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Abstract 

 

This thesis presents a methodology for generating rotor dynamic model of the geared system 

based on first principles. Nonlinearity of gear is examined for one mesh cycle, and gear mesh 

stiffness is determined.Gear disk is a model as a rigid disk in geared system. The three-

dimensional gear-mesh model developed for the helical and spur gear using one orientation angle 

to specify the system arrangement and three-dimensional gear-mesh model developed for the 

straight bevel gear using two orientation angle. A 12×12 mesh stiffness matrix derived for the 

helical gear and bevel gear allow us to consider the effect of the meshing stiffness of gear on the 

vibration of the geared systems. A finite element model of the geared system is developed for 

helical and bevel gears. Natural frequency of the uncoupled system and coupled system is 

determined and compared with previously obtained results and a mode shape of coupled and the 

uncoupled system is plotted using the Matlab programming. Through this methodology, a robust 

rotor dynamic model for the geared system using finite element technique is developed. 
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1 Introduction 

 

This chapter provides introduction to the geared rotor bearing system equipped with helical and 

bevel gear.   

1.1 Introduction 

Gear is a power transmission component which is used in transmission of power from one shaft 

to another shaft having relatively short distance. It is an essential part of many power 

transmission system. It’s widely used to transmit power in a system like a helicopter through  

various gear train, transmit power in an automobile from the engine to wheel through the gear 

box, transmission of power in turbine system from turbine rotor to generator, spacecraft, and 

many other industrial as well as daily appliances. 

A failure of rotor system can cause critical damage to the machine and may also lead to loss of 

life. For reliability and maintenance perspective it’s essential to predict resonance frequencies, 

stability and force response of any system. In rotor dynamics system presences of additional 

component like gear box cause difficulties in the prediction of resonant frequencies and forced 

responses.Due to frequent engagement and disengagement of gear tooth, gearbox dynamics is a  

complex field of research. Gearbox dynamics contain a large number of complex interaction and 

many assumptions which do not apply to most of the gear system.  

Since the beginning of rotating machinery, gear is used yet many aspects of gearbox dynamics 

are still in need to deeper understanding. Gears can create and transmit vibration throughout the 

whole rotor bearing system.Use of Gears in the coupling of shaft significantly influences its 

natural frequencies and mode shapes. Further external excitation such as forces produced due to 

unbalance and geometrical misalignment contributes in changing bearing stiffness properties.  

A systematic study of gear dynamics started in the 1920s and early 1930s. The primary 

objectives of gear dynamic analysis are vast, and it includes various models based on phenomena 

like bending and contact stress, transmission efficiency, loads on other machine components, 

scoring and pitting, system natural frequencies and stability, reliability, rotor whirl and gear life. 

The first model is of finding loads acting on gear teeth with the help of many analytical and 

experimental techniques. A dynamic model of gears as a spring-mass emerged in the 1950s and 

early 1960s which include tooth compliance. Finite element model developed in the  1970s is the 
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first one which includes tooth compliance. That was a significant departure from treating the 

gears as lumped inertia and teeth as a massless spring since the problem could be formulated 

much closer to a continuum. 

In this work a finite element model having 12 degrees of freedom per element is applied to a 

rotor system with helical as well as bevel gear to find the natural frequencies and mode shape of 

the system vibration by taking gear meshing stiffness in the account with consideration of 

coupling between lateral and torsional vibration. A 12 × 12 mesh stiffness matrix derived for the 

helical and the bevel gear which depends on average mesh stiffness value of gear pair. An 

equation used to find the average value of mash stiffness is verified for the helical gear pair and 

developed for the bevel gear pair by determining its value at a different point during one mesh 

cycle with the help of software and analytical method. 

1.2 Thesis Outline 

1. Chapter 1 contain basic introduction about the gear dynamics. 

2. Chaper 2 contain a comprehensive literature review on the gear dynamics and discuss 

scope and objective of the work. 

3. Chapter 3 contain a method to find non-linearity of the gear-mesh stiffness during the one 

mesh cycle. By using FEA software average gear mesh stiffness for the spur and bevel 

gear can be found. 

4. Chapter 4 provides a modeling of the gear as a rigid disk in rotor dynamics. 

5. Chapter 5 provides a detailed discussion of development of 12 DOF gear mesh stiffness 

matrix and discussion includes its application of the 12 DOF model to a geared shaft 

system. 

6. Chapter 6 provides a discussion of the development of 12 DOF bevel gear mesh stiffness 

matrix with help of two orientation angle to specify its orientation in three-dimension. 

This physic based model applied to bevel geared system and results are validated with 

published data in literature. 

7. Chapter 7 provides conclusion, limitation and recommendation of gear-mesh model of 

helical and bevel gears.  
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2 Literature Review, Scope, and Objective 

 

2.1 Literature Review 

B. Kishor (1989) provide an estimation of dynamic gear tooth load due to coupled lateral-

torsional vibration in the geared rotor hydrodynamic bearing system.He includes gear mesh 

compliance and damping at gear teeth in his study with the effect of the geometrical unbalance 

and manufacture error.  

Steady state analysis investigating the non-linear behavior of a spur gear is suggested by Singh 

(1990). He develops finite element model to find non-linear frequency response of the gear with 

a backlash and rotor bearing system response. His study focused on the effect of lightly and 

heavily loaded gear system. 

Kahraman (1992) developed finite element model of geared rotor system having a flexible 

bearing. This model includes rotary inertia of shaft, flexibility of the shaft, damping of bearing, 

gear mesh stiffness and axial loading of the shaft.The procedure used to determine critical speed 

and response of shaft at any point due to geometrical eccentricities of gears, mass unbalanced 

and transmission errors.  

The new spectral stiffness and transmissibility matrices developed based on the linear theory by 

Blankenship (1995), and development of new model rating indices can be used to rank order the 

importance of gear pair modes excited by various type of transmission error and coupling 

between bending and lateral modes. 

Lau (1996) developed a model synthesis method for the vibrational analysis of complex geared 

systems which takes into account cross coupling effects caused by the system geometry and its 

dynamics. First, few natural frequencies and mode shape of the global system can be obtained by 

synthesizing all substructure using boundary condition at nodes which are related to engagement 

between a pair of gears..In this method, each shaft is modeled as an individuals substructure. The 

global system matrix was then derived from the model synthesis technique. The lateral-torsional-

axial coupled in the form of stiffness matrix. The non-zero element of the stiffness matrix is used 

to calculate the global characteristic of the system. 

Another finite element formulation to determine the coupled vibration characteristic of a geared 

rotor system is proposed by Rao(1995).His work on sensitivity analysis of various parameter on 
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system natural frequencies and mode shape such as pressure angle, gear mesh stiffness, type of 

bearing system, etc. 

Choi (1999) develop a model on dynamic gear loading in response to unexpected vibration in 

specifically in the axial direction of a helical geared set.In this approach, he modeled a gear pair 

as a set of the rigid disk with a linearly distributed spring over contact line. He can determine the 

source of the instability with the help of transmission error analysis and redesign the turbo set to 

eliminate the high vibration. 

Jian Lin (2002) present a method to analyze instabilities systematically in the two mesh multi-

gear system during its operating condition. The simple formulas which describe the effect of 

contact ratios and mesh phasing on the stabilities boundary conditions were derived. 

Wang (2002) Introduced one more new approach in which Geared system modeled using the 

Delft finite element theory(Werff, 1977). The definition of the element consists of both the nodal 

coordinates and deformation coordinates in this formulation. The gear element includes time-

varying mesh stiffness, transmission error, and lateral –torsional vibration coupling. 

M. Li and H.Y. Hu(2002,2003) present paper on spiral bevel gear dynamics to couple axial-

lateral-torsional vibration of the rotor-bearing system. They proposed 6 DOF model of the spiral 

bevel gear using Lagrange's equations under certain conditions to find out the natural frequency 

and mode shape of the rotor-bearing system. The dynamics of spiral bevel gear analyze 

theoretically, and system behavior investigated numerically. They examine the effect of various 

boundary conditions such as torsional and axial stiffness of bearing on the threshold speed and 

stability of the system. 

Ebrahimi (2006)  consider the elastic effect between gear and body for contact analysis of 

meshing gear teeth. His work is applicable for both spur and helical gear. The tooth and body 

both were assumed to be rigid with an elastic element between them. Rigid gear tooth contact 

analysis used to determine resulting gear force and moment. 

David Blake Stringer (2008) presents methodologies for rotor dynamic modeling of rotary-wing 

transmission based on the first principle. He developed three-dimensional finite element model 

of gear mesh stiffness for spur and helical gears and carried out non-linear analysis of geared 

system.For the faster analysis of gear systems and potentially providing model reduction, he 

develops a model synthesis technique. 
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Li Yinong (2010) developed 8-DOF non-linear dynamic model of a spiral bevel gear pair. He 

involves time-varying mesh stiffness, transmission error, backlash and asymmetric mesh 

stiffness.A numerical method is used to examine the effect of mesh stiffness on the vibration of 

the spiral bevel gear transmission system.  

J.A. Kaplan and Saeid Doust (2013) developed finite element formulation of the coupling 

between shaft by gears which couple the axial, lateral, and torsional degrees of freedom of shafts. 

This formulation can apply to a wide variety of both helical and spur geared system having a 

shaft at different orientation angle and was based on the mathematical model computing the 

average mesh tooth stiffness. The shaft is a model as a 1-D Timoshenko beam element having 12 

degrees of freedom per element. 

S.B. Wadkar (2005) examined the effect of various parameters on the variation of the gear mesh 

stiffness. He proposed a method to find mesh stiffness from the combined torsional mesh 

stiffness of the gear pair.He explains how is the mesh stiffness of the gear pair increases when 

the second pair of gear tooth are in contact. Two and three-dimensional finite element model is 

developed to calculate the torsional mesh stiffness by Timo Kiekbusch (2010). Longbao Wang 

(2013) present new equality conservation method for mesh stiffness calculation of straight bevel 

gear of small teeth number and size. 

Chun Hung (2009) studied on the gear mesh cycle. A non-linear quasi-static finite element 

modeling used to examine mesh stiffness of the gear pair. He Compare mesh stiffness based on 

meshing quality, integration method, types of element.  

2.2 Research Gap 

Choi (1999) develop 10 DOF gear dynamic model to predict unexpected vibration in the gear 

system specifically in the axial direction but it is applied only for helical and spur gear.               

J.A. Kaplan and Saeid Doust (2013) developed 12 DOF finite element formulation of the 

coupling between shaft by gears which couple the axial, lateral, and torsional degrees of freedom 

of shafts but this model can only apply to the helical and spur gear. Li Yinong (2010) developed 

8-DOF non-linear dynamic model of a spiral bevel gear pair. David Blake Stringer (2008) 

develop 12 DOF model of the helical gear for the rotary wing transmission system . M. Li and 

H.Y. Hu (2002,2003) presented paper on spiral bevel gear dynamics of the rotor-bearing system 

but this model consist of only 3 DOF per node. 12 DOF finite element model can be developed 
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for the helical and bevel gear system which would couple axial-lateral-torsional vibration of the 

system. 

 

2.3 Research Objective 

The primary research objective of this research work is to identify the effect of the gear mesh 

stiffness of helical and bevel gear pair on the vibration of the geared system. Which includes 

Development of  the stiffness, mass, and gyroscopic matrix for the whole geared system. The 

effect of gear mesh stiffness is taken into consideration using 12×12 gear mesh stiffness matrix 

for the helical and bevel gear. Examine the coupling between the axial-lateral-torsional vibration 

of geared system.A Matlab codes are used to Calculate the natural frequencies and mode shape 

for the system and to plot mode shape. 
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3 Methodology for Calculating Gear Mesh Stiffness 

 

This chapter contains a calculation of the gear mesh stiffness for the spur gear and bevel gear 

using the methodology provided and softwares such as ANSYS Workbench 15.0 and Creo 

Parametric 2.0. Gear mesh stiffness obtained is verified with the mesh stiffness obtained from the 

equation provided in the literature. The equation provided for mesh stiffness calculation are then 

modified for the bevel gear pair.  

3.1 Gear Mesh Stiffness Calculation for Helical Gear and Spur Gear 

3.1.1  Methodology 

Haward and Wang (2001, 2005) describe the relation between the torsional stiffness of gear pair 

and linear tooth mesh stiffness of gear pair. The gear mesh stiffness can be easily understood by 

the torsional and transverse motion of the gear system. Figure 3.1 explains coupling between 

torsional and transverse motion of the system. 

 

Figure 3.1: Coupling of the torsional and transverse motions of the spur gears (Chun, 2009) 
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Where , 

T = Input torque ,Nm 

rpb = Base circle radius of the pinion, m  

θp= Angular displacement of the pinion, rad 

rgb = Base circle radius of gear, m 

θg = Angular displacement of gear, rad 

Km = Linear tooth mesh stiffness, N/m 

LOA = Line of action 

During meshing of the gear pair, one of the most important factor is torsional mesh stiffness of 

the gear. In meshing gear’s pitch circle rolls on one another without slipping( as shown in fig. 

3.2).  

 

Figure 3.2: Schematic of spur gears in action (Chun, 2009) 

Where, 

Tp = Input pinion torque, Nm 

θp = Angular displacement of the pinion, rad 

 rp = Pitch radius of the pinion, m 

Np = Number of teeth of pinion 
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Tg = Output gear torque, Nm 

θg = Angular displacement of gear, rad 

rg = Pitch radius of gear, m 

Ng = Number of teeth of gear 

 

The ratio of a number of teeth to it circumstance is always same for the meshing gears which 

yields the following relationship. 

 rp θp = rg θg (3.1) 

 

 𝑁𝑝

𝑁𝑔
=
𝑟𝑝

𝑟𝑔
=
𝜃𝑔

𝜃𝑝
 

 

(3.2) 

And with assumption of no energy dissipation in power transmission, 

 

 𝑇𝑝𝜃𝑝 = 𝑇𝑔𝜃𝑔  (3.3) 

 

 𝑁𝑝

𝑁𝑔
=
𝑇𝑝

𝑇𝑔
=
𝜃𝑔

𝜃𝑝
 

 

(3.4) 

Linear tooth mesh stiffness can be calculated from the torsional stiffness of the gear. Torsional 

mesh stiffness is the ratio of the applied torque to angular deflection of the gear. 

 
𝐾𝑡 =

𝑇

𝜃
=
𝑇𝑔

𝜃𝑔
=
𝑇𝑝

𝜃𝑝
 (3.5) 

Where ,  

T = Applied torque on the pinion, N/m 

θ =  Angular deflection , rad 

KT = Torsional mesh stiffness , Nm/rad 

The linear mesh tooth stiffness can be defined as a ratio of force along Line of Action (Fn ) to 

linear deflection of gear along a base circle (S) which yields following relationship. 

 
𝐾𝑚 =

𝐹𝑛
𝑆

 (3.6) 
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Km = linear tooth mesh stiffness, N/m 

Fn = Normal force along line of action, N 

S = Arc length (deflection) of base circle of pinion due to Force Fn,m   

The torque in the gear is a force Fn multiply by the perpendicular distance, which in this case is 

base circle radius rpb . thus T = Fn rpb . Furthermore, with the assumption of small angle θ can be 

defined as θ = S / rpb. S is an arc length of the base circle of the pinion. Therefore, linear tooth 

mesh stiffness can be rewritten as, 

 

 

𝐾𝑚 =
𝐹𝑛
𝑠
=

𝑇
𝑟𝑝𝑏

𝑟𝑝𝑏 ∗ 𝜃
=

𝑇

𝜃 ∗ 𝑟𝑝𝑏2
= 

𝐾𝑇

𝑟𝑝𝑏2
 

 

(3.7) 

So that linear tooth mesh stiffness can be written as the ratio of torsional mesh stiffness and 

square of base circle radius of the pinion. 

 

 
𝐾𝑚 =

𝐾𝑇

𝑟𝑝𝑏
2
 (3.8) 

 

3.1.2 Modeling of Spur Gear Using Creo Parametric 2.0 

For finite element analysis of any system creating a finite element model is a critical and time-

consuming step. Finite element model must create with appropriate dimension, constraint, loads, 

mesh selection, element choice, etc. There two methods to construct finite element model. The 

first method includes the creation of CAD model using modeling software such as Creo 

Parametric, Solidworks, or CATIA, and export a model to ANSYS Workbench,  Abaqus with 

appropriate file formats such as IGES,  ACIS, or Parasolid for analysis. The second method used 

internal modeling capabilities of any analysis software to build the model. The primary 

disadvantage of the second method is user usually find difficulties to create a complex model. 

In this work, Creo Parametric 2.0 used to create CAD model of the spur gear, and ANSYS 

Workbench 15.0 for the FEA of the gear system.   
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CAD model created using input parameter shown in Table 3.1 

All dimensions are in mm  

Pressure angle = PA = 20 ֯ 

Table 3.1: Parameter used to construct Spur Gear in Creo Parametric 2.0 

 

 

Parameter 

Both gear of 

same size and 

material 

Both gears are of different size 

and materials 

1
st
 gear 

(pinion) 

2
nd

 gear 

(gear) 

Pitch Circle Diameter (D) 40 40 80 

Base Circle Diameter(Db = D * cos(PA) ) 
37.5877 37.5877 75.1754 

Number of teeth,(N) 21 21 42 

Diametral Pitch ,(P) 0.5250 0.5250 0.5250 

Addendum , (a =1/P) 1.9048 1.9048 1.9048 

Outside Diameter , (Dₒ = D +2a) 43.8096 43.8096 83.8096 

Circular Pitch , (p = 3.1416/P) 5.9840 5.984 5.9840 

Whole Depth, (ht = 2.157/P) 
4.1086 4.1086 4.1086 

Dedendum  ,(b = ht –a) 
2.2038 2.2038 2.2038 

Root Diameter ,(Dᵣ = D -2b) 35.5924 35.5924 75.5924 

Centre distance b/w both gear,(C) 40 40 60 

Tooth width,(b) 6 6 6 

 

CAD model of the gear system having same size of gears as shown in figure 3.3 and CAD model 

of gear system having different size of gears as shown in figure 3.4 created using CREO 

Parametric 2.0. 



