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Abstract 

A nonlinear model of an unbalanced flexible rotor using finite element method is developed. The 

rotor is supported on deep groove ball bearings. The bearings are affected by geometric 

imperfection such as surface waviness on inner and outer race both. The finite element model of 

rotor is prepared by considering Euler Bernoulli beam element, and the ball bearing model is 

developed using Gupta’s bearing model. The surface waviness of bearing’s races causes the 

variation between inner and outer race during rotation, and there by continuous changes the 

Hertzian contact force, that acts at the contact of balls and races. The internal clearance, surface 

waviness, time-varying rotating imbalance force, nonlinear nature of Hertzian contact force of 

bearing and makes the system complex and nonlinear. The governing differential equation of the 

system is solved by using numerical integration technique Newmark β with Newton Raphson 

iteration in MATLAB. The nonlinear dynamic response is studied using displacement plots, 

dynamic orbits and frequency spectra. The frequency spectra of the system are analyzed along 

with and without bearing’s surface waviness at certain rotational speed. These frequency spectra 

are plotted using Fast Fourier Transformation (FFT) in MATLAB and the impact of surface 

waviness on it is identified by varying the surface waviness order of both inner race’s and outer 

race’s waviness. The dynamic response has been validated using frequency spectra with surface 

waviness with the results available in the literature for certain waviness-order. 
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1 Introduction 

In the industries, rotating machineries are widely used for power generation and transmission 

where the primary concern is high efficiency and reliability. These machineries experience 

significant vibrations during their running period. There are many reasons of generation of these 

vibrations, for example, the time varying unbalance force of rotor, gravity load and nonlinear 

bearing force etc. The dynamic behavior of the rotor-bearing systems is highly complex because 

of the bearing’s nonlinear character. The bearing to be discussed here is rolling element bearing 

viz. ball bearing. These rolling bearings are using in several rotating machineries including small 

hand-held device to large heavy duty machineries. Sometimes these bearings become a key cause 

of breakdown of the rotating machines. Therefore, to predict the vibration response of the system 

together with the ball bearing dynamic behavior is very vital to analyze.  

Depending on shaft’s elasticity, the rotor is characterized as rigid rotor and flexible rotor. The 

rigid rotor is assumed not to deform elastically and the vibrations produced by it are less 

complex. With the rigid rotor, bearing stiffness is the chief factor in deciding the vibration 

amplitude and its pattern. Flexible rotors have non negligible elastic deformation and produce 

high and complex vibrations. To model such rotors, finite element method is endorsed. The finite 

element model can be developed by using Euler Bernoulli beam element or the Timoshenko 

beam element. Both elements include the effect of elastic bending energy, translational kinetic 

energy, gyroscopic moment, axial load, and axial torque to determine mass matrix, stiffness 

matrix, damping matrix and gyroscopic matrix of the flexible rotor. However, the Timoshenko 

beam element has an advantage over Euler Bernoulli beam element, as it also takes account of 

shear deformation and rotary inertia effect in the finite element matrices.  

The Rolling element bearings subjected to vibrations generally because of its inherent 

nonlinearity, which arises due to Hertzian force-deformation relationship, varying compliance, 

internal radial clearance and the bearing defects, like localized defects and continuous surface 

waviness. Hertzian force is the nonlinear contact force which is generated between races and 

balls of the ball bearing by the elastic deformation at contacts of balls and races. Incorporating 

the bearing defects and the internal clearance in the bearing model, the elastic deformation is 

altered and this in turn changes the effective bearing stiffness and Hertzian contact force. This 



  

2 
 

creates a periodic change in bearing stiffness and the system experiences nonlinear vibration 

under dynamic conditions. 

The defects of ball bearing are either localized defects or continuous defects. The localized 

defects are the pits, cracks, and spalls etc., which are generated preliminary due to fatigue of 

mating surface, like balls and races contacts. These defects remain unnoticed in the initial stage 

and yields progressive noises and vibrations, which leads the rotor bearing system towards 

failure. The continuous defects like surface waviness, are the geometric imperfections produced 

by the irregularities of manufacturing process, like uneven wear of the grinding wheel in the 

grinding operations, fluctuating interactions between the work and tool, vibrations of machine 

element itself and work’s movement in the fixture, etc. The amplitude of surface waviness is 

generally too small, but it enhances the vibration of the system significantly. These surface 

waviness imperfections are assumed of sinusoidal shaped and present on the surface of balls, 

inner race and outer race. The waviness can be both axial and radial as well. The wavelength of 

the surface waviness is much longer than the Hertzian contact width.  In the running state of 

bearing, the surface waviness changes the elastic contact deformation acting between balls and 

races, which in turn modify the Hertzian contact force. Because of such contact load variation, 

vibrations get generated in the bearing. Surface waviness of different amplitudes and/or different 

wave number, excites different vibrational frequencies. These vibrations due to surface waviness 

enhance the whole system’s vibrations. 

 

 

Fig. 1.1 Rotor-Bearing system 
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2 Literature Review 

Babu, C. et al. [1] did the Vibration modeling of a rigid rotor having six degrees of freedom, 

supported on angular contact bearing. Radial waviness was taken on the balls; both radial and 

axial sinusoidal surface waviness was taken on the inner race's outer face as well as on the outer 

race's inner face of the angular contact bearing. The waviness order and waviness amplitude was 

varied in the modeling. The angular contact bearing exerted Hertzian force and moments with 

frictional moments (load dependent and load independent) to the rotor. Numerical analysis was 

done using Runge Kutta Method for numerical integration. The load dependent frictional 

moments enhanced the vibration, as compared to the load independent frictional moment. The 

vibrations were found to increase as the waviness order and the amplitude were increased. The 

inner race surface waviness produced more vibrations than the outer race surface waviness. 

Babu, C. et al. [2] performed the nonlinear dynamic modeling of a flexible rotor held by angular 

contact bearing, by integrating surface waviness on balls, and inner and outer race of the angular 

contact bearing. To model the rotor, two noded Timoshenko beam element was taken with 6 

degrees of freedom per node. Angular bearing exerted Hertzian contact force as a bearing force 

and frictional moment (both Load dependent and load independent) on the rotor. Waviness 

amplitude and waviness order both were varied in the analysis. With higher waviness amplitude 

and waviness order, the vibration amplitude was found to escalate. The outer race waviness had 

higher influence on the system’s vibration than the inner race waviness bearing. This conclusion 

was opposite to the rigid rotor system. In case of rigid rotor, inner race waviness enhanced the 

system’s vibration significantly, as compared to the outer race waviness. 

Bai, C. et al. [3] performed both numerical and experimental analysis on the dynamic behavior 

of flexible rotor system, supported on ball bearings. The author focused on sub harmonic 

resonance characteristics of the system. The offset-disk rotor system was analyzed by finite 

element method with the ball bearing model of 2 degrees of freedom. Numerical analysis was 

done by numerical integration method with Newton Raphson Iteration. The Numerical analysis 

data were also compared with the experimental data and were found to be in very good 

agreement with the results. The sub harmonic resonance occurred at twice that of 

sychroresonance frequency due to nonlinearity of ball bearing. This sub harmonic resonance 
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caused high vibrations and noise of the system. This made the rotor unstable and caused damage 

to it. 

Datta, J. et al. [4] created a mathematical model of a rigid rotor- rolling element bearing system 

to study its vibrations responses. The mathematical model was made using Lagrange principle. 

The formulation was carried out by considering individual masses of race, rolling elements and 

shaft. This comprises the role of tangential and radial motion of rolling element, inner and outer 

race. The nonlinear governing differential equation was then solved using Runge Kutta 

Numerical integration scheme. 

Datta, J. et al. [5] used the mathematical formulation of rigid rotor-roller bearing system to 

study the effects of different operating conditions on bearing structural vibrations. These 

different operating conditions included size of roller, size of inner and outer race, and magnitude 

and nature of loads (linear or rotational) acting on the bearing. Numerical analysis was done 

using sixth order Runge Kutta integration method. Vibration amplitude enhanced with the 

increase in roller size. Comparing the roller bearing and ball bearing of comparable size, roller 

bearing was found to have higher oscillating frequencies than ball bearing. 

El-Sayed, H. [6] derived the expression for calculation of bearing stiffness of the ball bearing for 

given bearing dimension. Earlier to this work, the bearing stiffness was obtained using bearing 

catalogue or Handbook. In the derivation, the bearing internal clearance was neglected, which 

may produce some error in the calculation of bearing stiffness. The analytical expression was 

validated with the experimental work. 

Gupta, T. et al. [7] considered a flexible rotor with unbalanced disk, supported on deep groove 

ball bearings on either ends of rotor for Nonlinear Vibration analysis. The ball bearing with 

internal radial clearance exerted a Hertzian contact force to the rotor which is nonlinear in nature. 

The Numerical analysis was done using time integration technique Newmark β with Newton 

Raphson iteration. In the analysis, the dynamic behavior of rotor was studied by varying rotor 

speed. Dynamic response at disk location was higher at lower rotor speed. Effect of varying 

compliance of ball bearing faded out for the excitations at disk location at higher rotation speed. 

