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ABSTRACT

The smart grid is a self-employed future generation electricity grid. As per the conven-
tional power system with thermal generation, it is not able to meet the future growing
energy demand which leads the application of demand response (DR). As smart grid
enablers, demand response programs have been a major attraction for reducing the peak
demand in the electrical power system. The uncertain nature of residential loads makes
it more valuable in the execution of DR. The household user can contribute a significant
potential for reduction in energy demand during peak hours. In this work, the focus is
oriented to execute DR for residential customers. Firstly, the automatic load schedul-
ing with real-time pricing environment for the residential load is proposed. The bi-
directional communication between energy customer and load-serving entity runs with
the help of automatic load control unit (ALCU), which consists of a built-in smart me-
ter. While executing DR with real-time pricing, the price prediction is a requirement to
know future prices. For price forecasting, it needs a call from optimization techniques.
The revolutionary advancement in the automotive field has given electric vehicle (EV)
load as new transportation. Next, the problem of load scheduling is obtained by includ-
ing new EV load with bidirectional communication of power between user and grid. A
concept of neighborhood power-sharing is proposed in the presence of EV. Finally, the
renewable sources are also integrated with the proposed load scheduling in the presence
of EV and battery energy storage. With the inclusion of renewable sources a problem of
carbon mitigation is also proposed. The existing load scheduling can result in forming
new off-peak loads, to avoid the generation of new off-peak load, the load scheduling
incorporating demand fluctuations is developed.

To deal with the competitive environment among users and utility, various decision-
making approaches are combined as a part of this work. A game theoretic based model
by incorporating consumer preference is proposed, this initiates an energy consump-
tion scheduling using correlated equilibrium. The proposed model assures fairness of
Nash Equilibrium among the user, in the long run, to serve as a benchmark for perfor-
mance evaluation. DR problem in centralized framework involves several issues such
as privacy, compatibility, and scalability for the user. Therefore a distributed algorithm
for load scheduling is proposed by using an alternating direction method of multipliers
(ADMM). The proposed ADMM algorithm executed in the parallel form and guaran-
teed the fast convergence for the problem. The motivation behind this work is to develop
a framework that takes advantage of DR as a reliable source in the electricity infrastruc-
ture.
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Chapter 1

Introduction

Today’s electricity grid is designed in such a way that it can improve the operation of
generation, transmission, and distribution of conventional electricity grid with advanced
control systems and devices. However as the new generation of electricity paradigm
evolves with renewable energy sources penetration, it changes the whole game for the
system operators, electricity market players, and the end-customers. The other chal-
lenge is to manage the communication requirements to achieve reliable and automatic
operation of the electricity grid. The next generation grid called a smart grid is equipped
with information and communication technology (ICT) and real-time analysis to en-
hance the flexibility and forecasting to build protection from internal and external haz-
ards [1]. The smart grid can handle the uncertain power transfer, utilizing renewable
sources, evaluating the unpredictable islanding and planning operations in the system.
The smart grid utilizes the information and communication technology (ICT) to au-
tomate the operations on a smart meter as to achieve security, efficiency and reliabil-
ity [2]- [3]. The development of smart grid depends on system operators, utilities, pol-
icy makers, stakeholders, technology providers, researchers, and end-customers. The
implementation of the smart grid is not possible without buy-in or stakeholders involve-
ment. Policy-makers are corporate and state regulators to design policies according to
all parties. The installation and implementation of power grid technologies are managed
by utilities. The technology providers are responsible for the development of smart grid
technologies for grid enhancements. Researchers develop the tools and techniques for
the smart grid. The end-customers participates and gives their input to regulate the smart
grid. For the deployment of the smart grid the demand side management programs are
developed to provide the control on growing power demand.

1
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1.1 Demand Side Management

Demand side management (DSM) is developed to modify the end-customer load de-
mand for reducing the monetary cost for expensive generators and additional power
generation in the long run. DSM programs are commonly referred by utility compa-
nies to handle the demand of customers by utilizing smart meters. DSM programs have
the opportunity to provide the benefits to both utility and the customer which helps the
electricity market to operate efficiently by reducing peak to average ratio of supply and
real-time power transactions [4].

DSM contributes to emission reduction from conventional plants, customer cost reduc-
tions, and generation reliability. These factors affect utility load-curve. The DSM is
implemented via techniques such as peak clipping, valley filling, load shifting, load
building, energy conservation and flexible load [5]. The graphical representation of
these DSM techniques is shown in Fig. 1.1.

• Peak clipping: It refers to the reduction of demand during peak periods. It can
reduce the need for additional generation capacity. The net result is a reduction in
both peak demand and total power consumption. Peak clipping may be achieved
using direct control of customer appliances.

• Valley filling: The load demand during off-peak hours is increased to achieve flat-
ten load profile. The load increment is done by encouraging the user to increase
their energy demands.

• Load shifting: It involves shifting loads from on-peak to off-peak periods. The
net result is a decrease in demand for peak periods, without changing total power
consumption.

• Load building: It is utilized when load demand is increased due to excess energy
production.

• Energy conservation: It refers to reduce the load consumption by consumers.
There is a decrease in both demand and total power consumption. Strategic con-
servation can be achieved by motivating customers to use more energy-efficient
appliances.

Among all the techniques listed above, load shifting is the most intellectual choice be-
cause it shifts the load according to consumer preference ensuring their satisfaction.
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Figure 1.1: DSM techniques

There are two terms which is widely used to maintain the supply-demand ratio i.e. de-
mand side management and demand response programs. The DSM programs are used at
end-user level but their primary goal is energy efficiency. DSM actions provides change
in energy use for given energy service, by reducing long-term energy requirements. On
the other hand Demand response (DR) programs are used for short-term reductions in
the energy demand. DR programs have two main goals i.e. 1) economic benefits for
the utility and end-consumer and 2) customer satisfaction and improved power system
reliability [6].

1.2 Demand Response Programs

The standard definition of demand response is provided by U.S. Department of Energy
Information as, “Changes in electric usage by end-use customers from their normal

consumption patterns in response to changes in the price of electricity over time, or to

incentive payments designed to induce lower electricity use at times of high wholesale

market prices or when system reliability is jeopardized [7].” DR is also defined as the
term used for programs to encourage the end-customers to make short-term reductions
in their power demand in exchange of price information from the electricity grid or
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hourly energy market [8]. The DR actions are only associated with the distribution
or demand-side network of electricity grid infrastructure. Generally, the range of DR
actions lies between 1 to 4 hour of period and includes turning off of certain lighting
banks or shutting down a manufacturer load side.

The DR actions are also beneficial as they offer the customers to shed loads during peak
hours of demand for the whole electric system. The main reason for DR benefits is that
the demand-supply under tight constraints can help in reducing peak hour electricity
prices and total price volatility for all end-customers. Another benefit is by reducing
peaks in system load curve it can reduce the need for installing new expensive gen-
eration, transmission, and distribution equipment to meet the peak demand. The DR
programs are also proven more attractive than energy efficiency programs as it requires
little capital expenses comparatively as they are operating in short cycle. On the other
hand, energy efficiency programs have expensive capital expenditure and a long-term
payback cycle. The risk offered by DR programs are also minimal as when prices are
low, the customer can even get benefit by achieving lesser electricity bill without any
DR opportunity. In this sense, DSM programs are likely proven riskier if the price ex-
pectation does not occur the economic saving get reduced, and payback cycle becomes
lengthy.

1.3 DR Challenges and Opportunities

The DR programs consist two main entities to execute their actions i.e. the end-customer
and utility company or energy provider entity according to the National Institutes of
Standards and Technology [9]. The execution of DR programs have several challenges
and opportunities associated with load handling, variety of customers, price information
handling and communication requirements at the end-customer’s location.

1.3.1 Customer Classification

The interaction between end-customer and utility companies plays an important role for
executing DR programs. The customers consumes energy provided by the electricity
grid and the participation in DR is voluntary or compulsory according to policies offered
by utility companies. According to the U.S. Department of Energy, the energy customer
can be classified on the basis of their energy usage [10] as follows,

• Commercial
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• Industrial

• Residential

• Transportation

The energy consumption by different sectors accounts for total electricity usage in a
nation’s electricity requirement. Each type of end-user is able to reduce their usage
through DR programs. The commercial sector comprises the service and equipment
provider entities, government authorities and private entities. On an average scale, the
commercial sector is responsible for more than one-third of electricity consumption
[11]. The commercial sector loads are mainly due to heating and lighting devices, air-
conditioning and ventilation. The commercial load demand is mostly high due to large
working hours for business operations, but their demand decreases during nights hours
and weekends.

The industrial sector consists the manufacturing, mining, agricultural and construction
industries. They are also equipped with food and equipment processing, producing or
assembling. This sector is occupied less than one-third of electricity consumption. Most
of the demand is due to the manufacturing companies for acquiring various machinery
equipment. Another demand occurs due to electrochemical processes which are used
for energy transformation purpose. In this sector, the demand pattern does not have
much uncertainty; even the demand pattern is similar throughout the year.

The residential sector comprises the single-member family houses and multi-occupancy
homes. This sector claims to occupy with more than one-third of total electricity
consumption. Even this sector occupies maximum consumption among all energy
sectors. Residential houses consume for different critical and non-critical appliances
such as lighting devices, heating and cooling equipment, food making appliances, air-
conditioners, and other daily utility appliances. In this sector, electricity demand is
highly correlated to the different season of the year. The residential demand does also
depend on individual user behavior.

The transportation sector consists of the automobiles used in daily life transport. The
transport vehicles are running on fossil fuels such as natural gas, diesel, and petrol. But
nowadays due to the emerging technology, electric vehicles (EVs) have gained attention.
EVs are also used as a mode of transportation. EVs can be of a type as pure battery-
powered cars, hybrid vehicles, and plug-in vehicles which has battery storage facility
from the electricity grid and use the power for other purposes. The different automobiles
such as electric vans, trucks, and buses are available in the market. This sector consumes
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less than 1 percent of total electricity consumption. This type of vehicles is also utilized
for fed back power to the grid during peak hours. This sector also contributes to storage
asset for the household users.

As the DR programs are associated with the customer interest for participation, this cer-
tainly depends on the type of customer. As in the case of the commercial and industrial
user, it captures high consumption, the potential of utilizing DR in these categories are
very high because of high individual demands. But most of the application associated
with commercial and industrial users are critical in usage, so it is not much benefit to
getting a demand reduction via these customers. Whereas residential customers occupy
most of the energy usage in total, but individual demand is comparatively low. There-
fore in the residential sector, DR programs are proven a more powerful approach to
enhance the reduction in the peak demand of the total system.

1.3.1.1 Load Handling

The load demand and electricity price are the two main parameters for building DR
actions. For DR execution, the customer is required to communicate their aggregated
load demand to the utility company. This load information can be utilized to define the
peak and off-peak demands periods. The utility can store the load information given
by users and can convert it into historical load data. This historical data is useful for
future load scheduling of customers. The future load of a customer can be forecasted
by analyzing the customer behavior data and through advanced forecasting techniques.
The accurate estimation techniques [12] are need to be established for customer load
prediction. Estimation techniques can also predict customer usage behavior.

1.3.1.2 Electricity Price Information

In DR programs, the customer gets price information from a utility in exchange for their
load in real-time or day-ahead basis. An efficient DR depends on the ability of price
forecasting at the end of customers and market side as well. Conventional forecasting
techniques are mature enough to deal with the situation, but the involvement of real-
time pricing (RTP) make it challenging. The forecasting for RTP should be done in
short intervals such as one hour or half an hour or even a few minutes before. In this
context, the smart meters are required to face this challenge. Effective price prediction
techniques should be developed and embedded in the smart meter structure to handle
the increased uncertainties in the system.
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The common behavior of electricity prices mainly depends on certain features [13]
given as follows,

• Seasonal electricity prices

• Price dependency on past similar days

• Electricity price and load correlation

1.3.2 Communication Infrastructure

The communication infrastructure is an essential requirement for implementing DR to
enable two-way information communication between utility and customers. With the
advancement of advanced metering infrastructure (AMI) and its bi-directional com-
munication capabilities, the vision of the future smart grid is achievable. The AMI
technology comprises different components such as smart meters, different levels of
communication with hierarchy architecture, meter data management systems (MDMS),
data collection in software platform and its interfacing [14].

The two-way communication techniques are most attractive due to its feature of al-
lowing monitors the DR event and identify the load distinction. By using such infras-
tructure, it is possible that the utility can also directly communicate and measure the
requirement of the individual customer. The customer load reduction involvement can
also be monitored during DR real-time actions. The two-way communication also al-
lows the utility to control the intermittent nature of renewable generation combined with
DR to drive services such as frequency control and voltage support. The communica-
tion infrastructure of the smart grid exhibits central controllers with the hierarchical
structures as shown in Fig. 1.2. It also includes home area network (HAN) which con-
sists the home appliances and devices connected to the smart meters with the gateway.
The different HANs are then connected to the neighborhood area networks (NANs) and
communicating the information to the utility or energy management system.

The wireless networks are top rated in recent times due to their economic cost charges,
but congestion problem is the main obstacle for the wireless communication network.
The utilization of power line communication (PLC) technology has gained attention due
to low-cost employment and network latency. A review in [15] shows the application
of PLC which is utilized for a smart grid from high-voltage lines to smart meter in-
side the home. The implementation of signal processing algorithm is essential to make
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Figure 1.2: AMI hierarchical structure

decisions in short time intervals for getting a large amount of information to be trans-
mitted through the network and to provide better control on appliances action for DR
customers.

1.3.3 Electric Vehicles Integration

Recent trends have led the emergence of a concept of EVs in the world of automotive
industry. The environmental benefits of electric vehicles and impact on the carbon emis-
sion level have taken it into the limelight [16]. The integration of EVs to the electricity
system is associated with certain challenges such as the optimal time slots of charging
and discharging of EVs and uncertainties related to EVs availability. To analyze the
potential of electric vehicles usage in the power system, it is important to know when
to charge and when to discharge them. It leads to their application in demand response
programs where the solution for the scheduling.

1.3.4 Renewable Sources Deployment

The DR economic benefits to the customer and utility are highly encouraging for users
to utilize it, but the need to reduce carbon footprints for global environment is also a
matter of concern, which is influenced by electricity generation and consumption. This
issue can be resolved by utilizing renewable energy sources (RES) and by maintaining
the electricity consumption at the end-customer side. The carbon capture technolo-
gies in electricity generation will be deployed time by time. The available renewable
sources such as hydro, wind, natural gas, solar, nuclear and geothermal energies offer
lesser carbon impacts, where solar and wind generations are available for deployment
purpose and produce clean energy. A high number of wind farms are available at the
potential location worldwide, where wind impacts are high. Rooftop solar panels have
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also gained much attention due to available solar capacities. But unlikely conventional
generations, the solar and wind generation are highly uncertain and uncontrolled. The
integration of renewable sources to the electricity grid requires advanced technology
and efficient control system to operate reliably [17]- [18]. The renewable sources de-
ployment in the DR programs can make it more feasible to reduce carbon impact and
reduction in peak demand due to surplus generation available at the customer side.

1.4 Research Goals

In this thesis, the problem of residential DR is attempted to solve by using different
approaches with the incorporation of the electric vehicle and renewable generation. The
presented work is applicable for different options to determine the challenges associ-
ated with residential DR. In this thesis; the following primary goals are considered to
implement appropriate and practical DR approach for residential customers,

• Residential customers are equipped with distinct appliances at homes. The ap-
pliances have specific characteristics in individual houses, and it is necessary to
model the appliances in an appropriate way that user should not comprise their
comfort while executing DR. For this purpose, various type of appliances with
their priority operating time is considered in this research.

• The user willingness in participating DR programs is a point of consideration.
Individual users should gain economic benefits while participating in proposed
DR approaches. However, the approach should be user-friendly to make user
operation easier.

• The DR approach should be expandable to execute it over a large number of
houses. The proposed approach is developed by considering this option of ex-
panding them into a large pool of residential customers.

• From energy provider or the electricity grid point of view, lowering the peak
to average ratio (PAR) is an important objective to achieve. But in the era of
renewable generation and EVs deployment, the objective of only minimizing PAR
is not suitable. From the customer’s point of view, their economic benefits should
be present in the process DR executions while executing future DR approaches.

• The involvement of a large number of end-customers in the DR execution can
make the environment competitive from the point of energy consumption schedul-
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ing and economic benefits as well as. It is required to develop a healthy environ-
ment for the execution of a DR where a separate user should be operated in a fair
competitive environment.

• The influence of carbon footprints in the environment is rapidly increasing. There
is an alarming situation which should be taken in care. With this perspective,
the utilization of clean energy sources will be advantageous. The integration of
carbon-less electric vehicle and renewable sources to the DR problem is made
useful in this research.

1.5 Research Contribution

The main objective of DR programs is to maintain the demand-supply ratio to achieve
a desired load demand curve. This thesis mainly covers the various aspect of the DR
approach combines with the electric vehicle and renewable generation. The main con-
tributions of the work as mentioned in the above goals are explained as follows,

1. The proposed DR approach exhibits the smart charging technology for EV schedul-
ing in the residential sector. The operation and analysis of power transaction in-
corporation are done between the user and the electricity grid in the presence of
power-sharing concept among neighbors in the residential DR framework.

2. The proposed dynamic DR model introduces a correlated equilibrium approach
in a game theoretic scenario for the residential consumer. The proposed method-
ology reveals a scheduling sequence based on the users priority order which leads
to high economic benefit for a particular user as well as for society. The proposed
model also assures the fairness of Nash Equilibrium among the user, in the long
run, to serve as a benchmark for performance evaluation.

3. The proposed DR approach is evaluated in the distributed framework which avoids
the limitation of the centralized manner for load scheduling optimization. In this
context, an alternating direction method of multiplier (ADMM) is used to solve
the optimization problem which works in parallel form. This approach exhibits
the customer’s privacy measure in the DR load scheduling. It makes this system
reliable and controlled to ensure user privacy. The ADMM algorithm guaranteed
the fast convergence of the optimization problem.

4. A structure of a smart household with distinct appliances is considered in this
DR approach. The utilization of renewable sources, electric vehicle and battery
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energy storage system are assembled to achieve the reduction in peak demand
and optimizing the user electricity bill. Here a customer’s satisfaction parameter
is also included in DR.

5. The smart appliance load scheduling of residential user mainly depends on the
uncertain behavior of user for utilizing their appliances. Here the consumer pref-
erences inclusion in the DR problem is incorporated to analyze user behavior. In
this approach, a household user is participating in the dual problem of minimizing
their electricity bill and reducing carbon emission with the inclusion of renewable
energy sources.

6. The DR applications are full of benefits, but there is a disadvantage of imple-
menting DR programs. The DR approach encourages the participants to shift
their load demand from peak hours to off-peak hours. It can lead to a situation
where off-peak times can be converted into peak demand hours, As to cope with
this problem an extra term for deviation cost is added to user problem which can
prevent the formation of new peaks during off-peak hours.

1.6 Thesis Organization

The brief thesis organization is shown in Fig. 1.3. Chapter 2 illustrates the literature
review based on DR classified associated programs, DR issues. Chapter 3 provides
detail about the modeling of appliances in DR programs. The exploration of different
DR pricing scheme is executed in this chapter. The DR problem is also explored with
the potential of price prediction techniques in this chapter. Chapter 4 describes the in-
tegration of electric vehicle in DR problem presented in several scenarios such as the
deployment of vehicle to grid, vehicle to home and vehicle to neighbor technologies.
Chapter 5 explains the utilization of renewable energy source in DR context to electric-
ity bill minimization and reduction in carbon footprints. Chapter 6 describes a game
theory based model to solve energy consumption scheduling problem in a distributed
manner. In Chapter 7, DR problem is solved in a distributed manner to overcome the
privacy concern for household customers. Chapter 8 concludes with the explanation of
DR approach benefits and future scope.
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Chapter 2

Demand Response: Literature Review

2.1 Introduction

The DR programs have initiated in early 1980s when spot pricing has came into lime-
light [19] as the development of the new electricity price in market. Here spot pricing
is referred as demand charges and determined fro buying and selling electricity by the
analyzing the demand and supply condition at the the spot. In the same DR context,
a theory of utility-consumer interaction based on dynamic tariffs is developed in [20].
This work has extended the concept of spot pricing in dynamic tariff in terms of utility-
consumer interaction for large industrial consumers. The theory of user interaction
models and price forecasting under dynamic conditions is examined and observed that
the model can get benefits for both the user and utility in the electricity market. A
summary of demand response in the electricity market is discussed in [21]. The DR
standard definitions and classification is examined to analyze the potential economic
benefits and reliability of system. The experience of different utilities for DR programs
is also described.

The ability to shape the load-demand curve DR has become essential approach to make
future smart grid employable. In the present work, the focus is oriented on residential
DR. The abstract picture of DR is shown in Fig. 2.1. In the DR, a residential house-
hold is available at demand side. The residential household is equipped with different
shiftable and non-shiftable type of electric appliances. These electric appliances in-
cludes lighting, air-conditioner, washing machine, ironing appliances, refrigerator and
others. At the supply side utility companies or load serving entities are available to pro-
vide the electricity to household user from bulk generation. For communication purpose
between the utility and customer, a automatic load control unit (ALCU) is installed in

13
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Figure 2.1: Residential DR abstract picture

each customer houses. This ALCU has a built-in smart meter to enable the communi-
cation. The ALCU is a component by through a user can run the energy consumption
scheduling. Presently many customers have prefer to install some renewable genera-
tions such as wind, solar and fuel-cell at their ends. The customer is required to give
their load information data to the utility in exchange of day-ahead electricity prices.

DR employs by the means of tariffs or incentives provided by utility to encourage the
user for participating in load-shifting programs [21]. The literature DR programs can
be divided into three segments as by the classification, DR issues and the computational
techniques applications.

2.2 Demand Response Classification

The DR programs can be classified in two categories i.e. the incentive based DR and
price-based DR programs as shown in Fig. 2.2.
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Figure 2.2: DR Clssification

2.2.0.1 Incentive based DR

The incentive-based programs provides facilities to the participant user for the load-
reduction during peak demand hours or system failure. By participating in such pro-
grams customers are offered certain incentives or reduction on their electricity bills.