 

12 

  

 

Figure 3.3: CAD model: Spur Gear (Both gears: Same size) 

 

Figure 3.4: CAD model: Spur Gear (Both gears: Different size) 

3.1.3 Boundary Conditions, Loads, and Displacement Field 

Boundary conditions and loads in this work applied in such a way all degree of except one 

rotational degree of freedom are restricted in the pinion, and all degrees of freedom in gear are 

restricted. The only load applied on the system is input torque on the pinion as shown in figure 

3.5. Figure 3.6 demonstrates the boundary conditions and applied load on the gear model.  
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Figure 3.5: Boundary conditions and applied load for analysis (Chun, 2009) 

 

Figure 3.6: Boundary conditions in ANSYS Workbench 15.0 for spur gear                               

(Both gears: Same size) 

By applying above boundary conditions, ANSYS obtain the result in the form of displacement 

field as shown in figure 3.7. A displacement field in ANSYS is used to calculate mesh stiffness 

by the procedure explained earlier. 

Displacement field for: 

 Moment = 10 Nm 

Input Torque 

Fixed constrain (Allow rotation) 

Fixed constrain 
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 Position = 0 ֯ 

 

 

Figure 3.7: Displacement field in ANSYS Workbench 15.0 for spur gear 

(Both gears: Same size) 

3.1.4 Results and Comparison 

3.1.4.1 Both gears are of the same size and materials 

Outside radius, ra = 21.9048 mm 

Base circle radius, rpb = 18.79 mm  

Moment/Torque T = 20 Nm 

Mesh stiffness of gear pair at constant torque wrt position angle: 

Table 3.2: Mesh stiffness of spur gear at constant torque pair wrt position angle  

Angular 

position 

(Degree) 

𝑆 =  𝑟𝑎 ∗ 𝜃, 10
−5 m 𝜃 =

𝑆

𝑟𝑎
, 10−2 rad 𝐾𝑇 =

𝑇

𝜃
, Nm/rad 𝐾𝑚 =

𝐾𝑡

𝑟𝑝𝑏
2  ,10

6  N/m 

-15.75 0.9845 0.044944030 44499.79 125.98 

-15 1.0303 0.047035352 42521.20 120.38 

-14.25 0.9733 0.044432270 45012.33 127.43 

-13.5 0.9711 0.044331379 45114.77 127.72 

-12.75 0.9747 0.044495726 44948.13 127.25 

-12 0.9714 0.044345988 45099.90 127.68 

-11.25 0.9733 0.044434096 45010.48 127.43 

-10.5 0.9673 0.044159727 45290.13 128.22 

-9.75 1.0037 0.045821007 43648.10 123.10 
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-9 1.3376 0.061064241 32752.39 92.72 

-8.25 1.3173 0.060137504 33257.11 94.15 

-7.5 1.2822 0.058535115 34167.52 96.73 

-6.75 1.1916 0.054399035 36765.35 104.08 

-6 1.1996 0.054764252 36502.17 103.39 

-5.25 1.1759 0.053682297 37256.22 106.24 

-4.5 1.1795 0.053846645 37142.51 105.15 

-3.75 1.2009 0.054823600 36480.63 103.28 

-3 1.2008 0.054819035 36483.67 103.29 

-2.25 1.2109 0.055280121 36179.37 102.43 

-1.5 1.1899 0.054321427 36817.88 104.23 

-0.75 1.2826 0.058553376 34156.86 96.70 

0 1.3355 0.060968372 32803.89 92.87 

0.75 1.2988 0.059292940 33730.82 95.49 

1.5 0.9847 0.044953617 44490.30 125.96 

2.25 1.0328 0.047149483 42418.28 120.09 

3 0.9739 0.044461031 44983.21 127.35 

3.75 0.9737 0.044450074 44988.22 127.37 

4.5 0.9730 0.044420401 45024.35 127.47 

5.25 0.9706 0.044312205 45134.29 127.78 

6 0.9734 0.044439118 45005.39 127.41 

6.75 0.9661 0.044103575 45347.79 128.38 

7.5 1.3286 0.060653372 32974.25 93.28 

8.25 1.3396 0.611555450 32703.49 92.58 

9 1.3190 0.060215112 33214.25 94.03 

9.75 1.1960 0.054599905 36630.10 103.70 

10.5 1.1921 0.054421861 36749.93 104.04 

11.25 1.1993 0.054750556 36529.30 103.42 

12 1.1764 0.053705123 37240.38 105.43 

12.75 1.2009 0.054823600 36480.63 103.07 

13.5 1.2022 0.054882948 36441.19 103.17 

14.25 1.2008 0.054819035 36483.67 103.29 

15 1.1971 0.054650122 36596.44 103.61 

15.75 1.1907 0.054579480 36778.57 104.12 

 

The mesh stiffness of the gear pair having both gears of the same size is varied during the 

rotation of the gears as shown in figure 3.8. 
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Figure 3.8: Mesh stiffness vs. angular position (Both gears: Same size) 

3.1.4.2 Both gears are of different size but same materials 

By applying same boundary condition as shown earlier to find gear mesh stiffness.  

Outside radius of pinion, ra = 21.9048 mm 

Base circle radius of pinion, rpb = 18.79 mm  

Mesh stiffness of gear pair at constant torque wrt position angle: 

Moment/Torque T = 20 N/m 

Table 3.3: Mesh stiffness of spur gear pair at constant torque wrt position angle  

Angular 

position 

(Degree) 

𝑆 =  𝑟𝑎 ∗ 𝜃, 10
−5 m 𝜃 =

𝑆

𝑟𝑎
, 10−2 rad 𝐾𝑇 =

𝑇

𝜃
, Nm/rad 𝐾𝑚 =

𝐾𝑡

𝑟𝑝𝑏
2
  ,106  N/m 

-7 1.7230 0.078658558 25426.34 71.98 

-6.5 1.7403 0.079448340 25173.59 71.27 

-6 1.7288 0.078923341 25341.04 71.74 

-5.5 1.7141 0.078252255 25558.36 72.36 

-5 1.4019 0.063999671 31250.16 88.47 

-4.5 1.4184 0.064752930 30886.63 87.44 
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-4 1.404 0.064095540 31203.41 88.34 

-3.5 1.9884 0.090774624 22032.58 62.37 

-3 2.0601 0.094047879 21265.76 60.20 

-2.5 1.9857 0.090651364 22062.54 62.46 

-2 2.0259 0.092486578 21624.75 61.22 

-1.5 2.0101 0.091765275 21794.73 61.70 

-1 2.0415 0.093198750 21459.51 60.75 

-0.5 2.0089 0.091710492 21807.75 61.74 

0 1.4424 0.065848581 30372.71 85.99 

0.5 1.4239 0.065004017 30767.32 87.10 

1 1.4382 0.065656842 30461.41 86.24 

1.5 1.7236 0.078685950 25417.49 71.96 

2 1.7159 0.079530513 25147.58 71.19 

2.5 1.7345 0.079183557 25257.76 71.50 

3 1.7159 0.078334428 25531.55 72.28 

3.5 1.4011 0.063963149 31268.00 88.52 

4 1.4062 0.064195975 31154.60 88.20 

4.5 1.3940 0.063639019 31427.26 88.97 

5 1.9860 0.090665059 22059.21 62.45 

5.5 2.0501 0.093591358 21369.49 60.50 

6 2.0296 0.092655491 21585.33 61.11 

6.5 2.0359 0.099430990 21518.54 60.92 

7 2.0356 0.092929403 21521.71 60.93 

 

The mesh stiffness of the gear pair having both gears of the different size is varied during the 

rotation of the gears as shown in figure 3.9. 
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Figure 3.9: Mesh stiffness vs. Angular position (Both gears: Different size) 

 

3.1.4.3 Comparison  

Obtained result compares with the one that calculated from the equation provided in the 

literature. Spott’s (1985) provided an equation for the gear to calculate average mesh stiffness of 

gear pair. 

Average gear mesh stiffness obtained: 

1. Both gears are of same size and material: 

Km = 110.30 MN/m 

2. Both gears are of different size but same materials: 

Km = 74 MN/m 

3. By using Scott's equation of average mesh stiffness: 

 

 
K𝑚  =

𝑏

9
∗
𝐸1 ∗ 𝐸2
𝐸1 + 𝐸2

 (3.9) 

        = 66.66 MN/m 

           Where, 

           E1 = Elastic modulus of 1
st
 gear = 200 GPa 

           E2 = Elastic modulus of 2
nd

 gear = 200 GPa 
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4. By using modified Spott’s equation of average mesh stiffness: 

 

 
𝐾𝑚  = C. R.  ∗

𝑏

9
∗
𝐸1 ∗ 𝐸2 

𝐸1 + 𝐸2
   (3.10) 

                                                         

                                                         = 104 MN/m 

Where, 

 C.R. = Contact ratio = 1.56 

 

From the above results, it is verified that Spott’s equation of average mesh stiffness can be used 

in the calculation of mesh stiffness of the gear pair, and it gives an approximate value of the 

mesh stiffness. 

 

 

3.2 Gear Mesh Stiffness Calculation for Bevel gear 

3.2.1 Methodology 

Gear mesh stiffness of bevel gear can also be correlated with torsional mesh stiffness by the 

same equation as used in case of the spur gear. 

 

Figure 3.10: Bevel gear force component  
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Km is mesh stiffness along the line of action or in the direction of Fn . Three component of the 

mesh stiffness can be resolved along X’, Y’ and Z’ which gives axial, radial and tangential 

component Km respectively. 

The component of mesh stiffness in the direction of Z’ is Kz, which gives tangential or torsional 

gear mesh stiffness of bevel gear which yields following equation (3.11). 

 Kz = Km cos(𝛼𝑛) (3.11) 

Where  

αn = Pressure angle 

γp = Pinion pitch angle/semi cone angle of pinion gear 

rb = Base circle radius of pinion 

Kz = Component of mesh stiffness in z direction, N/m 

T = Torque/moment, Nm 

θ = Angular deflection, rad 

Fn = Normal force ,N 

Ft = Tangential force on gear ,N 

Km = Mesh stiffness , N/m 

Kt = Torsional stiffness , Nm/rad 

By rewriting above equation. 

 
𝐾𝑚 =

𝐾𝑧
cos (𝛼𝑛)

  

 

 
𝐾𝑚 =

𝐹𝑡
𝑟𝑏 ∗ 𝜃 ∗ cos (𝛼𝑛)

 (3.12) 

Where, 

rb*θ = linear deflection in tangential direction, m 

Normal force Fn can be related to tangential by equation (3.13). 

 
𝐹𝑛 =

𝐹𝑡
cos (𝛼𝑛)

 (3.13) 

 

By rewriting equation (3.12) the equation of Km yields as below 

 

 

 
𝐾𝑚 =

𝐹𝑛
𝑟𝑏 ∗ 𝜃

 (3.14) 
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𝐾𝑚 =
𝐹𝑛 ∗ 𝑟𝑏

𝑟𝑏2 ∗ 𝜃
 

Fn * rb = T = Applied torque, Nm 

 

 
𝐾𝑚 =

𝑇

𝑟𝑏2 ∗ 𝜃
 (3.15) 

 

So that linear tooth mesh stiffness can be written as the ratio of torsional mesh stiffness and 

square of base circle radius of the pinion. 

 
𝐾𝑚 =

𝐾𝑇

𝑟𝑝𝑏2
 (3.16) 

 

3.2.2 Modeling of Bevel Gear Using Creo Parametric 2.0 

By using the first method for construction of finite element model, A CAD model of bevel gear 

is constructed in Creo Parametric 2.0 using parameter given in Table 3.4.  

All dimension are in mm 

PA = Pressure angle = 20 ֯ 

Table 3.4: Parameter used to construct Bevel Gear in Creo Parametric 2.0 

Parameter  Both gear of same size and material 

Pitch Circle Diameter (D) 40 

Base Circle Diameter(Db = D * cos(PA) ) 
37.5877 

Number Of Teeth,(N) 22 

Diametric Pitch ,(P) 0.55 

Pitch angle of i
th

 gear, γi =tan  ̄¹(Np/Ng) 45 

Addendum , (a =1/P) 1.818 

Outside Diameter , (Dₒ = D +2a) 43.636 

Circular Pitch , (p = 3.1416/P) 5.984 

Whole Depth, (ht = 2.188/P) + 0.002 
3.980 

Dedendum  ,(b = ht –a) 
2.162 

Root Diameter ,(Dᵣ = D -2b) 35.676 

Gear thickness 6 
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CAD model of the bevel gear system created using Creo Parametric 2.0 is shown in figure 3.11. 

 

Figure 3.11: CAD model of  bevel gear (Both gears: Same size) 

 

3.2.3 Boundary Conditions, Loads, and Displacement Field 

For this research, The boundary conditions and loads should be applied as such: Pinion – restrict 

all DOFs except the rotational degree of freedom. Gear – completely restrict all DOF. The only 

load that applies to the model is the input torque(as shown in fig. 3.12), and it is applied on the 

pinion. 

 

Figure 3.12: Boundary conditions in ANSYS Workbench 15.0 for bevel gear                               

(Both gears: Same size) 
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By applying above boundary conditions, ANSYS obtain the result in the form of displacement 

field as shown in figure 3.13. A displacement field in ANSYS is used to calculate mesh stiffness 

by the procedure explained earlier. 

Displacement field for: 

 Moment = 30 Nm 

 Position = 0 ֯ 

 

Figure 3.13: Displacement field in ANSYS Workbench 15.0 for bevel gear 

(Both gears: Same size) 

 

 

3.2.4 Results and Comparison 

3.2.4.1 Both gears are of the same size and materials 

Outside radius, ra = 21.2855 mm 

Base circle radius, rpb = 18.7938 mm  

Moment T = 20 Nm 

Mesh stiffness of bevel gear pair at constant torque wrt position angle:  
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Table 3.5: Mesh stiffness of bevel gear pair at constant torque wrt position angle 

Angular position 

(Degree) 

𝑆 =  𝑟𝑎 ∗ 𝜃, 10
−5 m 𝜃 =

𝑆

𝑟𝑎
, 10−2 rad 𝐾𝑚 =

𝐾𝑡

𝑟𝑝𝑏
2  ,10

6  N/m 

15 1.4196 0.066693226 84.90 

14 1.2468 0.058575031 96.66 

13 1.2425 0.058373016 97.00 

12 1.2465 0.058560937 96.69 

11 1.2866 0.060444847 93.67 

10 1.2669 0.059519335 95.13 

9 1.2755 0.059923365 94.49 

8 1.2733 0.059820009 94.65 

7 1.2436 0.058424694 96.91 

6 1.2443 0.058457580 96.86 

5 1.2382 0.058171000 97.34 

4 1.2406 0.058283753 97.15 

3 1.2433 0.058410600 96.94 

2 1.2512 0.058781744 96.32 

1 1.2783 0.060054910 94.28 

0 1.4201 0.066716716 84.87 

-1 1.4217 0.066791884 84.77 

-2 1.4224 0.066824771 84.73 

-3 1.4146 0.066458324 85.20 

-4 1.2433 0.058410600 96.94 

-5 1.2380 0.058161604 97.35 

-6 1.2410 0.058302545 97.12 

-7 1.2703 0.059679068 94.88 

-8 1.2653 0.059444166 95.25 

-9 1.2541 0.058917987 96.10 

-10 1.2381 0.058166302 97.34 

-11 1.2386 0.058067644 97.30 

-12 1.2381 0.058166302 97.34 

-13 1.2413 0.058316639 97.09 

-14 1.4205 0.066735508 84.84 

-15 1.4238 0.066890543 84.65 

-16 1.4212 0.066768394 84.80 

-17 1.4221 0.066810677 84.75 

-18 1.4250 0.066946919 84.58 

-19 1.4161 0.066528795 85.11 

-20 1.2451 0.058495164 96.80 
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Figure 3.14: Mesh stiffness vs. Angular position (Both gears are of differ ent size) 

From the figure 3.14 it is clear that value of average gear mesh stiffness for the bevel gear is low 

compared to spur gear having same pitch diameter. 

 

3.2.4.2 Comparison 

Obtained result compares with the one that calculated from the equation provided in the 

literature. Spott’s (1985) provided an equation for the gear to calculate average mesh stiffness of 

gear pair. 

Average gear mesh stiffness obtained: 

1. Both gears are of same size and material: 

Km = 110.30 MN/m 

2. By using modify Spott’s equation of average mesh stiffness: 

 

𝐾𝑚  = C. R.  ∗
𝑏

9
∗
𝐸1 ∗ 𝐸2 

𝐸1 + 𝐸2
= 104 MN/m  

 

Above result can modify Spott’s equation of average gear mesh stiffness for bevel gear as: 

 
 

𝐾𝑚  = 0.9 ∗ C. R.  ∗
𝑏

9
∗
𝐸1 ∗ 𝐸2 

𝐸1 + 𝐸2
 (3.17) 
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4 Modeling of Gear Disk  

 

This chapter contains a modelling of gear disk in different coordinate systems used in helical and 

bevel gear system in later chapters as gear is assumed as a disk on the shaft. 

