response cycles are the number of observations which are the result of a heavy

resource contention formed by the DDoS attack. In addition to just service de-

nial during the downtime, these effects transform the DDoS attack in a “extreme

DDoS” attack (also discussed in Chapter 5). Resource contentions occur due to

heavy resource usage by victim service and no timely resource availability to other

important processes at the operating system level. Resource contention and the
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absence of performance isolation are important issues while designing operating

system and virtual machine monitors [48, 156]. We argue that resource contention

should be minimized as this is an important effect of DDoS attacks and also a

major contributor to the other three observations.

2. Downtime Post-attack Detection: The attack detection time is unknown

in the cases of Set 1 and Set 2, due to the heavy resource contention. Though in Set

3, the attack detection time is around 41s. Still in Set 3, the service downtime is

971s. After detecting the attack, the DDoS mitigation service, with the help of the

firewall, drops all the incoming attack connections from the identified attackers. In

addition to this, the DDoS mitigation services tries to remove all the connections

which are established by the attackers. Connection removal is achieved by reset-

ing the connections by utilities such as tcpkill. Removal of these connections,

also takes up a considerable amount of time due to heavy resource usage, as all

these connections are already having requests which are currently processed by

the victim service. In order to minimize the overall downtime, the attack cooling

down period should also be minimized. The attack cooling down period is the

time elapsed after the attack detection time to bring the service availability back.

3. Number of Connections: In all the three set of experiments, we observe the

stability of number of connections to 500-600, which is the major reason behind

the high attack cooling down period. We also increased the environment vari-

ables such as maximum number of connections and port-ranges at the server end,

still the number of connections remains stable. Number of connections decide the

overall attack surface on the victim and should be maximized to absorb the attack

traffic as soon as it arrives [5].

4. Collateral Effects on Other Services: We see adverse performance impact

on the SSH service in Figure 7.3b. SSH service is very light resource usage utility as

compared to the co-hosted dynamic website. Still, the SSH request-response cycle

is severely affected by the large resource contended downtime. We observe simi-

lar effects by non-responsive VM, unknown attack detection time, and unknown

number of connections.

We will use the above observations in preparing the requirements for the proposed

approach.
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7.4 Formalizing Defense Requirements

We formally define important requirements keeping the four important observa-

tions we made during the attack experiments in Section 7.3. For this purpose, we

first define a typical DDoS Attack mitigation activity as a three stage process in

Figure 7.4.

Stage 1

Stage 2

Stage 3

Attack Absorption

Attack Identification
   and Mitigation

Post-attack-detection 
   time to Recovery

Figure 7.4: Stages of DDoS Attack Mitigation

Stage 1. Attack Absorption: In attack absorption, the mitigation method

tries to absorb the incoming traffic as soon as it arrives on the network interface.

Traffic input comes through the network connections and absorption gets affected

if the victim service is not able to create and release connections quickly. This

stage on attack absorption helps the next two stages by absorbing the attack traf-

fic as soon as it arrives. Our proposed method (Section 7.5) makes sure that the

absorption does not form the resource contention with the help of reduction of

resource utilization factor. However, the most important reason for having timely

attack absorption is to expedite the attack detection which may only succeed if

the attack features are absorbed as soon as they appear.

Stage 2. Attack Identification and Mitigation: Attack absorption is an on-

line activity which always runs to ensure the timely traffic assessment and threat

analytics. Attack identification and mitigation (blocking and dropping the attack

connections) are completely causally dependent on the attack absorption. Re-

source availability to DDoS mitigation service and other critical services must be

ensured to have resource contention free attack mitigation. Each incoming request

is the contributor to the resource usage, and a huge number of requests during the

DDoS attack forms the contention.

Stage 3. Post-Attack Detection to Recovery: Quick service recovery is
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dependent on the timely attack absorption and mitigation. Quick removal of es-

tablished attack connections is the key to minimize the time required to achieve

service availability post-attack detection. The performance of the attack absorp-

tion stage is heavily dependent on the attack absorption delay.

Attack absorption delay (Tabsorb) is the difference between the time at which the

traffic flow reaches the victim interface (Tinterface) and the time when it is actu-

ally within the reach of the DDoS mitigation service (TDMS). We define attack

absorption delay with the help of the following equation.

Tabsorb = TDMS − Tinterface. (7.1)

Victim VMs have certain basic resources such as vCPUs (C), memory (M), disk

(D) and the bandwidth (B). We define the resource allocation to a VM as its

capacity.

Resources(Vi) =< Ci,Mi, Di, Bi > . (7.2)

The actual behavioral capacity of a victim server running inside the VM is usually

represented by the total number of simultaneous requests it can serve at the same

time. The number of requests (r) which the service will be able to serve depend

upon the resource requirements of each request. We define the resource require-

ments of each request r with the help of the resource utilization factor Sr, which

is the total resource requirement to complete the request r. Processing a request

requires access to few or all of the basic resources.

Sr =< Cr,Mr, Dr, Br > . (7.3)

We define the capacity of the victim VM by the following equation where the VM,

Vi is able to serve Nmax requests.