Harsha, S. and Kankar, P [8] performed stability analysis of rigid rotor system supported on 

ball bearing. Author considered surface waviness on inner and outer race both of the ball 

bearing. The governing differential equation was solved using integration technique Newmark β 
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along Newton Raphson iteration. Author discussed the impact of surface waviness and number 

of balls on the vibration characteristics of the system. The Nonlinear dynamic responses were 

more allied to the ball passage frequency. The axial vibration were achieved at an integer 

multiple of ball passage frequency. The numerical results were validated by the experimental 

data of previous researches.   

Harsha, S. et al. [9] prepared a critical model to analyze nonlinear dynamics of the system of a 

rigid rotor, supported on ball bearings. The ball bearing had surface waviness on its inner and 

outer races. The mass of shaft with disk, inner race and outer race were taken individually. The 

governing differential equation was derived using Energy Principle. By using Lagrange 

principle, equation of motion was evaluated. Newmark β Numerical integration approach was 

used along Newton Raphson iteration scheme to estimate the solution of governing differential 

equation. In the analysis, the numbers of waves on both inner and outer race were varied. 

Considering outer race waviness only, the serve vibration occurs when number of balls and 

number of waves becomes equal and the vibrating frequency would be an integer multiple of 

varying compliance frequency. Considering inner race waviness only, the vibrations occurs at the 

integer multiple of wave passage frequency and/or sum of integer multiple of wave passage 

frequency and rotational frequency. 

Kankar, P et al. [10] considered a rigid rotor system supported on ball bearing. Ball bearing has 

race defect as surface waviness on inner race and outer race both. To derive governing 

differential equation, inertia principle was used, by calculating inertia force, damping force, 

stiffness force and the force of excitation of the system. Bearing exerted Hertzian force as the 

bearing force to the rotor. To solve the differential equation, a numerical integration approach 

was used, with the iteration scheme as Newmark β with Newton Raphson method. The number 

of waves on inner race and outer race were varied in the analysis of obtaining vibrations 

characteristics. The waviness amplitude was varied along the surface of races to get the real time 

situation of surface roughness on the bearing races. With the outer race waviness, the high 

vibration takes place at an integer multiple of varying compliance frequency. Bearing with inner 

race waviness produced higher complex spectrum than outer race waviness. Vibration occurred 

at integer multiple of ball passage frequency and/or sum with rotational frequency. 
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Li, Y. et al. [11] proposed a general dynamic modeling method of ball bearing-rotor system. In 

this work, lubrication traction and bearing clearance, three dimensional motions of outer race, 

inner race, and balls of the angular contact ball bearing were considered. The finite element 

method was used to model shaft elastic deformation and combined it to rigid motion of bearing, 

to obtain a real time state of the flexible rotor-bearing system. The governing differential 

equation of the system was solved by Runge-Kutta-Fehlberg Integration method. The analytical 

results were then verified by an experimental work, and it showed a good agreement of results. 

With the increase in bearing’s clearance, the vibration became higher, and the complication of 

frequency spectrum arose, which includes rotational frequency, varying compliance frequency, 

its harmonics and other frequencies too. 

Meyer, L. et al. [12] prepared an analytical technique to get the vibration frequency response of 

the rotor bearing system. In the analysis, major defects that comes to the rolling element bearings 

in its service were considered. These major defects were race misalignment, off-sized rolling 

elements and distributed defects like surface waviness on the races and/or on balls. Analytical 

model was prepared for ideal bearing with no defects and then several defects were introduced to 

the model and the effects of these defects were predicted on the spectral vibrations of the system. 

Nelson, H. and McVaugh, J. [13] proposed a dynamic model of flexible rotor bearing system in 

both fixed and rotating reference frames. The fixed frame taken was the global frame and 

rotating frame was defined by whirling motion of the rotor. The components taken in the 

modeling were rigid disk, rotor as distributed mass and elasticity, and the linear bearing. The 

finite element method was used, considering this system of 4 degrees of freedom to formulate the 

governing equation of the system. The Elastic Bending energy, Kinetic Energy, gyroscopic 

effect, rotary inertia, and axial load was included in the formulation. An overhung system was 

taken and its natural whirl speed and responses were calculated for an undamped isotropic and 

undamped orthotropic bearing system. 

Nelson, H., [14] modeled a flexible rotor system using Timoshenko beam theory to add the 

effect of shear deformation and inertia torque. In the previous studies, author had included the 

gyroscopic effect, rotary inertia and axial load effect for the formulation of flexible rotor 

analysis.  
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Niu, L. et al. [15] proposed a dynamic model of a rigid rotor supported on high speed rolling 

ball bearings, having localized surface defects like material absence on its races. Governing 

differential equations were solved using fourth order Runge Kutta Fehlberg method. Defects 

width and inner race rotation both were varied to see its effect on vibration responses 

            16] considered a 3 degree of freedom rigid rotor system supported on the pair of 

angular contact ball bearing. Author performed axial as well as radial vibrations of the system. 

Surface waviness on the races and balls of the bearing were also included in the formulation. 

Numerical analysis was done by Runge Kutta integration approach. Author analyzed for the 

variation of net force and phase angle (angle between total net force and vertical axis) with the 

variation of waviness number of outer race only. Vibration becomes intense at ball passage 

frequency and when its harmonics coincided with natural frequencies. The peak vibrations 

occurred when the number of balls and wave number became equal.   

Patel, V. et al. [17] executed a dynamic Vibration Analysis of Deep-groove Ball Bearing having 

defects on the surface of races. The author considered masses of the shaft, races, balls and 

housing individually to develop the Governing Differential Equation of the system. Solution of 

the equation of motion is governed by using Runge Kutta numerical integration method. 

Numerical results were validated by experimental results by selecting healthy bearing and 

defective bearing. In case of healthy bearing, vibration peaks came at shaft rotation frequency 

and cage rotation frequency with their harmonics. With defective bearing, peaks came at ball 

passage frequency of inner race and ball passage frequency of outer race. 

Wardle, F. [18] derived an analytical expression to consider the effect of surface waviness of the 

thrust bearing on the rotor vibrating forces and the frequencies. The waviness is considered on all 

the three components of the bearing, that is, balls inner race and outer race. 

Yhland, E., [19] considered a 3 d.o.f. rigid and flexible rotor supported on double row self-

aligned ball bearing. In the analysis, external load is applied in three perpendicular directions, 

with considering internal clearance in the bearing and surface waviness on the bearing races and 

balls. The Runge Kutta method of fourth order was used to solve the nonlinear governing 

differential equation iteratively. A relation between waviness order and excited frequencies is 

proposed for both rigid and flexible rotor. Vibration became intense in axial direction when 
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radial load equaled the unbalanced force. Vibrations decreased if the applied radial load 

increased beyond the unbalanced force. 

Armentrount, R. and Gunter, E. [20] considered a flexible rotor supported on nonlinear 

squeeze filler damper, to run the transient analysis, based on modal technique to predict the 

nonlinear unbalance response. The formulation was then applied to the aircraft turbofan engine 

to get the unbalanced response, so that the characteristics of squeeze filler damper and bearing 

supports could be optimized. 

2.1 Research Gap 

From above literature survey, it was concluded that most of the studies on dynamic analysis of 

rotor bearing system have been performed, assuming the rotor as rigid rotors. The bearing 

models were mainly for angular contact bearing and deep groove ball bearing with internal radial 

clearance. There are a few publications which consider the rotor as flexible and incorporate 

surface waviness and radial clearance. In the proposed work, nonlinear vibration analysis is 

performed for a flexible rotor supported on deep groove ball bearing considering internal radial 

clearance and surface waviness of inner and outer races, as geometric imperfection.  

2.2 Problem Statement 

Nonlinear Vibration Analysis is conducted for an unbalanced flexible rotor ball-bearing system. 

The rotor is assumed as an elastic axis-symmetric body with continuous mass distribution. The 

unbalanced rigid disk is positioned at mid span of the shaft. The rotor is supported by deep 

groove ball bearings at either ends. The bearings are considered having an internal radial 

clearance between balls and races and surface waviness on the outer periphery of their inner race 

and on the inner periphery of its outer race. The spectral vibration analysis is performed on the 

system, to determine its vibration characteristics and to predict the impact of surface waviness 

present on the races of bearing to the frequency spectra of the system. The displacement plots, 

dynamic orbits and frequency spectra are used to describe the dynamic behavior of the system. 

The frequency spectra are further used to determine the impact of surface waviness of different 

orders on the vibration characteristics of the system 
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3 Mathematical Modeling    

In the mathematical modeling of Flexible Rotor-Bearing system, the rotor and the ball bearing 

are modeled as separate systems. The interaction between ball bearing and rotor is by the mode 

of bearing forces only. The mathematical model of the flexible rotor is developed by employing 

finite element method [17] and the ball bearing is modeled as 2-degrees of freedom system [9]. 

The surface waviness is incorporated on the inner race and outer race of the bearing model [12]. 

The Rotor is discretized into six finite elements, where each element has 2 nodes and each node 

has 4 degree of freedom. A typical rotor-bearing system in motion is shown in Fig. 3.1 

 

 

Fig. 3.1: Rotor-Bearing system 

 

3.1 Finite Element Model 

The Finite element modeling of the flexible rotor is performed by considering Euler-Bernoulli 

beam element. It involves the elastic bending energy and translational kinetic energy. The rotary 

inertia effect and the gyroscopic moment have also been included to the rotor model. The rotor is 

comprised of a rigid disk, which is positioned at the center of the rotor, and a flexible shaft, 

Y 

𝝎𝒓 
X Z 

G 

C 

𝒍𝒔 

𝒏𝒅 
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which is supported by the bearings. The equation of motion for rigid disk is derived by 

calculating its kinetic energy and importing it to Lagrangian formulation. The finite element of 

flexible rotor is modeled as an integration of infinite set of differential disks whose equations of 

motion are derived by considering spatial shape functions. The rotor is divided into six finite 

elements. These are 2 node elements where each node is having 4-dof. The two degree of 

freedom are translational and two are rotational in nature. As a result, the system would have 

total 7 nodes and 28 degrees of freedom. 