4.1 Modelling of Gear Disk  

The equations of motion of the simple rotor system are available in reference (Childs, 1993). 

This approach uses Lagrangian for the derivation of equations of motions. The Lagrangian 

formulation is given by equation 4.1. 

 

 𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞̇ 𝑖
) −

𝜕𝐿

𝜕𝑞̇𝑖
= 𝐷𝑖 (4.1) 

 𝐿 = 𝑇 − 𝑉 (4.2) 

 {𝑞̇} = {𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦, 𝜃𝑧}
𝑇
 (4.3) 

Where,  

D = generalized forces 

L = Lagrangian function 

q = generalize coordinates 

T = kinetic energy 

V = potential energy 

 

       Figure 4.1: simple rotating cylindrical mass 

system 

A single cylindrical mass contains 6 DOFs provides a most general model (as shown in fig. 4.1), 

applicable to any system. Rotating shaft in system may not have the same orientation. Some 

shafts may be vertical, or may be inclined at some angle with horizontal.  

Equations 4.4 and 4.5 give the expressions for total kinetic energy (T) and potential energy (V): 

 

x 

y 

z 

𝜃𝑥 

𝜃𝑦 

𝜃𝑧 

m 
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𝑇 =

1

2
[𝑚(𝑥 2 + 𝑦 2 + 𝑧 2) + 𝐼𝑡 (𝜃 𝑥

2
+ 𝜃 𝑦

2
) + 𝐼𝑝𝜃 𝑧

2
+ 𝐼𝑝(𝛺

2 − 2𝛺𝜃 𝑦𝜃𝑥)] (4.4) 

 
𝑉 =  

1

2
[𝑘𝑥𝑥

2 + 𝑘𝑦𝑦
2 + 𝑘𝑧𝑧

2 +𝐾𝜃𝑥𝜃𝑥
2 + 𝐾𝜃𝑦𝜃𝑦

2 +𝐾𝜃𝑧𝜃𝑧
2] (4.5) 

Where, 

It = transverse mass moment of inertia 

Ip = polar mass moment of inertia 

m = mass of cylindrical shape 

Kq = rotational elastic stiffness about x, y, and z-axes 

kq = translational elastic stiffness about x,y. and z-axes 

𝛺 = rotating speed of cylindrical mass 

From the above equations, equations of motion for the 6-DOF system can be obtained as below. 

 𝑚𝑥 + 𝑘𝑥𝑥 = 𝐹𝑥  

 mÿ + 𝑘𝑦𝑦 =  𝐹𝑦  

 mz + 𝑘𝑧𝑧 =  𝐹𝑧  

 𝐼𝑡𝜃 𝑥 + 𝛺𝐼𝑝𝜃 𝑦 + 𝐾𝜃𝑥𝜃𝑥 = 𝑀𝑥 (4.6) 

 𝐼𝑡𝜃 𝑦 − 𝛺𝐼𝑝𝜃 𝑥 +𝐾𝜃𝑦𝜃𝑦 = 𝑀𝑦  

 𝐼𝑝𝜃 𝑧 + 𝐾𝜃𝑧𝜃𝑧 = 𝑀𝑧  

In form of matrix, 

 [𝑀]{𝑞̇ } + [𝐺]{𝑞̇ } + [𝐾]{𝑞̇} = {𝐹} (4.7) 

 

[𝑀] =

[
 
 
 
 
 
𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑡 0 0
0 0 0 0 𝐼𝑡 0
0 0 0 0 0 𝐼𝑝]

 
 
 
 
 

,   [𝐾] =

[
 
 
 
 
 
𝑘𝑥 0 0 0 0 0
0 𝑘𝑦 0 0 0 0

0 0 𝑘𝑧 0 0 0
0 0 0 𝐾𝜃𝑥 0 0
0 0 0 0 𝐾𝜃𝑦 0

0 0 0 0 0 𝐾𝜃𝑧]
 
 
 
 
 

 

[𝐺] =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 𝛺𝐼𝑝 0

0 0 0 −𝛺𝐼𝑝  0 0

0 0 0 0 0 0]
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Where, 

[M] = mass matrix 

[K] = stiffness matrix 

[G] = gyroscopic matrix 

{F} = force/moment vector 

 

The coupling between θx and θy represent the gyroscopic moment effect on the system. The 

terms used in gyroscopic effect is similar to damping, but it does not cause any energy loss as it 

is conservative. The gyroscopic effect on the system is directly proportional to its speed.  

As the coordinates system used in another system may not be the same as the one used here so 

according to the coordinates system used, mass, stiffness and a gyroscopic matrix of the system 

will change. 

Matrices for two other coordinates system used later in this work is shown in figure 4.2 and 

figure 4.4, 

 

1.  

 

 

 

Figure 4.2 Coordinate system used later in j
th

 gear of bevel gear system 

 

[𝑀] =

[
 
 
 
 
 
𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑝 0 0

0 0 0 0 𝐼𝑡 0
0 0 0 0 0 𝐼𝑡]

 
 
 
 
 

,   [𝐾] =

[
 
 
 
 
 
𝑘𝑥 0 0 0 0 0
0 𝑘𝑦 0 0 0 0

0 0 𝑘𝑧 0 0 0
0 0 0 𝐾𝜃𝑥 0 0
0 0 0 0 𝐾𝜃𝑦 0

0 0 0 0 0 𝐾𝜃𝑧]
 
 
 
 
 

 

 

y 

x 

z 

𝜃𝑥 

𝜃𝑦 

𝜃𝑧 
m 
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[𝐺] =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0  0 𝛺𝐼𝑝
0 0 0 0 −𝛺𝐼𝑝 0 ]

 
 
 
 
 

 

 

 

2.  

 

             

             

             

             

             

 Figure 4.2 Coordinate system used later in i
th

 gear of bevel gear system 

[𝑀] =

[
 
 
 
 
 
𝑚 0 0 0 0 0
0 𝑚 0 0 0 0
0 0 𝑚 0 0 0
0 0 0 𝐼𝑡 0 0
0 0 0 0 𝐼𝑝 0

0 0 0 0 0 𝐼𝑡]
 
 
 
 
 

,   [𝐾] =

[
 
 
 
 
 
𝑘𝑥 0 0 0 0 0
0 𝑘𝑦 0 0 0 0

0 0 𝑘𝑧 0 0 0
0 0 0 𝐾𝜃𝑥 0 0
0 0 0 0 𝐾𝜃𝑦 0

0 0 0 0 0 𝐾𝜃𝑧]
 
 
 
 
 

 

[𝐺] =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −𝛺𝐼𝑝
0 0 0 0  0 0
0 0 0 𝛺𝐼𝑝 0 0 ]

 
 
 
 
 

 

 

When the finite element method applied to whole gear-shaft system it takes form same as 

equation 4.7. 

 [𝑀]{𝑞̇ } + [𝐷]{𝑞̇ } + [𝐾]{𝑞̇} = {𝐹} 

 

[𝐷] = [𝐶] + 𝛺[𝐺] 

(4.7) 

 

x 
y 

z 

𝜃𝑦 

𝜃𝑧 

𝜃𝑥 

𝑚 
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[M], [G] and [K ] are mass, gyroscopic and stiffness matrix in global coordinates system for 

Whole system of gear-shaft. These matrices are further broken into matrices of system 

components as follow. 

 

 [𝑀] = 𝑀𝑠 +𝑀𝑑 

[𝐺] = 𝐺𝑠 + 𝐺𝑑 

[𝐾] = 𝐾𝑠 + 𝐾𝑏 + 𝐾𝑚𝑒𝑠ℎ 

[𝐶] = 𝐶𝑠 + 𝐶𝑏 + 𝐶𝑚𝑒𝑠ℎ 

(4.8) 

The subscript (s), designates the matrix corresponding to the rotor shaft. The subscript (d), 

designates the disk or gear. The subscript (b), designates a bearing matrix. The subscript (mesh), 

designates the matrix corresponds to gear-mesh.  Appendix A lists all matrix formulation except 

for the mesh matrix. 
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5 Gear-Mesh Model Methodology with Application: 

Helical Gear   

 

This chapter contains a methodology for deriving 12-DOF mesh stiffness matrix for helical and 

spur gear. This approach used technique proposed by Lao (1996) and it also includes some 

aspects presented by Choi (1993) and Blankenship (1995). Mesh stiffness matrix derived by 

resolving force and moments transmitted through gear. This chapter is reproduction of Stringer’s 

(2008) work. 

5.1 Gear-Mesh  Model Methodology 

5.1.1 Development of Gear Mesh Forcing Function   

Figure 5.1 shows finite element representation of the gear-shaft system as suggested by Luo 

(1996). 

 

Figure 5.1: Finite element representation of a Gear Pair 

The gear acts as a rigid disk on a flexible shaft. The two centers of gear O1 and O2 are assumed 

as a node i and j of the finite element analysis. A force and moment vector {F} can be modeled 

as function of a gear mesh stiffness matrix [K]mesh and displacement vector {q} acts on a node i 

and j. 

 
{
𝐹𝑖
𝐹𝑗
} = [𝐾]𝑚𝑒𝑠ℎ {

𝑞̇𝑖
𝑞̇𝑗
} = 𝐾𝑚 [

[𝐾𝑖𝑖] [𝐾𝑖𝑗]

[𝐾𝑗𝑖] [𝐾𝑗𝑗]
] {
𝑞̇𝑖
𝑞̇𝑗
} (5.1) 
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5.1.2 Geometry and Loading Conditions  

The mesh is initially spring-mass-system, with spring along the line of action between two 

gears(as shown in fig. 5.2).The z-axis represents the axial direction of the gear. The line of action 

is a path of force transmission from one gear to another and is along a tangent line to both the 

gears. 

 

             

             

             

             

             

             

             

             

             

             

             

 Figure 5.2: Gear-Mesh Spring-Mass Model (Stringer, 2008) 

The intersection of the line of action and line connecting two centers of gears is defined as a 

pitch point, the effective point of force transmission between two gears. In spur gear, pitch point 

is a point of the concentrated load based on the uniform distribution of load along tooth width. In 

the case of helical gear load distribution is not uniform. Because of the inclination of the gear 

tooth amount of tooth contact during one mesh cycle is changing. From the beginning of mesh 

cycle, tooth contacts area increasing continuously until it reaches the point of the maximum 

contact area. Then contact area decreases during rest of cycle. Hence, contact load is maximum 

at the point of the maximum contact area. The primary objective of this analysis, the force 

transmission in helical gear is assumed to be at pitch point P.   

The location of gear taken into consideration by height variable h. For example, gears might be 

employed horizontally (h=0), vertically (h=ri+rj) or any other orientation angle (φ). The height 

variable h is vertical distance between two centers of gears. 

𝑟𝑖 𝑟𝑖 

𝑟𝑗 𝑟𝑗 

𝐾𝑚𝑒𝑠ℎ 
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φ 

 

φ 
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d 
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z 
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In this approach mesh stiffness is assume to be an average mesh stiffness derived from the 

experimental result or calculated using well-documented data.The value of average mesh 

stiffness of gear pair depends on materials of both gears. The geometry of the gear systems is 

related to mesh stiffness matrix by three variables: the helical angle (β), the orientation angle (φ), 

and the pressure angle (αn). The orientation angle of the gear system is a function of height 

variable (h). 

In many previous studies of the spur gear, the problem is two-dimensional because force act only 

in x-y plane and function of pressure angle (αn). The problem becomes three dimensional while 

dealing with the helical gear. Force component is out of the x-y plane and is a function of both 

helical angle (β) and the pressure angle (αn). 

 

Figure 5.3: Spur (left) and Helical (right) Gear Force Contributions (Stringer, 2008) 

In helical gear, three-dimensional force components are a function of direction cosine as 

illustrated in figure 5.4. The direction cosine angle can be written in the form of helical angle (β) 

and the pressure angle (αn). The force components along x’, y’ and z’ axes are determined by 

equations 5.2. The role of prime coordinates (x’ ,y’, and z’) will discuss later. 

 

 𝐹𝑥′ = 𝐹𝑛𝑐𝑜𝑠𝜙𝑥 

𝐹𝑦′ = 𝐹𝑛𝑐𝑜𝑠𝜙𝑦 

𝐹𝑧′ = 𝐹𝑛𝑐𝑜𝑠𝜙𝑧 

(5.2) 
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Figure 5.4 Mesh Force Component and Direction Cosines 

Where,  

 𝑐𝑜𝑠𝜙𝑥 = 𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛼𝑛 

𝑐𝑜𝑠𝜙𝑦 = 𝑠𝑖𝑛𝛼𝑛 

𝑐𝑜𝑠𝜙𝑧 = 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛼𝑛 

(5.3) 

 

The equation relating the force vector to displacement vector is 

 {𝐹}𝑚𝑒𝑠ℎ = −[𝐾]𝑚𝑒𝑠ℎ{𝑢}𝐿𝑂𝐴 (5.4) 

   

The negative sign implies that forces and moments acting on the gear body are in the direction of 

positive displacement.In other word force function in global coordinates system can be brought 

to the left-hand side in the form of the stiffness matrix. 

 

5.1.3 Gear-Mesh Coordinates System 

The prime coordinate axes (x’, y’, and z’) in figure 5.5 are local to pitch point. The prime 

coordinates axes are not necessary parallel with the global coordinate system. The prime 

coordinates depend on orientation angle (φ) of the gear pair. The pressure angle and helical angle 

fix the force vector on gear tooth. The geometry of tooth fixes the prime coordinates system at 

pitch point such that prime coordinate system is fixed and unchanging. The force vector must 

also be fixed in term of orientation angle to include the height of gears system. Suppose the 

F
x’ 
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orientation angle of the gear system is allowed to vary such that orientation angle is allowed to 

sweep one full revolution, the prime coordinates axis appears to rotate about the center of the i
th

 

gear. For example at φ = π/2 and φ = 3π/2, two coordinates systems are parallel to each other 

although the direction of axes between two value are reversed only z-axis remain parallel with 

global axes at any orientation.  

             

             

             

             

             

             

             

             

             

             

             

              

Figure 5.5: Relation of Local and Global Axes with φ (Stringer, 2008) 

As seen in Figure 5.5, a force component in the direction of the prime coordinate axis x’ has 

components in both x and y-direction of global coordinates system. Similarly the force 

component in the direction of prime coordinate axis y’ has a component in both x and y-direction 

of global coordinates system. 

5.1.4 Force and Moment Nodal Equations  

The component of force acting on the node (i) in the direction of the global coordinate system 

are given by equation 5.5. The moment equation about the node (i) can be determined by 

multiplying the force components and moments arm about respective axes. 

 𝐹𝑥𝑖 = 𝐹𝑥′ 𝑠𝑖𝑛𝜑 + 𝐹𝑦′ 𝑐𝑜𝑠𝜑  

 𝐹𝑦𝑖 = −𝐹𝑥′ 𝑐𝑜𝑠𝜑 + 𝐹𝑦′ 𝑠𝑖𝑛𝜑 (5.5) 

 𝐹𝑧𝑖 = 𝐹𝑧′  

x 
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z 

x’ 

y’ 

z’ 

𝑟𝑖 
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𝜙𝑥 

𝜙𝑦 

𝜙𝑧 

Node i 

𝐹𝑛 

P 



 

36 

  

Moment equations, 

 𝑀𝑥𝑖 = 𝐹𝑧𝑖 𝑟𝑖 𝑠𝑖𝑛𝜑 

𝑀𝑦𝑖 = − 𝐹𝑧𝑖 𝑟𝑖 𝑐𝑜𝑠𝜑 

𝑀𝑧𝑖 = 𝐹𝑦𝑖 𝑟𝑖𝑐𝑜𝑠𝜑 − 𝐹𝑥𝑖 𝑟𝑖 𝑠𝑖𝑛𝜑 

(5.6) 

The force components acting on the node (j) are equal and opposite to those acting on the node 

(i) due to equilibrium condition of forces. The moments about the node (j) are equal and opposite 

to moments about the node (i) only if the gear ratio is unity. The forces and moments equation 

for node (j) can be written as, 

 𝐹𝑥𝑗 = −𝐹𝑥𝑖  

𝐹𝑦𝑗 = −𝐹𝑦𝑖  

𝐹𝑧𝑗 = −𝐹𝑧𝑖 

(5.7) 

 𝑀𝑥𝑗 = 𝐹𝑧𝑗 𝑟𝑗 𝑠𝑖𝑛𝜑 

𝑀𝑦𝑗 = − 𝐹𝑧𝑗 𝑟𝑗 𝑐𝑜𝑠𝜑 

𝑀𝑧𝑗 = 𝐹𝑦𝑗  𝑟𝑗𝑐𝑜𝑠𝜑 − 𝐹𝑥𝑗  𝑟𝑗 𝑠𝑖𝑛𝜑 

(5.8) 

 

5.1.5 Displacement Method 

 

 

             

             

             

             

             

             

             

             

             

             

            

 Figure 5.6: Contribution of x-displacement to the Line-of-Action (Stringer, 2008) 
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Each DOF contributes to shifting pitch point along the line of action of the gear pair. Summation 

of the contribution of all DOF will give a total shift of pitch point along the line of action. The 

effect of translation along the x-axis is considered in figure 5.6. A positive displacement of the 

node (i) or (j) along x-direction result in positive component along the line of action.  

The effect of translational motion along the three axes will shift pitch point in the direction of 

motion. In the case of rotational displacement, a rotational motion about an axis will rotate pitch 

point in a circular arc about a respective axis. The circular arc represents motion in two 

directions. Figure 5.7 represent the effect of rotational motion on shifting pitch point. 