(i) Direct load control: The direct load control (DLC) programs are fully governed
by power utility company. The utility controls the certain equipment of participant
customer and govern the power to make it shut down remotely on a short notice.
Generally the equipment like air-conditioner and heaters are employed in this pro-
gram. Such programs are mainly employed for residential and small commercial
consumers.

The DLC problem for air-conditioner is examined in [22], where a fuzzy dynamic
programming is attempted to solve the DLC problem. The DLC factors are mod-
eled in fuzzy set representation and built in a unit commitment problem. The solu-
tion is tested on Taiwan power 38 unit system. A residential air-conditioner DLC
management is proposed in [23], which physically modeled the air-conditioner
(AC) by employing state variables. The DLC algorithm is based on maximum
likelihood operation is built using a hardware. An interruptible load management
technique is proposed in [24] for integrating DLC to provide reserve for ancillary
services. This work outcomes shows that customer can avail exact amount in real
time by reducing forecasting errors and handling uncertainties. A DLC for water
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heaters and storage is developed in [25] to minimize the power losses in the distri-
bution system. In this wok a Lagrange multiplier method is attempetd to solve the
DLC problem. When DLC is employed all the water heaters are disconnected and
when switched on all affected heaters must be recovering but this can cause new
peaks in the system. As a solution to this, a DLC problem for residential water
heaters is developed in [26]. This work incorporates the factor affecting DLC and
analyzed them. The disconnection of heaters also gives rise in payback.

(ii) Curtailable/Interruptible load: Similar to DLC programs, in Curtailable/Interruptible
programs customer receives rat discounts or incentive payments. In these pro-
grams consumer are asked to reduce their load-demand to certain predecided val-
ues. The customers who do not accept the demanded reduction have to face penal-
ties on the basis of utility conditions. There is a defined range for the customer
who can participate, their demand must be 200 kW for base loads can extend upto
3 MW [27]. These type of customer are agree to shut down a specific block load
or curtail according to consumption as to pre-specified levels. A practical study of
Curtailable/Interruptible load for industrial and residential customer is developed
in [28]. Initially the load measurement and forecasting is done with practical data
of ten utilities.

(iii) Demand bidding: In demand bidding programs customer is required to bid for
specific load reductions in the electricity market. In this process a bid can be
accepted only when is less than market price. The customer should reduce their
load by as by specification in the bid or face some penalties [29]- [30]. This
type of programs are offered to large consumption users. A robust optimization
technique is proposed in [31] for obtaining optimal bidding strategy of microgrid
under demand management. A demand side bidding strategy is developed in [32]
for residential energy management. In this work, the customers willingly to reduce
their flexible load demands by their own bidding strategy in the demand outstrip
event.

(iv) Emergency Programs: Emergency DR programs are employed when electricity
grid is subjected to sudden failure or out of reserve. I these programs customer are
paid incentives for according their load reductions on short notice [33]. The work
in [34] proposes an emergency DR program with incentive based rewards design
to maximize the DR benefits with reserve capacity constraints.
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2.2.0.2 Price-based DR

The price-based DR programs are most attractive programs. The price based programs
encourages customer to schedule their load-demand by providing future price informa-
tion. The price-based tariffs are dynamic varying electricity prices, it does not include
fixed prices. The main objective is to achieve flatten load demand curve by reducing
consumption in peak hours via offering low prices during off-peak hours. This type
of programs offers benefits and opportunities for both customer and utility. In these
programs customers have chance to become a part of electricity infrastructure, which
makes the system operation reliable. The various type of tariffs are subjected to this
category i.e. time-of-use (TOU), real time pricing (RTP), critical peak pricing and in-
clining block rates (IBR). The different pricing models and their assessment to the DR
programs is described in [35].

(i) Time-of-Use: In time-of-use (TOU) tariffs, the day is divided into various seg-
ments based on the utilization or demand. Each time segment slots are utilize with
different electricity prices [36]. These time segments can be termed as on-peak,
mid-peak and off-peak time slots. The TOU tariffs can be different at the time or
season of the year. The on-peak hours represent the peak times of demand-load
curve, in this time duration the electricity prices are mostly high. The mid peak
hours are referred as the medium time of demand-load curve, it offers the prices
less than on-peak times. The off-peak hours represent the off-time when electric-
ity consumption is low and charges lower prices [37]. For residential load control
TOU prices are very useful and implemented by many researcher [38–40]. In a
study the TOU prices are proven beneficial for industrial consumers as well.

(ii) Critical peak pricing: The critical peak pricing (CPP) follows a structure with
constant rate during system stress periods. The basic structure of rate is TOU
but when system reliability under stress, a high price value than a normal peak
price is employed [41]. The participating users are informed about this type of
dispatchable high prices in advance or provide some automatic control technology
for disturbances. This type of pricing is not economical for users as it charges crit-
ical peak prices [42]. The work in [43] have examined the CPP as for controlling
residential demand ate critical times. The CPP is implemented for residential user
as to measure the impact of electric vehicles load [44].

(iii) Real time pricing : Real time pricing (RTP) is a dynamic tariff where different
electricity prices are offered during each hour or in each 15 minutes [45]. RTP is
generally operated on hour-ahead basis or day-ahead basis. A day-ahead RTP is
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employed in Illinois, USA by Ameren Illinois corporation [46]. The RTP rates are
widely used and considered most efficient and reliable DR programs. The RTP
tariffs benefits are likely to outweigh for large customers. The RTP also regulates
in the long run efficiency in a competitive electricity market [47]. The customer
response to dynamic prices is very important to employ the RTP. Many customers
face RTP need some way to manage their exposure to varying price [48]. The
greenness environment related to RTP is investigated in [49], which shows that
RTP also contributes for significant reduction on SO2, NOx, and CO2 emissions.

(iv) Inclining Block Rate: The inclining block rate (IBR) is defined as two-rate struc-
ture. The two-rate structure implies a higher and lower rate for different levels of
consumption. Lower level rate is employed upto certain limit of consumption to
the customer whereas a higher rate is employed for a consumption level above to
the threshold value. This type of tariff is widely employed in British Columbia Hy-
dro in Canada, Pacific Gas and Electric, Southern California Edison in USA [50].
The BC Hydro company charged their customers under residential conservation
scheme, which is a rate divided into two parts. They determined the lower level
threshold as step 1 is 0.0858 per kWh for first 1,350 kWh in an average two month
billing period. The higher step 2 rate is 0.1287 per kWh over the 1,350 kWh of
consumption.

This means customers are charged one rate of electricity up to a certain point in
each billing period and a higher rate for any electricity used beyond that point.
The point where the customer is paying a higher rate is called step 2 threshold and
is based 205 on 90 % of the average household consumption in all household.

2.3 Demand Response Issues

Demand Response acts to make consumer demand independent to the grid. In the past
years, a lot of literature work has been done for DR in smart grid [51]- [52]. Residential
load management programs are developed to executed DR on a residential level. In [53],
the author presented a self-governing and distributed energy management system among
consumers that incorporates benefits of a two-sided good communication infrastructure
that is envisioned in the future smart grid. A fully automated DR is the modern automa-
tion type smart household energy management (HEM) System [54]. For monitoring
of home appliances and managing their operation, HEM system has taken responsibil-
ity for their actions. A modified approach for residential load scheduling is explained
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in [55]. Where the author revisited the energy management problem and formed it us-
ing incentive-based approach by taking consideration of user satisfaction and benefits
for consumer and utility. An optimal power scheduling method has explained in [56].
The author has introduced the generic scenario of HEM system in a home area net-
work (HAN) and how the EMS works in the home. In [57], the author investigated
the consumption scheduling problem for residential consumer, which is framed as a
coupled-bound game by taking the interaction among users and the temporally-coupled
constraint into consideration.

The demand response is mostly executed on the residential sector platform as compared
to commercial and industrial. The residential customers are more sensitive to varying
price because of uncertain behavior of distinct appliances. The two way communica-
tion by advanced metering infrastructure (AMI) provides a convenient environment to
exchange price and load information between user and energy providers. On this plat-
form, the home energy management system (HEMS) makes it feasible by exchanging
user information to energy providers [58]- [59]. The demand response scheduling can
be executed via appliance-based and data-based.

2.3.1 Appliance-based Scheduling

In appliance based scheduling, there is an energy consumption scheduling device in-
stalled at each household, which controls the ON/OFF switch. The electricity price
information is given by utility and demand of user is exchanged by home area network
(HAN). The scheduling load controller co-ordinates each appliance as per user’s re-
quirement. After applying DR, the controller sends ON/OFF control commands to the
users via HAN and then it results to energy consumption scheduling. In this context, an
appliance based scheduling is attempted in [60] for HEMS. Here, each user tries to find
the starting time of the appliances and their operating mode for schedulable and base
load appliances. A customer reward based demand response for residential appliances is
executed in [61]. This study examined the non-controllable and controllable appliances
with appliance flexibility index and data is obtained from customer survey data.

2.3.2 Data-based Scheduling

In this kind of scheduling, the scheduling is based on historic aggregated hourly data
provided by users to utility. A household energy consumption segmentation is pre-
sented in [62] by using hourly load data. Here, author examined five different segmen-
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tation schemes for load curve. A data based demand response for residential building is
presented in [63], where author has implemented a detailed single family home model
with OpenStudio with considering geographical environment. A price-responsive DR
strategy is executed in [64], which offers a regression technique to model home energy
consumption based on data available from software. A tool for assessing the demand
profile flexibility is explained in [65] by forming aggregated load for customer behavior.
An architecture for load management in smart buildings is developed in [66], where tool
has designed for the DR scheduling.

2.4 Summary

Demand response arises as a promising platform to develop technology for energy cus-
tomers and energy providers. On first hand it encourages user to involve with price-
based DR by facilitating dynamic pricing for energy usage. Secondly it is beneficial for
energy provides as well by reducing peak demand during peak hours. The bi-directional
communication between user and electricity grid make the electricity system more in-
teractive.



Chapter 3

Optimal Load Scheduling of
Residential Consumers

3.1 Introduction

As discussed in chapter 1 Demand Response (DR) programs are required as the need
of hour. DR plays a significant role in maintaining supply and demand ratio in the
future. Real time pricing (RTP) models are widely accepted for application of DR. RTP
is associated with pricing models, where the energy price generally varies at particular
time-periods of a day [45]. RTP is normally released before an hour from their actual
time or before day-ahead price (DAP) basis. For RTP environment, it is necessary for
DR model to have prediction capabilities. It is particularly true if the utility companies
give price information only one or two hours ahead of time. DR programs depend
severely on the capability of price prediction at the utility company as well as on the
customer’s side. Price prediction can be done on the basis of different time intervals
as a day-ahead, an hour ahead, half an hour, or minutes earlier. Therefore, there is a
requirement of accurate and efficient price prediction techniques.

In the literature, several price prediction techniques are developed for the electricity
market. A neural network approach is proposed in [67] for load and price forecasting
on hours ahead basis. A hybrid algorithm based on the combination of the wavelet trans-
form, Firefly algorithm, and fuzzy techniques is proposed to predict day-ahead electric-
ity prices [68]. In [69], computationally intensive methods is implemented using artifi-
cial agents based simulations. A day ahead price prediction technique is proposed using
robust recursive functional principal component analysis (RFPCA) and auto-regressive
model [12]. The ability of support vector machine (SVM) methods to solve nonlinear

21
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regression estimation problem makes SVM successful in prediction [70]. For compar-
ative analysis, the application of artificial neural network (ANN) technology [71] is
also adopted. A linear prediction model is also developed to test the capability of lin-
ear prediction analysis among different methods [72]. The motive of this chapter is to
investigate the application of price prediction techniques.

This chapter presents a load scheduling problem for residential consumers. Here, the
smart grid is considered with communication facilities and selection information to
make a more efficient and reliable operation for residential customers and utilities. By
implementing the two-way communication technologies of the smart meter, it becomes
possible to achieve interactions between consumer and utility [73]. RTP is considered as
DR policy so it can disclose the electricity prices and offers the most accurate approach
to among consumers to schedule their load. Here, the residential load model, price pre-
diction techniques and load control problem are developed. The primary purpose is to
deploy a day ahead RTP with the help of prediction techniques. The second purpose is
to develop an automatic load control algorithm to achieve optimal scheduling of resi-
dential consumers and to improve energy efficiency. The RTP pricing models with price
prediction are combined to design a price-based demand response model. The ability
of various prediction techniques such as linear prediction model, artificial neural net-
work (ANN) and support vector regression (SVR) are deployed with load management
problem.

This chapter is organized as follows. Section 3.2 explores the electricity price prediction
capabilities. System modeling is illustrated in section 3.3. The load scheduling problem
is formulated in Section 3.4. The simulation results and discussion is shown in Section
3.5. The summary is represented in Section 3.6.

3.2 Price Prediction Capabilities

3.2.1 Dynamic Pricing Model

In the past, various dynamic pricing models have been developed for residential cus-
tomers. For example, BC Hydro applied inclining block rates (IBR) [74]. The rates
of electricity is decided from 7.52 cents/kWh to 11.27 cents/kWh as per the energy
consumption of consumer. The rates are based on the following rule i.e. if the energy
consumption for 2 month period is less than 1350 kWh, consumer will pay first slot
price (7.52 cents/kWh); otherwise have to pay second slot price 11.27 cents/kWh.
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In the power system, energy demand is extremely variable quantity, and economic stor-
age of electricity cannot be served. Hence, the different power generation plants/units
are mixed to achieve the increased the load demand. To reduce peak demand, the real-
time pricing models have been initiated. The real-time pricing (RTP) is proved an ef-
fective factor for residential DR programs. The RTP data is taken from Ameren Illinois
Corporation [46]. The sample electricity prices for BC Hydro and RTP is shown in Fig.
3.1 and Fig. 3.2, respectively.

To change the flat rate tariffs, RTP with IBR is a appropriate dynamic pricing models for
residential consumers. This section presents mathematical modeling for pricing model
RTP combined with IBR. It is assumed that the forthcoming price values are known to
consumers before the time. Total hourly energy consumption of consumer is denoted
by lt at each approaching hour. The Ct(lt) denotes electricity price for lt load demand in
tth time slot and represented as,

Ct(lt) =

xt, if 0 ≤ lt ≤ δt.

yt, if lt > δt.
(3.1)

xt, yt, δt ≥ 0

Where xt, yt denotes the step 1 and step 2 price value. δt is the price threshold limit.

RTP model used by Ameren Illinois Corporation,

xt = yt,∀t ∈ T

Inclining block rates used by British Columbia Hydro Company,

x1 = x2 = ....... = xT−1 = xT y1 = y2 = ....... = yT−1 = yT

δ1 = δ2 = ....... = δT−1 = δT (3.2)

BC Hydro prices are independent of time, they change over consumption level as shown
in Fig. 3.1. By combining RTP with IBR, both wholesale prices and consumption level
are considered into account.

In general, price function parameter depends on season price-dependent volatilities and
correlation between electricity price and load [75]. The price variation also depends on
weekdays and on weekends. This information can also be helpful for price prediction
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Figure 3.1: Two-level inclining block rates set by BC Hydro

Figure 3.2: Real-time prices set by Power Smart Pricing Company

in RTP environment. Here for accurate predictions, focus is oriented on low computa-
tional complexity price predictors. Therefore, the predictors can be easily deploy for
residential smart meters for customers load scheduling.

3.2.2 Statistical Analysis of Data

The hourly price data is taken from the Ameren Illinois Power Corporation for the year
2013 to 2015 [46]. To detect the factors affecting price parameter, initially the average
price over the different years is plotted in Fig. 3.3. From the average prices for years,
it is interpreted that the variation in prices are very less, although they look partially
similar. There is a requirement to perform statistical analysis of data to develop an



Chapter 3 Optimal Load Scheduling of Residential Consumers 25

enhanced prediction model for the different time scale. The average prices over month
and week are shown in Fig. 3.4 and Fig. 3.5, respectively. The monthly average shows a
significant change in prices. But average prices in summer should be higher, so monthly
basis, the prediction does not seem feasible. Average price for the week is partially
similar in weekdays, but the change in prices for weekends are significant. The prices
are lower on Saturday and Sunday. Therefore, the relationship is developed between
weekday and weekend.

Figure 3.3: Analysis of price data on the basis of years

Figure 3.4: Analysis of price data on the basis of months

3.2.3 Correlation in Historic Data

The correlation of price data is made for average prices over the week. The correlation
plot is shown in Fig. 3.6, from plot it is shown that the correlation between the present
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Figure 3.5: Analysis of price data on the basis of days of week

day and yesterday is very high (0.9986). Therefore, yesterday is considered as one of the
prediction features. However, a high correlation is measured for a day before yesterday
and the same day in last week as shown in Fig. 3.6.

Figure 3.6: Correlation in Prices

3.2.4 Linear Prediction Model

Linear prediction model (LPM) is a discrete time signals based model, it produces linear
function which is able to predict future data based on past data samples. For a day ahead
price prediction, as per correlation shown in Fig. 3.6 three days are measured as high
correlated with the present data. First is the yesterday data highly correlated; second is
the day before yesterday and third, the same day in previous week. In LPM the output
and input are mathematically related by using filter coefficient. The filter coefficient is
determined by using linear prediction theory.
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The mathematical model is represented as in (3.3)

ŷt[d] = k1yt[d − 1] + k2yt[d − 2] + k7yt[d − 7] (3.3)

Where, yt[d − 1], yt[d − 2] and yt[d − 7] denotes the price values for yt on yesterday , the
day before yesterday and same day in last week respectively. k1, k2 and k7 are the filter
coefficients of model. The prediction output is denoted by ŷt.

3.2.5 Artificial Neural Network (ANN)

Artificial neural networks (ANN) are most popular artificial intelligence (AI) technique.
ANN is highly applicable in pattern recognition and predictions [75] among other tech-
niques. Here, the feed forward ANN is developed to predict the day-ahead electricity
prices. These networks are called feed forward because there is no loops, information
travels in forward from input nodes to output nodes through hidden nodes. Feed-forward
with single-layer perceptron is considered which contains no hidden layer and similar to
linear regression, where perceptron learning rule is a method for finding the weights in
a network. The perceptron has one input and one output layer. The output are calculated
simply from the sum of the product of weights with similar input.

The ANN model requires decision parameters, input variables, model structure and
training algorithm. The back propagation algorithm is used for the training purpose for
day ahead price forecasting. The details of ANN are as follows,

Input layer:
u j = x j( j = 1, 2...n)

Where x j is the input variables for the model and n is the number of decision variables.
Here n = 3 is taken by analysis past input data sets. Three input variables are the prices
on the previous day, prices two days before and prices on the same day in last week.
Each input consists 20 neurons.

Hidden layer:
The output terminal of input layer is defined as hidden layer. Transfer function trans-
sigmoidal is used for hidden layer.

Output layer:
The outputs of hidden layer are considered as inputs for output layer. The single output
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layer consists one neuron in the network. The output obtained are the predicted hourly
prices for next day.

Fig. 3.7 shows the ANN architecture. For the ANN implementation total one year data
is used. Where total 8760 number of samples are found, from which 60% is used for
training purpose, 20% is used for testing and 20% is used for validation.

Artificial

Neural

Network

Hourly price 

on yesterday

Hourly price on day 

before yesterday

Hourly price on the 

same day in last week

Predicted price

Hour 1

Hour 2

Hour 24

Figure 3.7: Artificial neural network architecture

3.2.6 Support Vector Regression Models

3.2.6.1 Support Vector Regression (SVR)

Initially, the idea for SVM is given by Vapnik in 1995 [76]. The SVM basic concept
comes to map original nonlinear data x into higher dimensional space. A set of data
G = {(xt, at)}Nt=1 is given for SVR. Where xt represent the input vector, at is the actual
value and total numbers of data patterns represented by N. Therefore SVR function can
be defined as,

y = f (x) = wϕ(x) + b (3.4)

Where, ϕ(x) is defined as the nonlinear feature which is mapped from input space x. The
w and b are the coefficients which can be determined by minimization of risk function
R(C).

R(C) = (C/N)
N∑

t=1

Lε(at, yt)+ || w ||2 /2 (3.5)

Where Lε known as ε- insensitive loss function and defined as,
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Lε(a, y) =

0 | a − y |≤ ε

| a − y | −ε otherwise,
(3.6)

Where, ε > 0 is a predefined constant which controls the noise tolerance. The constant
C > 0 determines the trade-off between the flatness of model and the amount up to
which deviations larger than ε are tolerated. The flatness of function measured by ||
w ||2 /2. Two positive slack variables γ and γ∗ have introduced, which represent the
distance from actual values to the corresponding boundary values of ε-tube. Therefore
equation (3.5) can be transformed in given form.

Minimize R(w, γ, γ∗) =|| w ||2 /2 + C
( N∑

t=1

(γ + γ∗)
)

(3.7)

Subjected to the constraints,

wϕ(xt) + bt − at ≤ ε + γ∗, t = 1, 2......N

at − wϕ(xt) − bt ≤ ε + γ, t = 1, 2......N

γ, γ∗ ≥ 0, t = 1, 2......N

(3.8)

To solve this constrained optimization problem, the Lagrangian multiplier approach has
been used, which is shown in following equation,

L
(
w, b, γt, γ

∗
t , αt, α

∗
t , βt, β

∗
t

)
=

(
|| w ||2 /2 + C

( N∑
t=1

(γt + γ∗t )
)

−

N∑
t=1

βt

[
wϕ(xt) + bt − at + ε + γt

]
−

N∑
t=1

β∗t
[
at − wϕ(xt) − bt + ε + γ∗t

]
−

N∑
t=1

(αtγt + α∗t γ
∗
t )
)

(3.9)

The equation (3.7) is maximized with respect to non-negative Lagrangian multiplier
αt, α

∗
t , βt, β

∗
t and minimized with respect to primal variables w, b, γt, γ

∗
t , that gives the

following equation.
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∂L
∂w

= w −
N∑

t=1

(βt − β
∗
t )ϕ(xt) = 0

∂L
∂b

=

N∑
t=1

(β∗t − βt) = 0

∂L
∂γ

= C − βt − αt = 0

∂L
∂γ∗

= C − β∗t − α
∗
t = 0

(3.10)

The Karush-Khun-Tucker (KKT) conditions have applied to the regression problem
and dual problem is built by substituting equations (3.10) into (3.9),When K is a kernel
function define as K(xt, x j) = ϕ(xt)ϕ(x j).