3.1.1 Finite Element Model of Shaft 

The Flexible rotor shaft is discretized into 6 circular Euler-Bernoulli beam elements. Each 

element has 2 nodes and each node is having 4 degree of freedoms. 

 

Fig. 3.2: Finite element of shaft 

 

From the Fig. 3.2 it is observed that, the first node has two translational dof,( ‘  ’ in positive x-

direction, ‘  ’ in positive y-direction) and two rotational dof, (   in positive x-direction,    in 

positive y-direction). Similarly two translational dof ‘  ’ and ‘  ’, and two rotational dof    and 

   are associated with the second node. In this way, each finite element of shaft has 2-nodes and 

8 degrees of freedoms. 

r 
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            are time (t) and position (s) dependent cross-section displacement of a typical 

internal point of an element as shown in the Fig. 3.2, where         are translational 

displacement and         are angular displacement.         are related to         respectively 

by the relation shown in Equation 3.1: 

 
      

  

  
 

          
  

  
 

(3.1) 

 

The translation of internal point of an element obeys the following relation: 

 
{
 (   )

 (   )
}    , ( )-* ( )+   (3.2) 

*  + is the displacement vector of the element *                      + 

 ( ) is a spatial constraint matrix and can be expressed as: 
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(3.4) 

The angular displacements         are expressed as: 

 
{
 (   )

 (   )
}    , ( )-* ( )+   (3.5) 
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Matrix of Rotation shape function is:  

 
                  , -    [

  

  
]    [

    
 

  
  

     
  

  

   
      

    
 

  
  

     
  

  

   
 ]   (3.6) 

The elastic bending energy and translational kinetic energy of the differential disk located at ‘s’ 

in the finite element as shown in the Fig. 3.2, 

 
 (  )  

 

 
{   

   }
 

[
     
     

] {    

   }     

 (  )  
 

 
{  ̇
 ̇

}
 

[
  
  

] {  ̇
 ̇

}     
 

 
        

 

 
{ ̇
 ̇
}
 

[
   
   

] { ̇
 ̇
}      ̇ ̇       

(3.7) 

where,    is elastic bending energy of element; and    is translational kinetic energy of element. 

Using the relation given in equations 3.2, 3.5 and 3.7; and then integrating equation 3.7 for the 

whole element length, the above relation is deduced to: 

Total Energy: 
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 , - *  +  
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where, 
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(3.9) 

Using Lagrangian method, the total energy in equation 3.8 is used in equation 3.10; and the final 

elemental equation of motion of shaft element derived is given in equation 3.11:  
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 * ̇+
  

  

 * +
 

  

 * +
 * + (3.10) 

 (,  
     

 -)* ̈ +    , - *  ̇+  , - *  +  *  
 + (3.11) 

                      {  
 }   ∫    (  )   

 

 
;     𝑖=1, 2, 3, 4 

 ̇ is rotor angular velocity, so it can also be written as   . 

   is the finite element weight per unit length. 

 

3.1.2 Rigid Disk Modeling 

Rigid disk is positioned at the mid span of the rotor, such that the centroid of disk is considered 

to be at the center node of the rotor (node 4) in the finite element formulation. All nodes in the 

finite element model have 4 degrees of freedoms, so the disk node will also has the same 4 

degrees of freedoms. The generalized displacement vector corresponding to the center node of 

rotor at disk location is given by equation 3.12 

 

*  +     {

  
  

  

  

}   ; (3.12) 

Where,           are translational DOF, and           are rotational DOF in the same manner 

as taken of shaft displacement vector of shaft element nodes. 

The translational kinetic energy is calculated for the rigid disk, and then this energy is used to 

calculate equation of motion of the disk, through Lagrangian method. 
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 (3.13) 

 

Equation of Motion derived for rigid disk, using Lagrangian Method: 

  ([  
     

 ])*  ̈+      [ 
 ]* ̇ +  {   

 } (3.14) 
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*   
 + shown in the Equation 3.14 is the generalized force vector, comprising of the rotating 

imbalanced force due to eccentricity of disk center of mass from its Geometric center. Let    be 

the eccentricity of disk’s center of mass, then the generalized force vector would be: 

 

{   
 }       {

  

 
 
 

}         +  {

 
  

 
 

}         (3.15) 

 

3.2 Ball Bearing Modeling 

The ball bearing is supposed as a mass-spring system of 2-degrees of freedom as shown in Fig. 

3.3, where the contacts between balls and races act as a nonlinear spring because of the existence 

of Hertzian force at the mating points of balls and races. The Hertzian force can be produced 

only by elastic contact deformation at the mating points of ball and races, such that, the assumed 

spring at the contact point must be in compression state to yield Hertzian Contact Force. It 

implies that the length of spring should always be less than its original length in order to produce 

a Hertzian Force. If the length of spring becomes equal to or more than its original length, then 

the spring will not be in compression state anymore and no Hertzian force will be produced. 

Therefore, the bearing force produced by that spring is considered as zero.  

 

Fig. 3.3: Ball Bearing as Spring-Mass System [20] 

o 

o 



  

15 
 

3.2.1 Race Surface Waviness 

In the vibration of rotor bearing system, surface waviness on the ball bearing’s races has a 

significant role [13]. This assumed global sinusoidal shaped imperfection consists of peaks and 

valleys of varying width and height. In Fig. 3.4, the surface waviness on inner race and outer 

race is shown. Due to this, in the running condition of bearing, the amplitude of waviness 

imperfection varies continuously at the contact point of balls and races. The imperfection of 

different wave number excites distinct frequencies of vibration. In this way, the surface waviness 

cause additional vibrations [12]. The waviness wavelength is assumed to be greater than ball to 

race foot print so that due to contact deformation, the wave geometry can be considered as 

unaffected. 

3.2.1.1 Inner Race Waviness 

The balls of the Ball Bearing track the surface of races continuously. Assuming no-slip condition 

between the balls and races, the balls will always be in the contact of inner race and outer race. 

The waviness present on the inner race is radial and of the form of sinusoidal wave. The 

amplitude of inner surface waviness can be calculated as [12]: 

 

Fig. 3.4: Surface Waviness at inner race and outer race 

 
           (  

 

 
) (3.16) 

where, ‘    ’ is maximum amplitude of inner race surface waviness 
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Waviness wavelength can be expressed as: 

 
  

     

  
 (3.17) 

where, ‘  ’ is the wave number or waviness order and     is inner race radius    

The angular position for     ball of ball bearing is: 

                                  
  

  
(   )      ;                   (3.18) 

where, ‘   ’ is the cage angular velocity  

   

 Expression for ‘  ’ [10] 

Tangential velocity of inner race: 

            (3.19) 

Tangential velocity of outer race: 

                (3.20) 

where,      is outer race radius and      is the angular velocity of outer race 

 

Tangential velocity of cage: 

           (3.20) 

 

where pitch radius is                                 
          

 
 (3.22) 

 

Considering pure rolling motion between balls and races: 

     
(        )

 ⁄   (3.23) 

       ;         
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From equation 3.21 and 3.23 

        .
       

 
/  (3.24) 

 

From Equation 3.22 and 3.24  

 
           .

   

        
/ (3.25) 

Varying Compliance Frequency  

                 , 
 (3.26) 

The rotor-bearing system vibrates at varying compliance frequency because of the ball bearings. 

The ball bearing caries load on the balls, whose angular position    changes continuously with 

time with respect to line of action of the load. Such a change of angular position of balls causes 

the inner and outer race to undergo the periodic motion [10]. As a result, the system undergoes 

vibration at varying compliance frequency. 

 The balls of the ball-bearing are retained in a cage, because of it; the balls rotate at the same 

angular velocity as that of cage. Thus the angular displacement of balls is ‘   ’ at time ‘ ’.  The 

inner race is secured to the rotor’s shaft and rotates at shaft’s angular velocity. This gives the 

angular displacement to inner race as ‘   ’ at time ‘ ’. Angular displacements of both inner race 

and ball are in the same direction; this mere makes the angular displacement of inner race and 

ball contact point after time ‘ ’ as ‘(      ) ’. 

The inner race waviness’s amplitude at angular position of inner race and j
th

 ball contact is 

derived as:  

             .  (      )/ (3.27) 

 

Considering the inner race surface waviness, the inner race profile modified as [13]: 

              .  (      )/  (3.28) 
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3.2.1.2 Outer Race Waviness 

The outer race circumferential unevenness is taken as of same order of magnitude as that of inner 

race waviness. Outer race is fixed to the housing and the balls are rotating at the cage’s speed. 