 

 

 

 

 

 

 

 

 

Figure 5.7: Contribution of rotational motion about xi to rotate pitch point 

The displacement method applied to each gear, resulting in 12-DOF displacement model. The 

pitch point displacement can be resolve in global coordinates through two coordinates 

transformation. The pressure angle and helical angle fix the components to the prime coordinates 

system located on the pitch circle, and the orientation angle fixes the prime coordinate system to 

global coordinates system. The displacement method resulting equation 5.9 to 5.11. 

 

 𝑠𝑥𝑖 = 𝑥𝑖(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑥 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑦) 

𝑠𝑥𝑗 = 𝑥𝑗(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑥 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑦) 

 

(5.9) 

 𝑠𝑦𝑖 = 𝑦𝑖(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑦 − 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑥) 

𝑠𝑦𝑗 = 𝑦𝑗(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑦 − 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑥) 
(5.10) 
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 𝑠𝑧𝑖 = 𝑧𝑖𝑐𝑜𝑠𝜙𝑧 

𝑠𝑧𝑗 = 𝑧𝑗𝑐𝑜𝑠𝜙𝑧 

 

(5.11) 

the rotational motion displacement is presented regarding (x), (y), and (z) 

For rotation about (x): 

 𝑦𝑖 = 𝑟𝑖𝑠𝑖𝑛𝜑(𝑐𝑜𝑠𝜃𝑥𝑖 − 1) 

𝑦𝑗 = 𝑟𝑗𝑠𝑖𝑛𝜑(1 − 𝑐𝑜𝑠𝜃𝑥𝑗) 

 

(5.12) 

 𝑧𝑖 = 𝑟𝑖𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃𝑥𝑖 

𝑧𝑗 = −𝑟𝑗𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃𝑥𝑗  
(5.13) 

 

For rotation about (y): 

 𝑥𝑖 = 𝑟𝑖𝑐𝑜𝑠𝜑(𝑐𝑜𝑠𝜃𝑦𝑖 − 1) 

𝑥𝑗 = 𝑟𝑗𝑐𝑜𝑠𝜑(1 − 𝑐𝑜𝑠𝜃𝑦𝑗) 

 

(5.14) 

 𝑧𝑖 = −𝑟𝑖𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑦𝑖  

𝑧𝑗 = 𝑟𝑗𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃𝑦𝑗 
(5.15) 

 

For rotation about (z): 

 𝑥𝑖 = −𝑟𝑖𝑐𝑜𝑠𝜑 + 𝑟𝑖cos (𝜑 + 𝜃𝑧𝑖) 

𝑥𝑗 = 𝑟𝑗𝑐𝑜𝑠𝜑 − 𝑟𝑗cos (𝜑 + 𝜃𝑧𝑗) 

 

(5.16) 

 𝑦𝑖 = −𝑟𝑖𝑠𝑖𝑛𝜑 + 𝑟𝑖sin (𝜑 + 𝜃𝑧𝑖) 

𝑦𝑗 = 𝑟𝑗𝑠𝑖𝑛𝜑 − 𝑟𝑗sin (𝜑 + 𝜃𝑧𝑗) 

 

(5.17) 

Because of the assumption of small angle equation 5.12 to 5.17 can be written as below, 

 

For rotation about (x): 

 𝑧𝑖 = 𝑟𝑖𝜃𝑥𝑖𝑠𝑖𝑛𝜑 

𝑧𝑗 = −𝑟𝑗𝜃𝑥𝑗𝑠𝑖𝑛𝜑 
(5.18) 
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For rotation about (y): 

 𝑧𝑖 = −𝑟𝑖𝜃𝑦𝑖𝑐𝑜𝑠𝜑 

𝑧𝑗 = 𝑟𝑗𝜃𝑦𝑗𝑐𝑜𝑠𝜑 
(5.19) 

For rotation about (z): 

 𝑥𝑖 = −𝑟𝑖𝜃𝑧𝑖𝑠𝑖𝑛 (𝜑) 

𝑥𝑗 = 𝑟𝑗𝜃𝑧𝑗𝑠𝑖𝑛 (𝜑) 

 

(5.20) 

 𝑦𝑖 = 𝑟𝑖𝜃𝑧𝑖𝑐𝑜𝑠 (𝜑) 

𝑦𝑗 = −𝑟𝑗𝜃𝑧𝑗cos (𝜑) 

 

(5.21) 

Substitution of equation 5.18 to 5.21 into translational displacement equation 5.9 to 5.11 yields 

following displacement equations: 

 

 𝑠𝜃𝑥𝑖 = 𝑟𝑖𝜃𝑥𝑖𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜙𝑧 

𝑠𝜃𝑥𝑗 = −𝑟𝑗𝜃𝑥𝑗𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜙𝑧 

 

(5.22) 

 𝑠𝜃𝑦𝑖 = −𝑟𝑖𝜃𝑦𝑖𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜙𝑧 

𝑠𝜃𝑦𝑗 = 𝑟𝑗𝜃𝑦𝑗𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜙𝑧 

 

(5.23) 

𝑠𝜃𝑧𝑖 = −𝑟𝑖𝜃𝑧𝑖𝑠𝑖 𝑛(𝜑) (𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑥 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑦)

+ 𝑟𝑖𝜃𝑧𝑖 cos(𝜑) (𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑦 − 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑥) 

𝑠𝜃𝑧𝑗 = 𝑟𝑗𝜃𝑧𝑗𝑠𝑖𝑛 (𝜑)(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑥 + 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑦)

− 𝑟𝑗𝜃𝑧𝑗cos (𝜑)(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜙𝑦 − 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜙𝑥) 

 

(5.24) 

The displacement equation can be assembled which described relative motion due to the 

displacement of the node (i) and (j). For translational component this equation is, 

 𝑢𝑥𝑦𝑧 = (𝑠𝑥𝑗 − 𝑠𝑥𝑖) + (𝑠𝑦𝑗 − 𝑠𝑦𝑖) + (𝑠𝑧𝑗 − 𝑠𝑧𝑖) (5.25) 

Due to the effect of force coupling, angular displacement term must be treated differently. For 

the derivation of equation 5.18 to 5.21, a positive angular displacement was assumed about each 

axis. In reality, angular displacement is negatively coupled. A positive displacement of (θxi) 
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results in negative displacement of (θxj) and vice versa. Hence, angular relative displacement 

equation takes the form,   

 

 𝑢𝜃 = (−𝑠𝜃𝑥𝑗 − 𝑠𝜃𝑥𝑖) + (−𝑠𝜃𝑦𝑗 − 𝑠𝜃𝑦𝑖) + (−𝑠𝜃𝑧𝑗 − 𝑠𝜃𝑧𝑖) (5.26) 

Total displacement along the line-of-action can be written as; 

 

𝑢𝐿𝑂𝐴 = (𝑠𝑥𝑗 − 𝑠𝑥𝑖) + (𝑠𝑦𝑗 − 𝑠𝑦𝑖) + (𝑠𝑧𝑗 − 𝑠𝑧𝑖) + (−𝑠𝜃𝑥𝑗 − 𝑠𝜃𝑥𝑖) + (−𝑠𝜃𝑦𝑗 − 𝑠𝜃𝑦𝑖) + (−𝑠𝜃𝑧𝑗 − 𝑠𝜃𝑧𝑖) 

 
(5.27) 

The force along the line-of-action, 

 𝐹𝑚𝑒𝑠ℎ𝐿𝑂𝐴 = −𝐾𝑢𝐿𝑂𝐴 

𝐹𝑛 = 𝐾𝑚𝑢𝐿𝑂𝐴 

 

(5.28) 

Where, 

K = component of mesh stiffness matrix 

Km = Average value of mesh stiffness 

5.1.6 Influence Coefficient Method 

Each element of mesh stiffness matrix can be calculated by assuming only one component of 

displacement vector {q} has a unit displacement, and all other components of the displacement 

vector {qi} and {qj} are zero. Then put the value of Fn in terms of force vector component in 

equation 5.28. The negative value of force vector component is represented the respective 

element of mesh stiffness matrix. This is a fundamental principle of influence coefficient 

method. The mesh stiffness matrix can be assembled by applying a unit displacement for each 

variable in {qi} and zero displacements in all other variables in {qj} vector. By applying each of 

six different unit displacement in {qi} will yield a 6×12 matrix. Similarly, using the same method 

to each of the variables in {qj} yields another 6×12 matrix. By a combination of this two 6×12 

matrix final 12×12 mesh stiffness matrix obtained. 

Mesh stiffness matrix can be written as, 

 
[𝐾]𝑚𝑒𝑠ℎ = 𝐾𝑚 [

[𝐾𝑖𝑖] [𝐾𝑖𝑗]

[𝐾𝑗𝑖] [𝐾𝑗𝑗]
] (5.29) 

 

 The element of the four submatrices in Equation 5.29 are presented in Appendix B 
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5.1.7 Insertion into the Finite Element Model 

 

Figure 5.8: Finite Element Representation of Coupled Shaft 

The mesh stiffness matrix is implemented into a finite element analysis in the following way. 

The node of the shaft is generally numbered sequentially for ease of analysis. However, couple 

node of shafts is usually non-sequential as shown in figure 5.8. Mesh coupling between node 2 

and 5, results in mesh model 

 
[𝐾]𝑚𝑒𝑠ℎ {

𝑞̇2
𝑞̇5
} = [

[𝑘2,2]𝑚𝑒𝑠ℎ
[𝐾2,5]𝑚𝑒𝑠ℎ

[𝐾5,2]𝑚𝑒𝑠ℎ
[𝐾5,5]𝑚𝑒𝑠ℎ

] {
𝑞̇2
𝑞̇5
} 

 

(5.30) 

While assembling global matrix, mesh stiffness matrix “breaks apart” to place the corresponding 

sub-matrices in the appropriate blocks of the global matrix. For figure 5.8 the mesh stiffness 

matrix substitute in global matrix as follows, 

[𝐾](𝐺) =

[
 
 
 
 
 
 
 
 [𝑘1,1

(1)] [𝑘1,2
(1)] 0 0 0 0

[𝑘2,1
(1)] [𝑘2,2

(1) + 𝑘2,2
(2)] + [𝑘2,2]𝑚𝑒𝑠ℎ

[𝑘2,3
(2)] 0 [𝐾2,5]𝑚𝑒𝑠ℎ

0

0 [𝑘3,2
(2)] [𝑘3,3

(2)] 0 0 0

0 0 0 [𝑘4,4
(3)] [𝑘4,5

(3)] 0

0 [𝐾5,2]𝑚𝑒𝑠ℎ
0 [𝑘5,4

(3)] [𝑘5,5
(3) + 𝑘5,5

(4)] + [𝐾5,5]𝑚𝑒𝑠ℎ
[𝑘5,6

(4)]

0 0 0 0 [𝑘6,5
(4)] [𝑘6,6

(4)]]
 
 
 
 
 
 
 
 

 

(5.31) 
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5.2 Application 

5.2.1 Approach and System Parameter  

 

Figure 5.9: NASA Glenn Research Center Spur Gear Test Ring ( Lim,1991) 

The application selected for this methodology is a basic spur gear shaft pair system at NASA 

Glenn Research Center as shown in figure 5.9. This application is chosen because of the ease of 

availability of system parameters from the literature. 

This system consists two spur gear on a two identical shafts connected to the gear box by two 

rolling element bearing per shaft. The parameter of shaft and gears are provided in Table 5.1, as 

documented in Singh (1990). 

 

Figure 5.10: Gear Noise Test Ring – NASA Glenn Research Center (Lim, 1991) 
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Table 5.1: Spur Gear Application System Parameter 

Materials Parameters 

Youngs’s Modulus (E) (N/m²) 2.03E11 

Shear Modulus (G) (N/m²)) 8.0E10 

Poisson's Ratio (υ) 0.27 

Density (ρ) (kg/m³) 7750 

Shaft Parameters 

Length (𝐿𝑠) (m) 0.254 

Mass (𝑀𝑠) (kg) 1.96 

Rigidity (EI) (N-m²) 18576 

Outer Diameter (dₒ) (m) 0.037 

Inner Diameter (dᵢ) (m) 0.01 

Gear Parameters 

Mass (𝑀𝑔) (kg) 1.84 

Moment of inertia (𝐼𝑡) (kg-m²) 1.8E-3 

Polar mass moment of inertia (𝐼𝑝) (kg-m²) 3.6E-3 

Diameter (𝑑𝑔) (m) 0.089 

Normal Pressure Angle (𝛼𝑛) (deg) 20 

Helical Angle (β) (deg) 0 

Orientation Angle (φ) (deg) 0 

Average mesh stiffness (𝐾𝑚) (N/m) 1.0E10 

Number of teeth 28 

Bearing Parameters 

𝑘𝑥𝑥, 𝑘𝑦𝑦 (N/m) 1.0E9 

 

In this analysis, two results have been compared and analyzed. The first one is one of the rotating 

gear shafts as a single system, with gear acting as a rigid disk only. The second one is of 

complete gear shafts system.Node numbearing for the analysis of the system is considered as 

shown in figure 5.11. 
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Figure 5.11: Node Numbering of Complete Gear System and Single Shaft of Gear System 

 

5.2.2 Results: Single Shaft System  

First, ten natural frequency of the single shaft system with their corresponding descriptions is 

shown in Table 5.2. 

Table 5.2: Natural Frequencies (Hz) of Single Rotor Shaft 

Frequency No. Mode Natural Frequency 

1 1
st
 Torsional, 1

st
 Axial 0 

2 1
st
 Lateral 612 

3 2
nd

 Lateral 2508,2524 

4 3
rd

 Lateral 5430,5446 

5 2
nd

 Torsional 6350,6598 

6 4
th

 Lateral 9682,9684 

7 2
nd

 Axial 10014,10115 

8 3
rd

 Axial 13211 

9 5
th

 Lateral 15547,15915 

10 3
rd

 Torsional 19681,19768 

 

Bearing 1 Bearing 2 

Bearing 3 Bearing 4 

Bearing 1 Bearing 2 

Rotor 

Gear 

Pinion 
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Figure 5.12: 1
st
 Axial (left) and 1

st
 Torsional (right) Mode Shapes- at 0 Hz 

The mode shape for the first ten natural frequencies is plotted in figure 5.12 through figure 5.21 

for the rotating speed of 1000 rpm. At 0 rpm, the mode shapes are planer and shaft behave as a 

vibrating beam. At 1000 rpm mode shapes are no longer planer, the orbital mode shape is proof 

for that. 

 

 

Figure 5.13: 1
st
 Lateral Mode Shape - 612 Hz 

 

Figure 5.14: 2
nd

 Lateral Mode Shape – 2508 Hz 
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Figure 5.15: 3
rd

 Lateral Mode Shape – 5430 Hz 

 

 

Figure 5.16: 2
nd

 Torsional Mode Shape – 6350 Hz 

 

Figure 5.17: 4
th

 Lateral Mode Shape – 9682 Hz 
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Figure 5.18: 2
nd

 Axial Mode Shape – 10115 

Hz  

Figure 5.19: 3
rd

 Axial Mode Shape: 13211 

Hz 

 

Figure 5.20: 5
th

 Lateral Mode Shape: 15915 Hz 

 

Figure 5.21: 3
rd

 Torsional Mode Shape: 19681 Hz  
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The effect of the rotation speed on the natural frequencies is very small because the natural 

frequencies of the system are quite large, and length of the shaft is small, only 0.254 m. Hence, 

one would expect the natural frequencies is free from the rotational speed of the shaft. 

 

5.2.3 Results: Dual Shaft System 

Table 5.3 lists the natural frequencies of dual shaft system and compare it with natural 

frequencies of the single-shaft system. 

Table 5.3: Comparision of Natural Frequencies of Single and Dual Shaft System 

Frequency 

no. 

Mode Single Shaft Gear Pair 

1 1
st
 Axial, 1

st
 Torsional 0 0 

2 Coupled, 1
st
 Lateral - 463 

3 1
st
 Lateral 612 612 

4 Coupled, 2
nd

 Lateral - 1546 

5 2
nd

 Lateral 2508,2524 2514,2530 

6 3
rd

 Lateral 5430, 5446 5454 

7 2
nd

 Torsional 6350,6598 6350 

8 4
th

 Lateral 9682,9684 9737,9738 

9 Coupled, 3
rd

 Lateral - 10079,10084 

10 2
nd

 Axial 10014,10115 10115 

11 3
rd

 Axial 13211 13211 

12 5
th

 Lateral 15547,15915 15708 

13 Coupled, 4
th

 Lateral - 16082,16084 

14 3
rd

 Torsional 19681,19768 19768 

 

For comparison of single and dual shaft system, first two mode shape of single and dual shaft 

system at a rotation speed of 1000 rpm shown in figure 5.22 and figure 5.23. 
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Figure 5.22: Comparison of 1
st
 Lateral Mode Shape – 612 Hz 

  

Figure 5.23: Comparison of 2
nd

 Lateral Mode Shape – 2508(left) and 2514(right) Hz 

  

Additionally coupled lateral-torsional mode shape arise from the gear-mesh. Figure 5.24 through 

figure 5.27 shows couple mode shape at a rotational speed of 1000 rpm. 

 

  

Figure 5.24: Coupled,1
st
 Lateral-Torsional Mode shape – 463 Hz 
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Figure 5.25: Coupled, 2
nd

 Lateral-Torsional Mode Shape – 1546 Hz 

 

 

 

Figure 5.26: Coupled, 3
rd

 Lateral-Torsional Mode shape -10084 Hz 

 

 
 

Figure 5.27: Coupled, 4
th

 Lateral-Torsional Mode Shape – 16084 Hz 
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5.2.4 Observation 

Comparison between single and dual shaft system, the following observation are noted. 