Capacity(Vi) = Nmax ∗ Sr. (7.4)

We assume that the victim service has a defined set of requirements for achieving

a minimum quality of service (QoS) in order to have timely and correct output.

In order to extend the notion of resources, we also utilize the maximum number

of connections (Cmax) as an important resource of the victim service. We assume

that we can only maximize the Nmax value if we are able to establish as many
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connections (maximizing Cmax) as possible (Equation 7.5).

Nmax ∝ Cmax (7.5)

It is also evident from Equation 7.4 that if we want to maximize the number of

maximum requests (Nmax) which can be served by the victim service, we need to

either increase the Capacity(Vi) or reduce the Sr. Following are the few possible

requirements of a mitigation method by which the attack absorption can be expe-

dited:

R1. Tabsorb Reduction: During an attack, the number of connection requests

coming to the victim service are huge. The time at which the traffic reaches the

interface and transforms in the form of established connections is an important de-

lay which is actually the attack absorption delay (Tabsorb). The attack absorption

delay will be higher for the cases where the mitigation methods filter the traffic

on the basis of more fine grain features such as application level features such as

movement among the web-pages, time spent on the page, and click-pattern. The

attack absorption delay gets extended due to the serving of the initial requests

(index pages of the websites) and then allowing the additional requests to enter

the service. These requests might be waiting to enter the service queue or they

may be even retransmissions. We argue that the delay Tabsorb can be minimized if

the connection life-cycle and the delay in providing the incoming traffic features

to the DDoS mitigation service can be reduced.

R2. Sr Reduction: Resource utilization factor Sr, denotes the resource usage of

individual request processing and responding with a suitable request outcome. Sr

comprises of multiple activities at the service end for each incoming request. As

per Equation 7.4, reduction in Sr will lead to increase in Nmax and reduction in

Tabsorb. This relationship can also be given by:

Nmax ∝
1

Sr

∝ 1

Tabsorb

(7.6)

Additionally, reduction in Sr may also lead to minimizing the resource contention

effects, as all the three stages of mitigation process may run in parallel. Resource

contention shows adverse effects on the parallel and similar activities [48].

R3. Capacity(Vi) Scaling: The auto-scaling capabilities of cloud computing

facilitate dynamic resource scaling on the go without any noticeable downtime in

VM stop-resume. Capacity scaling can be achieved with the help of vertical or

horizontal resource scaling as described in [19][110]. By increasing Capacity(Vi),

it is assumed that the attack absorption will be quick and the Tabsorb will be
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minimized by increasing the Nmax (in turn Cmax). In next Section 7.5, we detail

our approach by addressing these three requirements.

7.5 Our Proposal: Scale Inside-out

We now address the attack mitigation requirements detailed in Section 7.4 by de-

scribing the novel solution elements incorporated in the proposed approach. The

main contribution of our work lies in providing quick attack mitigation by com-

bating the four important attack observations made in the attack experiments

in Section 7.3. We address the problem of reduction in attack absorption delay

(Tabsorb) by reducing the resource utilization factor, Sr. In the client server archi-

tecture of web-services such as the one which we used in our experiments, there

are number of activities related to each request. Receiving a connection request,

reading the request, processing the request, preparing a reply, sending a response,

and closing the connection are few essential activities which a server-end normally

performs during a request-response cycle. Processing a request requires utilizing

various resources such as CPU, memory, disk, and the bandwidth. We show all

these activities as part of the resource utilization factor in Figure 7.5.

Connection Request

Read Request

Process Request

Send Response

Connection Close

CPU Usage

Memory Usage

Disk Usage

Bandwidth Usage

Prepare Response

Connection Request

Read Request

Send Response

Connection Close

Figure 7.5: Scale Inside-out the “Resource Utilization Factor”
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During DDoS attacks, huge number of requests to victim, create heavy resource

usage. Resource utilization of these requests adds up to form the resource con-

tention with all the basic resources such as CPU and memory. Though DDoS

mitigation service in our experiments is a very low resource usage based service,

still, the resource contention severely affects the overall attack mitigation process.

Additionally, we saw in attack experiments in Section 7.3, scaling of victim service

resources to four times does not solve the problem of attack downtime, specially

the downtime due to the attack cooling down period. Meeting requirement R3

alone does not solve the local operating system level resource contention com-

pletely and comes with an additional cost. We calculated the cost of various web

services in the form of an estimate of their resource utilization factor and summa-

rized in Table 7.4. We show the amount of time taken and the total number of

Web Execution Execution Execution Total number
Service Time Time Time of system calls
Type (real) (user) (system) executed

2KB 0m0.036s 0m0.028s 0m0.004s 771

50KB 0m0.042s 0m0.036s 0m0.004s 811

100KB 0m0.155s 0m0.144s 0m0.008s 945

500KB 0m0.792s 0m0.788s 0m0.000s 1827

1MB 0m1.937s 0m1.904s 0m0.028s 3227

2MB 0m4.078s 0m4.032s 0m0.040s 5974

Table 7.4: Resource Utilization Factor of different services

system calls executed by the victim web service using different image sizes. We

can see that the utilization of various resources is reflected in the time taken to

perform the request and it increases with the size of the image. We use this fact in

our novel approach “Scale Inside-out”, where in addition to capacity scaling, we

argue to perform an internal application scaling to reduce the resource utilization

factor during a DDoS attack. We term our approach as “Scale Inside-out” as it

reduces the request processing (by reducing Sr) to increase Nmax and Cmax, which

in turn minimizes, Tabsorb.