The mating point of outer race and balls is believed to move through an angular distance of ‘   ’  

in time t. For j
th
 ball of the bearing this angular distance can be expressed as:  

 
   

  

  

(   )        (3.29) 

The outer race waviness at    angular position is given by [12]: 

               (    ) (3.30) 

where, ‘    ’ is maximum amplitude of outer race surface waviness 

 

Outer race profile including the outer race waviness is given by [13]: 

                (    ) (3.31) 

 

 

Fig. 3.5: Schematic Diagram of Waviness [2] 

r 

𝐍𝐛 
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3.2.2 Contact Stiffness  

Hertz point out that the stress at the mating point of balls and races in the ball bearing are 

distributed over an ellipsoidal contact area, it avoids the situation of infinite stress [10]. To 

evaluate contact stiffness between balls and races, the curvature sum and curvature difference is 

needed to calculate first [12]. 

Curvature Sum: 

   ∑                        
 

   
 

 

    
 

 

   
 

 

    
   (3.32) 

Curvature Difference: 

 
 ( )  

(         ) (         )

∑  
   (3.33) 

where,   is the curvature   

The curvature is considered negative for concave surface and positive for convex surface. 

 The curvature at the contact point of inner race and ball using Fig. 3.6: 

Body I denotes the contacting Ball and Body II denotes Inner race 

 
    

 

 
      

 

 
                             

    
 

 
      

 

 
       

 

   
        

 

  
 

(3.34) 

 

Fig. 3.6: Cut section of inner race-ball contact 
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 The curvature at the contact point of outer race and ball using Fig. 3.7 : 

Body I denotes the contacting Ball and Body II denotes Outer Race 

 
    

 

 
      

 

 
                              

    
 

 
      

 

 
        

 

    
        

 

  
 

(3.35) 

 

 

Fig. 3.7: Cut-Section of outer race and ball contact 

 

 The relative approach between the mating balls and races is 

 
               

 
  .∑ /

 
 
    (  ) (3.36) 

where,    is the dimensionless contact parameter. 

 The Contact force Q at the mating point of balls and races: 

 
  {           .∑ /

 
 
 
    

 
 }   

 
    ( )  (3.37) 

 The Elastic Stiffness at the contact of balls and inner race of Ball Bearing 

 
   {           .∑  /
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) (3.38) 



  

21 
 

 The Elastic Stiffness at the contact of balls and outer race of Ball Bearing 

 
   {           .∑  /

 
 
 
   

  
 
 }    (

 

    
 
 
 
) (3.39) 

 

 Effective Contact Stiffness 

Ball bearing is assumed as a spring mass system, as shown in Fig. 3.3 

 
          

 
  

            

 
  

              

 
  

(3.40) 

Based on the configuration of assumed spring mass system, 

                   and                  

      

     

   

  
   

  

   

  
    

  

   

 (3.41) 
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 (3.42) 

To evaluate elastic stiffness at the contact point of both inner race and outer race with the ball, 

first, curvature sum and curvature difference is calculated for both inner race and outer race 

using equations 3.32 to 3.35. Then using Table 3.1, the dimensionless contact parameter is 

calculated. All three values: curvature sum, curvature difference and dimensionless contact 

parameter are used in 3.38 and 3.39 to calculate elastic stiffness of inner race and outer race 

respectively. These elastic stiffness values are used in equation 3.42, to calculate effective elastic 

stiffness of the ball bearing at the contact point of inner race and outer race with ball. 
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Table 3.1: Dimensionless Contact Parameter [10] 

Curvature Difference   (  ( )) Dimensionless Contact Parameter   (  ) 

0 1 

0.1075 0.997 

0.3204 0.9761 

0.4795 0.9429 

0.5916 0.9077 

0.6717 0.8733 

0.7332 0.8394 

0.7948 0.7961 

0.83595 0.7602 

0.87366 0.7169 

0.90999 0.6636 

0.93657 0.6112 

0.95738 0.5551 

0.97290 0.4960 

0.983979 0.4352 

0.990902 0.3745 

0.995112 0.3176 

0.995300 0.2705 

0.9981847 0.2427 

0.9989156 0.2106 

0.9994785 0.17167 

0.9998527 0.11995 

1 0 
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3.2.3 Restoring Force 

The effective contact force between balls and race also called the restoring force is expressed as: 

 
     

 
  (3.43) 

  is the elastic deformation taking place at the mating point of balls and races. When the rotor 

node at bearing location displace due to rotor deflection, it builds an interaction between the 

inner race, balls and the outer race of the bearing. It generates an elastic deformation   at mating 

of balls and races.  

The surface waviness modifies the profile of races by adding varying peaks and valleys along the 

race circumference as given in the equation 3.28 and 3.31. This mere alters the elastic 

deformation of contact point of balls and races.  

The internal radial clearance is provided between balls and races of the bearing to compensate 

the thermal expansion that takes place during running state of bearing. The internal clearance 

changes the distance between the balls and races, therefore modifies the elastic deformation of 

contact points of races and balls. Hence, the internal clearance and surface waviness has to be 

included in the calculation of elastic deformation.  

                                          (3.44) 

where,                       
  

  
(   )      (3.45) 

 

Fig. 3.8: Deformation in balls and races [26] 
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The balls of the ball bearing are retained to the cage with the precise angular separation of ‘ ’: 

  
  

  
 

where,     is the number of balls in the bearing. 

Fig. 3.8 shows a typical ball bearing in the deformed state at contact of balls and races. When the 

bearing center node is displaced from its center position O to the displaced position Oi, the balls 

in the region of node’s displaced direction gets deformed. The deformation also depends on the 

values of internal clearance and surface waviness amplitude at the interaction point. The 

deformation at the ball-race contact is considered only if the value of equation 3.44 comes out to 

be greater than zero. Such contact deformation generates a restoring force between balls and 

races with nonlinear characteristics. 

Contact force:   

 
                                 

 

  (3.46) 

         (                                     )    (3.47) 

The Restoring force in equation 3.47 is calculated at an angular position    of the j
th

 ball. If    of 

j
th

 ball location appears greater than zero, it contributes to raise the restoring force    at that 

location. However, if     at the j
th

 ball location approaches to zero or less than zero, the j
th

 balls 

would not remain in the deformed state and the restoring contact force becomes zero. The net 

restoring force generated by ball bearing is the sum of restoring force generated at each ball-

races contact. Net restoring force in horizontal x-direction and in Vertical y-direction is given by 

equation 3.48: 

 

    ∑    (                                     )   

  

   

       

    ∑    (                                     )   

  

   

       

(3.48) 

These restoring force components are shown in Fig. 3.9. They impact the rotor in opposite 

direction of deformation taking place between balls and races. The components of Restoring 

forces shown in equation 3.48 are added algebraically to the global load vector of rotor at the 
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respective global degree of freedom in such a manner that, these restoring forces would influence 

the rotor in opposite direction of ball deformation. 

 

Fig. 3.9: Restoring force components 

 

3.3 The Complete Rotor-Ball Bearing System 

The rotor ball bearing system is demonstrated by modeling the rotor and ball bearing separately. 

The rotor shaft is modeled through finite element technique and ball bearing is modeled by 

considering 2-degree of freedom bearing model. The bearing is attached to rotor by the means of 

restoring force only, which is generated between balls and races, as discussed in section 3.2.3. A 

typical finite element model is shown in Fig. 3.10. 

 

Fig. 3.10: Finite Element Model of Rotor 
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3.3.1 Rotor Shaft Model 

In the finite element method applied to rotor, the rotor is discretized into six elements, as 

described in section 3.1.1. The elemental equation of the rotor derived earlier is reproduced here 

as:   

 (,  
     

 -)* ̈ +    , - *  ̇+  , - *  +  *  
 + (3.49) 

Each element has its own mass matrix, gyroscopic matrix, stiffness matrix and generalized force 

vector. These matrices are assembled node wise to form corresponding global matrices of 

system. 

3.3.2 Rigid Disk Model 

Equation derived for the rigid disk in section 3.2.1 is reproduced here as:  

 ([  
     

 ])*  ̈+      [ 
 ]* ̇ +  {   

 } (3.50) 

The mass matrix, gyroscopic matrix and the force vector of the rigid disk are added to the global 

system matrices by combining the disk matrices to the corresponding global matrices at the disk 

node position (Node 4). 

3.3.3 Ball Bearing Model 

The Bearing produces restoring force by the elastic deformation at the contact point of balls and 

races. These restoring force components derived in section 3.2.3 are reproduced here as: 

    ∑    (                                     )   

  

   

       

    ∑    (                                     )   

  

   

       

The restoring force generated at each ball-race contact of the bearing got exerted to the rotor in 

opposite direction of deformation took place at that ball location. All these restoring force 

components are summed algebraically and are added to the global force vector of the system at 

the corresponding node location of bearing. 
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3.3.4 Globalized Equation of Motion 

The globalized equation of motion including the matrices corresponding to rotor, disk and 

bearing are: 

 (,      -)* ̈+     , -* ̇+  , -* +  * + (3.51) 

* + is the displacement vector of the system *                            + 

Global Force vector * + includes Gravity load of shaft and disk, Unbalance time varying force 

from disk eccentric mass, and Nonlinear Bearing Force (Restoring Force): 

 * +   {  }   *   +   *  + (3.52) 

3.4 Numerical Integration 

The Governing differential equation 3.51 is solved by time integration technique Newmark β 

with Newton Raphson iteration method [4], [5]. For such systems, several solutions exist for the 

same rotor speed, therefore with this method it is strenuous to ascertain as to which solution 

system would reach at a particular rotational speed. The benefit of using Newmark β is, this 

method calculates steady state response without bypassing transient response. 