1. The uncoupled natural frequencies of dual shaft system are the same as the single shaft 

system. 

2. Coupled natural frequencies of dual shaft system identify coupled modes of vibration between 

the lateral and torsional DOFs. 

3. Shapes of coupled modes are those characterizing odd-numbered lateral modes of vibration. 

4. The magnitude of torsional coupling increases as the frequency increases.  

 

5.2.5 Validation 

The result in Table 5.2 and Table 5.3 is validated with the result with the previous study by 

Stringer (2008). 

Comparison of first few natural frequencies of single-shaft  and dual shaft system with Stringer’s 

work: 

Natural frequencies shown in table 5.4 and table 5.5 are having small difference with the original 

natural frequencies obtained priviously. 

 

Table 5.4: Comparision of Natural Frequency of Single Shaft System 

Natural Freq. No. Natural freq. obtained 

by Stringer (2008) 

Calculated  Difference (%) 

1
st
  0 0 0 

2
nd

  684 612 10.52 

3
rd

   2838,2858 2508,2524 11.76 

4
th

  6677 5446 18.43 

5
th

  7138 6350 11.03 
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Table 5.5: Comparison of Natural Frequency of Dual Shafts System 

Natural Freq. No. Natural freq. obtained 

by Stringer (2008) 

Calculated  Difference (%) 

1
st
  0 0 0 

2
nd

  505 463 8.31 

3
rd

  684 612 10.52 

4
th

  2090 1546 26.02 

5
th

  2838,2858 2514,2530 11.76 

6
th

  6677 5454 18.43 

7
th

  6706 6350 11.03 
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6 Gear-Mesh Model Methodology with Application: 

Bevel Gear  

 

This chapter contains a methodology for deriving 12-DOF mesh stiffness matrix for bevel gear 

system. This approach used technique proposed by Lao (1996) and it also includes some aspects 

presented by Choi (1993) and Blankenship (1995) for helical gear. A technique used for this 

work was proposed by Stringer (2008), but the orientation angle employed in this work is a new 

concept applied to a three-dimensional model of bevel gear system. 

6.1 Gear-Mesh  Model Methodology 

6.1.1 Development of Gear Mesh Forcing Function   

Figure 6.1 shows simple geometry of straight bevel gear 

 

Figure 6.1: Simple Geometry of Straight Bevel Gear 

Where, 

𝛾𝑖 + 𝛾𝑗= 90֯ 
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𝛾𝑖 = pitch angle of ith gear 

𝛾𝑗 = pitch angle of ith gear 

𝐷𝑚𝑖 , 𝐷𝑚𝑗  =  mean diameter of i
th

 and j
 th

 gear respectively 

𝐷𝑝𝑖 , 𝐷𝑝𝑗  =  pitch circle diameter of i
th

 and j
 th

 gear respectively 

𝑂1 , 𝑂2  = center of i
th

 and j
 th

 gear respectively 

w = Tooth face width 

Figure 6.2 Shows finite element representation of bevel gear pair. 

 

Figure 6.2: Finite Element Representation of Bevel Gear Pair 

Two gears are assumed as a rigid disk on a flexible shaft. Two centers of bevel gears are 

considered as a node i and j of finite element analysis. A force and moment vector {F} can be 

modeled as function of a bevel gear mesh stiffness matrix [K]mesh and displacement vector {q} 

acts on a node i and j. 

 

 
{
𝐹𝑖
𝐹𝑗
} = [𝐾]𝑚𝑒𝑠ℎ {

𝑞̇𝑖
𝑞̇𝑗
} = 𝐾𝑚 [

[𝐾𝑖𝑖] [𝐾𝑖𝑗]

[𝐾𝑗𝑖] [𝐾𝑗𝑗]
] {
𝑞̇𝑖
𝑞̇𝑗
} (6.2) 

P 
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6.1.2 Loading and Direction Cosine 

Figure 6.3: shows forces on i
th

 bevel gear. 

 

Figure 6.3: Force Contribution in Bevel Gear 

In bevel gear, three-dimensional force components are a function of direction cosine as 

illustrated in figure 6.4. The direction cosine angle can be written in the form of pitch angle of 

gear (𝛾𝑖) and the normal pressure angle (𝛼𝑛). The force components along X’, Y’ and Z’ axes are 

determined by equations 6.2. The role of prime coordinates (X’, Y’, and Z’) will discuss later. 

  

𝐹𝑋′ = 𝐹𝑛𝑐𝑜𝑠𝜙𝑥 

𝐹𝑌′ = 𝐹𝑛𝑐𝑜𝑠𝜙𝑦 

𝐹𝑍′ = 𝐹𝑛𝑐𝑜𝑠𝜙𝑧 

(6.2) 

 

𝛼𝑛 

𝛾𝑖 

𝐹𝑛 



 

56 

  

 

Figure 6.4: Mesh Force Components and Direction Cosine for Bevel Gear  

Where, 

 𝑐𝑜𝑠𝜙𝑥 = 𝑠𝑖𝑛𝛼𝑛 𝑐𝑜𝑠𝛾𝑖  

𝑐𝑜𝑠𝜙𝑦 = 𝑠𝑖𝑛𝛼𝑛 𝑠𝑖𝑛𝛾𝑖 

𝑐𝑜𝑠𝜙𝑧 = 𝑐𝑜𝑠𝛼𝑛 

(6.3) 

 

The equation relating the force vector to displacement vector is 

 {𝐹}𝑚𝑒𝑠ℎ = −[𝐾]𝑚𝑒𝑠ℎ{𝑢}𝐿𝑂𝐴 (6.4) 

   

The negative sign implies that forces and moments acting on the gear body are in the direction of 

positive displacement.In other word force function in global coordinates system can be brought 

to the left-hand side in the form of the stiffness matrix. 

 

6.1.3 Gear Mesh Coordinates System and Orientation Angles 

The prime coordinate axes (X’, Y’ and Z’) are local to pitch point and not necessarily parallel 

with the global coordinate system. The prime coordinate system depends on two orientation 

angle 𝜃1 and 𝜃2.The normal pressure angle (𝛼𝑛) and the pitch angle of gear (𝛾𝑖) fix the force 

vector on gear tooth. The geometry of tooth fix the prime coordinate system on the effective 

point of force transmission (P) such that prime coordinate system is fixed and unchanging. To 

consider orientation of both gear two orientation angles 𝜃1 and 𝜃2 are used. The first orientation 
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angle 𝜃1 define the position of the j
th

 gear with respect to initial position of the i
th

 bevel gear. The 

second orientation angle defines the position of i
th

 bevel gear with respect to new position of j
th

 

bevel gear. Figure 6.5 shows assumed initial position of i
th

 and j
th

 bevel gear and figure 6.6 

shows coordinates system at initial position of bevel gear system. 

 

Figure 6.5: Initial Position of i
th

 and j
th 

Bevel Gear 

 

 

Figure 6.6: Coordinate System at Initial Position 

Another two coordinates systems (xi, yi, zi and xj, yj, zj) are assumed as a center of the each gear 

and always parallel to the global coordinate system (X, Y, and Z).  

Initial position of i
th

 Bevel  Gear 

Initial position of j
th

 Bevel  Gear 

X’ 

Y’ 

Z’ 

𝛾𝑖 

𝛾𝑗  
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Figure 6.7: Effect of Orientation Angle on Bevel Gear 

Figure 6.8 explain the axes systems in figure 6.7. As seen in Figure 6.8, a force component in the 

direction of the prime coordinate axis X’ has components in  X, Y, and Z - the direction of global 

coordinates system. Similarly, the force component in the direction of prime coordinate axis Y’ 

has a component in X, Y, and Z-direction of global coordinates system. Unlike in helical gear 

system, the force components in the direction of prime coordinate axis Z’ also have a component 

in X, Y, and Z-direction. 
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Figure 6.8: Local and Global Axes Relation with Orientation Angles  
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Oj is the center of gear j, and Oi is the center of gear i. The plane of gear j is OjAB and plane of 

gear i is perpendicular to line OjB and passing through line OiB which makes an angle of θ2 with 

plane OiCB.  

Some bevel gear system arrangements are shown at a different-different orientation angle to 

understand orientation angles clearly. In figure 6.9 blue and white gears represent j
th

 and i
th

 gear 

respectively. Each and every figure in figure 6.9 contains two figure in which top and bottom 

show front and top view of systems respectively. 

 

 
  

𝜃1 = 0,  𝜃2 = 0 𝜃1 = 90,  𝜃2 = 0 𝜃1 = 180,  𝜃2 = 0 

   

𝜃1 = 0,  𝜃2 = 90 𝜃1 = 90,  𝜃2 = 90 𝜃1 = 180,  𝜃2 = 90 

  
 

𝜃1 = 0,  𝜃2 = 180 𝜃1 = 90,  𝜃2 = 180 𝜃1 = 180,  𝜃2 = 180 

   

Figure 6.9: Gear Systems at Differents Orientation Angles 
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6.1.4 Nodal Forces and Moments Equations 

The forces at the point P in global coordinate system can be written in matrix form as below, 

 

 

{
𝐹𝑋
𝐹𝑌
𝐹𝑍

} = [
𝑐𝑜𝑠𝜃1 0 −𝑠𝑖𝑛𝜃1
0 1 0

𝑠𝑖𝑛𝜃1 0 𝑐𝑜𝑠𝜃1

] [
1 0 0
0 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2
0 −𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2

] {

𝐹𝑋′

𝐹𝑌′

𝐹𝑍′

} (6.5) 

 

The component of force acting on the node (i) in the direction of the global coordinate system 

are given by equation 6.6. The moment equation about the node (i) can be determined by 

multiplying the force components and moments arm about respective axes. 

 

 𝐹𝑥𝑖 =  𝐹𝑋 

𝐹𝑦𝑖 =  𝐹𝑌 

𝐹𝑧𝑖 =  𝐹𝑍 

(6.6) 

Moment equations, 

 

 𝑀𝑥𝑖 = −𝐹𝑦𝑖 𝑟𝑖 𝑠𝑖𝑛𝜃1 

𝑀𝑦𝑖 = 𝐹𝑥𝑖  𝑟𝑖 𝑠𝑖𝑛𝜃1 − 𝐹𝑧𝑖 𝑟𝑖 𝑐𝑜𝑠𝜃1 

𝑀𝑧𝑖 = 𝐹𝑦𝑖 𝑟𝑖 𝑐𝑜𝑠𝜃1 

 

(6.7) 

The force components acting on the node (j) are equal and opposite to those acting on the node 

(i) due to equilibrium condition of forces. The moments about the node (j) are not equal and 

opposite to moments about the node (i). 

 

 𝐹𝑥𝑗 = −𝐹𝑥𝑖 

𝐹𝑦𝑗 = −𝐹𝑦𝑖 

𝐹𝑧𝑗 = −𝐹𝑧𝑖 

 

(6.8) 

 𝑀𝑥𝑗 = 𝐹𝑦𝑗 𝑟𝑗  𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃1 + 𝐹𝑧𝑗 𝑟𝑗  𝑐𝑜𝑠𝜃2 

𝑀𝑦𝑗 = −𝐹𝑥𝑗  𝑟𝑗 𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃1 − 𝐹𝑧𝑗 𝑟𝑗  𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1 

𝑀𝑧𝑗 = 𝐹𝑦𝑗  𝑟𝑗  𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1 − 𝐹𝑥𝑗  𝑟𝑗 𝑐𝑜𝑠𝜃2 

(6.9) 
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6.1.5 Displacement Method 

Each DOF contributes to shifting point P along the line of action of the gear pair. Summation of 

the contribution of all DOF will give a total shift of point P along the line of action.  

The effect of translational motion along the three axes will shift point P in the direction of 

motion. The component of each displacement along the direction of Fn can be determined using 

the same matrix that used earlier to find the component of Fn in global coordinate system. In the 

case of rotational displacement, a rotational motion about an axis will rotate pitch point in a 

circular arc about a respective axis. The circular arc represents motion in two directions.  

 

 

{

𝑥𝑖
𝑦𝑖
𝑧𝑖
} = [

𝑐𝑜𝑠𝜃1 0 −𝑠𝑖𝑛𝜃1
0 1 0

𝑠𝑖𝑛𝜃1 0 𝑐𝑜𝑠𝜃1

] [
1 0 0
0 𝑐𝑜𝑠𝜃2 𝑠𝑖𝑛𝜃2
0 −𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2

] {

𝑥′𝑖
𝑦′

𝑖

𝑧′𝑖

} 

 

 

 

{

𝑥𝑖
𝑦𝑖
𝑧𝑖
} = [𝐴] ∗ [𝐵] {

𝑥′𝑖
𝑦′

𝑖

𝑧′𝑖

} 

 

 

 

{

𝑥′𝑖
𝑦′

𝑖

𝑧′𝑖

} = [𝐵]−1[𝐴]–1 {

𝑥𝑖
𝑦𝑖
𝑧𝑖
} 

 

(6.10) 

From above equation we can find the displacement of contact point along X’, Y’ and Z’ axis due 

to the displacement of node i (gear i)along X, Y and Z axis that is xi, yi, and zi . Then, by using 

direction cosine sxi, syi,  and szi along the line of action can be determined. Using MATLAB 

program, we can find sxi,syi, and szi as below,   

 

 𝑠𝑥𝑖 = 𝑥𝑖(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜙𝑥 − 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜙𝑦𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1) 

𝑠𝑥𝑗 = 𝑥𝑗(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜙𝑥 − 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜙𝑦𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1) 

 

(6.11) 

 𝑠𝑦𝑖 = 𝑦𝑖(𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜙𝑧𝑠𝑖𝑛𝜃2) 

𝑠𝑦𝑗 = 𝑦𝑗(𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜙𝑧𝑠𝑖𝑛𝜃2) 
(6.12) 
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 𝑠𝑧𝑖 = 𝑧𝑖(𝑐𝑜𝑠𝜙𝑥𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2) 

𝑠𝑧𝑗 = 𝑧𝑗(𝑐𝑜𝑠𝜙𝑥𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2) 

 

(6.13) 

Rotational motion displacement is presented in figure 6.10 through figure 6.15 regarding (X), 

(Y) and (Z)  

For i
th

 bevel gear, 

 Rotational motion about 𝑥𝑖 by 𝜃𝑥𝑖 

 

 

 

 Figure 6.10: Rotational Motion About 𝒙𝒊   

 
 

 𝑦𝑖 = −𝑟𝑖 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃𝑥𝑖 

𝑧𝑖 = 𝑟𝑖 𝑠𝑖𝑛𝜃1(𝑐𝑜𝑠𝜃𝑥𝑖 − 1) 

 

(6.14) 

 Rotational motion about 𝑦𝑖 by 𝜃𝑦𝑖 

 

 

 

 Figure 6.11: Rotational Motion About 𝒚𝒊  
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 𝑥𝑖 =  𝑟𝑖 ( cos 𝜃1 𝑐𝑜𝑠𝜃𝑦𝑖 + sin 𝜃1 𝑠𝑖𝑛𝜃𝑦𝑖 − cos 𝜃1) 

𝑧𝑖 =  𝑟𝑖 ( sin 𝜃1 𝑐𝑜𝑠𝜃𝑦𝑖 − cos 𝜃1 𝑠𝑖𝑛𝜃𝑦𝑖 − sin 𝜃1) 
(6.15) 

 Rotational motion about 𝑧𝑖 by 𝜃𝑧𝑖 

 

 

 

 Figure 6.12: Rotational Motion About 𝒛𝒊 

 
 

 𝑥𝑖 = 𝑟𝑖 𝑐𝑜𝑠𝜃1(𝑐𝑜𝑠𝜃𝑧𝑖 − 1) 

𝑦𝑖 = 𝑟𝑖 𝑐𝑜𝑠𝜃1 𝑠𝑖𝑛𝜃𝑧𝑖 

 

(6.16) 

For j
th

 bevel gear, 

 Rotational motion about 𝑥𝑗 by 𝜃𝑥𝑗 

 

 

 

 Figure 6.13: Rotational Motion About 𝒙𝒋  
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 𝑦𝑗 = −a ( sin 𝜂1 𝑐𝑜𝑠𝜃𝑥𝑗 + 𝑐𝑜𝑠𝜂1𝑠𝑖𝑛𝜃𝑥𝑗) + 𝑎 𝑠𝑖𝑛𝜂1 

𝑧𝑗 = a ( cos 𝜂1 𝑐𝑜𝑠𝜃𝑥𝑗 − 𝑠𝑖𝑛𝜂1𝑠𝑖𝑛𝜃𝑥𝑗) − 𝑎 𝑐𝑜𝑠𝜂1 

 

(6.17) 

Where, 

𝜂1 = 𝑡𝑎𝑛−1 (
𝑟𝑗𝑐𝑜𝑠𝜃2

𝑟𝑗𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝜃1
) 

a = 𝑟𝑗√𝑐𝑜𝑠2𝜃2 + 𝑠𝑖𝑛2𝜃2𝑐𝑜𝑠2𝜃1 

 

 

 Rotational motion about 𝑦𝑗 by 𝜃𝑦𝑗 

 

 

 

 Figure 6.14: Rotational Motion About 𝒚𝒋 

 
 

 𝑥𝑗 = −𝑟𝑗  sin 𝜃2(𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃𝑦𝑗 − 𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃𝑦𝑗) + 𝑟𝑗  𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1 

𝑧𝑗 = 𝑟𝑗 sin 𝜃2(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃𝑦𝑗 + 𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃𝑦𝑗) − 𝑟𝑗  𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝜃1 