To achieve this goal, we skip all the activities between “read request” and “send

response” as shown in Figure 7.5. By doing the reduction in Sr during the attack

period, we argue that the resource contention and all the subsequent problems like

attack absorption delay, attack cooling down period, and collateral damages are

resolved. We show the working of this approach using algorithms 7 and 8.

We test the applicability of our method by a quick and dirty check in which we keep

checking response time of the service and the total number of connections available

on the victim service. Figure 7.6 shows the flow of the proposed approach. We also
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Algorithm 7: Scale Inside Out Algorithm

SCALE-INSIDE-OUT;
Data: Tresponse= Response time,
Ttimeout=Request timeout,
Cnow= No. of connections,
Cattack = Minimum connections during an attack,
Sattack = Resource Utilization Factor during attack,
Sr = Resource Utilization Factor without an attack,
V = Victim service;
Result: Attack Mitigated
Start;
while (Tresponse < Ttimeout && Cnow <= Cattack) do

Nothing
end
ScaleInsideOut(V , Sattack);
while (Tresponse >= Ttimeout && (Cnow >= Cattack) do

Nothing;
end
ScaleInsideOut(V , Sr);
Show “Attack Mitigated”;
end

Algorithm 8: Function ScaleInsideOut()

ScaleInsideOut();
Data: Web service W
Resource utilization factor = U ,
Result: Updated Resource Utilization Factor
initialization;
Apply U to web service W ;
end

show the flow of the DDoS mitigation activity which progresses in parallel with

the “Scale Inside-out” approach. Using this figure, we show that the proposed

approach is working as a support framework to provide immediate resource help

to the victim to combat the DDoS attacks.

To demonstrate the applicability, we use thresholds Ttimeout and Cattack which best

describe the attack situation by having a timeout value and the minimum number

of connections during an attack. Whenever the response time becomes higher than

the acceptable response time and the number of connections (Cnow) become more

than or equal to Cattack, the “Scale Inside-out” approach changes the resource

utilization factor of the victim web-service from Sr to Sattack. After “Scale Inside-

out” reduces the Sr to Sattack, both attack as well as genuine requests get the

responses with reduced resource utilization factor Sattack. We observe the resource
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Attack?
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Attack Identification
   and Mitigation

Post-attack-detection 
   time to Recovery

Stage 1

Stage 2

Stage 3

Yes

No

Figure 7.6: Scale Inside-out flow running concurrently with the DDoS mitigation flow

utilization factor changing back to its original value once the service is restored

back.

The major motivation behind “Scale Inside-out” approach is that during the attack

downtime, it is fine to sacrifice the victim service resources to expedite all the three

stages of attack mitigation if the mitigation method minimized the downtime and

other effects. “Scale Inside-out” works as a supporting resource framework which

tries to minimize the attack downtime, minimize the effects on the legitimate users

with an aim of working with any kind of DDoS mitigation service.

7.6 Experimental Evaluation and Discussion

We implement the reduction in resource utilization factor by not performing the

request processing activities in the server side scripts. There are only three pa-

rameters in the Algorithm 7 which are chosen as follows:

(1) Minimum connections during an attack, Cattack is set to 500 connections. This

value of 500 connections is chosen based on the important seminal works in the
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DDoS research area [41].

(2) Victim application response timeout, Ttimeout is set to 10 seconds.

(3) Reduced resource utilization factor, Sattack is set by automatically changing

the server side scripts, which after the reduction do not perform the activities for

each request during the attack period.

The major goal of this contribution is to showcase the effects of “extreme DDoS”

attacks and the above values in 1) and 2) help (basically a quick and dirty check)

in determining the presence of the attack. We argue that in case of “extreme

DDoS” attacks, it is important to identify the presence of the attack. “Presence

of the attack” is determined by the quick check in the Algorithm 7 and then based

on the values of the two parameters (Cattack and Ttimeout), the decision to apply

the reduction in Sr is taken. Out of the three parameters used in the Algorithm

7, Ttimeout and Cattack are used in taking the decision about the “Scale Inside-out”.

They decide whether the “Scale Inside-out” should be performed or not. The

third parameter Sattack is used specifically to support the generic DDoS mitiga-

tion mechanism (DDoS Deflate) which is a connection based detection mechanism.

Varying the parameter Sr to other values of Sattack would mean that we perform

some activities out of the activities such as “Read Request”, “Process Request”,

“CPU, Memory, Disk, and Bandwidth Usage”, “Prepare Response”, and “Send

Response”. This may help some of the mitigation mechanisms which also see

some of the application layer features while detecting the attack. However, it will

not help the mitigation provided by our generic DDoS mitigation method (DDoS-

Deflate) that does not use any application layer features while filtering the traffic.