 

 Newmark β with Newton Raphson: 

Governing Differential equation derived in section 3.3: 

(,      -)* ̈+     , -* ̇+  , -* +  * + 

At time ti,   

 (,      -)* ̈+     , -* ̇+  , -* +  * +  (3.53) 

At time ti+1,   

 (,      -)* ̈+       , -* ̇+    , -* +    * +    (3.54) 

 

According to Newmark β method 

 * ̇+     * ̇+  ,(   )  - * ̈+  (   )* ̈+    (3.55) 
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* +     * +   * ̇+     [(

 

 
  ) (  )  ] * ̈+   ( (  )  ) * ̈+    (3.56) 

where          are Newmark Constant 

For Average Acceleration:                
 

 
           

 

 
 

For Linear Acceleration:                   
 

 
           

 

 
 

In the formulation, Average Acceleration is chosen to keep the algorithm unconditionally stable. 

Let:     
 

   
;           

 

 
;             .  

 

  
/; 

   
 

 (  ) 
;       

 

   
;      

 

  
; 

(3.57) 

Using the equations 3.53 to 3.57 

 * ̇+     * ̇+    * +       * +    * ̇+    * ̈+  (3.58) 

 * ̈+     * ̈+    * +       * +    * ̇+    * ̈+  (3.59) 

 

Putting equation 3.58 and 3.59 to equation 3.54  

 (,      -) (* ̈+    * +      * +    * ̇+    * ̈+ )   

(  , -)( * ̇+    * +      * +    * ̇+    * ̈+ ) + , -* +     * +    
(3.60) 

 

Rearranging the terms of equation 3.60  

 (   (,      -)       , -   , -)* +      * +    ,(,      -) (* ̈+  

   * +    * ̇+    * ̈+ )-   [(   , -)( * ̇+     * +    * ̇+    * ̈+ )] 
(3.61) 

 

Let: [ ̂]     (,      -)        , -   , -; (3.62) 

 [ ̂]
   

 ,(,      -)(* ̈+    * +    * ̇+    * ̈+ )-   [(  , -)( * ̇+  

   * +    * ̇+    * ̈+ )]; 
(3.63) 
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 [ ̂]* +     * +     [ ̂]
   

  (3.64) 

Using equation 3.64, first predicted displacement vector is calculated. This value would have 

high errors, so the Newton Raphson iteration is used to iterate the displacement vector to get its 

precise value.  

In equation 3.64, [ ̂]
   

 is in the terms of i
th

 time displacement, velocity and acceleration vectors 

as shown in equation 3.63. So now, after calculating the displacement vector for time i+1
th
 using 

equation 3.64, the available displacement, velocity and acceleration vectors for time i+1
th

, are 

used to calculate  [ ̂]
   

 again as: 

 [ ̂]
   

 = (,      -)* ̈+       , -* ̇+    , -* +    (3.65) 

Equation 3.64 is evaluated as 

  (  )   * +     [ ̂]
   

 (3.66) 

Such that at displacement vector    the equation approaches to zero. 

By applying Taylor series expansion to equation 3.66 

  
 (  )  (* +     [ ̂]

   
)    (

  (  )

   
)

   

(       ) (3.67) 

 (  )    , Hence 
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  (  )
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(       )   (* +     [ ̂]
   

)     (3.68) 

     (       ) 
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  (  )

   
 )

   

   (
 (* +     [ ̂]

   
)

   
)

   

  

(3.69) 
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  (  )
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 , -  (
 (* +)   
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 (3.70) 
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The force vector * +    includes unbalance time varying force, constant gravity load and 

nonlinear bearing force which are dependent on time and on displacement vector as well. 

Therefore, the derivative of * +    with respect of    displacement vector will give Bearing 

Stiffness matrix only. 

 
    

(* +     [ ̂]
   

)   

 (
  (  )

    )
   ⁄  

(3.71) 

The iterations are performed by repeating equation 3.71, by replacing n-1  n and so on, to get 

change in displacement vector    equals to zero. These iterations are Newton Raphson 

iterations. In these iterations, initial value of displacement is the calculated by Newmark β 

method from equation 3.64. The above steps from equation 3.58 to 3.71 are repeated for all 

successive time steps. 

In the numerical analysis, the initial conditions and size of time step are important factors  to get 

a continuous and computationally economic solution. Basically in the nonlinear system, different 

initial condition means a totally different solution. Larger time step makes computation faster, 

while smaller time step gives solution more accurate. So, an optimized initial condition and time 

steps should be chosen to get satisfactory and acceptable results [11]. For the analysis considered 

here, the time step taken is 1/300
th
 part of the time period corresponding to varying compliance 

frequency of the balls bearing [9] and the initial value of displacement vector and velocity vector 

is taken as zero. 

 
   

 

   
(   ) 

* +        * ̇+      

(3.72) 

 

3.5 Specifications of the Model 

 The rotor’s shaft is considered flexible and the bearing is single row deep groove ball bearing; 

6306/JIS, to perform parametric studies [9]. Material of whole system is considered as steel. 

Specifications of shaft and disk, and bearing are given in Table 3.2, Table 3.3 respectively. 
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Table 3.2: Specifications and parameters of shaft and disk [9] 

Parameter Value 

Radius of Shaft (rs) 7.5 (mm) 

Length of Shaft (ls) 400 (mm) 

Young’s Modulus of steel (E) 2.08 × 10
11

 (N/m
2
) 

Density of steel ( ) 7.8 × 10
3
 (kg/m

3
) 

Mass of shaft per unit length (µ) 1.3776 (kg/m) 

Mass of Disk (md) 15.9586 (kg) 

Polar Moment of Inertia of Disk (  
 ) 1.28 × 10

-2
 (kgm

2
)

 
 

Diametric Moment of Inertia of Disk  (  
 ) 0.64 × 10

-2
 (kgm

2
) 

 

Table 3.3: Specification of Ball Bearing 6306/JIS [9] 

Parameter Value 

Number of Balls (Nb) 8 

Inner Race Radius  (   ) 20.0468 (mm) 

Outer Race Radius (    ) 31.953 (mm) 

Radial Clearance 20 (µm) 

Effective Stiffness (     ) 3.529 × 10
9
 (N/m

3/2
) 

Surface Waviness Maximum Amplitude of inner race (   ) 2 (µm) 

Surface Waviness Maximum Amplitude of outer race (   ) 2 (µm) 

 

The Waviness order of the surface waviness of both inner race and outer race are varied by 5, 8, 

13, and 18 to perform parametric study and to predict the dynamic behavior of rotor system 

proposed here, by changing waviness orders 
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Fig. 3.11: Cut-Section of ball-bearing 

 

 

Fig. 3.12: Cut-Section of rotor-bearing system 
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4 Results and Discussion 

The system is highly nonlinear due to the presence of Hertzian contact force in ball bearing and 

time varying unbalance force of disk, as a result of which, system shows complex dynamic 

behavior. In order to study nonlinear dynamic behavior of the system, the displacement plots, 

dynamic orbits and frequency spectra of the system are plotted in MATLAB. The plots are made 

for rotor node at disc location (node 4) and for rotor node at bearing 1 location (node 1). Both 

bearings are considered to be identical, so that, the analyses is performed on the bearing 1 only 

which is located at node 1, as shown in Fig. 3.10. The displacement plots and frequency spectra 

are plotted along with and without surface waviness on bearing’s races. Through frequency 

spectra, the impact of surface waviness is studied on the dynamic response of the system. The 

waviness order of the surface waviness is varied by 5, 8, 13 and 16 of both inner race and outer 

race of the bearing and the corresponding displacement plots and frequency spectra are 

developed. The obtained frequency spectra having the excited frequencies are validated by 

Yhland [24].  

Rotational speed of rotor is taken as 191 rpm. At this speed, the rotational frequency of inner 

race or shaft, cage rotational frequency and varying compliance frequency are computed as 

3.1817 Hz, 1.2266 Hz and 9.8129 Hz respectively.    

4.1 Bearings without Waviness 

The displacement plots and dynamic orbits for the bearing without waviness are shown in Fig. 