 

(6.18) 
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 Rotational motion about 𝑧𝑗 by 𝜃𝑧𝑗 

 

 

 

 Figure 6.15: Rotational Motion About 𝒛𝒋 

 
 

 𝑦𝑗 = −b ( sin 𝜂2 𝑐𝑜𝑠𝜃𝑧𝑗 + 𝑐𝑜𝑠𝜂2𝑠𝑖𝑛𝜃𝑧𝑗) + 𝑏 𝑠𝑖𝑛𝜂2 

𝑥𝑗 = −b ( cos 𝜂2 𝑐𝑜𝑠𝜃𝑧𝑗 − 𝑠𝑖𝑛𝜂2𝑠𝑖𝑛𝜃𝑧𝑗) + 𝑏 𝑐𝑜𝑠𝜂1 

 

(6.19) 

Where, 

𝜂2 = 𝑡𝑎𝑛−1 (
𝑟𝑗𝑐𝑜𝑠𝜃2

𝑟𝑗𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1
) 

b = 𝑟𝑗√𝑐𝑜𝑠
2𝜃2 + 𝑠𝑖𝑛2𝜃2𝑠𝑖𝑛

2𝜃1 

 

 

Because of the assumption of small angle equation 6.14 to 6.19 can be written as below, 

 

For rotation about 𝑥𝑖 

 𝑦𝑖 = −𝑟𝑖 𝜃𝑥𝑖𝑠𝑖𝑛𝜃1 

𝑧𝑖 = 0 
(6.20) 

For rotation about 𝑦𝑖 

 𝑥𝑖 = 𝑟𝑖 𝜃𝑦𝑖 sin 𝜃1 

𝑧𝑖 = −𝑟𝑖 𝜃𝑦𝑖 cos 𝜃1 
(6.21) 
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For rotation about 𝑧𝑖 

 𝑥𝑖 = 0 

𝑦𝑖 = 𝑟𝑖 𝜃𝑧𝑖  𝑐𝑜𝑠𝜃1  
(6.22) 

For rotation about 𝑥𝑗 

 𝑦𝑗 = −𝑎 𝜃𝑥𝑗𝑐𝑜𝑠𝜂1 

𝑧𝑗 = −𝑎 𝜃𝑥𝑗𝑠𝑖𝑛𝜂1 
(6.23) 

For rotation about 𝑦𝑗 

 𝑥𝑗 = 𝑟𝑗𝜃𝑦𝑗𝑠𝑖𝑛𝜃2𝑐𝑜𝑠𝜃1 

𝑧𝑗 = 𝑟𝑗𝜃𝑦𝑗𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1 
(6.24) 

For rotation about 𝑧𝑗 

 𝑦𝑗 = −𝑏 𝜃𝑧𝑗𝑐𝑜𝑠𝜂2 

𝑧𝑗 = 𝑏 𝜃𝑧𝑗𝑠𝑖𝑛𝜂2 
(6.25) 

 

Substitution of equation 6.20 to 6.25 into translational displacement equation 6.11 to 6.13 yields 

following displacement equations: 

 𝑠𝜃𝑥𝑖 = −𝑟𝑖𝜃𝑥𝑖𝑠𝑖𝑛𝜃1(𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜙𝑧𝑠𝑖𝑛𝜃2) 

𝑠𝜃𝑦𝑖 = 𝑟𝑖𝜃𝑦𝑖(𝑐𝑜𝑠𝜙𝑦𝑠𝑖𝑛𝜃2 − 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2) 

𝑠𝜃𝑧𝑖 = 𝑟𝑖𝜃𝑧𝑖𝑐𝑜𝑠𝜃1(𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜙𝑧𝑠𝑖𝑛𝜃2) 

 

(6.26) 

𝑠𝜃𝑥𝑗 = 𝑎 𝜃𝑥𝑗𝑐𝑜𝑠𝜂1(𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜙𝑧𝑠𝑖𝑛𝜃2)  

− 𝑎 𝜃𝑥𝑗𝑠𝑖𝑛𝜂1(𝑐𝑜𝑠𝜙𝑥𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2) 

𝑠𝜃𝑦𝑗 = 𝑟𝑗𝜃𝑦𝑗(𝑐𝑜𝑠𝜙𝑥 𝑠𝑖𝑛𝜃2) 

𝑠𝜃𝑧𝑗 = −𝑏 𝜃𝑧𝑗𝑐𝑜𝑠𝜂2(𝑐𝑜𝑠𝜙𝑦𝑐𝑜𝑠𝜃2 + 𝑐𝑜𝑠𝜙𝑧𝑠𝑖𝑛𝜃2)

+ 𝑎 𝜃𝑧𝑗𝑠𝑖𝑛𝜂2(𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜙𝑥 − 𝑐𝑜𝑠𝜙𝑧𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜙𝑦𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝜃1) 

(6.27) 

 

The displacement equation can be assembled which described relative motion due to the 

displacement of the node (i) and (j). For translational component this equation is, 

 

 𝑢𝑥𝑦𝑧 = (𝑠𝑥𝑗 − 𝑠𝑥𝑖) + (𝑠𝑦𝑗 − 𝑠𝑦𝑖) + (𝑠𝑧𝑗 − 𝑠𝑧𝑖) (6.28) 
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Due to the effect of force coupling, angular displacement term must be treated differently. For 

the derivation of equation 6.20 to 6.25, a positive angular displacement was assumed about each 

axis. In reality, angular displacement is negatively coupled. A positive displacement of (θxi) 

results in negative displacement of (θxj) and vice versa. Hence, angular relative displacement 

equation takes the form 

 

 𝑢𝜃 = (−𝑠𝜃𝑥𝑗 − 𝑠𝜃𝑥𝑖) + (−𝑠𝜃𝑦𝑗 − 𝑠𝜃𝑦𝑖) + (−𝑠𝜃𝑧𝑗 − 𝑠𝜃𝑧𝑖) (6.29) 

Total displacement along the line-of-action can be written as; 

 

𝑢𝐿𝑂𝐴 = (𝑠𝑥𝑗 − 𝑠𝑥𝑖) + (𝑠𝑦𝑗 − 𝑠𝑦𝑖) + (𝑠𝑧𝑗 − 𝑠𝑧𝑖) + (−𝑠𝜃𝑥𝑗 − 𝑠𝜃𝑥𝑖) + (−𝑠𝜃𝑦𝑗 − 𝑠𝜃𝑦𝑖) + (−𝑠𝜃𝑧𝑗 − 𝑠𝜃𝑧𝑖) 

 
(6.30) 

The force along the line-of-action, 

 𝐹𝑚𝑒𝑠ℎ𝐿𝑂𝐴 = −𝐾𝑢𝐿𝑂𝐴 

𝐹𝑛 = 𝐾𝑚𝑢𝐿𝑂𝐴 

 

(6.31) 

Where, 

K = component of mesh stiffness matrix 

Km = Average value of mesh stiffness 

 

6.1.6 Influence Coefficient Method 

Bevel gear mesh stiffness matrix can be determined using influence coefficient method as 

explained earlier in chapter 5. The mesh stiffness matrix can be assembled by applying a unit 

displacement for each variable in {qi} and zero displacements in all other variables in {qj} 

vector. By applying each of six different unit displacement in {qi} will yield a 6×12 matrix. 

Similarly, using the same method to each of the variables in {qj} yields another 6×12 matrix. By 

a combination of this two 6×12 matrix final 12×12 mesh stiffness matrix obtained. 

Mesh stiffness matrix can be written as, 

 
[𝐾]𝑚𝑒𝑠ℎ = 𝐾𝑚 [

[𝐾𝑖𝑖] [𝐾𝑖𝑗]

[𝐾𝑗𝑖] [𝐾𝑗𝑗]
] (6.32) 

 

The element of the four submatrices in Equation 6.32 are presented in Appendix C 
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6.1.7 Insertion into the Finite Element Model 

 

Figure 6.16: Finite Element Representation of Coupled Shaft 

The mesh stiffness matrix is implemented into a finite element analysis in the following way. 

The node of the shaft is generally numbered sequentially for ease of analysis. However, couple 

node of shafts is usually non-sequential as shown in figure 6.16. Mesh coupling between node 2 

and 4, results in mesh model, 

 

 
[𝐾]𝑚𝑒𝑠ℎ {

𝑞̇2
𝑞̇4
} = [

[𝑘2,2]𝑚𝑒𝑠ℎ
[𝐾2,4]𝑚𝑒𝑠ℎ

[𝐾4,2]𝑚𝑒𝑠ℎ
[𝐾4,4]𝑚𝑒𝑠ℎ

] {
𝑞̇2
𝑞̇4
} 

 

(6.33) 

While assembling global matrix, mesh stiffness matrix “breaks apart” to place the corresponding 

sub-matrices in the appropriate blocks of the global matrix. For figure 6.16 the mesh stiffness 

matrix substitute in global matrix as follows, 

 

 

[𝐾](𝐺) =

[
 
 
 
 
 
 [𝑘1,1

(1)] [𝑘1,2
(1)] 0 0 0

[𝑘2,1
(1)] [𝑘2,2

(1) + 𝑘2,2
(2)] + [𝑘2,2]𝑚𝑒𝑠ℎ

[𝑘2,3
(2)] [𝐾2,4]𝑚𝑒𝑠ℎ

0

0 [𝑘3,2
(2)] [𝑘3,3

(2)] 0 0

0 [𝐾4,2]𝑚𝑒𝑠ℎ
0 [𝑘4,4

(3)] + [𝐾4,4]𝑚𝑒𝑠ℎ
[𝑘4,5

(3)]

0 0 0 [𝑘5,4
(3)] [𝑘5,5

(3)]]
 
 
 
 
 
 

 (6.34) 
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6.2 Application 

6.2.1 System and System Parameter 

A system selected for the analysis purpose is simple rotor-bearing system geared by bevel gears 

as shown in figure 6.17. This system is chosen because of the availability of the system 

parameters. Two journal bearing supports each rotor. There are two identical 360 ̊ cylindrical 

bearing 1 and  2. Two five–pad tilting-pad bearing 3 and 4. A rigid axial support is located at 

bearing 1 to constain axial movement of the rotor 1. For system shown in Figure 6.17 𝜃1=180 

and 𝜃2= 0. 

 

Figure 6.17: A Rotor-Bearing System Geared by Bevel Gear (M. Li (2001)) 

The eight coefficient of stiffness and damping can be calculated under the assumption of the 

small bearing. In this analysis, two results have been compared and analyzed. The first one is one 

of the rotating gear shafts as a single system, with gear acting as a rigid disk only. The second 

one is of complete gear shafts system. 

 

Bearing 1 
Bearing 2 

Bearing 3 

Bearing 4 

Disk 1 

Disk 2 

Bevel gear 1 

Bevel gear 2 
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Table 6.1: The Bevel Gear System Parameters 

Materials Parameters 

Youngs’s Modulus (E) (N/m²) 2.06E11 

Shear Modulus (G) (N/m²)) 7.8E10 

Poisson's Ratio (υ) 0.3 

Density (ρ) (kg/m³) 7800 

Shaft Parameters 

Length of Rotor 1 (𝐿1) (m) 1.350 

Length of Rotor 2 (𝐿2) (m) 1.150 

Outer Diameter (dₒ) (m) 0.1 

Inner Diameter (dᵢ) (m) 0.0 

Gear Parameters 

Radius of Bevel Gear 1 (m) 0.30 

Radius of Bevel Gear 2 (m) 0.10 

Mass of Bevel Gear 1 (kg) 600.0 

Mass of Bevel Gear 2 (kg) 40.0 

Transverse Mass Moment of Inertia of Gear 1 (kg-m²) 15.0 

Polar Mass Moment of Inertia of Gear 1 (kg-m²) 25.0 

Transverse Mass Moment of Inertia of Gear 2 (kg-m²) 0.05 

Polar Mass Moment of Inertia of Gear 2 (kg-m²) 0.072 

Pitch Angle of Gear 1 (𝛿1) (deg) 71.57 

Pitch Angle of Gear 2 (𝛿2) (deg) 18.43 

Average Mesh stiffness (𝐾𝑚)(N/m) 1.0E8 

Disk Parameters 

Mass of Disk 1 (kg) 300.0 

Mass of Disk 2 (kg) 600.0 

Transverse Mass Moment of Inertia of Disk 1 (kg-m²) 12.0 

Polar Mass Moment of Inertia of Disk 1 (kg-m²) 20.0 

Transverse Mass Moment of Inertia of Disk 2 (kg-m²) 15.0 

Polar Mass Moment of Inertia of Disk 2 (kg-m²) 25.0 

  

Bearing Parameter 

L/D Ratio 0.5 

Clearance Ratio (ψ) 0.002 

Dynamic Viscosity (μ) (N-s/m²) 0.021 

 

The node numbering for the analysis of the bevel gear system shown in figure 6.17 is considered 

as shown in figure 6.18. 
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Figure 6.18: Node Numbering For Bevel Gear System 

6.2.2 Result of Single Shaft System: ROTOR 1 / ROTOR j 

First, ten natural frequency of the single shaft system with their corresponding descriptions is 

shown in Table 6.2. 

Table 6.2: Natural Frequencies (Hz) of Single Rotor 1/ Rotor j 

Frequency No. Mode Natural Frequency 

1 1
st
 Axial, 1

st
 Torsional 0 

2 1
st
 Lateral 23.87 

3 2
nd

 Lateral 33.42 

4 2
nd

 Torsional 44.56 

5 3
rd

 Lateral 57.29 

6 4
th

 Lateral 63.66 

7 5
th

 Lateral 124.14 

8 6
th

 Lateral 144.83 

9 7
th

 Lateral 162.33 

10 8
th

 Lateral 173.47 

 

The mode shape for the first ten natural frequencies is plotted in figure 6.19 through figure 6.28 

for the rotating speed of 1500 rpm of rotor 1. At 0 rpm, the mode shapes are planer and shaft 

𝑅𝑜𝑡𝑜𝑟 𝑖 

𝑅𝑜𝑡𝑜𝑟 𝑗 
𝐺𝑒𝑎𝑟 𝑗 𝐷𝑖𝑠𝑘 𝑗 

𝐺𝑒𝑎𝑟 𝑖 

𝐷𝑖𝑠𝑘 𝑖 
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behave as a vibrating beam. At 1500 rpm mode shapes are no longer planer, the orbital mode 

shape is proof for that. 

 

 
 

Figure 6.19: 1
st
 Torsional (left) and 1

st
 Axial (right) Mode Shape: 0 Hz 

 

Figure 6.20: 1
st
 Lateral Mode Shape: 23.87 Hz 

 

Figure 6.21: 2
nd

 Lateral Mode Shape: 33.42 Hz 
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Figure 6.22: 2
nd

 Torsional Mode Shape: 44.56 Hz 

 

Figure 6.23: 3
rd

 Lateral Mode Shape: 57.29 Hz 

 

Figure 6.24: 4
th

 Lateral Mode Shape: 63.66 Hz 
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Figure 6.25: 5
th

 Lateral Mode Shape: 124.14 Hz 

 

Figure 6.26: 6
th

 Lateral Mode Shape: 144.83 Hz 

 

Figure 6.27: 7
th

 Lateral Mode Shape: 162.33 Hz 
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Figure 6.28: 8
th

 Lateral Mode Shape: 173.47 Hz 

 

6.2.3 Result of Single Shaft System: ROTOR 2 / ROTOR i 

First, Twelve natural frequency of the single shaft system with their corresponding descriptions 

is shown in Table 6.3. 

Table 6.3: Natural Frequencies (Hz) of Single Rotor 2/ Rotor i 

Frequency No. Mode Natural Frequency 

1 1
st
 Axial 0 

2 1
st
 Lateral 45,47 

3 2
nd

 Lateral 95 

4 3
rd

 Lateral 206 

5 4
th

 Lateral 286 

6 5
th

 Lateral 302 

7 6
th

 Lateral 366 

8 7
th

 Lateral 716 

9 8
th

 Lateral 986 

10 9
th

 Lateral 1575 

11 1
st
 Torsional  1591 

12 10
th

 Lateral 1718 
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The mode shape for the first ten natural frequencies is plotted in figure 6.29 through 6.40 for the 

rotating speed of 1500 rpm of rotor 1. 

 

 

 

Figure 6.29: 1
st
 Axial Mode: 0 Hz Figure 6.30: 1

st
 Lateral Mode: 45 Hz 

 
 

Figure 6.31: 2
nd

 Lateral Mode: 95 Hz Figure 6.32: 3
rd

 Lateral Mode: 206 Hz 

 
 

Figure 6.33: 4
th

 Lateral Mode: 286 Hz Figure 6.34: 5
th

 Lateral Mode: 302 Hz 
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Figure 6.35: 6
th

 Lateral Mode: 366 Hz Figure 6.36: 7
th

 Lateral Mode: 716 Hz 

  

  

Figure 6.37: 8
th

 Lateral Mode: 986 Hz Figure 6.38: 9
th

 Lateral Mode: 1575 Hz 

  

 
 

Figure 6.39: 1
st
 Torsional Mode: 1591 Hz Figure 6.40: 10

th
 Lateral Mode: 1718 Hz 
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6.2.4 Result of Coupled System  

Table 6.4 shows natural frequency of the dual shaft system and comparison with natural 

frequencies of the single-shaft system. 

Table 6.4: Natural Frequencies of Coupled System (Hz) 

Frequency 

No. 