In order to analyze the efficacy of the “Scale Inside-out” (SIO) approach, we per-

form exhaustive real time attack experiments. We use various image sizes (2KB,

50KB, 100KB, 500KB, 1MB, and 2MB) and resources (Set 1, Set 2, and Set 3) and

apply the “Scale Inside-out” approach to evaluate various metrics such as attack

detection time, attack reporting time, service downtime, and the attack cooling

down period. Similarly, we collect various metrics for other critical services to

observe the contention and collateral damages.

The major motivation of using three sets of resources is to show the effects of

capacity scaling on the mitigation performance. The experimental settings are

similar to what we see in Table 7.1 and Figure 7.2 in Section 7.3. We show the

detailed results on effects of “Scale Inside-out” on victim web service performance

in Table 7.5. Table 7.6 shows the attack effects on SSH service.

We will first describe the patterns in the results related to the victim service

performance with the help of Figure 7.7. Figure 7.7a shows the response time
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R
e
so

u
rc

e
s Type Time of Time of Time of Time of Downtime Downtime Time to Time to

Attack Attack Attack Attack of Victim of Victim complete complete
Detection Detection Reporting Reporting Service Service the requests the requests
(no SIO) (with SIO) (no SIO) (with SIO) (no SIO) (with SIO) (no SIO) (with SIO)

S
e
t

1

2KB 37.24 38.13 37.24 38.13 43 38 45.859 5.376
50KB 41.25 39.17 41.25 39.17 645 38 647.4 5.621
100KB 41.3 41.21 41.3 41.21 944 45 957 5.834
500KB 38.28 42.23 38.28 42.23 945 38 1024.31 6.949
1MB 39.35 41.24 39.35 41.24 875 40 1053.64 7.758
2MB Unknown 40.29 2481 40.29 2481 53 2911.34 14.139

S
e
t

2

2KB 41.49 41.14 41.49 41.14 47 37 49.5 4.921
50KB 41.44 41.14 41.44 41.14 643 44 645.87 4.882
100KB 39.45 42.14 39.45 42.14 940 37 953.26 4.977
500KB 41.55 38.14 41.55 38.14 946 39 1023.82 5.416
1MB 40.36 42.14 40.36 42.14 947 40 1137.54 5.98
2MB Unknown 43.18 931 43.18 931 40 1367.19 6.081

S
e
t

3

2KB 36.54 41.14 36.54 41.14 43 37 44.212 4.921
50KB 36.54 41.14 36.54 41.14 638 44 640.711 4.882
100KB 36.7 42.14 36.7 42.14 937 37 949.46 4.977
500KB 38.63 38.14 38.63 38.14 940 39 1017.6 5.416
1MB 38.53 42.14 38.53 42.14 943 40 1131.63 5.98
2MB 41.58 43.18 41.58 43.18 971 40 1384.13 6.081

Table 7.5: DDoS mitigation Performance during attacks (without and with “Scale
Inside-out” (all in seconds))

behavior to the benign user while we do not employ the proposed approach for Set

1 resources for 2MB service. In this case, we observe that the attack detection time

(‘D’ as shown after the vertical arrow on the graph) is not known till the attack

effects are completely over. Attack reporting time (‘R’) and attack detection time

(‘D’) are only observed after the victim service achieves the service availability

state (‘A’). The heavy resource contention also resulted in the unavailability of

VM interface as well as longer peaks in the response time behavior. On the other

hand after applying the “Scale Inside-out” approach to help the attack mitigation

expedition, the web service response is similar to the Figure 7.7b. The three

important metrics, the attack detection time (D), the attack reporting time (R)

and the service availability (A), are heavily reduced to around 40s. Additionally,

the attack cooling down period is ∼0s in the cases where “Scale Inside-out” is used.

The attack cooling down period is the time taken by the victim service to become

available after the attack is detected. We represent this factor in Figure 7.7b where

both “Attack Detection Time (D)” and “Service Availability Time (A)” are shown

at 40 seconds. The attack cooling down period is essentially the difference between

these two events. On the other hand, the attack cooling down period was quite

high in the cases without using “Scale Inside-out” (also shown in Figure 7.7a).

After the reduction of the resource utilization factor from Sr to Sattack, all the

benign requests are given a response which is not useful for them. Therefore, the

response time behavior as shown in the Table 7.6 shows a huge reduction in various

metrics. However, the reduction in Sr helps in achieving a huge reduction in the

service downtime. Except the 2KB service, which has the least Sr, all the other

services have a service downtime ranging between∼600s-2400s.
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Figure 7.7: Web response behavior (before and after Scale Inside-out) for Set 1
resources and 2MB service, the vertical arrow shows attack detection time (‘D’), attack

reporting time (‘R’) and service availability time (‘A’)

Another important observation regarding the service downtime in the cases when

“Scale Inside-out” is used, is related to the achieved stability in the service down-

time to∼40s. Coming to the impact of “Scale Inside-out” on the attack absorption,

we show the results in the form of various graphs in Figure 7.8. With a huge reduc-

tion in the resource utilization factor from Sr to Sattack, the number of connections

Nmax reaches to a value as high as∼50000 connections to absorb the attack as

soon as possible.