ν(βt, β
∗
t ) =

N∑
t=1

dt(βt − β
∗
t ) − ε

N∑
t=1

(βt + β∗t )

−
1
2

N∑
t=1

(βt − β
∗
t )(β j − β

∗
j)K(xt, x j)

(3.11)

Subjected to,
N∑

t=1

(βt − β
∗
t ) = 0

0 ≤ βt ≤ C, t = 1, 2.....N

0 ≤ β∗t ≤ C, t = 1, 2.....N

(3.12)

The Lagrange multipliers βt and β∗t , are calculated and an optimal desired weight vector
of the regression hyper plane is,

W∗ =

N∑
t=1

(βt − β
∗
t )ϕ(x) (3.13)

Hence, the regression function cab be represented as,

f (x, βt, β
∗
t ) =

N∑
t=1

(βt − β
∗
t )K(x, xt) + b (3.14)

Here, K(x, xt) is a kernel function, which is equal to the inner product of two vectors
x and xt in the feature space ϕ(t) and ϕ(xt) respectively i.e. K(x, xt) = ϕ(x)ϕ(xt) .
Commonly, there are different type of kernel function exist, i.e. polynomial kernel, the
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multi-layer perceptron kernel function, and the Gaussian RBF kernel function etc. The
Gaussian RBF kernel function is used for SVR [76]. The Gaussian RBF kernel function
is defined in following expression,

K(xt, x j) = e−(xt−x j)2/σ2
(3.15)

3.2.6.2 Parameter Optimization using Genetic Algorithm

To achieve high accuracy of prediction, the parameters of SVR can be optimized. For
optimizing the parameters C , ε and σ genetic algorithm (GA) is used. For the purpose
of initially developing the SVR model parameters are chosen on the basis of hit and
trial approach based on past data. The parameter C, ε and σ values are considered
initially as 0.05, 5 ∗ 10−4 and 5 ∗ 10−5 respectively. GA methodology is inspired from
[71]. For the optimization, the mean absolute percentage error (MAPE) is considered as
objective function. In order to minimize the MAPE, iterative procedure for parameter
optimization is solved by GA. The methodology for genetic algorithm is described in
Algorithm 3.1.

Algorithm 3.1 Genetic Algorithm
1: procedure
2: Input the data
3: MAPE as objective function

Start
4: Encode the solution into chromosomes (binary strings)
5: Define fitness F(e.g., F ∝ f(x)for minimization)
6: Generate the initial population
7: Generate new solution by crossover and mutation
8: Accept the new solution if their fitness decreases
9: Select the current best for new generation

10: Decode the parameters new values
End

11: end procedure

3.2.7 Performance Evaluation

For simulation two-year RTP data has been taken from the Ameren Illinois Power Cor-
poration from 2013 to 2015. Three consecutive days such as 6th, 7th and 8th Decem-
ber 2015 is selected for validation purpose. For performance assessment of prediction
techniques, mean absolute percentage error (MAPE) and mean absolute error (MAE)
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indices are considered. The error E is defined as the difference between original prices
and predicted prices.

Et = at − yt (3.16)

Where, at is original value of price and yt is the hourly predicted price in tth hour. MAE
is calculated by taking mean of error.

Figure 3.8: Price prediction for 5th December 2015

MAPE is defined as mean absolute percentage error.

MAPE =
1
N

N∑
i=1

ai − yi

ai
∗ 100% (3.17)

The price prediction for 5th December 2015 by using LPM, ANN, and SVRGA tech-
niques is shown in Fig. 3.8. The predicted price for 5th Dec. is determined by using
past days 4th, 3rd Dec. and 28th Nov. 2015. The price prediction from SVRGA is
very close to actual price pattern. From Table 3.1, it is shown that the MAPE and MAE
of SVRGA are 3.84 % and 9.16 % respectively. While MAPE and MAE determined
for LPM are 7.06 % and 16.082 % which is higher in comparison with SVRGA. It is
reported that SVR parameter tuned with GA gives a better result as compared to LPM
and ANN. The MAPE by using ANN method is 6.4 % which is comparatively lower
than error obtained with LPM i.e. 7.06 %.
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Figure 3.9: Price prediction for 6th December 2015

Figure 3.10: Price prediction for 8th December 2015

Fig. 3.9 shows the price prediction for 6th Dec by using past price data of 5th, 4th Dec.
and 29th Nov. 2015. Price for 7th Dec. is obtained using past data from 6th, 5th Dec.
and 30th Nov. 2015 is shown in 3.10.

From the comparative analysis SVRGA performed better than LPM and ANN tech-
niques in terms of performance parameters such as MAPE and MAE. The patterns for
ANN and LPM are almost similar, but overall the closeness to the actual prices are
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Table 3.1: Performance parameters of prediction techniques
Date Technique MAPE

(%)
MAE (%)

5th Dec 2015
ANN 6.40 14.67
LPM 7.06 16.1842

SVRGA 3.8413 9.16

6th Dec 2015
ANN 8.678 17.87
LPM 4.07 8.86

SVRGA 3.64 8.234

7th Dec 2015
ANN 8.46 20.35
LPM 4.75 11.42

SVRGA 3.78 9.46

effective in the case of LPM.

3.3 Household Model

A smart power system with a single energy provider, various residential customers, and
a regulatory entity is considered. An automatic load controller unit (ALCU) is installed
with each residential consumer and it has a built-in smart meter. The purpose of ALCU
is to maintain and control the consumer’s energy consumption and to interact with en-
ergy provider when required. The ALCUs of the different customers are connected to
each other and energy provider via a communication network such as home area net-
work (HAN).

In household model, three types of appliances such as non-shiftable, shiftable ans shiftable
continuous run appliances are considered. The non-shiftable appliances can not be
shifted to another time, but energy consumption of appliance can be the changed as
per appliance usage requirement. TV and lighting devices come in this category. So,
consumer can have an opportunity to switch on or off the TV at any time he needs
without the intervention of the ALCU. The shiftable appliances can be shifted one time
to another time as long as the specified amount of total consumed energy is used, and
ALCU may only delay its operation. It includes pool pumps and electric vehicles (EVs)
charging. The shiftable continuous run should run without interruption. Washing ma-
chines or dishwasher are the sample examples in residential setting as well as in the
industrial context.
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3.3.1 Appliances Classification

Household appliances are categories into various classes respective to the appliance type
and the customer requirement.
1. Non-shiftable appliances: It include all appliances those can not be interrupted and
they have to run continuously. In this study, the daily energy consumption for all non-
shiftable appliances aggregated and modeled from historical data. For example, refrig-
erator and lighting appliances etc.
2. Time-shiftable appliances: It includes shiftable appliances those consumption is
manageable during their operation, by intervention or repressing its usage. For these
type of appliances the ALCU has to achieve the required energy usage Ea for a particu-
lar time ∆ta. For example, pool pump usage time can be flexibly controlled.
3. Time-shiftable continuous run appliances: In this type, all the appliances should have
to pursue a known usage profile for operation cycle and should run continuously. This
type of appliances can be shifted from one time other time but cannot be interrupted
once the operation begin. For example, clothe dryer cannot be interrupted once started
and have to run for certain time.
4. Power-shiftable appliances: It includes shiftable appliances have flexible power con-
sumption with a minimum standby power and a maximum operating power. This type
of appliance can also be shifted from one time other time. For example, water heater
power range can be varied.
The appliances data with their priority operating time is shown in Table 3.2.

3.4 Load Scheduling Problem Formulation

This section presents problem of automatic load scheduling to minimize the total elec-
tricity bill of residential consumers. Here, an assumption is made that futuristic statis-
tical load information is known. Various type of appliances is used for the residential
load model. For each consumer k ∈ K, let APk denote the set of appliances for kth

consumer and for each appliance a ∈ APk. The time horizon is denoted by T , where for
each forthcoming hour represented by t ∈ T . For each consumer k with appliance a, the
energy consumption is defined as wt

k,a in t time slot. The time horizon is for 24 hours.
The hourly consumption of each consumer is defined as,

∑
a∈APk

wt
k,a � lt

k, ∀t ∈ T (3.18)
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For each appliance the total daily consumption is fixed,

24∑
t=1

wt
k,a = Ea, ∀k ∈ K, a ∈ APk (3.19)

The information regarding consumer operation is known to ALCU. To minimize the
electricity cost of consumers with real time pricing is formulated as,

Minimize
24∑
,t=1

Ct

( ∑
a∈APk

wt
k,a

)(∑
k∈K

∑
a∈APk

wt
k,a

)
(3.20)

Subject to constraints,

t f
a∑

t=t0a

wt
k,a = Ea, ∀k ∈ K (3.21)

αa ≤ wt
k,a ≤ βa, ∀t ∈ Ta (3.22)

wt
k,a = 0, ∀t ∈ T/Ta (3.23)

Ta = [t0
a..........t

f
a ] (3.24)

The objective function in (3.20) represents the total daily payment for consumers while
cost function is the expected cost of energy for the upcoming hours. The first constraint
represent time-flexible shiftable appliances. Where t0

a and t f
a are the starting and finish-

ing time of for the appliance. The second constraint is for power shiftable appliances,
where αa and βa are the minimum and maximum power limits respectively.

The power shiftable appliances can be easily scheduled but time shiftable appliances
have fixed power consumption. For example daily requirement of the washing machine
is 1.5 kWh. According to constraint (3.21) the washing machine can consume 0.25
kWh for six hours and zero for remaining time. Besides washing machine can not be
used as per this schedule because it requires some fixed amount of power to be run.
The power consumption of washing machine can be scheduled, for 1st hour operation
it might consume 1.0 kWh and for 2nd hour 0.5 kWh. Such kind of appliances require
switch control operation. Therefore, the optimization problem is solved using mixed
binary linear programming.

The executed algorithm is explained in Algorithm 3.2, initially appliances are defined
with their power requirement. The appliances with binary variables is classified. With
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the help of ALCU the predicted prices is included in the algorithm and synchronized
with problem. Then next step is to define the constraints for all the appliances. The op-
timization problem is modeled as mixed integer linear programming (MILP) and solved
using convex optimization tool CVX [77] on MATLAB platform.

Algorithm 3.2 MBLP optimization formulation
1: procedure MBLP(optimization)
2: With the help of appliance data calculate total energy consumption

(Ea) (Including all users)
3: Calculate unscheduled load profile and total cost of energy with load profile

Start
4: Define types of appliances
5: Define binary variable to on-off household appliances (As per the type of

appliance)
6: For the fixed energy consumption with the help of ALCU optimize total load
7: Define constraints for upper and lower threshold value
8: Calculate total cost for optimized load profile

9: end procedureEnd

3.5 Simulation Results & Discussion

100 number of residential household is considered for simulation. Each user is equipped
with 10 to 20 shiftable and non-shiftable appliances. It is assumed that with the help
of ALCU day ahead RTP predicted prices is communicated and informed to each con-
sumer. The data for different type of appliances is given in Table 3.2. The running time
slots of each appliance is determined by using probability based on historical data.

The Fig. 3.11 shows the real time prices with IBR. The threshold load value is de-
termined from peak load and average load. For simulation purpose, it is considered
yt = 1.5xt .

The load profile without suing automatic load control is shown in Fig. 3.12. The load
profile after automatic load scheduling is presented in Fig. 3.13. In automatic load
scheduling, the RTP prices encourage users to shift their load from peak hours to off

peak hours. Fig. 3.13 clearly depicts that all user tries to shift their load from high price
period to low price periods.

The total cost incurred to the consumers is shown in Table 3.3. From numerical results it
is analyzed that without load control to load control figure acquires significant change.
Here the used RTP price is predicted from three different techniques. In Table 3.3,
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Figure 3.11: Price function for RTP with IBR

Figure 3.12: Load Profiles without automatic load control

Figure 3.13: Load Profile with automatic load control
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Table 3.2: Appliances Data

Appliance Power rating
(kW)

Duration for
probable operation

Type

light 0.5 [18:00, 24:00]

Non-shiftable
appliances

refrigerator & freezer 0.125 [01:00, 24:00]
electric stove 1.5 [06:00, 14:00]

heater 1 [18:00, 06:00]
TV 0.25 [16:00, 24:00]
PC 0.25 [08:00, 18:00]

Hair dryer 1 [06:00, 10:00]
Others 1.5 [01:00, 24:00]

Dish washer 1 [10:00, 21:00]
Time-shiftable
continuous run

appliances

clothe dryer 0.5 [06:00, 22:00]
vaccum cleaner 1.5 [08:00, 18:00]

ironing applinaces 1 [06:00, 18:00]
air conditioner 1.5 [08:00, 18:00]

Pool pump 2 [04:00, 22:00] Time-shiftable
appliancesOthers 1 [01:00, 24:00]

water heater 1 [05:00, 20:00] Power-shiftable
appliancesothers 1 [01:00, 24:00]

it is shown that when different techniques price are employed in load scheduling the
significant variations is found in cost with and without control. Where with RTP load
scheduling acquires $ 6 cost benefit, RTP with IBR is captured cost benefit of $ 15.80,
price with ANN and SVR occupies cost benefits of $ 5, 29 and $ 2.12 respectively.

The peak to average ratio for unscheduled is 1.433 and for scheduled load is 1.215. The
change in PAR from unscheduled to scheduled consumption is 18 %.

Table 3.3: User Daily payment
Pricing model Cost without control Cost with control Total benefit

(in $) (in $) (in $)
RTP 83.80 77.80 6.01

RTP with IBR 93.70 77.80 15.80
Predicted price by LPM 75.30 69.00 6.27
Predicted price by ANN 86.00 80.70 5.29
Predicted price by SVR 71.53 69.40 2.12
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3.6 Summary

DR programs with dynamic pricing have significant potential to optimize a load of
a consumer with their payments in smart grid environment. Even though the imple-
mentation of DR requires an advanced metering infrastructure, this chapter presented
an automatic load control scheme with price-prediction capabilities. Some households
are examined to test the capability of the proposed model. The application of prediction
techniques played an important role to obtain the cost in a real environment. The perfor-
mance of load control algorithm is validated from the results. The residential consumer
acquired cost benefit by using this approach. Here in this chapter, no power limits are
imposed on the load curve. Due to this, a consumer has only option to shift their load
to low prices hour which can lead to the formation of unwanted peaks in the system.



Chapter 4

Integration of Electric Vehicle to
Demand Response

4.1 Introduction

The presence of EVs have induced diversity in both the reserve and electricity mar-
ket. In the energy market, EVs are considered as shiftable type load. The scheduling
of shiftable load is primary course of action for the application of effective demand
response. The bigger share of shiftable load means more prominent benefits. Since
EVs usage is growing day by day and its high energy consumption can affect the elec-
tric bill. Thus inclusion of EV in DR increases the share of shiftable load by a larger
means. The proposed household model comprises several assets including non-shiftable
appliances, shiftable appliances, and EVs. By simply analyzing the consumer behav-
ior, EV availability and real time price fluctuation, the smart charging of EV is done
by performing peak clipping, valley filling, load shifting or load building. Since EVs
popularity increasing among electricity user, So avoiding higher electricity rate for EV
battery charging becomes the main objective of demand response (DR). Optimizing EV
charging time by analyzing consumer behavior, with constraint of vehicle availability
and avoiding demand in peak hours with high electricity charges is solution for utilizing
EV.

To determine the real-world randomness to the EVs availability for household user, a
demand shaping problem is proposed in [78], which incorporates the vehicle to grid
(V2G) technology in the game environment. It incorporates arrival time, departure time
and charging demand to models the DR problem. A peak demand reduction of up
to 20 % is found by executing the V2G mode of vehicles in the game environment.

41



42 Chapter 4 Integration of Electric Vehicle to Demand Response

The inclusion of an energy storage system (ESS) with EV, which can further reduce the
electricity cost by imposing hard and soft peak power limiting DR strategies is discussed
in [79]. A multi-agent based decentralized method is proposed to aim energy sharing
among smart homes [80], where utilization of renewable sources with storage unit and
energy sharing are done via home batteries, it can provide energy for neighbors. While
in [80], it doesn’t consider the electric vehicle as the home asset and home to grid
technology is not available during energy schedule. The self-generation of household
is managed by solar radiation which is not available in the winters; this can affect the
energy sharing algorithm. In [81], the problem have described a coordination operation
of household consisting EV, storage, and renewable generation. Where the vehicle to
home and vehicle to grid modes among three number of users. The study provides the
insight of energy sharing among household, however, the numerical aspect does not
reveal the benefits gained by the home user for different energy transaction. All the
above mentioned studies are limited to operation of small number of users and fails
to attempt the smart charging for EVs among a large number of households in DR
programs.

Nowadays due to emerging EVs, the fast charging stations have become a point of
the competitive environment in the market. The supercharging of an electric car is
almost equivalent to 120 houses coming online for half an hour, where the average
energy consumption of a household in the US is around 19 kWh per day, according to
US energy information association [82]. A supercharging process does not take more
energy to charge; it just makes charging faster, but when it comes to the electricity grid,
it can become a severe issue. Therefore, this kind of problem can be solved with the
application of smart charging for EV, so the grid burden issue can be resolved.

This chapter investigates the operation of the distinct type of residential electricity con-
sumer system in demand response architecture. Each household user is equipped with
the shiftable and non-shiftable type of appliances whereas some user is also installed
with electric vehicle (EV) which contributes to vehicle to grid (V2G) and vehicle to
home (V2H) modes with power sharing concept. The system operates under the bidi-
rectional information communication between the user and load-serving entity (LSE)
by utilizing AMI. The EV arrival time and departure time uncertainty is captured by
the application of Gaussian distribution method. The neighborhood connection named
as vehicle to neighbor (V2N) is also enabled for a large group of customers with the
different types of EVs installed. The contributions of this chapter is summarized as
follows:

• Here, an energy consumption scheduling with different types of load for several



Chapter 4 Integration of Electric Vehicle to Demand Response 43

residential homes is proposed. The proposed algorithm solves an electricity pay-
ment optimization problem with bi-directional information communication be-
tween the electricity grid and residential homes. By execution of a centralized
algorithm, the running scheduled of each appliance is determined. The EV smart
charging is considered as the main goal of an energy consumption scheduling
problem.

• The introduction of operations with the bi-directional power transaction between
user and the electricity grid in the demand response framework. With the help of
ALCU, the information communication is enabled at both ends.

• Each household is connected via a centralized control unit (CCU). Which works
as a power exchange medium between one user to another user. The power-
sharing concept among neighbors has proposed incorporation with energy con-
sumption scheduling.

Organization of the rest chapter is as follows. Section 4.2 explains the system modeling.
EV uncertainty capture model is presented in Section 4.3. In Section 4.4 performance
evaluation and result explanation is discussed. The chapter summary is presented in
Section 4.5.

4.2 System Modeling

4.2.1 Overview of System

The proposed system consist a group of household customers operating under a smart
grid which entails a load serving entity (LSE), and an automatic load control unit
(ALCU). Each home is installed with ALCU with a built-in smart meter. A group of dif-
ferent types of the customer based on usage is considered. The customers are classified
into four categories based on their energy consumption in a day.

1. In the first group, household consumes less energy and it occupies two members.
This kind of houses is equipped with few appliances.

2. The second group is inhabited by a five-member family in the house. This group
consumes comparative more energy than the low consumption house of group 1.



44 Chapter 4 Integration of Electric Vehicle to Demand Response

Table 4.1: List of variables used in this chapter
k(K) Index (set) of household user
t(T ) Index (set) of time periods
Ct,buy Electricity price for purchasing energy from grid
Ct,sell Electricity price for selling energy to grid
Egrid

k,t Energy consumed by kth user from grid in t time slot

ENS
k,t Energy consumed by non-shiftable appliance of user k in t time slot

ES
k,t Energy consumed by shiftable appliance of user k in t hour

Eev,C
k,t Energy consumed by EV for charging of user k in t hour

Eev,D
k,t Energy consumed by EV for discharging of user k in t hour

Êev
k,t Energy rating of EV of user k in t hour

ηD
ev Discharging efficiency of EV
ηC

ev Charging efficiency of EV
Ta Arrival time of EV
Td Departure time of EV
Etrip Energy consumed in a trip
Eev

k,max Maximum energy required by EV for user k

Eev
k,min Minimum energy required by EV for user k

ELev
k,t Energy level required for EV of user k in t hour

ELev
k,min Minimum energy level required for EV of user k

ELinitial Initial energy level required for EV
Echarge State of Charge for EV
B Binary variable for EV charging & discharging
Eload

k,t Energy consumption for shiftable and non-shiftable appliances

α Service charge for using grid infrastructure
Eev,onr

k,t Energy requirement of owner EV

Enbr
k,t Energy requirement of neighbor seeking energy purchase

El,nbr
k,t Individual energy requirement of owner seeking to sell energy

LU
peak Peak load of unscheduled consumption

LS
peak Peak load of scheduled consumption

LS
valley Valley load of scheduled consumption

Lmean Mean value of load
LS

total Total scheduled load
LU

total Total unscheduled load
γ Coefficient for allowed margin
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3. Any home in group 3 is a high consumption household which are having 7-8 eight
members in the house. It is classified as high consumption house.

4. The fourth group is classified as very high consumption home.

It is assumed that each household is registered for the net metering system in coordina-
tion with LSE to communicate the demand load information and to get day-ahead elec-
tricity prices in reverse. The electricity prices considered are not real prices, although it
can give close information to the actual charges. Few households are equipped with EV
at their premises. The EV customers are registered for the V2G, V2H and V2N type of
modes. ALCU of each household handles the bidirectional information for the energy
and price communication.

For the applicability of V2N connection, each household is connected to the centralized
control unit (CCU). The transmission of bi-directional power flow and energy infor-
mation is updated via CCU. When there is a surplus energy available to a customer,
stored in the storage asset, the power flow is enabled to transfer the electricity to the
neighborhood through CCU. Afterwards, the CCU can utilize the surplus energy via
power transaction to another customer having energy requirement. This type of prob-
lem arises in peak hours when LSE is not able to fulfill the demand. As a solution, the
concept of selling power from one end-consumer to another can enhance the flexibility.
This idea can also be applicable in times when LSE is serving load at high charges dur-
ing peak hours; Therefore a customer can get power from a neighbor at comparatively
lower prices. The prices for buying and selling the energy should be same for customers
participating in such event.