Mode Natural Frequency 

Rotor 1 Rotor 2 Coupled System 

1 1
st
 Axial , 1

st
 Torsional 0 0 0 

2 1
st
 Lateral 23.87  22.28 

3 Coupled, 1
st
 Lateral   28.64 

4 2
nd

 Lateral 33.42  35.01 

5 3
rd

 Lateral 44.56 45,47 43.29, 43.60 

6 4
th

 Lateral 57.29  55.70 

7 5
th

 Lateral 63.66  62.07 

8 Coupled, 2
nd

 Lateral   84.35 

9 6
th

 Lateral  95 93.90 

10 7
th

 Lateral 124.14  125.73 

11 8
th

 Lateral 144.83  146.42 

12 9
th

 Lateral 162.33  163.92 

13 10
th

 Lateral 173.47  173.47 

14 11
th

 Lateral  206 211.67 

15 12
th

 Lateral  286,302 311.94, 316.71 

 

For Comparison of single and dual shaft system, Mode shape at first individual natural 

frequencies of the single-shaft system compared with mode shape of dual shaft system at the 

corresponding natural frequency. 
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Rotor 1 Rotor 2 

Figure 6.41: 1
st
 Lateral Mode Shape of Coupled System: 22.28 Hz   

 

Figure 6.42: 1
st
 Lateral Mode Shape Single Rotor1: 23.87 Hz  

 

 

Rotor 1 Rotor 2 

Figure 6.43: 3
rd

 Lateral Mode Shape of Coupled System: 43.60 Hz 
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Figure 6.44: 1
st
 Lateral Mode Shape of Single Rotor 2: 45 Hz 

 

Figure 6.41 and figure 6.43 explain that mode shape of dual shaft system at frequencies which 

close to individual natural frequencies of a particular single shaft system having same mode 

shape of that particular shaft in dual shaft system as in single shaft system. For example, Mode 

shape of coupled shaft system is shown in figure 6.41 in which mode shape of rotor one has 

same mode shape as in single shaft system illustrated in figure 6.42 because natural frequency 

22.28 Hz of the dual-shaft system is close to the natural frequency 23.87 Hz of the single-shaft 

system: rotor one. Figure 6.45 through figure 6.57 present remaining mode shape of the coupled 

system. 

 

  

Figure 6.45:  1
st
 Axial (right) and 1

st
 Torsional Mode Shape, 0 Hz 
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Rotor 1 Rotor 2 

Figure 6.46: 2
nd

 Lateral Mode Shape: 35.01 Hz 

 

 

Rotor 1 Rotor 2 

Figure 6.47: 4
th

 Lateral Mode Shape: 55.70 Hz 

  

Rotor 1 Rotor 2 

Figure 6.48: 5
th

 Lateral Mode Shape: 62.07 Hz 
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Rotor 1 Rotor 2  

Figure 6.49: 6
th

 Lateral Mode Shape: 93.90 Hz 

 
 

Rotor 1 Rotor 2 

Figure 6.50: 7
th

 Lateral Mode Shape: 125.73 Hz 

  

Rotor 1 Rotor 2 

Figure 6.51: 8
th

 Lateral Mode Shape: 146.42 Hz 
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Rotor 1 Rotor 2 

Figure 6.52: 9
th

 Lateral Mode Shape: 163.92 Hz 

  

Rotor 1 Rotor 2 

Figure 6.53: 10
th

 Lateral Mode Shape: 173.47 Hz 

 

 

Rotor 1 Rotor 2 

Figure 6.54: 11
th

 Lateral Mode Shape: 211.67 Hz 
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Rotor 1 Rotor 2 

Figure 6.55: 12
th

 Lateral Mode Shape: 311.94 Hz 

 

Coupled Mode Shapes: 

   

Rotor1 Rotor 2 

 

Figure 6.56: Coupled, 1
st
 Lateral- Torsional Mode Shape: 28.64 Hz 



 

86 

  

  

Rotor 1 Rotor 2 

 

Figure 6.57: Coupled, 2
nd

 Lateral- Torsional  Mode Shape: 84.35 Hz 

 

6.2.5 Validation  

The results of bevel gear system in Table 6.2, 6.3 and 6.4 is validated with the previous study by 

M. Li and H.Y. Hu (2001). 

Comparison of first few natural frequencies of single and dual shaft system is shown in Table 

6.5, 6.6 and 6.7 

From the table 6.5,6.6 and 6.7 it can be varified that method developed for the bevel gear mesh 

gives approximate same result as difference between is vary less between obtained natural 

frequencies and natural frequncies obtained priviously by M. Li.  
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Table 6.5: Comparison of Natural Frequencies (Hz) of Rotor 1 

Natural Frequency No. Natural freq. obtained by 

M. Li (2001) 

Calculated Difference (%) 

1
st
 24.6 23.87 2.96 

2
nd

 35.28 33.42 5.27 

3
rd

 - 44.56 - 

4
th

  58.18 57.29 1.52 

 

Table 6.6: Comparison of Natural Frequencies (Hz) of Rotor 2 

Natural Frequency No. Natural freq. obtained by 

M. Li (2001) 

Calculated Difference (%) 

1
st
 44.91 45 0.2 

2
nd

 44.96 45 0.08 

3
rd

 87.33 95 8.07 

 

Table 6.7: Comparison of Natural Frequencies (Hz) Dual Shaft System 

Natural Frequency No. Natural freq. obtained by 

M. Li (2001) 

Calculated Difference (%) 

1
st
 23.31 22.28 4.41 

2
nd

 29.05 28.64 3.49 

3
rd

 37.75 35.01 7.25 

4
th

 44.9 43.29 3.58 

5
th

  45.1 43.60 3.32 

6
th

  55.78 55.70 0.14 

7
th

  58.35 62.07 6.42 
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7 Conclusions and Recommendations 

 

This research has presented a comprehensive set of methodologies for conducting geared rotor 

dynamic analysis of a complex system using a finite element modeling approch. 

7.1 Conclusions 

Following are some primary conclusion from this research. 

1. The derivation of 12-DOF mesh stiffness matrix was presented for coupling two node of 

the finite element analysis. This matrix can incorporate both linear and non-linear mesh 

stiffness coefficient values into model. 

2. This model is able to provide the contribution of all DOFs of the gear pair to a global 

coordinates system. 

3. Helical gear gear-mesh model uncoupled lateral, torsional and axial frequencies of the 

dual shaft system are same as the single shaft system. 

4. The coupling between two gear-shafts can be identified as coupled natural frequencies. 

This coupled natural frequency gives a couple mode of vibration between the lateral and 

torsional DOFs. 

5. Magnitude of the coupled vibration is increases with increases in frequencies. 

6. Uncoupled natural frequencies of coupled system will provide same mode shape of that 

particular shaft as in single shaft system of that particular shaft. 

7. Magnitude of the torsional vibration largely depends on the mass moment of inertia of the 

rotor disk or gear’s itself. 

8. Meshing stiffness of the gear depends on the number of mashing pair in contact at a time, 

when one pair of teeth are in contact at that time mesh stiffness of gear pair decreases but 

as number of pair in contact increases the mesh stiffness value of gear pair increases. 

9. Average value of the gear mesh stiffness is largely depends upon materials parameter of 

meshing gears. 

7.2 Limitation 

1. This model does not include effect of the sliding action or friction, and all force are 

assumed to operate at the pitch point along the LOA. 
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2. This model can’t be used for a shafts where the shaft axis are in relative motion to one 

another such as epicyclic gear train. 

 

7.3 Recommendations 

1. The combine tooth stiffness and elastohydrodynamic (EHD) stiffness effects on mesh 

stiffness. Both the stiffness of tooth and EHD determine the mesh stiffness. By including 

both more sophisticated model can be develop.     

2. Further effect of non-linear mesh stiffness can be analyzed for the both helical and bevel 

geared system. 

3. Inclusion of the backlash and transmission error would give more robust model. 

4. This work can be extended to the epicyclic gear train.   
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Appendix A: Finite Element Matrix Equations 

 

This equation presents the matrices used in equation 4.8, with exception of the gear-mesh matrix. 

The matrices are found from variety of sources, but mainly from ANSYS theory references 

(2009). 

A.1  12-DOF Matrices 

In equation 4.8,assuming shaft itself having no damping. Only the mass, stiffness, and 

gyroscopic matrices are presented for different coordinates system used in helical and bevel gear 

system. Subscript (h) designates matrices used in helical gear system. Subscript bi and bj used to 

designate matrices for i
th

 and j
th

 shaft of bevel gear system. 

Two primary parameters for both shaft mass and stiffness matrices are the shape factor (κ), and 

the transverse shear factor (Φ). 

For solid shaft, 

 
𝜅 =

6(1 + 𝜐)

(7 + 6𝜐)
 (A.3) 

 

For a thin-walled shaft: 

 
𝜅 =

2(1 + 𝜐)

(4 + 3𝜐)
 (A.2) 

Where (υ) is Poisson's Ratio. 

The transverse shear parameter (Φ), 

 
Φ =

12𝐸𝐼

𝜅𝐴𝐺𝑙2
 (A.4) 

Where, 

A = Shaft cross section area 

E = Young’s modulus 

G = Shear modulus 

l = length of element 

I = Area moment of inertia 
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A.1.1 Shaft consistent Mass matrix 

The shaft consistent mass matrix uses the following relationship. 

Equation A.4 through A.10 developed for shaft mass-matrix. 

rg = √
I

A
 

 

 

(A.4) 

a =  
ρAl

(1 + Φ)2
(
13

35
+

7

10
Φ +

2

3
Φ2 +

6

5
(
rg

l
)
2

) 

 

 

 

(A.5) 

𝑏 =  
ρAl

(1 + Φ)2
(
9

70
+

3

10
Φ +

1

6
Φ2 −

6

5
(
rg

l
)
2

) 

 

 

 

(A.6) 

c =
ρAl2

(1 + Φ)2
(
11

210
+

11

120
Φ +

1

24
Φ2 + (

1

10
−
1

2
Φ)(

rg

l
)
2

)  

 

 

 

(A.7) 

𝑑 =
ρAl2

(1 + Φ)2
(
13

420
+

3

40
Φ +

1

24
Φ2 − (

1

10
−
1

2
Φ) (

rg

l
)
2

)  

 

 

 

(A.8) 

e =
ρAl3

(1 + Φ)2
(

1

105
+

1

60
Φ +

1

120
Φ2 + (

2

15
+
1

6
Φ +

1

3
Φ2) (

rg

l
)
2

)  

 

 

 

(A.9) 

f =
ρAl3

(1 + Φ)2
(

1

140
+

1

60
Φ +

1

120
Φ2 + (

1

30
+
1

6
Φ −

1

6
Φ2) (

rg

l
)
2

)  

 

 

(A.10) 
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[Mh]s
(e)

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 0 0 0 c 0 b 0 0 0 −d 0
0 a 0 −c 0 0 0 b 0 d 0 0

0 0
1

3
ρAl 0 0 0 0 0

1

6
ρAl 0 0 0

0 −c 0 e 0 0 0 −d 0 f 0 0
c 0 0 0 e 0 d 0 0 0 f 0

0 0 0 0 0
JρAl

3A
0 0 0 0 0

JρAl

6A
b 0 0 0 d 0 a 0 0 0 −c 0
0 b 0 −d 0 0 0 a 0 c 0 0

0 0
1

6
ρAl 0 0 0 0 0

1

3
ρAl 0 0 0

0 d 0 f 0 0 0 c 0 e 0 0
−d 0 0 0 f 0 −c 0 0 0 e 0

0 0 0 0 0
JρAl

6A
0 0 0 0 0

JρAl

3A ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

(A.11) 

 

 

 

 

 

 

[Mbi]s
(e) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 0 0 0 0 −c b 0 0 0 0 d

0
1

3
ρAl 0 0 0 0 0

1

6
ρAl 0 0 0 0

0 0 a c 0 0 0 0 b −d 0 0
0 0 c e 0 0 0 0 d f 0 0

0 0 0 0
JρAl

3A
0 0 0 0 0

JρAl

6A
0

−c 0 0 0 0 e −d 0 0 0 0 f
b 0 0 0 0 −d a 0 0 0 0 c

0
1

6
ρAl 0 0 0 0 0

1

3
ρAl 0 0 0 0

0 0 b d 0 0 0 0 a −c 0 0
0 0 −d f 0 0 0 0 −c e 0 0

0 0 0 0
JρAl

6A
0 0 0 0 0

JρAl

3A
0

d 0 0 0 0 f c 0 0 0 0 e]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(A.12) 
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[Mbj]s
(e) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1

3
ρAl 0 0 0 0 0

1

6
ρAl 0 0 0 0 0

0 a 0 0 0 c 0 b 0 0 0 −d
0 0 a 0 −c 0 0 0 b 0 d 0

0 0 0
JρAl

3A
0 0 0 0 0

JρAl

6A
0 0

0 0 −c 0 e 0 0 0 −d 0 f 0
0 c 0 0 0 e 0 d 0 0 0 f

1

6
ρAl 0 0 0 0 0

1

3
ρAl 0 0 0 0 0

0 b 0 0 0 d 0 a 0 0 0 −c
0 0 b 0 −d 0 0 0 a 0 c 0

0 0 0
JρAl

6A
0 0 0 0 0

JρAl

3A
0 0

0 0 d 0 f 0 0 0 c 0 e 0
0 −d 0 0 0 f 0 −c 0 0 0 e ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(A.14) 

Where, 

ρ = Shaft density 

J = Polar area moment of inertia  

 

A.1.2    Shaft Stiffness Matrix 

Equation A.15 through A.18 developed for shaft stiffness matrix. 

a =
12EI

l3(1 + Φ)
 

 

 

(A.15) 

b =
6EI

l2(1 + Φ)
 

 

 

(A.16) 

c =
(4 + Φ)EI

l(1 + Φ)
 

 

 

(A.17) 

 

d =
(2 − Φ)EI

l(1 + Φ)
 

 

 

(A.18) 
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[Kh]s
(e)

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 0 0 0 b 0 −a 0 0 0 b 0
0 a 0 −b 0 0 0 −a 0 −b 0 0

0 0
AE

l
0 0 0 0 0 −

AE

l
0 0 0

0 −b 0 c 0 0 0 b 0 d 0 0
b 0 0 0 c 0 −b 0 0 0 d 0

0 0 0 0 0
GJ

l
0 0 0 0 0 −

GJ

l
−a 0 0 0 −b 0 a 0 0 0 −b 0
0 −a 0 b 0 0 0 a 0 b 0 0

0 0 −
AE

l
0 0 0 0 0

AE

l
0 0 0

0 −b 0 d 0 0 0 b 0 c 0 0
b 0 0 0 d 0 −b 0 0 0 c 0

0 0 0 0 0 −
GJ

l
0 0 0 0 0

GJ

l ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(A.19) 

[Kbi]s
(e) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a 0 0 0 0 −b −a 0 0 0 0 −b

0
AE

l
0 0 0 0 0 −

AE

l
0 0 0 0

0 0 a b 0 0 0 0 −a b 0 0
0 0 b c 0 0 0 0 −b d 0 0

0 0 0 0
GJ

l
0 0 0 0 0 −

GJ

l
0

−b 0 0 0 0 c b 0 0 0 0 d
−a 0 0 0 0 b a 0 0 0 0 b

0 −
AE

l
0 0 0 0 0

AE

l
0 0 0 0

0 0 −a −b 0 0 0 0 a −b 0 0
0 0 b d 0 0 0 0 −b c 0 0

0 0 0 0 −
GJ

l
0 0 0 0 0

GJ

l
0

−b 0 0 0 0 d b 0 0 0 0 c ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(A.20) 
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[Kbj]s
(e) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AE

l
0 0 0 0 0 −

AE

l
0 0 0 0 0

0 a 0 0 0 b 0 −a 0 0 0 b
0 0 a 0 −b 0 0 0 −a 0 −b 0

0 0 0
GJ

l
0 0 0 0 0 −

GJ

l
0 0

0 0 −b 0 c 0 0 0 b 0 d 0
0 b 0 0 0 c 0 −b 0 0 0 d

−
AE

l
0 0 0 0 0

AE

l
0 0 0 0 0

0 −a 0 0 0 −b 0 a 0 0 0 −b
0 0 −a 0 b 0 0 0 a 0 b 0

0 0 0 −
GJ

l
0 0 0 0 0

GJ

l
0 0

0 0 −b 0 d 0 0 0 b 0 c 0
0 b 0 0 0 d 0 −b 0 0 0 c ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(A.21) 

 

 

A.1.3   Shaft Gyroscopic Matrix 

Equation A.22 through A.25 developed for a gyroscopic matrix of the shaft. 

a =  
ρAl

(1 + Φ)2
6

5
(
rg

l
)
2

 

 

 

(A.22) 

b = −
ρAl

(1 + Φ)2
(
1

10
−
1

2
Φ)

rg
2

𝑙
 

 

 

(A.23) 

c =
ρAl

(1 + Φ)2
(
2

15
+
1

6
Φ +

1

3
Φ2) rg

2 

 

 

(A.24) 

d = −
ρAl

(1 + Φ)2
(
1

30
+
1

6
Φ −

1

6
Φ2) rg

2 

 

 

(A.25) 
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𝛺[𝐺ℎ]𝑠
(𝑒) = 2𝛺

[
 
 
 
 
 
 
 
 
 
 
 
0 a 0 b 0 0 0 −a 0 b 0 0
−a 0 0 0 b 0 a 0 0 0 b 0
0 0 0 0 0 0 0 0 0 0 0 0
−b 0 0 0 c 0 b 0 0 0 d 0
0 −b 0 −c 0 0 0 b 0 −d 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −a 0 −b 0 0 0 a 0 −b 0 0
a 0 0 0 −b 0 −a 0 0 0 −b 0
0 0 0 0 0 0 0 0 0 0 0 0
−b 0 0 0 d 0 b 0 0 0 c 0
0 −b 0 −d 0 0 0 b 0 −c 0 0
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

 (A.26) 

 

𝛺[𝐺𝑏𝑖]𝑠
(𝑒) = 2𝛺

[
 
 
 
 
 
 
 
 
 
 
 
0 0 −a b 0 0 0 0 a b 0 0
0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 b −a 0 0 0 0 b
−b 0 0 0 0 −c b 0 0 0 0 −d
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −b c 0 0 0 0 b d 0 0
0 0 a −b 0 0 0 0 −a −b 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−a 0 0 0 0 −b a 0 0 0 0 −b
−b 0 0 0 0 −d b 0 0 0 0 −c
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −b d 0 0 0 0 b c 0 0 ]

 
 
 
 
 
 
 
 
 
 
 

 (A.27) 

 

𝛺[𝐺𝑏𝑗]𝑠
(𝑒) = 2𝛺

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0
0 0 a 0 b 0 0 0 −a 0 b 0
0 −a 0 0 0 b 0 a 0 0 0 b
0 0 0 0 0 0 0 0 0 0 0 0
0 −b 0 0 0 c 0 b 0 0 0 d
0 0 −b 0 −c 0 0 0 b 0 −d 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 −a 0 −b 0 0 0 a 0 −b 0
0 a 0 0 0 −b 0 −a 0 0 0 −b
0 0 0 0 0 0 0 0 0 0 0 0
0 −b 0 0 0 d 0 b 0 0 0 c
0 0 −b 0 −d 0 0 0 b 0 −c 0 ]

 
 
 
 
 
 
 
 
 
 
 

 (A.28) 
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A.2    6-DOF Matrices 

The bearings support the spinning shaft and are assumed to be rigid. As such, they contribute 

no mass to the system, but they do store and dissipates energy from the shaft. Stiffness and 

damping matrices are shown in equation A.29 and A.30. Both matrices are symmetric. The 

off-diagonal terms in either matrix may or may not equal zero, depending upon the 

assumption made and types of bearing used. 