Victim web services where the Sr is already very low (2KB-100KB) show num-

ber of established connections ranging between∼2000-20000 while we do not use

“Scale Inside-out”. However, after employing our approach, the rise in number of

connections also helps in achieving important goals of reducing the overall down-

time and other related effects. We show the effects of our proposed approach on

the collateral damages to other critical services in Table 7.7. For better compre-

hension, we show the performance of SSH test in the form of SSH response times
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R
es

ou
rc

es Type Maximum Maximum Minimum Minimum Average Average
Response Response Response Response Response Response
Time Time Time Time Time Time
(no SIO) (with SIO) (no SIO) (with SIO) (no SIO) (with SIO)

S
et

1
2KB 6.425 2.261 0.024 0.019 0.46 0.05376
50KB 602.6 2.165 0.031 0.021 6.47 0.05621
100KB 597.98 1.926 0.134 0.022 9.57 0.05834
500KB 942.127 1.508 0.769 0.018 10.24 0.06949
1MB 822.437 7.732 1.907 0.018 10.53 0.07758
2MB 1507.68 14.088 4.053 0.022 29.11 0.14139

S
et

2

2KB 6.561 2.194 0.024 0.019 0.49 0.04921
50KB 602.732 2.058 0.031 0.021 6.45 0.04882
100KB 603.4 2.636 0.134 0.014 9.53 0.04977
500KB 642.263 1.57 0.776 0.014 10.2382 0.05416
1MB 944.613 2.346 1.919 0.019 11.37 0.0598
2MB 593.371 3.017 4.065 0.018 13.67 0.06081

S
et

3

2KB 6.369 2.194 0.024 0.019 0.44 0.04921
50KB 602.4 2.058 0.03 0.021 6.4 0.04882
100KB 900.869 2.636 0.134 0.014 9.4946 0.04977
500KB 902.034 1.57 0.776 0.014 10.176 0.05416
1MB 641.035 2.346 1.91 0.019 11.3163 0.0598
2MB 956.895 3.017 4.071 0.018 13.8413 0.06081

Table 7.6: Performance of DDoS mitigation service during attacks (without and with
“Scale Inside-out” (all in seconds))

by various graphs in Figure 7.9. Proposed approach removes the collateral effects

that were formed by the victim service on SSH service. The huge peaks in the

response times, specially in the cases of web services with a higher Sr reduce to

acceptable values.

Additionally, it is also visible that the collateral effects on SSH service seems to dis-

appear in case of Set 3 resources without employing the proposed approach. How-

ever, a close look on the maximum time taken in the request-response cycle in SSH

is more than double in all the cases where we use the proposed approach. These

results also prove that the capacity scaling alone may not solve all the collateral

effects as the resource contention highly depends upon the application type and

its resource utilization factor Sr. Therefore, even the Set 3 resources may become

resource contended for heavier services or attacks. However, “Scale Inside-out”

always shows the stable results for various metrics for critical co-located services.

In addition to all these metrics, we also show an additional metric which is quite

important to understand the attack absorption dynamics. We show the number

of attack requests served by the victim service under attack, before the attack is

actually detected in Table 7.8. This metric is important from two perspectives,

first, the cost of outgoing bandwidth spend on responding to these attack requests

will be huge if the attack is not detected in time.

Second, is the severity of resource contention, which remains high if the victim

service keeps serving the attack requests without the mitigation service timely

identifying them. The attack requests served before detection, are heavily reduced

in the cases when the “Scale Inside-out” is used. In the cases of higher Sr, the

number of attack requests served before attack detection looks quite similar to
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(b) 50KB Service (No Scale
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(c) 100KB Service (No Scale
Inside-out)
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(d) 2KB Service (Scale Inside-
out)
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(e) 50KB Service (Scale
Inside-out)
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(f) 100KB Service (Scale
Inside-out)
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(g) 500KB Service (No Scale
Inside-out)
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(h) 1MB Service (No Scale
Inside-out)

 0

 200

 400

 600

 800

 1000

10 20 50 100 200 500 1500

N
o.

 o
f C

on
ne

ct
io

ns

Time (s)

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(i) 2MB Service (No Scale
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(k) 1MB Service (Scale Inside-
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Figure 7.8: Number of connections during attack (without and with Scale Inside-out)

after “Scale Inside-out” is applied. This is because a certain minimum time is

required to complete the quick and dirty check by the proposed approach.

On the other hand, the capacity scaling (Set 2 and Set 3) shows negative impact

here as the scaled resources serve more and more requests before getting a detection

trigger. After discussing the detailed results of the evaluative experiments, we

will now discuss various aspects of the proposed approach. Following are various

important usage aspects related to the “Scale Inside-out” approach:

1. Attack Downtime: Many of the recent DDoS attacks show the attack down-

time ranging between few days to weeks and the unavailability causes enormous

losses [12]. During the downtime, the legitimate customers will not get served,

hence, we utilize the idea of sacrificing the victim service resources and make the

resources available for the DDoS mitigation service and other critical services.