The degradation of EV battery during charging and discharging is a major concern.
Here it is assumed that depreciation of EV battery is taken care of by EV manufacturer
company in battery rental business [83]. The charging of EV can be of two types. First
is dumb charging; it is applicable when EVs begin charging immediately after returning
from their last journey of the day. Another is smart charging; in this EVs are charged
at low electricity prices during off-peak hours and discharge when electricity prices are
high.

4.2.2 Mathematical Modeling

This section presents mathematical model for the proposed system. The operation of a
household is analyzed for a single day. The day is split into equal time divisions and the
time horizon for the day is denoted as T and indexed as t.
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4.2.2.1 Smart Charging Mode of Operation

The objective function of the proposed smart charging is to minimize the total daily cost
for energy usage of each household. The cost function described in (4.1) is the total cost
function (TCF) calculated for a for household customers shown as,

Minimize TCF =

K∑
k=1

24∑
t=1

Ct,buy Egrid
k,t (4.1)

The objective function describes the total cost for procuring energy transaction between
the user and the grid. The energy purchased from grid by user is utilized for appliance
usage and charging of EV. The cost for EV maintenance and other appliances is ne-
glected here. The minimization of total cost function of energy demand is subjected to
various constraints described as follows,

a) Power Balance Constraints:

The power balance at each time step within a household is described as:

Pgrid
k,t = PNS

k,t + PS
k,t + Pev,C

k,t (4.2)

Where Pgrid
k,t is the power supplied by grid. PNS

k,t , PS
k,t, Pev,C

k,t are the power for non-
shiftable, shiftable and EV load respectively.

Egrid
k,t = Pgrid

k,t ∗ t (4.3)

The time sampling is considered as one hour. Equation (4.2) represents the power bal-
ance equation for smart charging optimization framework. In this scenario, the total
energy brought from grid Egrid

k,t is consumed for the purpose of non-shiftable, shiftable
appliance and EV load demand, which is ENS

k,t , ES
k,t and Eev

k,t respectively.

Minimize
K∑

k=1

24∑
t=1

Ct,buy

(
(ENS

k,t )︸︷︷︸
I

+ (ES
k,t + Eev,C

k,t )︸         ︷︷         ︸
II

)
(4.4)

The objective function is split into two parts as in (4.4). The first term represents the
non-shiftable type of appliances, it results no shifting in load. The second part comprises
the cost for the shiftable type of appliances and EV which varies. Hence the total cost
is optimized.
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b) Electric Vehicle Constraints: In smart charging, EV is considered only for charging
purpose. The charging schedule of EV is determined by optimizing the total cost func-
tion. The charging and discharging equation of EV is represented in (4.5-4.6), where
ηC

ev and ηD
ev are the charging and discharging efficiency of EV, respectively.

Eev,C
k,t =

Êev
k,t

ηC
ev

(4.5)

Eev,D
k,t = Êev

k,t ∗ η
D
ev (4.6)

ELev
k,t ≤ Eev

k,max ∀t ∈ [Ta,Td] (4.7)

ELev
k,t ≥ Eev

k,min ∀t ∈ [Ta,Td] (4.8)

The maximum and minimum limits imposed on state of energy level of EV is repre-
sented in (4.7-4.8). The charging of EV can only be done when vehicle is at home i.e.
between the arrival time Ta and departure time Td.

Etrip
t ≤ Eev

k,max @ t ∈ [Ta,Td] (4.9)

ELinitial + Echarge ≥ Etrip (4.10)

For the purpose of going on a trip the EV can use maximum energy i.e. Eev
k,max. The

energy required for a trip should always be less than the sum of initial battery level and
state of charge as shown in (4.10).

b) Power Transaction Constraints: The power transaction limits are imposed on each
type of connection. The upper and lower limit of peak load is defined in (4.11)-(4.12).

LS
peak ≤ Lmean + Margin

LS
valley ≥ Lmean − Margin

(4.11)

LU
total = LS

total (4.12)



Margin =
LU

peak − Lmean

γ
(4.13)

Where, γ is the coefficient of allowed margin which can be interpreted as,

If γ = 2, allowed margin is 25 % of previous peak

1. Lower the margin better the PAR but lower the consumer benefits.

2. Higher margin means better consumer benefit but less improved PAR.

3. Therefore, a balanced γ should be chosen, so there could be balance restored in
PAR and consumer benefit.

4.2.2.2 Vehicle to home (V2H) Modeling

The household energy is supplied by EV during peak periods in V2H mode. The func-
tion in (4.14) represents final objective for V2H mode. The negative sign represents that
the energy is supplying from vehicle to home.

Minimize
K∑

k=1

24∑
t=1

Ct,buy

(
ENS

k,t f ixed
+ ES

k,t + Eev,C
k,t − Eev,D

k,t

)
(4.14)

The energy balance constraints for this mode of operation are described as follows ,

Egrid
k,t = ENS

k,t + ES
k,t + BEev,C

k,t − (1 − B)Eev,D
k,t (4.15)

Eev,D
k,t =

 Eev,D
k,t , if Eev,D

k,t ≤ Eload
k,t

Eload
k,t , if Eev,D

k,t ≥ Eload
k,t

 (4.16)

Eload
k,t = ENS

k,t + ES
k,t (4.17)

The energy supplied by grid is consumed by household appliances and EV as shown in
equation (4.15). The binary variable B is interpreted 1 if EV is in charging mode and 0
if it is in discharging mode. The charging and discharging equation of EV is given by
(4.5) and (4.16).
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4.2.2.3 Vehicle to grid (V2G) Modeling

In V2G mode, the energy can be fed back to the grid when household acquires surplus
energy at home. The objective function for this mode is represented in (4.18). The
objective function is split into two parts. The first part is to minimize the total cost of
purchasing energy from the grid. The second part comprises the maximization of total
revenue obtained by selling energy back to the grid.

Minimize
K∑

k=1

24∑
t=1

{
Ct,buy

(
ENS

k,t + ES
k,t + Eev

k,t
)︸                         ︷︷                         ︸

I

− (1 − α)Ct,sell Eev,D
k,t︸                ︷︷                ︸

II

} (4.18)

Where, α is the service charge for using grid infrastructure i.e. usually 5% to 15% of
selling price of electricity at that time. The service charge depends on the location and
the electricity grid. The energy balance constraint in (4.19) shows that B is a binary
variable for EV charging and discharging which can be assigned a value as 1 and 0
respectively.

Egrid
k,t = ENS

k,t + ES
k,t + BEev,C

k,t − (1 − B)Eev,D
k,t (4.19)

4.2.2.4 Vehicle to neighbor (V2N) Modeling

In V2N mode, the power sharing is enabled from vehicle to a neighbor. The surplus
energy available for vehicle is shared to a neighbor during peak price hours. The objec-
tive function for this mode is represented in (4.20). Where first part denotes the energy
brought from grid and second part denotes the energy sold among neighbors.

Minimize
K∑

k=1

24∑
t=1

{
Ct,buy

(
ENS

k,t + ES
k,t + Eev,C

k,t − Eev,onr
k,t

)︸                                       ︷︷                                       ︸
I

−Ct,sellEnbr
k,t︸    ︷︷    ︸

II

} (4.20)

The energy balance constraint is represented by (4.21), whereas equation (4.22)-(4.24)
gives the information about the energy required for a neighbor which is transferred by
the owner of an EV.
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Egrid
k,t = ENS

k,t + ES
k,t + BEev,C

k,t − (1 − B)Eev,D
k,t (4.21)

Eev,D
k,t = Eev,onr

k,t + Enbr
k,t (4.22)

Eev,onr
k,t =

 Eev,D
k,t , if Eev,D

k,t ≤ El,onr
k,t

Eload
k,t , if Eev,D

k,t ≥ El,onr
k,t

 (4.23)

Enbr
k,t =

 Eev,D
k,t − El,onr

k,t , if Eev,D
k,t ≤ Eload

k,t

0, ifEev,D
k,t ≥ Eload

k,t

 (4.24)

In V2N mode, it is considered that a vehicle owner is sharing their surplus power to a
certain neighbor. But there is a constraint that neighbor will only consume power from
vehicle owner when the offering electricity prices are less than the grid electricity prices
in the particular time period. Ct,buy denotes the electricity buying price which is a real-
time price offered by load-serving entity (LSE) on a day-ahead basis. Whereas Ct,sell

denotes the energy selling price to a neighborhood consumer. Here for a particular
scenario this Ct,sell is fixed. The concept can be simplified as the neighbor consumer
seeking for energy demand will only purchase energy from another consumer if the
offering prices are less than the grid prices for a particular hour. This concept will be
proven beneficial when the grid energy prices are very high during peak-hours. In the
peak hours, a neighbor can purchase the energy from another consumer, particularly
vehicle owner. The selling price can be decided on the basis of peak demand and peak
energy prices at different times.

4.3 EV uncertainty capture model

The EV uncertainties are accounted to generate the appropriate input scenarios for EV
arrival and departure time. The realization of the uncertain variables is modeled through
Gaussian distribution method. This distribution is widely used for arrival and departure
time [84].

The data for EV arrival and departure time have taken from [84]. The arrival and depar-
ture time is plotted in Fig. 4.1. The Gaussian distribution considered here as arrival time
with the mean of 19.62 and standard deviation of 3.62. The departure time is considered
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(a) Arrival time

(b) Departure time

Figure 4.1: Daily driving statistics

Figure 4.2: Residential power demand profile.

with 10.53 mean and 3.26 standard deviation. The range should be maintained that the
departure time must be greater than or equal to the sum of arrival time and the required
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Figure 4.3: Dynamic price signals.

charging time.

4.4 Performance Evaluation & Results Discussion

The simulation results are presented and analyzed to justify the performance of pro-
posed approach.

4.4.1 Input Data

In the simulation, 100 household consumers of different type is considered. The houses
are divided into four groups. In the first class, 40 houses are considered as low con-
sumption (LC) users. In the second class 40, households are taken as mid-consumption
(MC). The third class as high consumption (HC) users having 15 homes. The fourth
class of very high consumption (VHC) consists of five homes. The total load data is
taken from BGE suppliers [85]. For user preference appliance data is shown in Table
3.2. Total demand for the different type of users based on their consumption is shown
in Fig. 4.2.

The household is assumed to be contracted for the day ahead pricing from LSE via AMI
technology. For day ahead pricing scheme the load demand of consumers is updated to
LSE, and in return, the price signals are informed to the user for next day. Price infor-
mation is highly volatile, and to get future price information; the prediction techniques
are needed. The future price can be predicted by applying prediction techniques. The
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price signal used for the day ahead pricing is taken from Ameren Illinois Power [46] as
shown in Fig. 4.3.

In the system, each house is not equipped with EV. The capacity of EV in the system
is considered based on the practical scene. In a society, the different class of customers
exists, it is not possible for everyone to purchase an EV. Therefore only a few houses
are considered to be installed with EV. In total four type of 40, EVs are equipped with
the system. The number of EVs installed is 10, 16, 10 and 4 for LC, MC, HC and VHC
user, respectively. The electric cars data and ratings are represented in Table 4.2 have
been taken from [83].

The optimization problem for total cost minimization is formulated as MILP aimed to
reduce the daily bill of the user. Each household user is operating with their individual
ALCU and controlling their energy expenses and load. Although, there is one cen-
tralized unit is operating for every user and managing the operations in a centralized
fashion. The MILP optimization problem is solved using CVX version 2.0 beta [77] on
the MATLAB platform.

4.4.2 Assumptions

The few assumptions have been taken for the implementation purpose of the proposed
system and briefly explained as,

1. The ratio of shiftable loads is considered from 30-40 % of total amount (randomly
selected for users).

2. For the V2H mode, the power required for the house is supplied by vehicle (either
load or rated discharge value).

3. For V2N mode, energy to a neighbor, is supplied only when owner meets demand
(only surplus energy is applicable send to the neighbor).

4. For V2G mode, energy fed back to the grid is applicable for peak price times
since frequent charging and discharging of the battery also cause the decrease in
life span of battery).

5. The charging and discharging of the EV can not take place simultaneously.
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Algorithm 4.3 Smart charging
1: procedure
2: Organize consumer load data on consumption base (equation 4.2)
3: Prepare EV consumption data with associated user
4: Consider EV uncertainty model for real-world randomness
5: Calculate day-ahead dynamic prices (RTP) using prediction technique
6:Note: All the MILP optimization problem is solved using CVX version 2.0 beta on the

MATLAB platform
7: Based on shiftable appliances, prepare shiftable-load in variable form ( (equation

4.2) where shiftable and EV with binary variable)(using binary variable)
8: Based on EV’s availability and charging constraint build EV load in binary variable

form
9: Run (MILP objective function for smart charging mode (equation 4.4))

10: Constrains:
11: Fixed total power consumption LS

total = LU
total

12: Power transaction limits (upper and lower limit) (equations 4.11-4.13)
13: EV charging constrains (equations 4.5,4.7-4.10)
14: End constrains
15: Verify (Verify results obtained from solver)
16: end procedure
Note: Gurobi package is mandatory in CVX version for MILP solution.

4.4.3 Results and Discussion

The simulation is done for different mode of operations to evaluate the EV capabilities
applicable for smart charging, V2H, V2G and V2N modes. In smart charging, the day
ahead load scheduling with dynamic prices is executed. The energy scheduling under
varying price encourages the user to shift their energy demand to low price hours. The
methodology of smart charging is discussed in Algorithm 4.3.

Figure 4.4: Residential power demand for shiftable appliance.
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Figure 4.5: Residential power demand profile for non-shiftable appliance.

If all user tries to deviate their load to low price hours, the grid may suffer due to
accumulated load. For this purpose, the peak power limiting strategy is applied for
scheduling user’s load. Total load demand comprises non-shiftable and shiftable type
of load as shown in Fig. 4.4 and Fig. 4.5. The non-shiftable appliance load can not be
shifted even with time-varying prices whereas shiftable appliance load is schedulable.

Algorithm 4.4 Vehicle to home (V2H)
1: procedure
2: Organize consumer load data including EV’s similarly as earlier (4.15)
3: Similarly calculate day-ahead prices Based on EV’s availability and charg-

ing/discharging constraint build EV load in binary variable form
4: Run (MILP objective function for V2H (4.14)
5: Constraints:
6: Fixed total power consumption LS

total = LU
total

7: Similarly power transaction constraints (4.11-4.13)
8: EV charging/discharging constraints (4.5-4.10)
9: EV V2H discharging constraints (4.16)

10: End constraints
11: Verify (Verify results obtained from solver)
12: end procedure

Here, two type of EV charging is employed i.e. dumb charging scenario and smart
charging. The dumb charging allows the user to charge their EVs at any times when
they return at home. But in smart charging user is participating in optimization process
to determine the optimal charging time allocation. It enables the economic benefits to
the users in term of reducing their daily energy bill.

The algorithm executed for V2H and V2G connection is shown in Algorithm 4.4 and
Algorithm 4.5, respectively. For the operation of V2G and V2N modes, the scheduled
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Algorithm 4.5 Vehicle to grid (V2G)
1: procedure
2: Prepare predicted RTP and consumer load data including EVs similarly as earlier

(4.19)
3: Define EV consumer to grid energy selling price
4: Based on EVs availability and charging/discharging constraint build EV load in

binary variable form
5: Run (MILP objective function for V2G (4.18)
6: Constraints:
7: Similarly total power consumption LS

total = LU
total

8: Power transaction constraints(4.11-4.13)
9: EV charging/discharging constraints (4.5-4.10)

10: Only difference will be in (4.16), where EV discharge upper
limit is not bonded by EV consumer household consumption

11: End constraints
12: Verify (Verify results obtained from solver)
13: end procedure

load is shown in Fig. 4.6b. The vehicle is charging in off-peak hours and supplying
a load of the consumer in high price region when owner vehicle is available that time
only. However, there are some limitations in V2H connection i.e. EV will supply only
when the discharge rate of EV is greater than the household requirement.

In the simulation results, due to various assumptions, it is observed that the scheduled
load look almost similar when the vehicle is supplying to home either to grid but the
effect of operation can be seen in the daily energy payment shown in Table 4.3. In V2G
operation, the household who is supplying power to the grid has to bear the charge for
using grid infrastructure.

Algorithm 4.6 Vehicle to neighbor (V2N)
1: procedure
2: Prepare consumer load data including EV’s similarly as earlier (4.19)
3: Prepare predicted RTP and define neighbor energy selling price Run (MILP objec-

tive function for V2G (4.20)
4: Constraints:
5: Power balance constraint (4.21-4.22)
6: Power transaction limits (4.11-4.13)
7: EV to owner power supply constraint (4.23)
8: EV to neighbor power supply constraint (4.24)
9: End constrains

10: Verify (Verify results obtained from solver)
11: end procedure

In the operation of V2N mode, the power transactions are done between the vehicle
owner who is having excess energy that can be transferred to a neighbor facing difficulty
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(a)

(b)

Figure 4.6: Load scheduling for proposed system with a) V2G connection and b) V2N
connection.

Figure 4.7: Power shared to neighbor.

in scheduling the load at the peak hours when the grid is offering power at high prices.
During the V2N operations, some limits have been imposed on energy transaction i.e.,
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Figure 4.8: Hourly cost benefit for the proposed system with smart charging.

Figure 4.9: Load demand on hourly basis for the proposed system with smart charging.

the neighbor will get additional power available only when the EV discharge rate is
higher than total owner house load and neighbor load. The power shared to a neighbor
in V2N connection is shown in Fig. 4.7.

It is shown in Fig. 4.6a that the discharging of EV is occurring during evening 5 to
10, this is the period when vehicle with surplus storage can supply to the neighbor.
The total cost appeared during unscheduled and scheduled is shown in Fig. 4.8. It can
be analyzed that the hourly cost is reduced during peak hours. The impact of smart
charging is also analyzed in term of cost. The scheduled load shown in Fig. 4.9 can
result in a flattened load curve. In this context, the benefits to the user on a daily basis
is represented in Fig. 4.10. Here it is shown that the economic benefit is high for the
EV owners as compared to other. The large consumption users are getting large benefits
as compared to low consumption users because of their capacity and EVs. The selling
electricity price from vehicle to a neighbor is considered fixed as 3 Cents/kWh.

The influence of using EVs is very high for users in their cost benefits. The results
in Fig. 4.11 can prove the benefits of using EVs as the compare to those who do not
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Figure 4.10: Total benefits of different class users.

Figure 4.11: Benefits of EV integration.

have EVs. The benefits are also compared for proposed system with and without EV
integration, and it can be seen that impact of using EVs is very high on system benefits
for each user.

The numerical analysis of results for different operating modes is shown in Table 4.3. It
can be seen that a significant reductions is observed in PAR. The total benefits for bill
payment is proved effective for the proposed strategy. The cost benefit is analyzed with
respect to base scenario i.e without application of optimization or unscheduled load.
The cost benefit for smart charging is 31 $ whereas the operating modes V2H, V2G
and V2N is 59.6 $, 60.29 $ and 60.29 $. The cots benefits for V2G and V2N modes
are similar because only one mode can operate at a time. The choice of using EVs can
affect the user load as well as total electricity bills.
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Table 4.2: Electric Vehicle Data

Parameter
Tesla

roadster
BMW
mini E

Think
city

Chevy
volt

Capacity [kWh] 53 35 28.3 16
Maximum usable
capacity [kWh] 47.7 31.5 25.5 14.4

Min capacity [kWh] 5.3 3.5 2.83 1.6
Charging & discharging

efficiency [%] 0.93 0.93 0.93 0.95

Full charging
time [hour] 3.5 3 13 5.1

V2G Discharging
time [hour] 3.5 3 13 5.1

Table 4.3: Daily Cost Benefits.
Operation Cost Benefit (in Cents) PAR reduction (%)

Smart Charging 3100.1 10.2232
V2H mode 5964.1 6.0675
V2G mode 6029.6 5.9673
V2N mode 6029.6 5.9673

4.5 Summary

The operation of residential energy customers equipped with an ALCU was studied.
Under a centralized system, a controller is aimed to minimize the total energy procuring
cost with dynamics pricing environment. Furthermore, various operating modes have
been analyzed to prove the benefits of the proposed methodology. The bi-direction flow
of power was considered between each house and load-serving entity which also con-
tributes to neighborhood communication. The application of the proposed methodol-
ogy encourages the household user to shift their energy consumption in order to achieve
lower daily energy bills. The simulations confirmed that by using proposed approach,
in addition to maximizing the user benefit, the energy provider can benefit as well by
reduced PAR. Further integration of vehicles in the transportation environment has in-
troduced the new kind of load in the residential sector, whereas the proposed strategy
can develop smooth operations in the scenario.



Chapter 5

Optimal Scheduling of Renewable
Sources with EV and BESS in DR

5.1 Introduction

Price-based DR programs can eventually determine the actual energy prices such that
energy user is encouraged to change their consumption patterns and shifts demand from
peak hours to off-peak hours [4]. With the help of technological advancement of ad-
vanced metering infrastructure (AMI), the bidirectional communication of information
between electricity user and a load-serving entity can be achieved [14]. The smart
metering technology has removed the barrier for two-way information communication.
The household user can contribute a significant potential for reduction in energy demand
during peak hours. With the rapid growth of electric vehicles (EVs), residential users
are encouraged to utilize electric vehicle [86]. The EV load is treated as a shiftable
load, so it can make a voluntary impact on the demand of the residential consumer,
which improve the efficiency of DR programs.

Renewable energy integration to the electricity grid is a fundamental, solid integration
approach to maximize the cost-effectiveness of incorporating renewable sources in the
power system and ensuring that the system stability and reliability is imperative. Ac-
cording to the US Energy Department report, the renewable sources sustain the potential
to fulfill the energy needs in society [87]. In the context, the combination of EVs and
renewable sources based DR is proposed in [88], the approach contributes towards the
fluctuation cost term regarding uncertain appliance load and EV load in user electric-
ity bill. A day-ahead renewable power accumulation based DR is proposed in [89], a
two-stage stochastic mixed-integer programming problem is modeled.

61
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The inclusion of renewable sources in the DR programs makes it more convenient to the
user to manage household load when user can have private source for energy produc-
ing. The use of renewable sources can reduce the burden of the electricity grid atleast
in peak demand hours. A day-ahead load scheduling for home management with PV
system is proposed in [90], which executed a robust algorithm for incorporating the
uncertainty related to household PV system. The high penetration of plug-in electric
vehicle (PHEV) and photovoltaic (PV) is found in [91], followed by analysis of demand
response programs for residential customer’s aspect. A household simulation model is
presented in [92], which proposes a technique to stabilize the charging issues of plug-in
electric vehicles. Where, a vehicle-to-grid energy transaction is made possible with the
help of bidirectional communication between household and energy user.