4.1 and Fig. 4.2. The displacement plots are plotted for disk node horizontal and vertical 

displacement, and bearing node horizontal and vertical displacement. The frequency spectra are 

formed by transforming the time-domain signal of displacement plots into frequency domains 

though fast fourier transformation in MATLAB. In this way, the frequency spectra are created 

for disk node horizontal and vertical displacement, and bearing node horizontal and vertical 

displacement. These frequency Spectra without considering surface waviness on the races are 

shown in Fig. 4.3 and Fig. 4.4. The elastic deformation between races will be affected by internal 

clearance only. In these two figures, the frequencies are present at rotational frequency, varying 

compliance frequency and at higher harmonics of varying compliance. The frequency spectrum  
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Fig. 4.1: Displacement plots of rotor with bearings without surface waviness on the races 

 

 

Fig. 4.2: Dynamic orbits of rotor with bearings without surface waviness on the races 

 

shows peaks at varying compliance and its higher harmonics because of nonlinear Hertzian 

contact force of ball bearing. The varying compliance frequency depends on number of balls in 
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the bearing and cage rotational frequency. Frequency spectrum shows peak at rotational 

frequency also, due to the presence rotating imbalance force of the disk. The Fig. 4.3 shows 

frequency spectra in both horizontal and vertical direction of the rotor node at disk location, in 

which the rotational frequency    dominates by attaining highest peak in FFT plot. It is because; 

the rotating imbalance force dominates the bearing Hertzian contact force at disk node. The 

amplitude in FFT plots of horizontal displacement and vertical displacement is coming same at 

 

 

Fig. 4.3: Frequency Spectra of rotor center at disk (a) Horizontal Direction (b) Vertical Direction 
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rotational frequency   . Other amplitude appears at variable compliance frequencies     and its 

higher harmonics. The amplitudes decrease at higher harmonics of varying compliance swiftly in 

both FFT curves. The highest harmonics of varying compliance appears as       of 0.04 µm 

amplitude in frequency spectra of horizontal displacement and of 0.01 µm amplitude in the 

frequency spectra of vertical displacement respectively. The amplitudes at varying compliance 

frequency and its harmonics in FFT curve of horizontal displacement is higher than the  

 

 

Fig. 4.4: Frequency Spectra of rotor center at bearings (a) Horizontal direction  

(b) Vertical direction 
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amplitudes at varying compliance and its harmonics appearing in FFT curve of vertical 

displacement. Fig. 4.4 shows FFT plot of horizontal displacement and vertical displacement of 

rotor node at bearing location. The amplitude at varying compliance frequency dominates in both 

FFT plots. While, from Fig. 4.3, at disk node, rotational frequency dominates. This shows that, at 

bearing location Hertzian Contact force dominates the rotational imbalance force. The other 

frequencies in these FFT plots of Fig. 4.3 and 4.4 are appearing at higher harmonics of varying 

compliance, with decreasing amplitude as the harmonics increases.  

4.2 Inner Race Waviness effect 

The inner race waviness is considered at the outer surface of the inner race, as a sinusoidal wave 

of maximum amplitude of 2 µm. The waviness order is varied by 5, 8, 13 and 16 to predict its 

effect on dynamic response of the system. The displacement plots and dynamic orbits are plotted 

for disk node and for the bearing node at different waviness orders. Using these displacement 

plots obtained for different waviness orders, the frequency spectra are formed. The exciting 

frequencies appeared in frequency spectra at corresponding waviness orders are validated 

through Yhland [24]. The relation between inner race waviness order and corresponding exciting 

vibration frequency are given in Table 4.1. 

From Table 4.1, for waviness order 5, the exciting frequencies calculated are 6.09 Hz and 15.908 

Hz. The frequency 6.09 Hz is calculated using formula ‘   (     )      ’, by keeping value 

of ‘ ’ as 1 and ‘ ’ as 5. The frequency 15.908 is calculated using formula ‘   ’, by keeping 

value of ‘ ’ as 5. Similarly, the excited frequencies for waviness order 8 is calculated as 5.82 Hz, 

15.64 Hz and 25.45 Hz by using the relations given in Table 4.1. In the same way, frequencies 

are calculated for remaining inner race waviness order 13 and 16. These calculated frequencies 

are given in Table 4.2. 

Table 4.1: Vibration frequencies excited by inner race waviness [24] 

Waviness Order      Vibration Frequency (Hz) 

      

       (     ) 

          (     )        
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Table 4.2: Excited vibration frequencies at given inner race waviness 

Waviness Order      Vibration frequency (Hz) 

5   (     )      = 6.09 5   = 15.908 

8    (     )             (     ) = 15.64 8  = 25.45 

13    (     )       21.73   (     )     = 31.54 13  =41.32 

16    (     )          (     )            16  =50.9 

 

The frequency spectra considering inner race waviness as shown in this section shows good 

agreement to the frequencies calculated in Table 4.2. From Fig. 4.3 and Fig 4.4, it is observed 

that, these frequencies given by Yhland are absent when ball bearing is considering without 

surface waviness. 

Fig. 4.5 and Fig. 4.6 show the displacement plots and dynamic orbits of the system with inner 

race surface waviness of order 5. Using displacement plots, the frequency spectra are formed as 

shown in Fig. 4.7 and Fig. 4.8 of disk node displacement and bearing displacement respectively. 

It is observed that, the spectrum becomes denser comparing to FFT plots from Fig. 4.3 and 

 

Fig. 4.5: Displacement plots of rotor with bearings having inner race surface waviness of order 5 
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Fig. 4.6: Dynamic orbits of rotor with bearing having inner race surface waviness of order 5  

 

Fig. 4.4 without considering surface waviness. In these plots shown in Fig. 4.7 and Fig. 4.8, the 

amplitudes appears at rotational frequency, at varying compliance with its higher harmonics and 

at the sum of integer multiplies of rotational frequency, variable compliance and cage frequency 

and including the excited frequencies stated by Yhland [24]. In Fig. 4.7 dominating frequency is 

  (     )     , which is predicted by Yhland. Amplitude at    and     are nearly same, this 

indicates that, the role of Hertzian force and rotating imbalance force are same in this case. 

Whereas from Fig. 4.7(b), the dominating frequency is rotational frequency, it states that in 

vertical direction at disk node the rotational imbalance force dominates the Bearing Hertzian 

contact force. At the bearing center, the dominating frequency appears at    (     )      in 

both directions, as shown in Fig. 4.8. The amplitudes in FFT plots of horizontal direction are 

higher than the vertical direction at all rotor node location as shows in Fig 4.7 and Fig. 4.8.  

The displacement plots and dynamic orbits for disk node and bearing node with considering 

inner race waviness order as 8 are shown in Fig 4.9 and Fig 4.10. The Fig. 4.11 shows the FFT 

plots of disk node displacement. In the FFT plot of horizontal displacement, the rotational 
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frequency dominates the frequency spectrum. Although, in vertical displacement’s FFT plot, the 

dominating frequency is   (     ). This frequency is also mentioned by Yhland for ‘8’ 

waviness order as given in Table 4.2. The horizontal displacement’s FFT curve also contains 

same frequency, but of smaller amplitude. Both FFT plot contain frequencies at varying 

compliance and sum of integer multiple of varying compliance frequency, rotational imbalance  

 

 

Fig. 4.7: Frequency Spectra of rotor center at disk with inner race waviness of order 5 

(a) Horizontal Direction (b) Vertical Direction 
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frequency and cage rotational frequency. Amplitudes at these frequencies are higher in 

horizontal displacement’s FFT curve then vertical displacement’s FFT plot. In the FFT plot of 

bearing node horizontal displacement shown in Fig. 4.12, the varying compliance frequency 

dominates. This is because of higher Hertzian contact force than unbalance force at bearing 

location. Similar to the FFT plot of disk node location, the frequency    (     ) is dominating 

in vertical displacement at bearing node location. Other amplitudes are coming at varying 

 

 

Fig. 4.8: Frequency Spectra of rotor center at bearing with inner race waviness of order 5 

 (a) Horizontal Direction (b) Vertical Direction 
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Fig. 4.9: Displacement plots of rotor with bearing having inner race surface waviness of order 8. 

 

 

Fig. 4.10: Dynamic orbits of rotor with bearing having inner race surface waviness of order 8. 
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compliance and sum of the integer multiple of varying compliance frequency, rotational 

imbalance frequency and cage rotational frequency. The rotational imbalance force has very low 

impact in the vibrations at bearing node for waviness order as 8. This behavior is shown in Fig. 

4.12, which is having very low amplitudes at rotational frequency ‘  ’. The displacement plots, 

dynamic orbits and frequency spectra of the system with inner race surface waviness of  

 

 

Fig. 4.11: Frequency Spectra of rotor center at disk with inner race waviness of order 8 

(a) Horizontal Direction (b) Vertical Direction 
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order 13 are shown in Fig. 4.13 to Fig. 4.16 respectively. In all 4 FFT plots, the dominating 

frequency observed ‘   (     )     ’, which is stated by Yhland. In both FFT figures, the 

frequency   (     )      is also appearing, which is also predicted by Yhland for the same 

Waviness order 13. In Fig. 4.15(a), the rotational and varying compliance frequencies are having 

nearly same magnitude. But in Fig. 4.15(b), Hertzian force is having very low impact on 

vibration, as only first harmonic is appearing with lower amplitude than rotational frequency. 

 

 

Fig. 4.12: Frequency Spectra of rotor center at bearing with inner race waviness of order 8  

(a) Horizontal Direction (b) Vertical Direction 
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Fig. 4.13: Displacement plots of rotor with bearings having inner race waviness of order 13 

 

 

Fig. 4.14: Dynamic orbits of rotor with bearings having inner race waviness of order 13 
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As previously discussed, the Hertzian force dominates the rotational imbalance force at the 

bearing location; hence the varying compliance frequency dominates the rotational frequency in 

the FFT plots as shown in Fig. 4.16. In vertical displacement’s FFT plot, the impact of rotational 

is very low, that can be seen from Fig. 4.16(b), as the amplitude at    is nearly negligible 

compare to the other frequencies. In Fig. 4.15 and 4.16, the other amplitudes are coming at  

 

 

Fig. 4.15: Frequency Spectra of rotor center at disk with inner race waviness of order 13 
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varying compliance and sum of the integer multiple of varying compliance frequency, rotational 

imbalance frequency and cage rotational frequency. The displacement plots, dynamic orbits and 

frequency spectra of the system with inner race waviness of order 16 are shown in Fig. 4.17 to 

Fig. 4.18. In horizontal FFT plot rotational frequency dominates as shown in Fig. 4.19. 