2. Variable Sr: The real web services may not always have a fixed resource
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R
es

o
u

rc
es Type ssh ssh Time to Time to Max. Max. Min. Min. Average Average

down down complete complete ssh ssh ssh ssh ssh ssh
time time ssh test ssh test Time Time Time Time Time Time
(no SIO) (SIO) (no SIO) (SIO) (no SIO) (SIO) (no SIO) (SIO) (no SIO) (SIO)

S
et

1

2KB 0 0 81.616 77.846 0.341 0.231 0.144 0.144 0.163 0.155692
50KB 0 0 82.016 81.045 0.332 0.283 0.145 0.146 0.164 0.16209
100KB 0 0 85.139 80.685 0.374 0.316 0.145 0.146 0.17 0.16137
500KB 0 0 84.779 81.127 0.409 0.489 0.146 0.146 0.169 0.162254
1MB 445.75 0 549.26 80.722 120.07 0.321 0.145 0.146 1.09853 0.161444
2MB 2269 0 2373.15 81.928 706.4 0.346 0.15 0.146 4.7463 0.163856

S
et

2

2KB 0 0 84.54 78.389 0.458 0.223 0.148 0.147 0.169 0.156778
50KB 0 0 84.48 78.308 0.566 0.218 0.146 0.147 0.168 0.156616
100KB 0 0 83.622 78.347 0.441 0.331 0.145 0.146 0.167244 0.156694
500KB 0 0 84.262 78.977 0.474 0.47 0.146 0.146 0.168 0.157954
1MB 0 0 83.536 78.581 0.431 0.334 0.145 0.147 0.167072 0.157162
2MB 864.2 0 940.657 77.219 254.88 0.489 0.147 0.146 1.88131 0.154438

S
et

3

2KB 0 0 81.1 78.389 0.419 0.223 0.145 0.147 0.162 0.156778
50KB 0 0 82.221 78.308 0.476 0.218 0.145 0.147 0.164442 0.156616
100KB 0 0 83.196 78.347 0.491 0.331 0.147 0.146 0.166392 0.156694
500KB 0 0 83.394 78.977 0.506 0.47 0.147 0.146 0.166788 0.157954
1MB 0 0 83.191 78.581 0.501 0.334 0.144 0.147 0.166382 0.157162
2MB 0 0 83.309 77.219 0.475 0.489 0.145 0.146 0.166618 0.154438

Table 7.7: SSH request-response behavior during attack (without and with “Scale
Inside-out” (all in seconds))

Resources
Type of the Victim Service

2KB 50KB 100KB 500KB 1MB 2MB

Set 1 (No SIO) 5581 4115 794 30 6 4

Set 1 (SIO) 323 179 44 13 13 8

Set 2 (No SIO) 10820 6916 1542 198 24 20

Set 2 (SIO) 515 313 109 58 13 8

Set 3 (No SIO) 18825 12778 2920 487 170 20

Set 3 (SIO) 793 415 80 19 13 12

Table 7.8: Number of Attack Requests Served Before Attack Detection

utilization factor for all the requests (except in the cases of static services). In

the experimentation, we change the Sr to Sattack in all the cases, however, variable

Sr values for different resource users/dependent services may be used to ensure a

minimum availability during the downtime.

3. Effects on other DDoS mitigation methods: The proposed approach is

independent of the DDoS mitigation method used as it aims at providing resources

to the mitigation service. For most of the DDoS mitigation methods which work at

the network or the application level, proposed approach will be helpful as it is able

to absorb the attack data timely. However, application layer filtering approaches

which are based on more fine-grain user inputs may require additional support.

4. Attack Absorption: Our major aim and contribution in this work is to expe-

dite the attack absorption with minimizing the attack absorption delay (Tabsorb).

Methods requiring additional data in mitigation may require other mechanisms.

5. Attackers are not interested in response: One important argument in

support of the reduction in Sr, is that the attackers being mostly bots do not have

any interest in the service response. However, the responses with reduced Sr may

trigger the bots to automatically increase/change the attack vectors (guessing that



Chapter 7. Scale Inside-out: Rapid DDoS Attack Absorption and Mitigation 179

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(a) 2KB Service (No Scale
Inside-out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(b) 50KB Service (No Scale
Inside-out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(c) 100KB Service (No Scale
Inside-out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(d) 2KB Service (Scale Inside-
out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500
R

es
po

ns
e 

tim
e 

(s
)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(e) 50KB Service (Scale
Inside-out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(f) 100KB Service (Scale
Inside-out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(g) 500KB Service (No Scale
Inside-out)

0.2
0.5

1

100

700

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(h) 1MB Service (No Scale
Inside-out)

0.2
0.5

1

100

700

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(i) 2MB Service (No Scale
Inside-out)

0.2

0.3

0.4
0.5

1

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(j) 500KB Service (Scale
Inside-out)

0.2
0.5

1

100

700

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(k) 1MB Service (Scale Inside-
out)

0.2
0.5

1

100

700

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
(s

)

Requests

4vCPU-8GB
8vCPU-16GB

16vCPU-32GB

(l) 2MB Service (Scale Inside-
out)

Figure 7.9: SSH request-response behavior during attack (without and with Scale
Inside-out)

the service is not down yet). This instigation may also help the mitigation method

to get the upcoming attacks quickly for quick detection.