The inclusion of renewable energy sources is a highly beneficial to avoid the coal-based
plant for energy generation which contributes toward less carbon environment [93]. The
carbon emission free nature of electric vehicle enables the opportunity to introduce it in
the application of multiple energy systems for the residential user. Integration of carbon
emission reduction approach with the home energy scheduling makes DR actions much
adaptable for the customers [94]. The advent of carbon-free technologies have led to
the application of electric vehicles in the power industry. The electric vehicle provides
the facility such that it can be used as load as well as a source. This can reduce the bur-
den on conventional energy sources. The renewable energy sources with DR framework
is enabled to facilitate carbon footprints reduction approaches. In this context, a resi-
dential automated system with a hybrid fuel cell (FC) and solar PV system modeled is
explored in [95]. Similarly, a residential hybrid thermal/electrical grid-connected home
management system is analyzed in [96], this home system includes a fuel cell with
combined heat and power (CHP) and a battery system as storage. The author examines
the battery and renewable sources capacity for the electrical and thermal generation by
using a lookup table.

This chapter is focused on the energy management of household with several assets
including home appliances, renewable sources, electric vehicle (EV) and battery energy
storage system (BESS). The optimization problem of smart home energy management
is developed as a mixed integer linear programming (MILP). Smart home energy is
driven via the acquisition of residential customer’s preference in an automated system
participating in DR programs. The main contributions of this chapter is summarized as
follows,

• The smart home energy management comprises two main parts: home automation
and energy management of different combination of appliances present in homes.
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The user behavior is accounted in the form of their daily energy need based on
the appliance operation.

• The smart household management problem is investigated under the presence of
dissatisfaction factor and by incorporating demand fluctuation.

• The bidirectional transaction of energy between customers and LSE is managed
with the help of EVs and BESS.

• The DR load scheduling mechanism with utilization of renewable sources as car-
bon mitigating approach is also proposed in this chapter. The proposed mecha-
nism also offers the dual approach where a user can minimize their electricity bill
and carbon emission simultaneously without interfering their comfort.

The rest of chapter is organized as follows. The smart household management is de-
scribed in Section 5.2. Residential DR model in the presence of demand fluctuation is
described in Section 5.3. Carbon mitigation mechanism is presented in Section 5.4. The
summary of chapter is given in 5.5.

5.2 Smart Household Management

The primary objective of the home energy management (HEM) system is to conserve
energy, reduce cost & improve comfort. After the smart grid has come into an act, now
it is viable to serve DR for having a better control of power consumption at residential
places. A home energy management system has been proposed using mixed-integer
linear programming (MILP) approach that processes a task-based energy consumption
scheduling of a household [97]. The operation of distinct appliances such as thermal
and critical appliance is investigated in [98]- [99]. The electricity consumer is assumed
to be registered for real time prices based demand response programs by the load serv-
ing entity (LSE). A day ahead load scheduling is done to allow the smart charging of
energy storage and scheduling of smart appliances in order to reduce carbon emission
and consumer daily bill benefits by indulging in the programs by the load-serving en-
tity. A energy management system for residential and communities of home user has
been proposed by [59]. It has also included linear regression model to predict solar
panel potential home appliances usage. A hardware model of home energy manage-
ment has also implemented in [100]. It employs a experimental smart metering system
with semantically enabled user interfaces.



64 Chapter 5 Optimal Scheduling of Renewable Sources with EV and BESS in DR

Figure 5.1: Smart household architecture

5.2.1 System Overview

A detailed structure of a smart household consisting of distinct appliances is considered
here. The small scale solar photovoltaic system is available as a self-generation for the
home user. The electric vehicle (EV) and battery energy storage system (BESS) are also
present in the household system. The MILP model is formulated for implementation.
The user equipped with automatic load controller (ALCU) has the capability to enable
the bi-directional communication of load to the load serving entity (LSE). The informa-
tion of real time prices is conveyed by LSE on day ahead basis. The smart household
architecture is shown in Fig. 5.1.

5.2.1.1 Home Appliances

DR is applied on a single household user operating under program. The user is installed
with different AC appliance in home. AC appliances have specific characteristic accord-
ing to applications. On the basis of characteristics, appliance are classified as follows,
1. Non-shiftable appliance: This type of appliance is considered as critical load of user.
It can not be shiftable to some other time slot. The power consumed due to this type of
appliance is denoted by PNS

t in tth hour.
2. Time-shiftable appliances: These appliances can be shifted from one time slot to
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other. But it has some fixed minimum and maximum operating power limits. Its oper-
ating power is signified by PTS (int)

t .
3. Time-shiftable continuous run appliances: Some appliance are time shiftable in na-
ture but once started operating can not be interrupted. It makes them continuous run
appliances. Its power rating denoted by PTS (cont run)

t

4. Power-shiftable appliances: These appliances have flexible power limit but can not
be shifted to some other schedule time. PPS

t denotes the power rating of these type of
appliance.

The total load consumed by household user can be given as follows,

Pa,load
t = PNS

t + PTS
t + PPS

t (5.1)

PTS
t = PTS (cont run)

t + PTS (int)
t (5.2)

Where, Pa,load
t defines the total load by home appliances.

5.2.1.2 Mathematical Modeling

The mathematical modeling of different asset installed in smart household is modeled
here. The operation of household appliances are considered for total T hours, the indi-
vidual hour is denoted by t.

Electric vehicle (EV) modeling : EV system is included for charging and discharg-
ing purpose. The charging of EV is done by taking power from electricity grid. The
discharging is happen when vehicle is not available at home. The mathematical inter-
pretation of EV can be modeled by employing equations (5.3)-(5.7).

Pev,C
t =

P̂ev

ηC
ev

∀t ∈ [Ta,Td] (5.3)

Pev,D
t = P̂ev ∗ η

D
ev ∀t ∈ [Ta,Td] (5.4)

Where, Pev,C
t and Pev,D

t denotes the charging and discharging capacity of EV battery for
t time slot, respectively. P̂ev is the rated power of EV battery. ηC

ev and ηD
ev are efficiency
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of EV charging and discharging. respectively. Ta and Td are the arrival and departure
time of vehicle.

Eev,soe
t + Eev,C

t ≤ Eev
max ∀t ∈ [Ta,Td] (5.5)

Eev,soe
t − Eev,D

t ≥ Eev
min ∀t ∈ [Ta,Td] (5.6)

Eev
min ≤ Eev,soe

t ≤ Eev
max ∀t ∈ [Ta,Td] (5.7)

Eev,soe
t is the initial state of energy for EV battery. The maximum and minimum allow-

able energy limits of EV battery is denoted by Eev
max and Eev

min. Eev,C
t and Eev,D

t is the
energy consumed by EV for the charging and discharging time, respectively.

Solar photo voltaic (PV) modeling: The small scale solar rooftop PV generation is
installed in smart household. The utilization of PV power is included for appliance
usage and BESS charging purpose and after this if available can be fed back to grid.
The PV power production can be modeled by,

Ppv,used
t = Ppv,pro

t (5.8)

Equation (5.8) states that the power produced by PV in each hour is utilized by home
appliances and asset.

Battery energy storage system (BESS) modeling: The employment of BESS is done
for both charging and discharging purpose. The mathematical representation of battery
modeling can be analyzed from equation (5.9)-(5.13).

Pbess,C
t = ηbess ∗ P̂bess (5.9)

Pbess,D
t =

P̂bess

ηbess
(5.10)
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The equation (5.9) and (5.10) describes the charging and discharging power capacity of
BESS, respectively. P̂bess and ηbess represents the rated power and efficiency of battery,
respectively. The charging and discharging efficiency of battery are same.

Ebess,ini
t + Ebess,C

t ≤ Ebess
max ∀t ∈ T (5.11)

Ebess,ini
t − Ebess,D

t ≥ Ebess
min ∀t ∈ T (5.12)

Ebess
min ≤ Ebess,ini

t ≤ Ebess
max ∀t ∈ T (5.13)

Where, Ebess,ini
t denotes the initial state of energy for BESS. Ebess

min and Ebess
max are minimum

and maximum energy that can be consumed from BESS. Ebess,C
t and Ebess,D

t specifies the
energy consumed by BESS for charging and discharging purpose.

5.2.2 Problem Formulation

The problem of day-ahead load scheduling for a smart household is formulated as min-
imization of user’s daily electricity bill. The appliance load of smart household is gen-
erated with the help of historic data informed. The scheduling is done with the vary-
ing price information based on real-time pricing (RTP) data. The proposed objective
function is the combination of the total cost of purchasing electricity from grid and
dissatisfaction factor of user. If there is a situation when user denies to schedule their
appliances as proposed by controller. In this case, a certain amount of penalty is applied
to the user. Each appliance of user is denoted by a and set of appliance is A, ∀a ∈ A.
The total developed revenue as objective function is as follows,

Minimize
24∑
t=1

(
Ct,buy ∗ Egrid

t − (1 − α)Ct,sell E sold
t

)
+

24∑
t=1

A∑
a=1

(
δaωap ∗ Pa

t

) (5.14)

Where, Egrid
t denotes the energy consumption by availing Pgrid

t power from electricity
grid. Ct,buy is the hourly RTP prices for purchasing energy from grid. E sold

t is the cor-
responding energy consumption by selling Psold

t power to the grid. Ct,sell denotes the
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prices for selling electricity back to grid. Here α is the service charge for using grid
infrastructure i.e. usually 5% to 15% of selling price of electricity at that time. The
service charge depends on the location and grid.

The second term in revenue represents the penalty caused by waiting of any appliance.
δa represents the dissatisfaction factor defined for an appliance. Here dissatisfaction
factor such as penalty is considered 20 % of hourly prices in Cents/kWh. The waiting
period for an appliance is denoted by ωa. Pa

t is the power corresponding to an individual
appliance a.

Power balance constraints:

Pgrid
t = Pa,load

t + Pev,C
t + Pbess,C

t (5.15)

PPG
t = Ppv,used

t + Pev,D
t + Pbess,D

t (5.16)

Psold
t =

 PPG
t − Pgrid

t , if Pgrid
t < PPG

t

0, otherwise

 (5.17)

Equation (5.14) represents the power balance equation for the household energy system.
It justifies that the sum of power consumed by home appliance load Pa,load

t , EV charging
load Pev,C

t and BESS charging load demand Pbess,C
t should be equal to power demanded

from grid. PPG
t denotes the surplus power available at home by generation or discharging

of assets. The power sold to grid is applicable only when surplus power is available at
home. Equation (5.17) refers that sold power Psold

t is available when the surplus power
is greater than household usage power.

Power transaction limit constraints : The total load on the system for unscheduled
consumption is denoted by Lunsh and modeled as,

Lunsh =

24∑
t=1

Pa,load
t + Pev,C

t − Ppv,used
t (5.18)

The total load after energy consumption scheduling is represented by Lsch and defined
as,

Lsch =

24∑
t=1

Pgrid,sch
t (5.19)
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Lunsh
t = Lsch

t (5.20)

Lsch ≤ mean(Lunsh) + µ1

Lsch ≥ mean(Lunsh) − µ2

(5.21)

µ1 =
max(Lunsh) − mean(Lunsh)

γ1
(5.22)

µ2 =
mean(Lunsh) − min(Lunsh)

γ2
(5.23)

In the system, sum of total load in a day before and after scheduling will remain same.
From (5.21)- (5.23) shows the power transaction limit imposed on the system for load
scheduling. Where Lsch denotes the load after scheduling. µ1 and µ2 are the margin
parameters. γ1 and γ2 are the coefficient of allowed margin which helps to decide peak
and valley load. The coefficient of allowed margin can be interpreted as,

If γ1 = γ2 = 2, allowed margin is 25 % of previous peak i.e.

• Lower the margin better the peak to average ratio (PAR) but lower the consumer
cost benefits.

• Higher margin means better consumer benefit but less improved PAR.

The coefficient of allowed margin worked as trade-off between PAR and consumer ben-
efit. Therefore, it should be chosen to restore the balance.

5.2.3 Case Studies for load scheduling

To examine the capabilities of proposed approach different scenario has been included.
The mathematical explanation for scenarios is presented below.

5.2.3.1 Scenario 1: Scheduling without assets

In this case, the household with PV power production and EV smart charging is enabled.
No power is fed back to the grid, only appliance usage and EV charging is considered.
For the purpose, above equation presents additional constraints.
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Pgrid
t = Pa,load

t + Pev,C
t − Ppv,used

t

Psold
t = 0

(5.24)

For execution of equation (5.24) it is assumed that Ppv,used
t < (Pa,load

t + Pev,C
t ).

5.2.3.2 Scenario 2: Scheduling with assets

This scenario consists PV power injection, EV smart charging, and BESS charging/discharging
both. Surplus power remaining after usage of appliance and EV, can be fed back to grid.
The power constraint can be modified as follows.

Pgrid
t = Pa,load

t + Pev,C
t + Pbess,C

t − Ppv,used
t (5.25)

Psold
t =

 0, if Pbess,D
t < Pgrid

t

Pbess,D
t − Pgrid

t , otherwise

 (5.26)

While discharging, Pbess,C
t = 0. Charging and discharging cannot place at the same time.

Therefore, if house power consumption is less than battery power discharge, then extra
power will be fed back to grid.

5.2.3.3 Scenario 3: Scheduling with bidirectional energy transaction

This scenario evaluates with PV power production, EV charging/discharging and BESS
charging/discharging. So the power constraint is modified as follows.

Pgrid
t = Pa,load

t + Pev,C
t + Pbess,C

t − Ppv,used
t (5.27)

Psold
t =

 0, if (Pbess,D
t + Pev,D

t ) < Pgrid
t

(Pbess,D
t + Pev,D

t − Pgrid
t ), otherwise

 (5.28)

5.2.4 Performance Evaluation and Results Discussion

For the simulation purpose, a single smart household system with 21 appliances is de-
veloped. To analyze consumer behavior, the practical data of appliances is considered.
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The appliance load modeling is done on the basis of historic data shown in Table 3.2.
On the basis of stored past data, user appliance load data is generated as shown in Fig.
5.2. The household user is equipped with assets i.e. electric vehicle, battery system
as shown in Table 5.1. The user is allowed to deny the requested scheduling given by
ALCU, but penalty will be imposed. The optimization problem in (5.14) is formulated
as mixed integer linear programming (MILP). The MILP optimization problem for load
scheduling is solved using CVX version 2.0 beta [77] on the platform of MATLAB
software.

Figure 5.2: Smart household appliance unshceduled load

Figure 5.3: RTP price data

The household user is contracted for day-ahead RTP price from LSE and price is com-
municated to user via the ALCU. In day ahead pricing, the load demand of consumers
is updated to LSE and in return, the price signals are informed to the user for next day.
Price information is highly volatile and for the purpose of getting future price informa-
tion, the prediction techniques are needed. Future Price can be predicted by applying
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Figure 5.4: EV car availability

prediction techniques. The real time price data is taken from Illinois Power Corpora-
tion [46] as shown in Fig. 5.3. The small scale PV of 2 kW power production for the
home is considered. For an initial operation of EV, the vehicle arrival time and depar-
ture is shown in Fig. 5.4. It is also assumed that when vehicle is returned to home 60%
discharging of EV battery is already consumed.

Figure 5.5: Load scheduling for scenario 1

Results discussion : The simulation has been done to utilize the capability home as-
sets. The EV is a high consumption load present in present power system. It is required
to operate with this load smartly otherwise it can damage the electricity grid. The smart
charging operation of EV has the capability to provide the optimal time slot for charg-
ing activity. In the smart charging operation, the charging of EV is done in off-peak
hours which is also acknowledge as low-price hours. The smart charging of EV offers



Chapter 5 Optimal Scheduling of Renewable Sources with EV and BESS in DR 73

Figure 5.6: Penalty result for scenario 1

Figure 5.7: Load scheduling for scenario 2

grid to security benefit and user also gets reduction on their energy bill by using EV for
charging purpose in low-peak hours. The proposed scheduling also provides reduction
in peak to average ratio (PAR) of total demand which is highly desirable to maintain the
power demand and supply ratio. The numerical results are shown in Table 5.3.

Table 5.1: System Components
Resource Capacity Full charging Max/Min Charging/Discharging

(kWh) time (hr) SOE (kWh) efficiency (%)
EV (Chevy Volt) 16 5.1 14.4/1.6 0.95

BESS 2 - 1.95/0.05 0.95

In scenario 1, the household user is enabled with load scheduling of home appliances
in the presence of smart charging of EV and solar PV generation. The load scheduling
results are shown in Fig. 5.5. It depicts that the appliance load of user is supplied by grid
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and self PV generation. The PV generation is only available in day hours, so it should
be consumed in day hours. The effect of smart charging of EV can be analyzed by that
the EV load is scheduled in night hours which offers high cost benefits to user. In Fig
5.6 the effect of penalty applied on user for refusing the offered scheduling can be seen,
which shows the desired load offered by controller and load after refusing the controller
offer. The cost of purchasing energy from the grid before application of scheduling
is 203.78 Cents, whereas the cost obtained in this scenario is 146.64. The user gets
benefits of 57.13 Cents by application of smart charging operation. The peak to average
is reduced from 3.14 to 2.19 by application of the smart charging. The user has to pay
6.8 Cents penalty because of refusing controller schedule.

Scenario 2 comprises the home assets such as EV, PV generation, and BESS. The op-
eration of EV is enabled for smart charging option and BESS is utilized for charging
and discharging both. Basically in this case, BESS charging and discharging is added
to the scenario 1. The charging of EV and BESS is employed in low price hours. The
simulation results of proposed load scheduling are shown in Fig. 5.7. It can be analyzed
by Fig. 5.7 that the EV and BESS charging is done in off-peak hours between 11 pm
to 10 am. The positive part of BESS discharging is used for the home appliance usage.
When the load supplied by grid for EV and home appliance is less than the total power
available at home, the surplus power can be fed back to the grid. EV is applicable only
for smart charging purpose. The load scheduling measured cost is 127.36 i.e. occurred
to user for usage. The total benefit gained by user is 76.41 by employment of BESS
charging/discharging. This scenario results in PAR reduction upto 2.22.

Figure 5.8: Load scheduling for scenario 3



Chapter 5 Optimal Scheduling of Renewable Sources with EV and BESS in DR 75

Figure 5.9: Comparison of scenarios

In scenario 3, the discharging of EV is also enabled. The EV can be discharged in
peak hours to supply the load of user. Fig. 5.8 shows the results of load scheduling
by execution of EV and BESS both charging/discharging. In this case, EV can supply
approx 3.3 kW load to appliance and battery at 2 am. The battery is having 2 kW power
requirement, so 2 kW can be given to BESS and remaining can utilize for appliance
consumption. BESS discharging is employed from 1 pm to 9 pm for supplying the
appliances load and surplus load can be fed back to grid. The surplus power available
at home due to PV production is also fed back to grid. By employing this approach user
achieved cost of 116.72 Cents and total benefit gain is 87.06 Cents. The peak to average
ratio is reduced upto 2.05.

Table 5.2: Numerical Results
Total cost User benefits PAR PAR Penalty
(Cents) (Cents) reduction (%) (Cents)

Unscheduled 203.78 - 3.14 - -
Scenario 1 146.64 57.13 2.19 29.99 6.81
Scenario 2 127.36 76.41 2.22 29.29 6.65
Scenario 3 116.72 87.06 2.05 34.40 8.60

The comparison of load scheduling for all proposed scenario is shown in Fig. 5.9.
It depicts that the most of the energy fed back is found in scenario 3 because of EV
and BESS discharging. But in scenario 3 power fed back to grid is because of BESS
discharging and PV surplus. The comparative analysis of numerical results is shown in
Table 5.3. It can be analyzed that the scenario 1 cost is more as compare to scenario 2
and scenario 3. The scenario 3 offers the highest reduction in electricity bill i.e. 87.06
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Cents. The peak to average ratio reduction is found by 29.99 %, 29.29 % and 34.40 %
for scenario 1, 2 and 3 respectively. The employment of PV, EV and BESS offers benefit
of 87.06 Cents to the user and 34.4 % a significant reduction in PAR to the grid. The
penalty involved is the measure of loss acclaimed to user by deviating the appliances
from a prescribed schedule. The proposed load scheduling is accounted beneficial for
user as well as for energy providers.

5.3 DR Incorporating Demand Fluctuation

A price aware residential DR by incorporating demand fluctuation and renewable source
is also proposed in this chapter. The user load model is considered with the non-shiftable
and shiftable type of appliances load. The EV car is also considered for certain residen-
tial premises. The pricing policy is considered as real-time pricing obtained from LSE.
Generally, price-based DR execution results into formation of new peaks because each
user tries to shift their load to low price hours. Therefore to avoid the formation of new
peaks in DR scheduling, one extra term regarding uncertain events in DR is included as
a part of user electricity bill to contribute to flattening demand curve.

5.3.1 Mathematical Modeling

The system investigated here contains a LSE as a source of electricity supply, and the
residential consumer is utilizing the energy provided by LSE.