 

 

Fig. 4.16: Frequency Spectra of rotor center at bearing with inner race waviness of order 13 

(a) Horizontal Direction (b) Vertical Direction 
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Fig. 4.17: Displacement plots of rotor with bearings having inner race surface waviness of order 16 

 

 

Fig. 4.18: Dynamic orbits of rotor with bearings having inner race surface waviness of order 16 
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In vertical FFT plot, the frequency    (     ) dominates, which is predicted by Yhland for 16 

waviness order as given in Table 4.2. This frequency also appears in Horizontal FFT plot, but of 

very low amplitude. The FFT plot of bearing location’s displacement, shown in Fig. 4.20, gives 

similar trend as of frequency    (     ), that appears at disk node FFT plots. Other frequency 

appears as varying compliance frequency and at its harmonics. The frequency spectra of  

 

 

Fig. 4.19: Frequency Spectra of rotor center at disk with inner race waviness of order 16  

(a) Horizontal Direction (b) Vertical Direction 
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Horizontal displacement of both bearing and disk location are denser than vertical 

displacement’s FFT plot. As discussed earlier, the Hertzian contact force dominates the 

unbalance force at bearing location. Because of that, the variable compliance frequency 

dominates the rotational frequency at bearing location FFT plots and at disk location FFT plots, 

rotational frequency dominates the varying compliance frequency. 

 

 

Fig. 4.20: Frequency Spectra of rotor center at bearing with inner race waviness of order 16  

(a) Horizontal Direction (b) Vertical Direction 
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In the vertical FFT plots of both disc and bearing node the highest frequency of vibration appears 

is    (     ).   

4.3 Outer Race Waviness effect 

The outer race waviness is the sinusoidal wave of maximum amplitude of 2 µm, considered at 

the inner surface of outer race of the ball bearing as shown in Fig. 3.5. Here also, the waviness 

order is varied by 5, 8, 13 and 16. The displacement plots, dynamic responses are plotted for disk 

node horizontal and vertical displacement, and for bearing node horizontal and vertical 

displacements. With the help of displacement plots, the frequency spectra are created for the 

system. The frequency spectra with outer race waviness are validated through the same author’s 

work Yhland [24], which was used to validate the frequency spectra with inner race waviness in 

section 4.1. 

Table 4.3 shows the relations between waviness order of outer race and corresponding exciting 

vibration frequencies, given by Yhland. 

Table 4.3: Vibration frequencies excited by outer race waviness [24] 

 Waviness Order      Vibration Frequency (Hz) 

          

              

 

With waviness order 5, which is less than number of balls in bearing, the corresponding vibration 

frequency comes as       which is equal to 9.812 Hz. This is also a varying compliance 

frequency. Therefore, for outer race waviness of order less than number of balls of bearing, the 

excited vibration frequency corresponding to that waviness order would be varying compliance 

frequency. For waviness order 8, which is equal to number of balls, the vibration frequency 

corresponds to     . Considering waviness order as 13, the vibration frequency obtained as 

      which is equal to 19.625 Hz. Similarly for waviness order 16, the vibration frequency 

comes as      . All these frequencies related to outer race waviness order are given in Table 4.4   
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Table 4.4: Excited vibration frequencies at given outer race waviness 

 Waviness Order     Vibration Frequency (Hz) 

5 9.812 

8 9.812 

13 19.625 

16 19.625 

 

The frequency spectra shown in this section 4.3 are with different waviness order of outer race 

having good agreement to the frequencies given by Yhland, as shown in Table 4.4. From Fig. 4.3 

and Fig. 4.4, it is observed that, with considering outer race waviness, the amplitudes at these 

mentioned frequencies in FFT plots are higher comparing to FFT plots with ball bearing without 

outer race surface waviness.  

The displacement plots and dynamic orbits for outer race waviness of order 5 are shown in Fig. 

4.21 and Fig. 4.22. Fig. 4.23 and Fig. 4.24 shows the FFT plot of disk node and bearing node 

respectively. In the FFT plot of disk horizontal displacement, the varying compliance frequency 

dominates. Yhland also predicted this frequency to appear in the FFT plot with waviness order 5. 

The varying compliance frequency appears in other plots too for waviness order 5 and dominates 

the frequency spectra, except the FFT plot at disk node in vertical direction, as shown in Fig.4.23 

and 4.24. In the frequency spectra of vertical direction, rotational frequency dominates because 

of higher rotating imbalance force impact to the rotor than Hertzian contact force. In all other 

FFT plots with waviness order ‘5’, the Hertzian contact force dominates. The frequency spectra 

also show the presence of frequencies of higher harmonics of varying compliance frequency.  

For outer race waviness order 8, the displacement plots, dynamic orbits and frequency spectra at 

disk node and bearing node are shown in Fig. 4.25 to Fig. 4.26. The dominant frequency appears 

as    in the horizontal FFT plot at disk node as shown in Fig 4.27. In other Frequency spectra at 

disk node and at bearing node, the dominating frequency appears as varying compliance 

frequency    , as shown in Fig. 4.27 and Fig. 4.28. Yhland has also stated the presence of this  
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Fig. 4.21: Displacement plots of rotor with bearing having outer race waviness of order 5 

 

 

Fig. 4.22: Dynamic orbits of rotor with bearing having outer race waviness of order 5 
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Fig. 4.23: Frequency Spectra of rotor center at disk with outer race waviness of order 5  

(a) Horizontal Direction (b) Vertical Direction 

 

frequency with outer race waviness of order 8, as given in Table 4.4. The amplitude at rotational 

frequency in horizontal FFT plot and in vertical FFT plot at disk node is coming nearly same, but 

amplitude at varying compliance frequency in vertical FFT plot increase than the horizontal FFT 

plot. It is because of the higher Hertzian contact force in vertical direction than horizontal 

direction at disk node location. At the bearing node, the dominating force is the Hertzian contact  
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Fig. 4.24: Frequency Spectra of rotor center at bearing with outer race waviness of order 5 

 (a) Horizontal Direction (b) Vertical Direction 

 

force. This signifies the dominancy of varying compliance frequency at bearing location. In the 

vertical FFT of bearing location the Hertzian contact force rises significantly and suppresses the 

effect of rotational imbalance force. Because of that, the rotational frequency component in 

Vertical FFT plot has negligible amplitude as shown in Fig. 4.28. Other frequencies in the FFT 

plots with outer race waviness of order 8 are the higher harmonics of varying compliance  
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Fig. 4.25: Displacement plots of rotor with bearing having outer race waviness of order 8 

 

 

Fig. 4.26: Dynamic orbits of rotor with bearing having outer race waviness of order 8 
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Fig. 4.27: Frequency Spectra of rotor center at disk with outer race waviness of order 8  

(a) Horizontal Direction (b) Vertical Direction 

 

frequencies. The Fig. 4.29 to Fig. 4.32 shows displacements plots, dynamic orbits and frequency 

spectra for outer race surface waviness of order 13 at disk node location and at bearing node 

location. The dominating frequencies in these FFT plots is second harmonics of varying 

compliance frequency     . The Yhland also mentioned the presence of this frequency with outer 

race waviness of order 13. In the FFT plot of disk node, the amplitude at     are coming same in  
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Fig. 4.28: Frequency Spectra of rotor center at bearing with outer race waviness of order 8 

 (a) Horizontal Direction (b) Vertical Direction 

 

 Horizontal and in vertical direction both as shown in Fig. 4.31. This is because; the unbalance 

force affects the rotor by the same extent in both horizontal and vertical direction. In the 

Frequency plot of the bearing location in vertical direction as shown in Fig. 4.32, the at rotational 

frequency is coming negligible with respect to the amplitude at varying compliance frequency  
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Fig. 4.29: Displacement plots of rotor with bearing having outer race waviness of order 13 

 

 

Fig. 4.30: Dynamic orbits of rotor with bearing having outer race waviness of order 13 
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Fig. 4.31: Frequency Spectra at rotor center at disk with outer race waviness of order 13  

(a) Horizontal Direction (b) Vertical Direction 

 

and at its higher harmonics. Other frequencies appear in frequency spectra are the higher 

harmonics of varying compliance. In the horizontal FFT plot, these higher harmonics showing 

large in number, where as in vertical FFT plots only few harmonics of varying compliance is 

coming.  

The displacement plots, dynamic orbits and frequency spectra with outer race surface waviness 

of order 16 are shown in Fig. 4.33 to 4.36. The Fig. 4.35 and Fig. 4.36 shows the vibration 
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Fig. 4.32: Frequency Spectra of rotor center at bearing location with outer race waviness of  

order 13 (a) Horizontal Direction (b) Vertical Direction 

 

spectra with waviness order 16, which is double of the total number of balls in the bearing. 

Yhland predicted the presence of      in the frequency spectra. This frequency dominates the 

frequency spectra in vertical direction of both disk node and bearing node location. In the FFT 

plot of horizontal direction at the disk node, the rotational frequency dominates as shown in Fig. 