6. Legitimate users: At first instance it may appear that the service is giving

unusable responses to the benign users. However, due to a heavy reduction in

downtime, the legitimate users are served right after the attack detection.

7. Repeated/stealthy/sophisticated attacks: As discussed in point number

5, the attacks which are undetectable or requires additional efforts (at times man-

ual efforts) should show reduced effects if the proposed approach is used as the

Sattack will be minimum during the downtime. If an attack is not detected, it will

have same impact on the service availability in both the cases (with “Scale Inside-

out” and without “Scale Inside-out”) and attack will remain successful. However,

in the cases when “Scale Inside-out” is applied, the server will have better prob-

ability of detection with higher attack absorption without performing activities
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while serving the requests (reduced Sr). If the attacks are repeated during the

downtime, the detection will be quick as the service is already using Sattack.

8. Sacrifice vs losses: In order to achieve the loss minimization and quick

availability, we apply a forceful downtime using “Scale Inside-out”. The sacrifice

of service resources by reducing the Sr results in minimizing the losses due to the

attack. The losses due to the DDoS attack without using our proposed approach

are higher than the losses incurred due to the reduction from Sr to Sattack using

our proposed approach. In the experimental results, directly visible losses include

service downtime, denial of service to legitimate requests, resource scaling costs

etc. There are indirect losses which include business losses and reputation losses,

and are directly related and contribute to the service downtime. We provide a

detailed discussion on direct and indirect losses due to the service downtime in

Chapter 2.

9. Costs: Capacity scaling comes up with the additional cost and in case of re-

peated/stealthy/sophisticated attacks it may become quite high which may even

question the sustainability of the victim organization. However, “Scale Inside-out”

approach also works well without the scaling methods.

10. “Scale Inside-out” vs. Shutdown: Proposed approach may look like

victim service/machine shutdown, as in the case of shutdown the victim service

administrator anticipates that the attack will go away soon. However, without

shutting the service, we collect all the attack data and use the resources to detect

and mitigate the attack as quickly as possible.

11. “Scale Inside-out” for Fixed infrastructure: Our proposed approach

does not advocate or deny the use of resource scaling in the attack mitigation.

Proposed approach works well with both the auto-scaling enabled approaches and

fixed resource servers.

7.7 Conclusion

In this chapter, we show that during massive and extreme DDoS attacks, the

victim service resources get stressed heavily. The legitimate traffic coming to

the victim service is not serviced during the downtime due to these attacks. In

addition, collateral damages due to the heavy resource contention delays the overall

mitigation process. The traffic flow in these attacks is really huge that cannot be

timely absorbed by the victim machine having the limited resources. Most of the

existing DDoS solutions use the dynamic scaling capabilities of cloud computing

to scale service instances to absorb the attack quickly.
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The resource scaling capabilities provided by the profound and on-demand re-

sources provide a great help in mitigating the attacks quickly to restore back the

services. Resource scaling allows quick collection of attack features to expedite

the attack detection and mitigation. The heavy resource contention created dur-

ing the presence of the attack should be minimized so that the overall mitigation

activity can function smoothly. In addition to the dynamic scaling of resources, we

argue that a reorganization and in-resource scaling of critical bottleneck resources

may fasten the overall mitigation process further. Most of the DDoS mitigation

tools/frameworks rely on the incoming traffic features such as traffic rate or con-

nections to evaluate and segregate the traffic.

We show that the mitigation activity could be expedited if the attack absorp-

tion delay, that is the time between the request arrival and request evaluation

by the mitigation method can be minimized. To minimize the absorption delay,

we reduce the “Resource Utilization” per request during an attack. To showcase

the efficacy of our claims we also take the case of “number of connections” as a

critical resource as it directly affects the overall time and efficiency of traffic data

absorption during segregation process. To increase the number of connections, we

propose to reconfigure the victim service to have a reduced resource utilization per

request during the attack.

This essentially means that for each incoming request (during the attack), the

server does not perform the requested activity which leads to the resource con-

tention. The implementation hastens the incoming traffic arrival and evaluation

since the reconfiguration results into the establishment of a huge number of con-

nections which helps in absorbing the attack as quickly as possible. We perform

real time attack experiments on cloud services to showcase the effectiveness of

our scheme. The proposed scheme also works well with the services having re-

source/budget limitations. We also believe that our proposed technique opens up

a new direction of “in-resource” scaling by which the attack data collection lead

to early mitigation.





Chapter 8

Conclusion and Future Work

In this thesis, we present our novel contributions and results related to the char-

acterization and mitigation of DDoS attacks in cloud computing.

First, we propose a comprehensive taxonomy of contributions related to DDoS de-

fense mechanisms in cloud computing. We also present detailed attack and threat

models of DDoS attack in cloud computing to understand various attack features

and threats. We believe that this survey would provide a directional guidance to-

wards requirements of DDoS defense mechanisms and a guideline towards unified

and effective solutions. We found that there are only few contributions in the re-

cent past which target cloud-specific features like resource allocation, on-demand

resources, BotCloud detection, and network reconfiguration.