The K number of home users are present in the system, where k ∈ K. A day is divided
into total T time slots which is denoted by t. Base load of user due to non-shiftable
appliance in tth time slot is denoted by PNS

k,t . The power corresponding to the shiftable
appliance load, EV load and renewable source for individual user in tth time slot is
denoted by PS

k,t, Pev
k,t and PR

k,t, respectively. The total load of the system is indicated by
Pload

k,t for each user,

Pload
k,t = PNS

k,t + PS
k,t + Pev

k,t + PR
k,t (5.29)

Here, PR
k,t is power generation in each hour from the solar rooftop which is a self-

generation of the home user. It is a negative value as this would reduce the burden
of grid in terms of energy needs. The total shiftable load of user is denoted by lS

n as per
daily needs,
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∑
t∈T

PS
k,t = lS

n 0 ≤ PS
k,t ≤ Pmax

k (5.30)

Where Pmax
k is the maximum load demand of individual user on daily basis. The EV

load consumption is represented as follows,

Pload
k,t =

Pev,C
k,t

ηC
+ ηDPev,D

k,t
(5.31)

Pev,C
k,t =

 ∆Pev
k,t, if ∆Pev

k,t ≥ 0
0, otherwise

 (5.32)

Pev,D
k,t =

 ∆Pev
k,t, if ∆Pev

k,t ≤ 0
0, otherwise

 (5.33)

Where Pev,C
k,t and Pev,D

k,t represents the charging and discharging power for EV operation.
The EV charging and discharging equations are shown in (5.32) and (5.33), respec-
tively. The charging of EV is done only when the vehicle is available at residential
premises. EV discharging is considered only when user is not available at home. The
energy change in the EV battery from time of arrival to the time of departure is denoted
by ∆Pev

k,t. The user EV battery size is denoted by Ek for particular kth user. The mathe-
matical change in energy of EV battery from arrival time to departure time is described
as follows,

tdk−1∑
t=tak

∆Pev
k,t = S Q

k − S P
k rmin

t ≥ ∆Pev
k,t ≥ rmax

t (5.34)

Where S P
k represents left energy in EV battery when arrives home and S Q

k represents
energy requirement for next trip. The ta

k and td
k denotes the arrival and departure of

EV. The rmax
t and rmin

t denotes the maximum charging and min discharging rate of EV
battery respectively. The EV battery is charged between arrival and departure time only
for the next trip. The sum of battery, left energy in EV battery and energy change should
always be less than the size of EV battery of particular user.
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0 ≤
(
S P

k +

t0∑
t=tak

∆Pev
k,t

)
≤ Ek t0 = ta

k , (t
a
k + 1)...

....(td
k − 1)

(5.35)

5.3.2 Load Scheduling Problem Formulation

A residential DR load scheduling problem is formulated to achieve an objective of mini-
mization of total electricity bill of each user without interfering their usage requirement.
The user gets the real-time energy prices on the day-ahead basis from the LSE company
in advance. It can encourage users to shift the energy demand from peak hours to off-
peak hours. From user perspective, the minimization of electricity bill for the day ahead
load scheduling can provide high monetary benefits. But at the same time, each user
tries to minimize energy cost by shifting demand to low price periods which can lead
the formation of new peaks in load curve. To overcome this situation, an extra term for
deviation cost is added to user cost minimization problem which can prevent the forma-
tion of new peaks during off-peak hours. The user electricity bill function is formulated
as follows,

f (1) =

T∑
t=1

Ct,buy ∗

(∑
k∈K

Pload
k,t

)
(5.36)

Where the Ct,buy is the real time price (RTP) cost in each hour. The deviation cost
function can be made as follows,

f (2) =

T∑
t=1

Ct,buy ∗

(∑
t∈T

∣∣∣Pload
k,t − m

∣∣∣ ) (5.37)

The absolute value of the difference of a load of each user and mean usage plays a role
to prevent the formation of new peaks. The m denotes the mean usage can be defined
as,

m =
1
T

T∑
t=1

(∑
k∈K

Pload
k,t

)
(5.38)

The household user load scheduling problem can be formulated by combining equation
(5.36) and (5.37) and represented as follows,
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Minimize
[
f (1) + α f (2)

]
(5.39)

The above formulation can be simplified as follows,

Minimize
T∑

t=1

Ct,buy ∗
[(∑

k∈K

Pload
k,t

)
+ α

(∑
k∈K

∣∣∣Pload
k,t − m

∣∣∣ )] (5.40)

Where α is the weighting factor for deviation cost function. It shows the amount of
priority given to demand fluctuation curve in numerical analysis of the system. With this
deviation cost function, the user will collaborate to reduce the variance of the demand
curve, and also leads to minimize the generation cost for utility company and electricity
bill. This also helps to improve the utilization of resources available in the system.

5.3.3 Simulation Results and Discussion

Figure 5.10: Real time pricing

Input data : In this simulation, the total K = 50 household user is considered for
the operation of the system. The household users are equipped with different base load
appliance and shiftable appliances. The 10 number of users are also installed with
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Figure 5.11: Total household user load in the system

electric vehicle at their premises. The 10 number of solar photo-voltaic installed on
rooftop with a capacity of 1 kW to 4 kW. To build the load model of a user on preference
basis appliances data is shown in the Table 3.2. The different electric cars are utilized
for user and EV car data is shown in Table 4.2. The price signal used for the day ahead
pricing is taken from Ameren Illinois Power [46] as shown in Fig 5.10. The optimization
problem for total cost minimization as a convex problem in (5.39) is formulated as MILP
aimed to reduce the daily energy bill of the user. The optimization problem is convex in
nature and solved using CVX version 2.0 beta [77] on the MATLAB platform.

Result discussion : A day-ahead load scheduling is executed to reduce the energy bill
of a household user in the presence of renewable energy sources. A day is divided into
24 slot, T = 24. The load data generated on the preference basis is plotted in Fig. 5.11.
The system load in Fig. 5.11 shows the peak hours are present in the system between
5 pm to 10 pm. With the application of price-based DR, each user tries to shift their
load during lower energy prices periods. The comparison of unscheduled and scheduled
load is shown in Fig. 5.12. It can be analyzed that each user tries to optimize the energy
bill but due to the effect of deviation cost the formation of new peaks is avoided in the
scheduled consumption.

The execution of proposed approach not only beneficial to user but also improves the
system peak to average ratio (PAR) from utility perspective. The numerical results
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Figure 5.12: Scheduled and Unscheduled load

Figure 5.13: User benefit via load scheduling

shown in Table 5.3 validates the effectiveness of the proposed approach, where the total
benefits reaped by a user is 2.17 $ from unscheduled to unscheduled with generation.
Whereas, the benefit of scheduling occurs in term of cost benefit of 6.01 $. The load
curve peak to average ratio is reduced from 2.23 to 1.35.
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Figure 5.14: Monetary benefit with α variation

The user benefits in term of EV utilization is shown in Fig 5.13. It is analyzed that user
with EV gained high economic benefits as compare to user without EV. It is also ana-
lyzed that the user which operate EVs with high capacity are entitled to high monetary
benefits. The α plays an important role to enhance the flatten load curve quality from
the utility perspective. The plot in Fig. 5.14 shows the capability of α in improving
peak to average ratio of the system. With the increasing value of α it results into lower
consumer benefits and at the same time improving load curve. While the lower value of
α results in high monetary benefits for user.

Table 5.3: Numerical Results
Operation Daily Cost (Cents) PAR

Unscheduled consumption 5789.16 2.2265
Unscheduled consumption 5572.63 2.3001

with renewable
Scheduled consumption 5188.24 1.3598

5.4 Carbon Mitigation Approach

The carbon mitigation mechanism is proposed in the background of DR. This approach
is focused on reducing the carbon emission while executing the DR load scheduling.
A demand response problem with a multi-energy user framework is considered. The
distinct type of smart appliances, EVs, battery storage and renewable generations are
installed in the homes. The proposed DR load scheduling mechanism describes the role
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and utilization of renewable sources for carbon mitigation. The mechanism also offers
the dual approach where a user can minimize their electricity bill and carbon emission,
simultaneously.

5.4.1 Mathematical Model

The electric vehicle, battery energy storage system, fuel cell, and solar PV are key
features of the appliance base system model. The home appliance load is denoted by
Pa,load

t and represented as in (5.1).

5.4.1.1 Electric vehicle (EV)

Here, EV is considered as a load of household user. The application of EV is used here
for smart charging purpose. A total load of user is build with appliance load and EV
load. The EV battery discharging is enabled only when a vehicle is not present at home.
The mathematical modeling of EV operation is given from (4.5)-(4.10).

5.4.1.2 Battery energy storage system (BESS)

The BESS charging is completed when electricity prices are low. BESS discharging
can be done at times when user requires load in peak hours i.e. high price periods. The
modeling of BESS is as follows.

PBES S ,C
k,t = ηC

BES S ∗ P̂BES S S
k,t (5.41)

PBES S ,D
k,t = P̂ev,rated

k,t /ηD
BES S (5.42)

EBES S ,soe
k,t + EBES S ,C

k,t ≤ Ek,max
BES S (5.43)

EBES S ,soe
k,t − EBES S ,D

k,t ≥ Ek,min
BES S (5.44)

Ek,min
BES S ≤ EBES S ,soe

k,t ≤ Ek,max
BES S (5.45)
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Where, PBES S ,C
k,t and PBES S ,D

k,t are charging and discharging power of BESS for kth user
in t time slot. ηC

BES S and P̂ev
k,t denotes the efficiency and rated power of battery of BESS

system, respectively. EBES S ,soe
k,t stand for initial state of energy of BESS. Ek,max

BES S and
Ek,min

BES S are upper and lower energy limits for BESS.

5.4.1.3 Solar photovoltaic (PV)

The rooftop solar PV equipped in the house can be used for supplying power to the
home appliance load and BES system. The power balance equation can be represented
as follows,

Ppv
k,t =

 Ppv
k,t, if Ppv

k,t ≤ Pa,load
k,t

Pa,load
k,t + PBES S ,C/D

k,t , if Ppv
k,t ≥ Pa,load

k,t

 (5.46)

Where, Ppv
k,t denotes the power generated from solar PV setup for each home in distinct

time slots. Power generated from PV can be directly fed to home/BES.

5.4.2 Problem Formulation

The problem of energy consumption scheduling incorporation with CO2 emission re-
duction is proposed. The proposed objective function comprises electricity bill mini-
mization with carbon emission reduction. The load pattern of user appliances is known
by analyzing the historic data from their usage. The data analyzed from behavior is
considered as unscheduled consumption of user. The energy consumption scheduling
is done for day-ahead basis. PV and fuel cell are taken as self-generation of the user.
The proposed energy consumption scheduling is executed with two different objectives.
Objective 1 proposes an energy scheduling aimed at reducing carbon reduction CO2

emission and objective 2 targets on the trade-off built between CO2 emission and daily
electricity bill of the user.

5.4.2.1 Objective 1: Carbon mitigation approach

Objective 1 is formulated for energy consumption scheduling as minimization of total
CO2 emission (TCE),
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Minimize
K∑

k=1

T∑
t=1

(
Cem

t ∗ Pgrid
k,t

)
(5.47)

The power balance equation for scheduled load is represented in (5.48).

Pgrid
k,t =

(
βa

k,t ∗ Pa,load
k,t + βev

k,t ∗ Pev,C
k,t + γ ∗ βBES S

k,t ∗ PBES S ,C
k,t + βBES S

k,t ∗ PBES S ,D
k,t

−Ppv
k,t − PFC

k,t

)
∀t ∈ T, k ∈ K

(5.48)

Where, Cem
t is the CO2 emission coefficient in (lbs/kWh) for energy consumption load

Pgrid
k,t of individual household user in h hour. γ is known as a binary variable to rep-

resent the on/off operational situation of BESS. The value of γ can be −1, 0 and 1
for discharging, no operation and charging, respectively. Here, the energy is taken as
equivalent to power, via considering one hour time stamping. βa

k,t, β
ev
k,t and βBES S

k,t are the
binary scheduling variable corresponding to appliances, EV and BESS system, respec-
tively. Ppv

k,t and PFC
k,t denotes the power generated by solar PV and Fuel cell, respectively.

The objective function presented in (5.47) is enabled with following constraints,

T∑
t=1

βa
k,t = Durationa ∀ a ∈ A, k ∈ K (5.49)

T∑
t=1

βev
k,t = Charging timeev ∀ k ∈ K (5.50)

T∑
t=1

βBES S
k,t ≥ 0 ∀ k ∈ K (5.51)

Where Durationa denotes the daily time duration for a certain appliance run. The set of
appliances is denoted by A. Charging timeev represents the total time required for EV
charging. Power balance constraint for load before scheduling is represented as,

Pgrid,unsch
k,t =

(
Pa,load

k,t + Pev,C
k,t + γ ∗ PBES S ,C

k,t − Ppv
k,t − PFC

k,t

)
∀t ∈ T, k ∈ K

(5.52)

Lunsh =

K∑
k=1

Pgrid,unsch
k,t ∀t ∈ T (5.53)
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The load shifting technique with real-time pricing scheme is employed. The time vary-
ing tariff employment can convert off-peak load into accumulated peak load. Therefore,
power transaction constraints are imposed on the system.

Lpeak
sch ≤ Lmean + µ1

Lvalley
sch ≥ Lmean − µ2

(5.54)

µ1 =
max(Lunsh) − mean(Lunsh)

γ1
(5.55)

µ2 =
mean(Lunsh) − min(Lunsh)

γ2
(5.56)

Equation from (5.54)- (5.56) are the power transaction limit constraints for energy con-
sumption scheduling. Where Lpeak

sch and Lvalley
sch are the peak load and valley load for

scheduled consumption respectively. µ1 and µ2 are the margin parameters. γ1 and γ2

are the coefficient of allowed margin which helps deciding peak and valley load. If
γ1 = γ2 = 2, it means allowed margin is 25 % of previous peak. Lower the margin bet-
ter the peak to average ratio (PAR) but lower the consumer cost benefits. Higher margin
means better consumer benefit but less improved PAR. Therefore, a balanced coefficient
should be chosen which maintains the balance restored in PAR and consumer benefit.

5.4.2.2 Objective 2: Dual objective approach

The objective in (5.47) leads the energy consumption scheduling for minimizing the
carbon emission. But it doesn’t offer any benefits to the user in term of reducing their
energy bill. Therefore for optimizing the carbon emission and electricity bill of user, a
dual objective is framed as follows.

K∑
k=1

T∑
t=1

[(
α Ĉem

t ∗ Pgrid,sch
k,t︸          ︷︷          ︸

CO2 emission

)
+ (1 − α)

(
Ĉt ∗ Pgrid,sch

k,t︸        ︷︷        ︸
Energy cost

)]
(5.57)

The objective in (5.57) is a dual objective function with a trade-off factor α. Where
Pgrid,sch

k,t is defined as in (5.48). Ĉem
t is the normalized CO2 emission coefficient and Ĉt

is the normalized price term for purchasing electricity from the grid. These normalized
parameters is defined as follows.
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Ĉem
t =

Cem
t − min(Cem

t )
max(Cem

t ) − min(Cem
t )

∀t ∈ T (5.58)

Ĉt =
Ct − min(Ct)

max(Ct) − min(Ct)
∀t ∈ T (5.59)

The objective function presented in (5.57) is executed with constraints from (5.49)-
(5.56). The CO2 emission and electricity price is normalized between 0 to 1. The
α represent the trade-off factor between electricity bill and CO2 emission. By using
optimization problem in (5.57), consumer gets opportunity to schedule their appliances
with lower electricity bill as well as reduced carbon footprints.

5.4.3 Simulation Results & Discussion

5.4.3.1 Input Data

In the simulation setup, 50 residential users are considered. Each user is equipped with
12 appliances. 10 user has allocated electric vehicle. EV is applicable for charging
purpose only. The 10 number of each fuel cell, solar PV, and BESS is granted in the
total system. The four distinct type of vehicle is used and details are shown in Table 4.2.
The appliance data is given in Table 3.2. The fuel cell of 0.7 kW capacity is considered
as fixed generation available at household. 1 kW PVs are installed at rooftops. BESS
with 4.8 kWh capacity is considered.

The solar radiation is considered for Illinois city. The hourly carbon emission. The
energy scheduling problem is formulated as mixed integer linear programming (MILP)
and solve using CVX version 2.0 beta [77] on the MATLAB platform.

5.4.3.2 Result Discussion

The simulation is done for various scenarios to test the capability of EV and renew-
able sources for carbon emission reduction. The DR energy consumption scheduling
encourages users to schedule the load and get economic benefits in return. But the pro-
posed algorithm executes an energy consumption scheduling with minimizing carbon
attributes produced via electricity consumption reduction.

Before application of scheduling algorithm, the household load is shown in Fig. 5.15.
The power consumed by appliances represents the variability of a load. The system is
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Figure 5.15: Appliance load data

operating under the household appliance load, EV load. But due to sources like PV and
fuel cell, power injection is also present in the system which can significantly reduce
the dependency on grid generation. Fig. 5.16 shows the load consumption from grid
and power injection from sources. The hourly RTP and CO2 emission is displayed in
Fig. 5.17. To investigate the potential of proposed DR algorithm, two case studies are
developed as follows,

Figure 5.16: System load

Without renewable and BESS: In this case, the total energy supplied by electricity
grid is available only. Renewable sources and BESS system are not considered, and EV
is taken as a load. It is considered as a base case for energy consumption scheduling.
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Figure 5.17: RTP price and CO2 emission

The electricity tariff is considered as RTP prices. The optimization problem with two
different objectives is recognized. The CO2 emission reduction and consumer cost-
benefit both are optimized. This case is represented as without generation and BESS.

Table 5.4: Numerical Results
Total CO2 CO2 reduction PAR Cost reduction

emission (lbs) (Ibs) (Cents)
Unscheduled - 1660.1 - 2.0012 -

Objective 1
Case 1 1621.2 38.8939 1.8340 288.4552
Case 2 1413.3 246.8 1154.1

Objective 2
Case 1 1645.2 14.8121 1.8343 469.3045
Case 2 1437.4 222.6920 1334.9

With renewable and BESS: In this case, users are equipped with individual energy
generation sources such as fuel cell and PV. EV is used for charging purpose only. The
RTP prices are considered as purchasing electricity from the grid. Objective functions
are analyzed to test the potential of renewable sources. It can be displayed as with
generation and BESS.

Fig. 5.18 shows the energy consumption scheduling result by solving optimization
problem (OP) of objective 1 in (5.47). In Fig. 5.19, the comparison of unscheduled
load and scheduling without and with generation is analyzed. This OP is focused on
carbon emission reduction. Therefore the load is shifted to the night hours which results
into significant carbon reduction. Table 5.4 shows the numerical results via energy
consumption scheduling. It can be seen that the 38.89 lbs and 246.8 lbs CO2 emission is
achieved without and with generation, respectively. The cost reduction of 288.45 Cents
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Figure 5.18: Load scheduling with objective 1

Figure 5.19: Load scheduling with objective 2

and 1154.1 Cents is obtained without and with generation. By numerical results, it can
be analyzed that by using generation and BESS the consumer cost and CO2 both are
considerably reduced. The peak to average ratio (PAR) from unscheduled to scheduled
consumption is reduced by 8.35 %.

The Fig. 5.19 denotes the comparison of load obtained after scheduling by execution of
objective 2 in (5.57). In this OP, both CO2 emission and user bill both are optimized as a
dual objective. Carbon emission reduction values are 14.8121 lbs and 222.7 lbs without
and with generation, respectively. The consumer benefit on their bill is 469.3045 Cents
and 1334.9 Cents without and with generation, respectively. The PAR in this case is
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Figure 5.20: BESS charging/discharging

reduced by 8.34 %. α is considered as 0.5 for this scenario and if it is increased the high
benefits can be gained by user but reduce the carbon impact.

The operation of battery for different objectives are shown in Fig. 5.20. It can be an-
alyzed that battery is charged during off -peak hours and can be used for discharging
purpose when prices are high. By comparing the numerical results of energy consump-
tion scheduling, it can be interpreted that those user employing renewable sources and
BESS gets high economic benefits. The practice of renewable generation affect the car-
bon footprint, the motivational reduction is found. Overall the every objective analyzed
have exhibited some significant points. The highest carbon reduction is found with an-
alyzing objective 1 i.e. 246.8 lbs. Whereas the objective 2 offers the maximum cost
benefits of 1334.9 Cents.

Objective 1 gives best CO2 emission reduction, but give increased PAR ratio. By con-
trolling the margin parameters µ1 and µ2 desired PAR can be achieved. The coefficient
of allowed margin γ1 and γ2 should be chosen in appropriate manner to balance both
PAR and CO2 emission. Objective 2 results reduction in both CO2 emission and cost
optimization. The value of α decides the weight of cost benefits in energy scheduling.
For objective 2 emission reduction and consumer benefit are balanced but consumer
benefit can be improved by changing variable α. The application of the proposed DR
algorithm in can leads the way to valuable carbon reduction approach.
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5.5 Summary

This chapter presented the load scheduling of smart household in the presence of home
assets such as electric vehicle, battery system, and small-scale PV generation. The main
motive is to analyze the application of technologies such as EV and BESS for the op-
eration of home and grid. The proposed optimization problem is developed as MILP
formulation. The EV and BESS played a role in enabling technologies to reduce the
energy bill of a household user and to maintain comfort. The user comfort is modeled
through waiting parameter of operation of any appliance. The surplus power available at
home can be fed back to the grid, and more savings are achieved. Execution of the pro-
posed approach increases the reliability of the HEM system in terms of utilization. The
simulation results can prove the importance of proposed scheduling regarding reduced
consumer bill payment and reduced peak demand. The practical implementation of such
home energy scheduling can increase the flexibility in the electrical power system.

The operation of residential energy customers equipped with various appliances and
asset is examined. Under this system, a controller is aimed to minimize the total energy
procuring cost with dynamics pricing environment in the presence of renewable sources.
Furthermore, an extra term is added to improve the demand curve which enhances the
capability of the system. The application of the proposed methodology encourages the
household user to shift their energy consumption to achieve lower daily energy bills.
Further integration of vehicles in the transportation environment has introduced the new
kind of load in the residential sector, whereas the proposed strategy can develop smooth
operations in the scenario. The proposed case study can be extended to the practical
scene of several household users aiming to utilize the resources.

The utilization of renewable sources and battery system for carbon emission reduction
along with residential demand response is also investigated. The operation of a house-
hold is evaluated for cases such as without and with renewable generation. The encour-
agement of carbon emission reduction technique is the key feature of the work. The
simulation results also demonstrate that the proposed system is effective in reducing the
carbon footprints, consumer payments, and peak load while maintaining the comfort
and convenience of the user.



Chapter 6

Strategical Game Theoretical DR

6.1 Introduction

The advent of future electricity paradigm in the form of smart grid encourages the par-
ticipation of electricity customers in the operational and market policies of power sys-
tem via DR programs. The operation of DR programs enables the interaction among
electricity end consumers and utility for empowering the smart grid. DR programs are
encouraging the user to become part of electricity infrastructure and being informed of
energy management decisions. The huge data communication and interaction from one
end to another end in DR programs made the implementation more challenging. With
the help of optimization and decision making techniques electricity customer will be
able to mange interaction between customers and energy providers.