[𝐾]𝑏 =

[
 
 
 
 
 
 
𝑘𝑥𝑥

𝑘𝑦𝑦
𝑠𝑦𝑚

⋮

𝑘𝑧𝑧
𝐾𝜃𝑥𝜃𝑥

𝑘𝑥𝜃𝑥 …

𝐾𝜃𝑦𝜃𝑦

𝐾𝜃𝑧𝜃𝑧]
 
 
 
 
 
 

 (A.29) 

  

Similarly, 

[𝐶]𝑏 =

[
 
 
 
 
 
 
𝑐𝑥𝑥

𝑐𝑦𝑦
𝑠𝑦𝑚

⋮

𝑐𝑧𝑧
𝐶𝜃𝑥𝜃𝑥

𝐶𝑥𝜃𝑥 …

𝐶𝜃𝑦𝜃𝑦
𝐶𝜃𝑧𝜃𝑧]

 
 
 
 
 
 

 (A.30) 
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Appendix B : 12-DOF Mesh Stiffness Matric for Helical Gear 

 

12 –DOF mesh stiffness matrix derived from the chapter 5 is presented in this appendix. 

For ease of writing matrix, the following shorthand are used. 

 

𝑐𝜑 = 𝑐𝑜𝑠𝜑 

 

 

 

 

 

 

 

 

(B.1) 

𝑠𝜑 = 𝑠𝑖𝑛𝜑 

 

𝑐𝜙𝑥 = 𝑐𝑜𝑠𝜙𝑥 = 𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛼𝑛 

 

𝑐𝜙𝑦 = 𝑐𝑜𝑠𝜙𝑦 = 𝑠𝑖𝑛𝛼𝑛 

 

𝑐𝜙𝑧 = 𝑐𝑜𝑠𝜙𝑧 = 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛼𝑛 

 

𝑠𝜑² = (𝑠𝑖𝑛𝜑)² 

 

𝑐𝜑² = (𝑐𝑜𝑠𝜑)² 

 

 

Gear mesh stiffness matrix cam ne written as, 

 
{
𝐹𝑖
𝐹𝑗
} = [𝐾]𝑚𝑒𝑠ℎ {

𝑞̇𝑖
𝑞̇𝑗
} = 𝐾𝑚 [

[𝐾𝑖𝑖] [𝐾𝑖𝑗]

[𝐾𝑗𝑖] [𝐾𝑗𝑗]
] {
𝑞̇𝑖
𝑞̇𝑗
} (B.2) 

 

The four sub-matrices of equation B.2 shown in equation B.3 through B.6 
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[𝐾𝑖𝑖] =

[
 
 
 
 
 
 
 

(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)
2 (𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑠𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜙𝑥𝑟𝑖(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)

(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)(𝑠𝜑𝑐𝜑𝑦 − 𝑐𝜑𝑐𝜑𝑥) (𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥)
2 𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑠𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜙𝑥𝑟𝑖(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥)

𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜙𝑧² 𝑠𝜑𝑐𝜙𝑧²𝑟𝑖 −𝑐𝜑𝑐𝜙𝑧²𝑟𝑖 −𝑐𝜙𝑥𝑐𝜙𝑧𝑟𝑖(𝑐𝜑
2 + 𝑠𝜑²)

𝑠𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑠𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑠𝜑𝑐𝜙𝑧²𝑟𝑖 𝑠𝜑²𝑐𝜙𝑧²𝑟𝑖² −𝑐𝜑𝑠𝜑𝑐𝜙𝑧²𝑟𝑖² −𝑐𝜙𝑥𝑠𝜑𝑐𝜙𝑧𝑟𝑖²(𝑐𝜑
2 + 𝑠𝜑²)

−𝑐𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜑𝑐𝜙𝑧²𝑟𝑖 −𝑐𝜑𝑠𝜑𝑐𝜙𝑧²𝑟𝑖² 𝑐𝜑²𝑐𝜙𝑧²𝑟𝑖² 𝑐𝜙𝑥𝑐𝜑𝑐𝜙𝑧𝑟𝑖²(𝑐𝜑
2 + 𝑠𝜑²)

−𝑐𝜙𝑥𝑟𝑖(𝑐𝜑
2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜙𝑥𝑟𝑖(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜙𝑥𝑐𝜙𝑧𝑟𝑖(𝑐𝜑
2 + 𝑠𝜑²) −𝑐𝜙𝑥𝑠𝜑𝑐𝜙𝑧𝑟𝑖²(𝑐𝜑

2 + 𝑠𝜑²) 𝑐𝜙𝑥𝑐𝜑𝑐𝜙𝑧𝑟𝑖²(𝑐𝜑
2 + 𝑠𝜑²) 𝑐𝜙𝑥²𝑟𝑖²(𝑐𝜑

2 + 𝑠𝜑²)² ]
 
 
 
 
 
 
 

 

(B.3) 

 

[𝐾𝑗𝑖] =

[
 
 
 
 
 
 
 

−(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)
2 −(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑠𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑐𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑐𝜙𝑥𝑟𝑖(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)

−(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)(𝑠𝜑𝑐𝜑𝑦 − 𝑐𝜑𝑐𝜑𝑥) −(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥)
2 −𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑠𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜑𝑐𝜙𝑧𝑟𝑖(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜙𝑥𝑟𝑖(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥)

−𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜑𝑧² −𝑠𝜑𝑐𝜙𝑧²𝑟𝑖 𝑐𝜑𝑐𝜙𝑧²𝑟𝑖 𝑐𝜙𝑥𝑐𝜙𝑧𝑟𝑖(𝑐𝜑
2 + 𝑠𝜑²)

−𝑠𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑠𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑠𝜑𝑐𝜙𝑧²𝑟𝑗 −𝑠𝜑²𝑐𝜙𝑧²𝑟𝑖𝑟𝑗 𝑐𝜑𝑠𝜑𝑐𝜙𝑧²𝑟𝑖𝑟𝑗 𝑐𝜙𝑥𝑠𝜑𝑐𝜙𝑧𝑟𝑖𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²)

𝑐𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑐𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜑𝑐𝜙𝑧²𝑟𝑗 𝑐𝜑𝑠𝜑𝑐𝜙𝑧²𝑟𝑖𝑟𝑗 −𝑐𝜑²𝑐𝜙𝑧²𝑟𝑖𝑟𝑗 −𝑐𝜙𝑥𝑐𝜑𝑐𝜙𝑧𝑟𝑖𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²)

𝑐𝜙𝑥𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑐𝜙𝑥𝑟𝑗(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜙𝑥𝑐𝜙𝑧𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²) 𝑐𝜙𝑥𝑠𝜑𝑐𝜑𝑧𝑟𝑖𝑟𝑗(𝑐𝜑

2 + 𝑠𝜑²) −𝑐𝜙𝑥𝑐𝜑𝑐𝜑𝑧𝑟𝑖𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²) −𝑐𝜙𝑥²𝑟𝑖𝑟𝑗(𝑐𝜑

2 + 𝑠𝜑²)² ]
 
 
 
 
 
 
 

 

(B.4) 

 

[𝐾𝑗𝑗] =

[
 
 
 
 
 
 
 

(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)
2 (𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑠𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜙𝑥𝑟𝑗(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)

(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦)(𝑠𝜑𝑐𝜑𝑦 − 𝑐𝜑𝑐𝜑𝑥) (𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥)
2 𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑠𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜙𝑥𝑟𝑗(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥)

𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑐𝜙𝑧(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑐𝜙𝑧² 𝑠𝜑𝑐𝜙𝑧²𝑟𝑗 −𝑐𝜑𝑐𝜙𝑧²𝑟𝑗 −𝑐𝜙𝑥𝑐𝜙𝑧𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²)

𝑠𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) 𝑠𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) 𝑠𝜑𝑐𝜙𝑧²𝑟𝑗 𝑠𝜑²𝑐𝜙𝑧²𝑟𝑗² −𝑐𝜑𝑠𝜑𝑐𝜙𝑧²𝑟𝑗² −𝑐𝜙𝑥𝑠𝜑𝑐𝜙𝑧𝑟𝑗²(𝑐𝜑
2 + 𝑠𝜑²)

−𝑐𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜑𝑐𝜙𝑧𝑟𝑗(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜑𝑐𝜙𝑧²𝑟𝑗 −𝑐𝜑𝑠𝜑𝑐𝜙𝑧²𝑟𝑖² 𝑐𝜑²𝑐𝜙𝑧²𝑟𝑗² 𝑐𝜙𝑥𝑐𝜑𝑐𝜙𝑧𝑟𝑗²(𝑐𝜑
2 + 𝑠𝜑²)

−𝑐𝜙𝑥𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑥 + 𝑐𝜑𝑐𝜙𝑦) −𝑐𝜙𝑥𝑟𝑗(𝑐𝜑

2 + 𝑠𝜑²)(𝑠𝜑𝑐𝜙𝑦 − 𝑐𝜑𝑐𝜙𝑥) −𝑐𝜙𝑥𝑐𝜙𝑧𝑟𝑗(𝑐𝜑
2 + 𝑠𝜑²) −𝑐𝜙𝑥𝑠𝜑𝑐𝜙𝑧𝑟𝑗²(𝑐𝜑

2 + 𝑠𝜑²) 𝑐𝜙𝑥𝑐𝜑𝑐𝜙𝑧𝑟𝑗²(𝑐𝜑
2 + 𝑠𝜑²) 𝑐𝜙𝑥²𝑟𝑗²(𝑐𝜑

2 + 𝑠𝜑²)² ]
 
 
 
 
 
 
 

 

(B.5) 

 

 

[𝐾𝑖𝑗] = [𝐾𝑗𝑖]
𝑇 

 

(B.6) 
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Appendix C: 12-DOF Mesh Stiffness Matric for Bevel Gear 

 

12 –DOF mesh stiffness matrix derived from the chapter 6 is presented in this appendix. 

For ease of writing matrix, the following shorthand are used. 

 

𝑐𝜙𝑥 =  𝑐𝑜𝑠𝜙𝑥 = 𝑠𝑖𝑛 𝛼𝑛 𝑐𝑜𝑠 𝛾𝑖  

𝑐𝜙𝑦 =  𝑐𝑜𝑠𝜙𝑦 = 𝑠𝑖𝑛 𝛼𝑛 𝑠𝑖𝑛 𝛾𝑖 

𝑐𝜙𝑧 =  𝑐𝑜𝑠𝜙𝑧 = 𝑐𝑜𝑠 𝛼𝑛  

𝑠𝜃1 = 𝑠𝑖𝑛𝜃1 

𝑠𝜃2 = 𝑠𝑖𝑛𝜃2 

𝑐𝜃1 = 𝑐𝑜𝑠𝜃1 

𝑐𝜃2 = 𝑐𝑜𝑠𝜃2 

𝑠𝜃1
2 = (𝑠𝑖𝑛𝜃1)

2 

𝑠𝜃2
2 = (𝑠𝑖𝑛𝜃2)

2 

𝑐𝜃1
2 = (𝑐𝑜𝑠𝜃1)

2 

𝑐𝜃2
2 = (𝑐𝑜𝑠𝜃2)

2 

 

 

 

 

 

 

 

 

(C.1) 

Gear mesh stiffness matrix cam ne written as, 

 
{
𝐹𝑖
𝐹𝑗
} = [𝐾]𝑚𝑒𝑠ℎ {

𝑞̇𝑖
𝑞̇𝑗
} = 𝐾𝑚 [

[𝐾𝑖𝑖] [𝐾𝑖𝑗]

[𝐾𝑗𝑖] [𝐾𝑗𝑗]
] {
𝑞̇𝑖
𝑞̇𝑗
} (C.2) 

 

The four sub-matrices of equation C.2 shown in equation C.3 through C.6 
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[𝐾]𝑖𝑖

=

[
 
 
 
 
 
 
 
 (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1)

2
(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)
2

−𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) – 𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑖(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) 𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

 

−𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) 𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

−𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) 𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) 𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑖
2𝑠𝜃1

2(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−𝑟𝑖
2𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) −𝑟𝑖

2𝑠𝜃1𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−𝑟𝑖
2𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) 𝑟𝑖

2(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2)
2

𝑟𝑖
2𝑐𝜃1(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

−𝑟𝑖
2𝑠𝜃1𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

2
𝑟𝑖
2𝑐𝜃1(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖

2𝑐𝜃1
2(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

2
]
 
 
 
 
 
 
 
 

 

(C.3) 

 

[𝐾]𝑖𝑗

=

[
 
 
 
 
 
 
 
 −(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1)

2
−(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −(𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)
2

𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−𝑟𝑖(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) −𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

 

−𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) 𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) −𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1)

−𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

−𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) 𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑖𝑟𝑗𝑠𝜃1(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖𝑟𝑗𝑐𝜙𝑥𝑠𝜃2𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖𝑟𝑗𝑠𝜃1(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

−𝑟𝑖𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) 𝑟𝑖𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) −𝑟𝑖𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2)

−𝑟𝑖𝑟𝑗𝑐𝜃1(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖𝑟𝑗𝑐𝜙𝑥𝑠𝜃2𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖𝑟𝑗𝑐𝜃1(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ]
 
 
 
 
 
 
 

 

(C.4) 

 

 



 

105 

  

[𝐾]𝑗𝑖

=

[
 
 
 
 
 
 
 
 −(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1)

2
−(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

−(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −(𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)
2

−𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) −𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) 𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) −𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

 

𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) – 𝑟𝑖(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) −𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2
 – 𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

2

𝑟𝑖 𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −𝑟𝑖(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −𝑟𝑖 𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑖𝑟𝑗𝑠𝜃1(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) −𝑟𝑖𝑟𝑗𝑐𝜃1(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

−𝑟𝑖𝑟𝑗𝑐𝜙𝑥𝑠𝜃2𝑠𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑖𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) 𝑟𝑖𝑟𝑗𝑐𝜙𝑥𝑠𝜃2𝑐𝜃1(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

𝑟𝑖𝑟𝑗𝑠𝜃1(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑖𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑠𝜃2𝑐𝜙𝑦 − 𝑐𝜙𝑧𝑐𝜃2) −𝑟𝑖𝑟𝑗𝑐𝜃1(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ]
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[𝐾]𝑗𝑗

=

[
 
 
 
 
 
 
 
 (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1)

2
(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)
2

(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)
2

𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) 𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

−𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) −𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) 𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

 

𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) −𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1) 𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑐𝜃1 + 𝑐𝜙𝑦𝑠𝜃2𝑠𝜃1 − 𝑐𝜙𝑧𝑐𝜃2𝑠𝜃1)

𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) −𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2) 𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑦𝑐𝜃2 + 𝑐𝜙𝑧𝑠𝜃2)

𝑟𝑗(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) −𝑟𝑗𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1) 𝑟𝑗(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) ∗ (𝑐𝜙𝑥𝑠𝜃1 − 𝑐𝜙𝑦𝑐𝜃1𝑠𝜃2 + 𝑐𝜙𝑧𝑐𝜃2𝑐𝜃1)

𝑟𝑗
2(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1)

2 −𝑟𝑗
2𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) 𝑟𝑗

2(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1)

−𝑟𝑗
2𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) 𝑟𝑗

2𝑐𝜙𝑥
2𝑠𝜃2

2 −𝑟𝑗
2𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1)

𝑟𝑗
2(𝑐𝜙𝑧𝑐𝜃1 + 𝑐𝜙𝑥𝑐𝜃2𝑠𝜃1) ∗ (𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) −𝑟𝑗

2𝑐𝜙𝑥𝑠𝜃2(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1) 𝑟𝑗
2(𝑐𝜙𝑧𝑠𝜃1 − 𝑐𝜙𝑥𝑐𝜃2𝑐𝜃1)

2
]
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