Later, we conduct extensive attack experiments to see the real attack effects of

DDoS attack on various stakeholders of cloud computing infrastructure. In addi-

tion to the obvious targets such as a victim server or a network, we showed that

almost all the components and stakeholders of a cloud architecture are affected by

a DDoS attack. We developed a system model of cloud computing resource allo-

cation to help in understanding the role of auto-scaling algorithms during a DDoS

attack. Furthermore, we identified important features which multiply the impact

of DDoS attack in virtualized infrastructure clouds. These features include auto-

scaling, migration, multi-tenancy, resource race, performance interference, and

isolation. We show that multiple unrelated and non-targeted VMs, servers, and

users are also affected by DDoS attacks in the cloud. We also discussed other

related issues such as attack effect spread, migrant selection, overhead of cloning,

and victim migration during DDoS attacks.

183
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We make four important contributions which help in minimizing the DDoS attack

effects and expedite the overall DDoS mitigation process.

In the first contribution, we showed through preliminary experiments that the fake

resource utilization and subsequent resource addition due to the attack, results

into EDoS attacks, which ultimately converges to DDoS. This has motivated us to

design our mitigation system, DARAC, which is a DDoS aware resource allocation

method for cloud. There are three important aspects of DARAC which make it a

quick and effective DDoS mitigation solution for cloud computing. The attacker

and benign traffic segregation, intelligent auto-scaling for real users and quality

services to benign users during the attack, are three significant contributions of

our work. The novelty of our work lies in the wise auto-scaling strategy with

server capacity planning for the services. We show detailed experimental results

with wide coverage of attacker and benign traffic sets. Our evaluation results show

significance of DARAC in the detection and blocking of attacker traffic, stopping

EDoS culmination, and capacity planning based DDoS aware resource allocation.

In the second contribution, we conduct real attack instances on cloud services

to critically see the overall mitigation activity at fine grain level, i.e., at the re-

source level. DDoS attacks target victim resources and turn into “extreme DDoS”

attacks for services with high resource utilization per request. We characterize

these extreme DDoS attacks and observe that the resource contention created by

the victim service under an attack may also compromise the DDoS mitigation

service itself. Additionally, in these extreme DDoS attacks, availability after the

attack detection is also affected due to a longer attack cooling down period. To

circumvent these problems, we provide a framework to support the overall mit-

igation activity desirable from any mitigation tool. Our supporting framework

puts efforts to provide enough resources such that the mitigation mechanism can

perform its task even in the presence of extreme attacks. For this purpose, we

perform attack experiments and highlight the need for methods to minimize the

downtime, post-attack detection. We propose a novel supporting framework based

on “service resizing” which employs processor affinity-based service resizing and

TCP tuning techniques during the attack period to fulfill two important aims, (i)

providing required resources to the DDoS mitigation activity and (ii) minimizing

overall downtime.

In the third contribution, we model the DDoS mitigation activity as an OS level

resource management problem. We show that the victim service is responsible for

the resource contention due to its heavy resource usage for one or more resources
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like CPU, memory, disk, and bandwidth including other application resources. To

overcome these issues, we propose a novel victim resource containment approach

by which the rest of OS services including critical services like DDoS mitigation

service and remote log-in service remain available irrespective of the presence of

any severity of DDoS attacks. We develop an illustrative example of “Victim

Service Containment” algorithm and address the service unavailability problem.

Our experimental attack results demonstrated the efficacy of our proposed solution

leading to the overall improvement of attack reporting and service availability.

Lastly, in the fourth contribution, we show that the attack mitigation activity

could be expedited if the attack absorption delay that is the time between the

request arrival and request evaluation by the mitigation method can be minimized.

To minimize the absorption delay, we reduce the “resource utilization” per request

during an attack using our proposed “Scale Inside-out” approach. To showcase

the efficacy of our claims we also take the case of “number of connections” as a

critical resource as it directly affects the overall time and efficiency of traffic data

absorption during segregation process. To increase the number of connections, we

propose to reconfigure the victim service to have a reduced resource utilization per

request. We perform real time attack experiments on cloud services to showcase

the effectiveness of our scheme. The proposed scheme also works well with the

services having resource/budget limitations. We also believe that our proposed

technique opens up a new direction of “in-resource” scaling by which the attack

data collection lead to early mitigation.

Our novel contributions in terms of attack characterization and mitigation solu-

tions open up multiple research issues related to DDoS mitigation, attack repeti-

tion, OS level resource management, and service resilience. Along with the novelty

of contributions emanating from our schemes, directions for future research emerge

to visualize the inter-service relationship on an operating system.

Additionally, the behavior of other unrelated services, resource scaling, and attack

repetition are few other issues which remain challenging and relevant. Isolation

and separation of victim services concerning network resources, is also an open

problem. Smoke-screening, malware spread within cloud, security attack inclusive

SLA design, and attack surface minimization and absorption are some of the other

important aspects of the attacks that are need be investigated while looking at

DDoS attacks in cloud computing.
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