Game theory is a computational model of interaction and competition among energy
user and utility company is extensively used to DR programs. The study in [101]
presents a non-cooperative demand mechanism game to minimize user expenses by
producing or storing the battery energy instead just buying from the grid. Two design is
developed such as to optimize separate user by formulating the grid optimization prob-
lem as a non-cooperative game other as joint optimization of the whole system allowing
some cooperation among the users. A smart power system with distributed consumers
seeking their power requirement to the utility company is proposed in [102]. In this
model, user tries to minimize for their batteries during off-peak hours and discharging
the energy at peak hours. A Stackelberg game is presented in [103] between utility
companies, and end-consumers to maximize the economic benefit of the utility com-
pany and user payoff. The game theory applications for DR in [53] used the players in
the games that can be naturally modeled by autonomous agents. An autonomous DR
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model is developed in [104] that can achieve both optimality and fairness. The work
on achieving fairness in DR framework is limited, perhaps fairness point of view is in-
cluded in [104]. A repeated game is presented in [105] which shows the inefficiency
of the Nash Equilibrium as a one-shot game, hence represented as repeated game. To
incorporate the fairness among users, they are divided into groups and only one group
is allowed to participate in a DR program at a time. An online long-term scheduling al-
gorithm is developed in [106] to model the uncertain behavior of price and load demand
as a Markov decision process. To make the problem tractable, each user is required to
execute an algorithm to approximate the state of users.

Load shifting and load curtailment are the two mechanisms to implement DR programs.
Reduction in the power consumption is obtained by motivating the consumers to adopt
energy enlightened pattern [107]. On the other hand, load shifting takes advantage of
time independence of loads, and shifts loads from peak time to off-peak time in order to
avoid accumulated load at peak hours. Some users have their usage timings of individual
appliances, which can not be shifted. Even though shifting can provide benefit in terms
of cost but comfort can not be compromised. A human expert based load curtailment
approach is investigated in [108] to model a complex decision-making process. In this
approach, a load curtailment allocation is implemented by prioritizing the importance
of customers and type of loads. A direct load control technique is proposed in [109] to
implement a semi-automated demand response with Gaussian mixture model (GMM)
for estimation purpose of load demand.

The literature reveals that use of game theory in demand response problem is a fascinat-
ing approach to deal within an interactive environment. Most of the research work in the
past has dealt with the problem of interaction between user and utility but the accoun-
tancy of fairness of Nash Equilibrium is limited throughout the literature. This chapter
presents a game theory based DR model using correlated equilibrium. Some residential
user equipped with a set of appliances is considered. The optimization problem is for-
mulated as the minimization of the cost levied on the user for usage of appliances in the
system. The energy consumption scheduling is determined in chronological sequence,
which is obtained as a solution of an optimization problem. The schedule time period
for an appliance is obtained so that as an effect on future allocated times, the optimiza-
tion offers cost benefit to each user within a community in the long run. The unique
features of the chapter are stated as follows,

• The proposed dynamic demand response model introduces correlated equilibrium
approach in a game theoretic scenario for the residential consumer.
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• The proposed methodology reveals a scheduling sequence based on the user pri-
ority order which leads to high economic benefit for a particular user as well as
for society.

• The proposed model assure fairness of Nash Equilibrium among the user, in the
long run, to serve as a benchmark for performance evaluation.

The structure of the chapter is represented as follows. The architecture of the proposed
system and pricing scheme is introduced in Section 6.2. The mathematical modeling
of the proposed system is demonstrated in Section 6.3. Methodology of correlated
equilibrium approach is explained in Section 6.4. Performance evaluation and result
discussion is given in Section 6.5. Finally, conclusion is presented in Section 6.6.

Table 6.1: List of variables used in this chapter
k(K) Index (set) of users in the system.
a(A) Index (set) of appliances.
t(T ) Index (set) of time periods.
u Individual user.
d(D) Index (set) of days.
Wt Base load at tth hour.
�̂a,k Power rating of ath appliance of kthuser.
∆ta,k Running duration for ath appliance of kth user.
C(Wt + �̂a,k) Cost of using appliance a of kth user at tth hour.
C(W

′

t + �̂a,k) Cost of using appliance a of kth user if scheduling
has occurred prior to it actually occurs.

xa,k,d Energy consumption scheduling vector of ath appliance
of appliance of kth user for dth day.

xt
a,k,d Energy consumption scheduling vector of ath appliance

of kth user on dth day at t time slot.
tosk Time of scheduling of user k.
W tosk

t Base load of tth hour at time of scheduling of user k .
b f da,k,d Balance factor of kth user for ath appliance on d day.
b fk,d Balance factor of kth user on d day.
Pk,d Payoff of kth user on d day.
X(k,d) Set of scheduling vector of appliances of kth user for a day d.
X−(k,d) Set of scheduling vector of appliances of other user than kth for a day d.
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6.2 System Model

6.2.1 Overview of System

K number of users are considered in the system represented by k, k ∈ [1,K]. Each
user is having A set of appliances indexed as a, a ∈ [1, A]. The energy consumption of
each appliance is represented by Ea,k and power rating as �̂a,k. For a specific appliance
daily running duration if fixed. The presented model encompasses user preference as
one of its highlighting features. Users can set preferences for the start and end of the
time to schedule their appliances. The consumer preference based running duration of
ath appliance of kth user can be denoted by ∆ta,k.

Each home is installed with ALCU which has a built-in smart meter. ALCU enables
controlling load and communicating load information to the centralized controller unit.
The centralized unit communicates with LSE to exchange the price and load informa-
tion. All the information that pertains to appliances of the end user is stored in ALCU.
The ALCU then communicates the information to the centralized controller in such a
way that peak to average (PAR) ratio of load on the whole system is reduced, energy bill
of user is minimized, and the overall cost of the system is reduced, without infringing
the users’ preferences. After completing such scheduling, ALCU recommends users to
run their appliances at the available time slot which is optimally selected.

To bridge the communication among residential users and utility and to avoid latency
issue related to information delay many approaches have been developed in the literature
[3]. A two-layer communication base architecture is considered as per demonstrated
in [110]. A simple structure of communication network is shown in Fig. 6.1. It is
assumed that each appliance has a wireless communication module which is required for
sending/receiving information. All the appliances are equipped with smart plugs which
a ZigBee electricity meter to be connected with ALCU via the wireless link with Zigbee
technology [111]. The communication is named as home area network (HAN) where
all users get connect to wide area network (WAN). Smart meters has ability to connect
the HAN, and this can further facilitate awareness to the users for energy usage cost and
control the appliance’s consumption. Zigbee technology is widely popular for wireless
communication, it has the ability to operate in mesh network which is advantageous for
household appliances such as appliance can remain in sleep mode when they are not
operating. It is also assumed that the energy provider protects the security of user load
information, i.e., the centralized controller has in-built privacy control mechanism.
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Figure 6.1: Communication Network Architecture

6.2.2 Load Based Pricing Mechanism

The inclusion of dynamic pricing is proved as an encouraging factor for the users to
shift their appliances based loads accordingly to reduce the system PAR performance.

Here, C
(
Wt + �̂a,k

)
represents the cost incurred by an arbitrary user k by running ath

appliance, in Cents for the time between t and (t + 1), where Wt is the expected base
load on the system before scheduling the ath appliance of user k. Wt is not considered as
the part of scheduling process because it is fixed but it needs to be encapsulated in the
cost function. Wt is the base load consumed by user in tth time slot. To develop a cost
function as required by the system particular assumption should be taken care as,

Assumption 1: Cost function is assumed to be increasing with total per hour load. For
each time duration t ∈ T , the following inequality holds,

C
(
W1 + �̂a,k

)
< C

(
W2 + �̂a,k

)
, ∀W1 < W2 (6.1)

Assumption 2: A cost function is assumed to be strictly convex in nature [112]. A
function Ct is said to be convex for any arbitrary W1 and W2, for any θ with 0 ≤ θ ≤ 1,
when

C
(
θ(W1 + �̂a,k) + (1 − θ)(W2 + �̂a,k)

)
≤ θC

(
(W1 + �̂a,k

)
+ (1 − θ)C(W2 + �̂a,k) (6.2)

Therefore, it is necessary that the cost function should be a convex function. Mathe-
matically the quadratic function is a suitable convex function [112]. Hence, a quadratic
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Figure 6.2: Sample convex functions: (a) 2 step piece-wise and (b) Quadratic cost
function

function is used as cost function. The cost functions used is per hour based cost func-
tions C(Wt + �̂a,k) that is proportional to the total energy usage during the same time
window denoted by (W1 + �̂a,k). Therefore, C(W1 + �̂a,k) can be explained as follows,

C(Wt + �̂a,k) = at(Wt + �̂a,k)2 + bt(Wt + �̂a,k) + ct (6.3)

where at > 0 and bt, ct ≥ 0 are pre-determined parameters.

Generally, two cost functions are considered in the electrical power system, i.e. piece-
wise linear cost function and quadratic cost function [113]. The piece-wise linear cost
functions used in industry are typical to adopt for modeling of the proposed system.
For example, a 2-step piece-wise linear cost function in convex price model form is
adopted by BC Hydro. The BC Hydro company charged customers under residential
conservation scheme, which is a rate divided into two parts. This means customers are
charged one rate of electricity up to a certain point in each billing period and a higher
rate for any electricity used beyond that point. The point where the customer is paying
a higher rate is called step 2 threshold and is based on 90% of the average household
consumption in all household. A sample 2 step piece-wise linear function utilized by
BC Hydro is shown in Fig. 6.2a, where step 1 rate is 8.58 Cents/kWh and step 2 rate is
12.87 Cents/kWh. A quadratic cost function as in equation (6.3) is a simple load-based
quadratic function. The piece-wise linear function is difficult to track for optimization
purpose. Whereas a sample quadratic cost functions as shown in Fig. 6.2b provides
smooth operation in the optimization process and it is easily tractable.
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6.3 Analytical Formulation

6.3.1 Problem Formulation

The proposed problem accounts for the social fairness point of view for users in such
a way that available energy capacity is utilized to minimize their energy bill expenses.
The cost incurred on an arbitrary appliance a of user k on a day d is expressed in (6.2).

T∑
t=0

[
C(Wt + �̂a,k) (xt

a,k,d)
]

(6.4)

Here xt
a,k,d is a energy consumption scheduling variable for ath appliance of kth user in a

day. From [112], [114] it can be inferred that since (6.4) is the sum of convex functions,
it is a convex function as well. The cost incurred by a user k, is the sum of the cost
incurred on individual appliances and can be formulated as optimization problem,

Minimize
A∑

a=1

[ T∑
t=0

C(Wt + �̂a,k) (xt
a,k,d)

]
(6.5)

Each and every user intends to minimize the energy consumption bill. But in general
way, minimum cost is incurred by a user when the cost with respect to its appliances are
minimum. This situation leads to the problem that which can be addressed through the
proposed model. Thus, the scheduling should done be in such a way that the users have
to pay to the minimum bill feasible to attain, that inspires to solve the following problem
in (6.5). However, the solution can lead to an arbitrary distribution of cost benefits to
the users.

6.3.2 Fairness Evaluation

The proposed model assures the fairness in the long run for scheduling purpose among
users. Let C(W tos1

t + �̂a1,1) and C(W tos2
t + �̂a2,2) be the cost of using appliances at tth hour

by two random user. Where tos1 and tos2 are times at which the process of computation
of costs at various hour for user 1 and user 2 took place respectively. Let an arbitrary
appliance of user 1 and user 2 be a1 and a2 respectively. If tos1 < tos2 i.e. user 1 gets
scheduling before user 2, then
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∀t ∈ T, C(W tos1
t + �̂a1,1) ≤ C(W tos2

t + �̂a2,2) (6.6)

and

∃t ∈ T, C(W tos1
t + �̂a1,1) < C(W tos2

t + �̂a2,2) (6.7)

Conversely, if tos1 > tos2 , i.e.

∀t ∈ T, C(W tos1
t + �̂a1,1) ≥ C(W tos2

t + �̂a2,2) (6.8)

and

∃t ∈ T, C(W tos1
t + �̂a1,1) > C(W tos2

t + �̂a2,2) (6.9)

Proof of Theorem 2 and Theorem 3 are given in the Appendix B and Appendix C,
respectively. As described in Theorem 2 and Theorem 3 it is interpreted that a user
who gets a chance to schedule first has lower cost expenses than on someone who got
scheduling chance later. Since all users have some appliances, and most of their appli-
ances are similar, their power ratings are ought to be similar. The appliance which is
not being used frequently by a user doesn’t make much difference to the behavior of the
system model.

However, the above inference could be seen as true for almost all the time, which is
also found right during simulations. Because each user has some appliances, and given
that the time of scheduling tosk for appliances of a user 1 takes place earlier than that of
all appliances of user 2, there needs to be a disparity in the benefits reaped by the user.
Unless there is a change in scheduling sequence, the disparity will keep on increasing
every day. Theorem 3 also states that the measured cost of user 2 is more than user 1.
Generally, user 1 denotes the user which request execute the scheduling before the other
users in the system. Therefore it seeks to minimize cost charged on each user as well as
ensuring fairness in distributing profit among all users. It is done by finding the solution
from (6.5) for each appliance of every user with changing the chronology of tosk of a
user for separate days.

To encapsulate such disparity, the following terms are introduced i.e. Balance factor of
appliance represented as b f da,k,d, which denotes balance factor of ath appliance of kth

user till day d, whered ∈ D. Balance factor of user u as b fk,d till day d and fair term.



Chapter 6 Strategical Game Theoretical DR 101

6.3.2.1 Balance factor for appliances

The balance factor b f da,k,d of appliance a of user k on a day d ∈ D is defined as the
difference between the cost that would have incurred by a if scheduling of k would have
taken place the earliest and cost that has incurred by the appliance a by the schedul-
ing when it actually occurred, per kWh of energy usage by a over days upto D, i.e.
d1, d2, ........d ∈ D.

b f da,k,d =

D∑
d=1

[ T∑
t=0

xt
a,k,d

{
C(Wt + �̂a,k) −C(W

′

t + �̂a,k)
}]

(6.10)

6.3.2.2 User balance factor

Balance factor b fk,d of user k on day d ∈ D is the sum of b f da,k,d of all appliances of k.

b fk,d =

A∑
a=1

b f da,k,d (6.11)

It follows that later the scheduling, higher would be the cost incurred and lesser would
be balance factor.

6.3.2.3 Fairness

The ‘fair’ term is defined as scheduling of a given user 1 over finite d number of days
would be considered fair if for every pair of user 1 & user 2 for two days preceding
to each other, within every finite day window interval for which the balance factor for
different user on same day is related as follows.

b f1,1 > b f2,1 and b f1,2 > b f2,2

6.4 Proposed Methodology

The objective of minimizing the cost of energy usage along with ascertaining fairness
among all users in the long run without forgoing the preferences of users is represented
as the scheduling game. Such a game theoretic model uses correlated equilibrium to
determine the scheduling sequence in which user cost minimization is done.
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6.4.1 Game Theoretic Formulation

• Players: Total number of users where each user is denoted by k and indexed from
1 to K.

• Strategies: Energy consumption scheduling vector Xk,d, for each user k.

• Payoffs: Pk,d(X(k,d),X−(k,d)) define payoff for each user on particular day d.

The payoff is defined as the negative of the cost that should be incurred on a user k on
using total appliances on any given day d.

Pk,d(X(k,d),X−(k,d)) = −

A∑
a=1

T∑
t=0

[
C(Wt + �̂a,k) (xt

a,k,d)
]

(6.12)

Since (6.12) is the negative of a convex function, it is a concave function. Therefore, a
unique and Nash Equilibrium (NE) theorem in [115] is applied to the proposed schedul-
ing game. Theorem 1 given in Appendix A proves that the optimization problem in
(6.5) is the Nash Equilibrium of the game.

In order to maximize the profit of user, the payoff function should also be optimized.
For the above problem objective function can be formulated as,

Maximize Pk,d
(
X(k,d),X−(k,d)

)
Such that,

T∑
t=0

xt
a,k,d = ∆ta,k

(6.13)

The (6.13) represents the payoff function of a given user k when the corresponding
scheduling vector is X(k,d) while another player (user) schedule vector is denoted by
X−(k,d).

6.4.2 Chronological Optimization Process

The b fk,d is used in increasing order to determine the sequence of users for the optimized
scheduling process. Such a mechanism can be viewed as a coordination game where
players are coordinated to choose an equilibrium which is not only favorable to each
player but also an equitable solution to the problem. The ALCU is the fair ordering
medium here. For each and every user it determines the time at which the process of
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finding out the optimal timing of running their appliances should execute, i.e. tosk. One
of the essential features of using correlated equilibrium is that no user can benefit more
by deviating from the strategy prescribed by their ALCU, given that all other users keep
up to the prescribed plan given by ALCU. Theorem 4 in Appendix D also proves that no
user has any incentive to deviate from the specified ordering. It validates the operation
of the system in fair environment.

Despite the chronological order of the tosk of user k, (6.5) always give NE of the
scheduling game. Under the hood, the shuffling of the chronology of tosk actually
shuffles the NEs of the users. It is a fact that any randomization over NEs is corre-
lated equilibria as well [115], [116]. Hence, this is another way that proves that the
approach qualifies for using correlated equilibrium and the solution achieved are valid
and consistent for all purpose.

Another benefit of using the chronological ordering for determining the tosk of users
is that it reduces the overall cost of using electricity on the system. Hence, the use
of ordering improves the total monetary charge levied on the system. Additionally,
the proposed correlated equilibrium strategy is egalitarian in nature and even-handily
reduces the cost of each user. The optimization problem in (6.13) is solved by using
coordinate ascent method [117] in distributed fashion to find out the optimal scheduling
sequence. Algorithm 6.7 expose the procedure of scheduling game algorithm executed
in the proposed approach.

The tosk should not be mixed with the time at which appliances are going to run. It is
the time slot at which an appliance a of user k on dth day is encapsulated in xa,k,d. Each
xa,k,d has 24 elements represents 24 hours of the day in such a way that,

xt
a,k,d = 1, if the corresponding appliance is scheduled to run between t and (t+1) hour.

xt
a,k,d = 0, if the corresponding appliance is not going to run between t and (t+1) hour.

6.5 Performance Evaluation and Result Discussion

6.5.1 Input Data

For the simulation purpose 20 users are considered in the system. Each user is having
appliances randomly between 12 to 17. The appliances are both shiftable and non-
shiftable in nature. The appliances data is given in Table 3.2. The duration for which the
appliances have to run, the time window (includes the start time allowed and end time)
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Algorithm 6.7 Algorithm executed on centralized controller unit
1: procedure
2: Initialization of predefined parameters;
3: Repeat once everyday ();
4: for collect base load data of next day;
5: for user k sequentially from K;
6: for each appliance a sequentially from A;
7: Calculate cost for all appliances (6.4);
8: Increase base load at scheduled hours through �̂a,k;
9: Calculate b fa,k,d(6.11) ;

10: end for
11: Calculate b fk,d (6.12);
12: end for
13: Rearrange all user according to b fk,d;
14: end for
15: d = d.nextDay();
16: end procedure

in which the appliances are allowed to run and the type of appliance are known before
the start of the simulation. The expected dynamic load data before scheduling of any
appliance under simulation has been taken from New Hampshire electric cooperative
[118]. Once the appliances scheduling of a user is done, the dynamic load for the
next appliance or the next user to be scheduled changes. The energy consumed by
the previously scheduled appliance is added to the new dynamic load. It is assumed
that value of predetermined parameters in cost function is fixed for each period. The
wholesale price of the electricity (at) is taken as 3 cents/kWh. For the sake of simplicity
the bt and ct are assumed to be 0. The simulation has been run for 10 days in a stretch
for the purpose of day-ahead energy consumption scheduling. Each day is split into 24
time periods representing the 24 hours of the day. The Java platform with IntelliJ IDEA
software has been used to run the simulations.

Few assumptions have been taken for implementation purpose. It is assumed that load
data of next day can be known in prior by using prediction techniques from past load
data. In the literature many methods have been developed for load prediction [71]. It
is also assumed that ALCU is installed with built in smart meter which connected to
centralize controller unit which will take decision for day ahead scheduling.

The appliances are randomly distributed over all users. The working methodology of
proposed approach is shown in Fig. 6.3. The optimal sequence for various appliances
can be found by solving the chronological optimization using correlated equilibrium.
So initially, users have scheduled on the basis of their balance factor. The user with
highest balance factor is allowed to scheduled first in starting. But after starting the day
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Figure 6.3: Working methodology

it is not necessary that the same user is allowed to schedule the load in the same slot.
So the scheduling sequence is changed for future times. The optimal sequence is varied
for each day and solution is considered in the fair environment.

6.5.2 Scenarios and Evaluated Factors

For evaluating the performance, two different scenarios are compared.

6.5.2.1 Non-optimized

There is no degree of optimization regarding any parameters. The trend in consumption
seems random at times. It can be viewed as a mode of using appliances where a user
directly turns his appliance on/off as per requirement. This scenario ignores encompass-
ing the concept of cost optimization.

6.5.2.2 Optimized under non-correlation

The ALCU leverages the schedule returned by NEs of (6.13) to schedule the appliances.
Similar to the proposed technique, the tos of different users do not overlap. However,
the order of tos isn’t reshuffled at all. This scenario follows the steps to minimize the
cost as described in section 6.3 but ignores the fairness aspect which has been outlined
in proposed approach.

The proposed model was simulated the scenarios with respect to the following factors,

• PAR of the system: The peak to average ratio of the system under all three scenario
is evaluated.
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• Average benefit from optimized over non-optimized scheduling: The benefit can
be defined as the reduction in the cost incurred on the user if he schedules his
appliances optimally over non-optimally. For the sake of representing ability, the
benefit gained by users is averaged on a given day under different scenarios.

• Fairness: The fairness is defined as equitable distribution of balance factor for
each user in the long run. Its performance is evaluated in scenario 2 and the
proposed.

• Total cost on the system: It is defined as the sum of cost on each user for using
their appliances.

The benefit is derived by subtracting the cost of running appliances during the time
returned by correlation from the cost of running appliances in a non-optimized way.
The cost is calculated using the base load at the point of time decided by the ALCU for
scheduling a particular appliance.

6.5.3 Results and Discussion

The simulation results are described here for performance assessment of the proposed
model. The system PAR is shown in Fig. 6.4. It is shown that the PAR is reduced con-
siderably on using optimization through correlation over non-optimization. The average
change in PAR by using proposed correlated optimization over non-optimized is 31.54
%. The PAR of optimization using NEs without correlation has been found very similar
to the proposed method.