4.35. At bearing center’s horizontal direction the varying compliance frequency dominates, 

because of higher impact of Hertzian contact force than the rotational imbalance force. 
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Fig. 4.33: Displacement plots of rotor with bearing having outer race waviness of order 16 

 

 

Fig. 4.34: Dynamic orbits of rotor with bearing having outer race waviness of order 16 
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Fig. 4.35: Frequency Spectra of rotor center at disk with outer race waviness of order 16  

(a) Horizontal Direction (b) Vertical Direction 

 

The highest peak found in the entire frequency spectrum with waviness order of outer race as 16, 

is in the FFT plot of vertical disk node displacement, which is equal to 2.9 µm at frequency      

as shown in Fig. 4.35. The other frequencies appear in the frequency spectra are at the higher 

harmonics of varying compliance. The frequency spectra at bearing node for horizontal  
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Fig. 4.36: Frequency Spectra of rotor center at bearing with outer race waviness of order 16  

(a) Horizontal Displacement (b) Vertical Displacement 

 

displacement shows large number of higher harmonics of varying compliance, while in the 

vertical FFT plot, very little number of higher harmonics comes. Highest harmonic appears in 

this FFT plot is      as shown in Fig. 4.37. The rotational imbalance force has very less 

influence at bearing node vertical direction, because of which, the amplitude at rotational 

frequency is negligibly small. 
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5 Conclusions and Future Works 

The Dynamic Model of an Unbalance Flexible Rotor supported on deep groove ball bearing is 

developed while including surface waviness on the races of ball bearing in the model. Using this 

dynamic model, a detailed study of frequency spectra is done, to investigate the influence of 

surface waviness of both inner race and outer race of ball bearing on dynamic response of the 

system. The major conclusions of results are as follows: 

5.1 Mathematical Modeling    

The finite element model is prepared of a flexible rotor with rigid disk mounted at the mid span 

of the rotor shaft, by using Nelson Model [17]. Ball bearing model is developed using Gupta’s 

bearing model [9] and the surface waviness in included in the bearing by using the Waviness 

model given by Harsha [12]. Derived governing differential equation of complete system 

(equation 3.52) is solved using time integration technique Newmark β with Newton Raphson 

iteration method in MATLAB by referring Bathe [4] and Chopra [5]. The surface waviness is 

demonstrated by number of waves and amplitude. In the present model, the number of waves of 

the surface waviness of both inner race and outer race are varied separately and independently, 

which modifies the Hertzian Contact force of the Ball bearing. 

5.2 Frequency Spectra of the System Vibration  

The frequency spectra are obtained by using Fast Fourier Transformation (FFT) of rotor 

displacement plots, by transforming it from time domain to frequency domain in MATLAB. The 

frequency spectrum is derived for both horizontal and vertical displacement at bearing node 

location and at disk node location. 

The frequency spectra are obtained first by considering ball bearing without any surface 

waviness on its races. Then, the frequency spectra are developed by imposing inner race 

waviness and outer race waviness separately on the ball bearing’s inner race and outer race 

respectively. Yhland [24] proposed the presence of some specific exciting vibration frequencies 

in the FFT plots with respect to the waviness order of inner race and outer race (Table 4.1 and 

4.3). The rotor-bearing model developed here is showing a good agreement with these 
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frequencies, given by Yhland in [24]. The surface waviness influenced the displacement of rotor, 

because of this; the peak amplitude in the frequency spectra is higher when surface waviness is 

considered on the races than the peak amplitude in frequency spectra without considering surface 

waviness. The impact of inner race waviness and outer race waviness to the Rotor’s vibration is 

entirely different. These impacts are concluded below: 

5.2.1 Bearings without Waviness   

In the frequency spectra of disk node location, without including bearing’s surface waviness, the 

peak amplitude is obtained at rotational frequency; and at the bearing node, the peak amplitude 

appears at varying compliance frequency. This shows that, the Hertzian Contact force of the 

bearing is comparably larger than Rotational Imbalance Force at bearing location than disk 

location. Frequencies obtained in the frequency spectra other than rotational frequency and 

varying compliance frequency are the higher harmonics of varying compliance. The amplitude in 

these FFT plots decreases as harmonics of varying compliance increases. 

5.2.2 Inner Race Waviness effect 

To study the impact of inner race waviness on frequency spectra of the system, the waviness 

order is varied by 5, 8, 13 and 16. On these waviness orders, the frequency proposed by the 

Yhland is also inspected, and found the presence of these frequencies in the frequency spectra 

which provide the validation of developed Rotor bearing model. 

 For Inner race waviness order 5, in the response: 

o The peak amplitude in FFT plot of disk center horizontal displacement and 

bearing center horizontal and vertical displacement both appears at    (     )        

o In FFT plot of disk center vertical displacement, the peak amplitude appears at 

rotational frequency   . 

o Other amplitude appears at varying compliance frequency and its higher 

harmonics, and sum of integer multiple of varying compliance and rotational 

frequency. 

 

 For Inner race waviness order 8, in the response: 
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o The peak amplitude in FFT plot of disk node horizontal displacement appears at 

rotational frequency    , and in the FFT plot bearing node vertical displacement, the 

peak appears at varying compliance frequency    . 

o The peak amplitude at disk node vertical displacement FFT and bearing center 

horizontal displacement FFT appears at   (     ). 

 For Inner race waviness of order 13, in the response : 

o The peak amplitude appears at    (     )      in all frequency spectra. 

o Other amplitude appears at varying compliance and its higher harmonics, rotational 

frequency and sum of integer multiple of varying compliance and rotational 

frequency. 

 For Inner race waviness of order 16. in the response: 

o The peak amplitude in FFT plot of disk center horizontal displacement appears at 

rotational frequency    , and in the FFT plot bearing center vertical displacement, the 

peak appears at varying compliance frequency    . 

o The peak amplitude for disk center vertical displacement FFT and bearing center 

horizontal displacement FFT appears at    (     ). 

 

5.2.3 Outer Race Waviness effect 

The impact of outer race waviness on the vibration of system is studied by varying the waviness 

order of outer race waviness by 5, 8, 13 and 16, as a result, the frequency spectra changes. With 

respect to given surface waviness orders, Yhland predicted some specified exciting vibration 

frequencies to appear in frequency plots. These frequencies are the varying compliance 

frequency and their higher harmonics. Even without considering surface waviness, the varying 

compliance frequency and its higher harmonics exist in the frequency spectrum. Although, by 

including outer race surface waviness, the amplitude in the FFT plots at these frequencies 

increases (sometimes reaches at peak).   

 For Outer Race Waviness of order 5, in the response: 

o The peak amplitude in FFT plot of disk node horizontal displacement and bearing 

node horizontal and vertical displacement both appears at      . 
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o In FFT plot of disk node vertical displacement, the peak amplitude appears at 

rotational frequency   . 

o Other amplitude appears at varying compliance frequency and its higher 

harmonics. 

 For Outer Race Waviness of order 8, in the response: 

o The peak amplitude in FFT plot of disk node horizontal displacement appears at 

rotational frequency   . 

o The peak amplitude for disk node vertical displacement and bearing node horizontal 

as well as vertical displacement’s FFT plot appears at     . 

 For Outer Race Waviness of order 13, in the response : 

o The peak amplitude appears at      in all frequency spectra. 

o Other amplitude appears at varying compliance and its higher harmonics. 

 For Outer Race Waviness of order 16. in the response: 

o The peak amplitude in FFT plot of disk node horizontal displacement appears at 

rotational frequency    , and in the FFT plot for vertical displacements of both disk 

node and bearing node, the peak appears at     . 

o The peak amplitude for bearing node horizontal displacement’s FFT plot appears at 

   . 

 

From above discussion, it is concluded that, with considering inner race waviness of ball bearing, 

the frequency spectra becomes denser, as comparing with frequency spectra of the case with 

considering outer race waviness and even without considering any waviness on the races of 

bearing too. As a result, irregular orbits are formed in dynamic orbits plots with inner race 

waviness. The frequency spectra of system with inner race waviness of bearing show the 

presence frequencies stated by Yhland. In addition, the varying compliance frequency and its 

higher harmonics, rotational frequency, and sum of the integer multiple of varying compliance, 

rotational frequencies and cage rotational frequency also appear. Whereas, for the system with 

considering only outer race waviness of bearing, the frequency spectra shows Yhland proposed 

frequencies, with the rotational frequency and varying compliance frequency and its higher 

harmonics. These frequencies also exist in the frequency spectra when ball bearing model is 

taken without having any surface waviness, but they come at different amplitudes. 
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5.3 Future Works 

The following work should be helpful for further understanding of Dynamic Behavior of 

Nonlinear Rotor Bearing system. 

 Consider the Waviness on balls of the bearing too with the Waviness on Races. This 

condition provides the more real time information on the vibration characteristics of 

Rotor-Bearing System. 

 The maximum amplitude of waviness function can be varied. This condition eliminates 

the assumption of taking surface waviness in the form of sinusoidal wave. In other words, 

the waviness can be considered as fourier series. Moreover, the axial waviness can also 

be considered with the radial waviness on balls and races of the bearing  

 The Mass, stiffness and Gyroscopic Matrices of finite element of shaft can include the 

shear deformation effect by considering Timoshenko Beam element. 

 The shaft can also have distributed unbalance mass throughout its length. The distribution 

can be linear or nonlinear, such as the eccentricity of center of mass of any typical 

internal point in shaft is dependent upon the given eccentricity of center of mass of the 

either ends of rotor shaft.  
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Appendix 

A. Matrices 
 

Matrices for finite element of rotor: (as mentioned in section 3.1.1) 
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Matrices for rigid disk (as mentioned in section 3.1.2): 
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