Fig. 6.5 and Fig. 6.6 shows that the variance and standard deviation of balance fac-
tor b fk,d does not change much in proposed approach, but it does in non-correlated
approach.

Hence, it is apparent that the problem of disparity does not aggravate in the proposed
technique. The balance factor for different users under non-correlation (Scenario 2) and
optimized with correlation is shown in Fig. 6.7 and Fig. 6.8 respectively. From balance
factor for various users, it can be clearly seen under non-correlation that if the balance
factor is increasing for any particular user, it is going on increasing, but in the case
of under correlation, the balance factor is symmetrically distributed over all users. So
under the proposed scenario, the balance factor of the users is distributed in order to
maintain fairness among all users.
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Figure 6.4: System Peak to average ratio (PAR)

Figure 6.5: Standard deviation of balance factor

The comparison of features in the proposed model for different scenarios is shown in
Table 6.2. The values in the cell represent relative ranking to each other. The lower
ranking of a scenario shows better performance with respect to other. By this, it is
shown that the non-optimized scheduling which is scenario 1 has been ranked 2 for
every feature, however the scheduling is done with game theoretic with and without
correlated has performed better in terms of evaluated parameter. While comparing
the fairness feature in non-correlated and proposed scenario, the proposed correlated
optimization has shown better performance.
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Figure 6.6: Variance of balance factor

Figure 6.7: Balance factor for different users under non correlation

Table 6.2: Performace Index
Scenario PAR Benefit of user over Fairness in the

non optimized scheduling long run
Proposed 1 1 1

Scenario 1 2 2 NA
Scenario 2 1 1 2
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Figure 6.8: Balance factor for different users under correlation

Figure 6.9: Total cost on the system

Fig. 6.9 show that correlated processing for scheduling yields lower total cost than non-
optimized. It can be measured that the average of total cost of the system over 10 days
is $160.33 for non-optimized scheduling, whereas the optimized cost with proposed
is $141.48. The significant change in cost minimization of $18 is found in proposed
approach over non-optimized scenario on an average basis.

The monetary benefit gained by users for a given day is shown in Fig. 6.10. The simu-
lation results clearly show that in the benefit term the proposed technique outperforms



110 Chapter 6 Strategical Game Theoretical DR

Figure 6.10: Monetarty benefit for the system

the non-optimized scheduling as in Scenario 1, by at least $7.26 and utmost by $26.16.
From the benefit, it can be seen that for various days the benefit does not show much
difference. So it can be interpreted that in a long run every user gets benefit which is a
fair environment.

6.6 Summary

This chapter proposed a DR model which encapsulates the day ahead optimal schedul-
ing with fairness among users. The concept of “Fairness” in this model has been incul-
cated to have equitable benefit distribution among all users over a long run. The per-
formance index comparison for different scenarios has shown validation for proposed
mechanism of scheduling in a fair environment. So it has been shown that no user can
gain more by deviating from the prescribed strategic order. Such deviations would in-
crease the cost imposed on all users. The proposed model is using an alternative billing
model to improve fairness while maintaining a close to optimal overall system perfor-
mance. It has been confirmed that the proposed design is advantageous by analytical
case studies and simulations. The proposed model can be efficiently implemented for
residential users in practical scenario. The usage of model can ensure the effectiveness
of DR programs in the real world applications.



Chapter 7

Distributed Framework of DR

7.1 Introduction

Most of existing DR approaches are executed in centralized frame. Moreover, they are
not tailored to address the challenges of privacy in emerging DR problems. In central-
ized frame, the user is not allowed to take their decision by own. Centralized controller
or utility will take the decision on behalf of user. Whereas in the distributed optimiza-
tion consumer is offered to take their decision for load scheduling. In this context, the
author in [119] is proposed a multi agent framework to solve the DR problem for het-
erogeneous homes. The different agents are considered such as home agents (HAs) and
retailer agent (RA) to evaluate distributed control algorithm for scheduling of heteroge-
neous household electricity usage to improve energy efficiency. A distributed algorithm
to solve the DR problem proposed in [120] using Newton’s method. A distributed al-
gorithm to minimize the electricity bill of user with electric vehicle load scheduling in
smart grid is developed in [88]. Where, the optimization is done using alternating di-
rection method of multipliers which results into fast convergence and optimal solution
to the problem.

A home to grid algorithm is introduced to cut the peak energy usage of a household
user [121], Baye’s theorem is used to determine the probability of each appliance en-
ergy consumption on the basis of historical usage data. The algorithm result is leading
to cost reduction in domestic energy and reduce or even eliminate peak-hour energy
consumption. In [122], the DR problem is solved using convex programming with
home appliances load management. The problem is solved in terms of L1 regulariza-
tion technique for shiftable load of appliances in the form of binary decision variable.
L1 regularization technique is also known as least absolute deviations (LAD), least ab-
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solute errors (LAE). It is minimizing the sum of the absolute differences between the
target value and the estimated values of key variables. The home energy management
problem with solar PV generation, energy storage devices, mixed type of home appli-
ances AC and DC load is formulated in [58]. To investigate the behavior of battery and
characteristics of AC and DC conversion the different comparison has been made which
result into the increment in saving.

In this chapter, DR participant household users are registered for the price-based de-
mand response program in the framework of the smart grid. LSE supplies multiple
energy users power. A home area connection is made through the technology of ad-
vanced metering infrastructure. The connection between LSE and user is made via
home automation wireless network based on Bluetooth devices [123]. A load of user
is considered from historical load data. To avoid the limitation of centralized manner
for load scheduling optimization, the distributed algorithm is implemented for the min-
imization of user daily cost occurred. The alternating direction method of multiplier
(ADMM) is used to solve the optimization problem. ADMM algorithm works in paral-
lel form. This method is profoundly advantageous to the user, because user don’t need
to share their information with LSE. Which makes this system reliable and controlled to
ensure user privacy. The ADMM guaranteed the fast convergence of the problem, and
it can be easily implemented in practical cases.

The chapter is organized as follows. Section 7.2 presents the system model of energy
multi-user with the characteristic load. Section 7.3 discusses the problem description
and proposed distributed algorithm. The simulation result of analyzing the given system
model is present in Section 7.4. Finally, the conclusion with future aspect is presented
in Section 7.5.

7.2 System Model

In this architecture, a LSE is supplying electricity to multiple users as shown in Fig.
7.1. Each user is installed with automatic load control unit (ALCU). It is assumed that
the built-in smart meter is composed in ALCU. This unit can be used as a medium of
communication between LSE and energy user. Each user is participating in the price-
based DR program offered by the LSE. The system exhibits a distributed model in which
user doesn’t need to share their load information to LSE so that privacy of the user can
be maintained. The user is allowed to take the scheduling their decision by their ALCU
system in which their preferences can also be sent. The different options are available
for the user to participate in the DR programs. The different objective has been built
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Figure 7.1: DR system architecture

in ALCU for the sake of users. The ALCU receives the real time prices data from the
gateway built for the residential by the LSE and applies the DR algorithm to find out
when and how to operate home appliances.

The aim of proposed algorithm is to automatically control the load of home appliances
and optimize the benefit for users. A load of user and cost occurred by energy usage is
optimized using distributed DR algorithm. The objectives can be composed as follows,

• The reduction in peak demand of the objective load curve.

• Reduce the energy cost occurred on users as energy bills.

• The regulation of energy efficiency in a household.

• Utilization of energy when electricity prices are low.

7.2.1 Appliance load

The household user consists distinct characteristic appliances. Two type of home appli-
ance such as non-shiftable and shiftable are considered. The non-shiftable appliances
are base load of a house and it is necessary to fulfill the energy requirement as they
can’t be shifted to any other time slot. The shiftable appliances can be shifted from
one to another time slot. shiftable appliances can be a time-flexible and power-flexible
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appliance. In time-flexible their energy demand cannot be compromised but possible to
shift from one slot to another as offered by load scheduling mechanism. Power-flexible
appliances cannot be interrupted once started running, but their energy can be varied
within a limit.

7.3 Problem Formulation

7.3.1 Electricity usage model for user

The problem of automatic load scheduling is executed in a various manners. Although
the main objective is to maximize the saving on daily electricity bill occurred on a user
that minimizes the total electricity cost of the system. The total consumption of user
Ek,t is modeled as follows,

Ek,t = E shi f table
k,t + Enon−shi f table

k,t (7.1)

Where Enon−shi f table
k,t and E shi f table

k,t are non-shiftable and shiftable appliance consumption
for user k during t time slot, respectively. The number of non-shiftable and shiftable
appliance varies for each user in the system.

The concept of load shifting technique is described in Fig. 7.2. The load shifting is
done by transferring the load from high price hour to low price hour. The xk,t is the
load shifting variable of kth user in hour t. The electric price in each hour is denoted
by Pt. The objective function which depicts the load scheduling of energy user can be
discussed via following cases.

Figure 7.2: Load shifting technique
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7.3.1.1 Case 1: load minimization

In this case, the objective function for optimizing user energy bill can be formulated
in term of a total load of the user. The non-shiftable load of the user is fixed during
optimal load scheduling. Therefore only shiftable load can only be used for load shifting
purpose. The objective function f1(x) can be represented as follows,

Minimize f1(x) =

24∑
t=1

(
Ek,t + xk,t

)2

∀k ∈ K (7.2)

Subject to −E shi f table
k,t ≤ xk,t ≤ E shi f table

k,t ∀k ∈ K (7.3)

The load shifting variable of each user is different, and it is calculated in a parallel
iterative procedure. In this case, the aim of optimization is to shift a total load of the
user. The total cost occur on each user Ck can be calculated as,

Ck =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + xk,t
))

(7.4)

7.3.1.2 Case 2: shiftable load minimization

In this case, the objective function is made with only shiftable load. This objective can
have more impact on the saving of user because only shiftable load regulates the load
shifting process. The similar objective function f2(x) can be made as follows,

Minimize f2(x) =

24∑
t=1

(
E shi f table

k,t + xk,t

)2

∀k ∈ K (7.5)

Subject to Ak ∗ xk,t = Bk ∀k ∈ K
24∑
t=1

xk,t = 0 ∀k ∈ K
(7.6)

Where Ak is the coefficients of shiftable load and Bk = 0.

The total cost of each user can be defined as,
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Ck =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + E shi f table
k,t + xk,t

))
(7.7)

7.3.1.3 Case 3: load minimization with real time price coefficient

This case represents the optimization of total load for each user concerning real time
price coefficients. The optimization problem with f3(x) objective function is formulated
such as,

Minimize f3(x) =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + xk,t
)2
)

∀k ∈ K (7.8)

Subject to Ak ∗ xk,t = Bk ∀k ∈ K
24∑
t=1

xk,t =

24∑
t=1

E shi f table
k,t ∀k ∈ K

−E shi f table
k,t ≤ xk,t ≤ E shi f table

k,t ∀k ∈ K

(7.9)

Where Ak is the coefficients of sum of total load and Bk = E shi f table
k,t . The energy cost of

each user is formulated as,

Ck =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + xk,t
))

(7.10)

7.3.1.4 Case 4: cost minimization

This case evaluates the performance of optimization for the cost saving formulation.
Here the aim of optimization is centered around cost optimization of energy user which
can be proven highly effective for bill saving of user.

Minimize f4(x) =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + xk,t
))2

∀k ∈ K (7.11)

Subject to Ak ∗ xk,t = Bk ∀k ∈ K

−E shi f table
k,t ≤ xk,t ≤ E shi f table

k,t ∀k ∈ K
(7.12)
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Where Ak is the coefficients of total load Bk = E shi f table
k,t . The energy cost of each user is

formulated as,

Ck =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + xk,t
))

(7.13)

7.3.1.5 Case 5: dual objective

In this case, a dual objective approach is analyzed. This function comprises the load
and cost. This approach can be proven highly effective because of the summing the two
main aim of the system. It can be formulated as follows,

Minimize f5(x) =

24∑
t=1

((
Ek,t + xk,t

)2
+ α ∗ Pt ∗

(
Enon−shi f table

k,t + xk,t
)2
)

∀k ∈ K

(7.14)

Subject to Ak ∗ xk,t = Bk ∀k ∈ K

−E shi f table
k,t ≤ xk,t ≤ E shi f table

k,t ∀k ∈ K
(7.15)

Where Ak is the coefficients of constraint, which is sum of total load and Bk = E shi f table
k,t .

Here α is defined as a constant parameter which can affect the performance of opti-
mization process. The significance of this parameter is defined in the result section.
The energy cost of each user is formulated as,

Ck =

24∑
t=1

(
Pt ∗

(
Enon−shi f table

k,t + xk,t
))

(7.16)

7.3.2 Distributed Optimization using alternating method of multi-
plier (ADMM)

The optimization of convex problem set in equation (7.2), (7.6), (7.8), (7.11) and (7.14)
is solved by iterative procedure in distributed manner. The distributed optimization
framework overcome the disadvantage occurred in a centralized manner. Distributed
optimization offers energy user to optimize their saving in a separate manner. In this
framework, the user needs not to expose their information to the LSE. Therefore op-
timization is done using an alternating method of multiplier (ADMM) in distributed
manner [124].
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7.3.2.1 ADMM Method

ADMM is a well-recognized technique to distributed convex optimization. Consider a
constrained convex optimization problem for function f (x) ,

Minimize f (x)

Subject to Ax = B
(7.17)

Where x ∈ Rq, A ∈ Rp×q and f : Rk → R is convex.

By using Lagrangian the problem can be expressed as,

L(x, y) = f (x) + yT (Ax − B) (7.18)

Where y is the Lagrange multiplier. For solving the problem using Lagrangian method
the dual iterative procedure can be made as,

xn+1 = argminL(x, yn)

yn+1 = yn + αn(Axn+1 − B)
(7.19)

Where αn is a step size.The dual method can be extended to Augmented Lagrangian
methods. The augmented methods are introduced to increase the robustness of dual
methods. The augmented Lagrangian of problem (7.14) is,

Lρ(x, y) = f (x) + yT (Ax − B) + (ρ/2)‖Ax − B‖22 (7.20)

Where ρ > 0 is penalty parameter. With association of augmented Lagrangian the
optimization problem can be formed as,

Minimize f (x) + ρ/2)‖Ax − B‖22

Subject to Ax = B
(7.21)

The dual update can be made as,

xn+1 = argminLρ(x, yn)

yn+1 = yn + αn(Axn+1 − B)
(7.22)
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The augmented Lagrangian method is called alternating direct method of multipliers
[125].

7.3.2.2 DR distributed algorithm

The distributed ADMM method is applied to the DR problem stated in Section 7.3.1.
The individual user problem can be easily solved by the distributed algorithm. The
problem in (7.14) can be extended in Lagrangian form as,

Lρ(xk,t, y) =

24∑
t=1

((
Ek,t + xk,t

)2
+ α ∗ Pt ∗

(
Enon−shi f table

k,t + xk,t
)2
)

+yT (Akxk,t − Bk) + (ρ/2)‖Akxk,t − Bk‖
2
2 ∀k ∈ K

(7.23)

where ρ is a predefined penalty parameter. Basically ADMM cycles through the follow-
ing update until its convergence is reached.

xn+1
k,t = argminLρ(xk,t, yn) (7.24)

yn+1 = yn + αn(Akxn+1 − Bk) (7.25)

To solve the equation (7.24) and (7.25), iterative procedure is continuing up to conver-
gence is reached. The iteration of a procedure is denoted by n. The xn+1

k,t is updated
by solving convex optimization problem. The problem in (7.24) and (7.25) can also
be solved in parallel. In the remaining section, this iterative procedure is referred as
ADMM scheduling method.

7.4 Numerical Results and Discussion

7.4.1 Numerical Setup

In this setup, K = 10 number of the residential user is considered for distributed ADMM
scheduling. Each customer is considered with 15 to 20 home appliance. The appliance
load of user is non-shiftable and shiftable in nature. The sum of shiftable and non-
shiftable load is taken from BGE suppliers [85]. The total load of the system can be
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Figure 7.3: Total load of the system

Figure 7.4: RTP price data

shown in Fig. 7.3. The customers are contracted for the RTP data information. The
RTP data has been taken from Ameren Illinois Power corporation [46]. The RTP price
data is shown in Fig. 7.4. The implementation of proposed algorithm is executed on the
platform of MATLAB software on Core i3 processor.

7.4.2 Results and discussion

In this chapter, different objectives are executed via distributed optimization to analyze
the customer saving. From the point of LSE, the flatten objective load curve is highly
desirable. But from the point of a customer, focus is oriented on their energy bill sav-
ing. The customer energy bill is optimized with consideration of objective load curve.
Therefore LSE and customer both will get benefits from the proposed algorithm. In the
proposed distributed algorithm each user is optimizing their objectives in parallel form.
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(a) Load scheduling

(b) Monetary benefits

Figure 7.5: Simulation results for Case 1

The Case 1 evaluates the minimization the total load on the system by load shifting
technique. Here the price is not having any role in an optimization process. The un-
scheduled and scheduled load for case 1 is shown in Fig. 7.4.2. The scheduled load
curve is almost flattening which shows the best possible peak to average ratio. If we
see the practically the flat load curve is not easily available because of consumer pref-
erences and lack of shiftable appliances availability. In this case, the PAR is minimized
by 27.16%. After applying load scheduling algorithm, the user has gained considerable
cost saving on their bill which can be interpreted from Fig. 7.4.2. The total bill saving
of each user is determined by the difference with and without scheduling cost. Here
it can be analyzed the user who has participated in shifting with more amount of load
have gained more saving on the bill as compared to others. For this case, the user 2 has
gained 13.93 Cents, which is highest saving among all user. The total energy bill saving
for the system is obtained 4.9 %.

In the Case 2, the user is allowed to optimize only shiftable appliance load. The result
in Fig. 7.6 shows the load before and after scheduling. The peak to average ratio in this
case is minimized by 16 %. The cost saving for an individual user is shown in Fig. 7.6.
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(a) Load scheduling

(b) Monetary benefits

Figure 7.6: Simulation results for Case 2

The total cost saving for the system is maximized by 2.9 %.

In the Case 3, total load minimization with RTP price coefficients is served as a goal of
the optimization. The Fig. 7.7 represents the load with and without scheduling. The
cost saving for each user can be represented in Fig. 7.7. In this case, the cost saving has
more impact as compared to PAR. The involvement of price coefficients is proven to be
effective for cost saving purpose. The total 200.68 Cents cost saving is achieved for the
system. Whereas individually say user no. 2 and user no. 3 has gained highest saving
i.e. 25.96 and 25.17 Cents cost saving.

The Case 4 introduces the objective as cost minimization of the individual user. The
results in Fig. 7.8 shows the impact of load scheduling on the total load of the system.
The proposed distributed algorithm solved each optimization problem to achieve the
highest benefit for the user which lack behind the objective load curve responsibility.
Therefore PAR of the system is increased for the particular case. The cost benefits
redeem by an individual user can be critically examined in Fig. 7.8. The total 296.4
Cents cost saving is obtained in this setup which is considerably large.
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(a) Load scheduling

(b) Monetary benefits

Figure 7.7: Simulation results for Case 3

The Case 5 implements the optimization of function made from cost and load minimiza-
tion. From the Fig. 7.9, it can be analyzed that obtained load curve is highly desirable
for any LSE. The scheduled load curve almost looks like flattening curve with consumer
preferences. In this case both objective such as PAR minimization and cost saving both
achieved in a balanced manner. The total cost saving from this case is 132.4277 Cents
as shown in Table 7.1. The constant α can affect the convergence rate of the algorithm,
here it is considered as 0.1.

Fig. 5.9 shows the scheduled load comparison for each case with the unscheduled load.
From Fig. 5.9, it can be seen that the best load curve is achieved in Case 1 but with
less amount of savings. Whereas the Case 5 offers appropriate load curve as desired for
practical scenarios. For Case 5 it also gives the sufficient amount of cost saving to the
users. Also from Table 7.1, it is seen that Case 5 can be proven most suitable objective
for LSE as well as for the user. The convergence plot for objective function of a single
user is shown in Fig. 7.11. It can be seen that user is able to optimize their objective
after completing 20 iterations of the process. The error deviation is shown in Fig. 7.12,
it is taking 20 iterations for settling .
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(a) Load scheduling

(b) Monetary benefits

Figure 7.8: Simulation results for Case 4

As per computational aspect, it is not necessary to increase the value of ρ to infinity to
induce the convergence in a method of multiplier. This is an advantage, which results
in the elimination ill conditioning (non-convergence) problem. An another advantage
of this method is that its convergence range is better than penalty method. The variation
of penalty parameter ρ has an effective impact on the algorithm. As per computational
aspect, the initial value of ρ should not be too large so that it will not lead to ill-condition
result in first iteration. The value of parameter ρ should increase with iteration so that
it can utilize the positive feature of multiplier iteration. Parameter ρ is not increasing
fast enough to the threshold point than too much ill condition is forced upon function
constraint minimization. If parameter ρ increasing very slow to the threshold, it will
lead to the poor convergence rate. For the algorithm, the initial value of ρ0 has been
taken 0.01. The updated value of ρ with iteration has considered as ρ = ρ0 ∗ 2iteration.

The proposed automatic load scheduling of household users in demand response frame-
work offers their energy cost minimization to the users. From the Table 7.1, it can
be analyzed that how a user can get the significant amount of cost saving by imple-
menting proposed methods of automatic load scheduling. Here with the help of DR
distributed optimization algorithm user gets a chance to develop their role in the elec-
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(a) Load scheduling

(b) Monetary benefits

Figure 7.9: Simulation results for Case 5

Figure 7.10: Scheduled load
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Figure 7.11: Function convergence Plot

Figure 7.12: Error convergence plot

tricity paradigm. After processing optimization algorithm, user gets scheduled load as
the result of automatic load scheduling. Here, the real time prices taken from retail mar-
ket provides the information of real time tariff via ALCU. The proposed technique does
not collaborate with the energy market. Only energy tariff is required from the LSE.
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Table 7.1: Numerical Results
Unscheduled Scheduled Total scheduled Cost Saving Computation

PAR PAR Cost (Cents) (Cents) time (sec)
Case 1 1.3743 1.00 1894.9 98.0082 162.647

Case 2 1.3743 1.1543 1934.9 58.0335 108.40

Case 3 1.3743 1.4083 1792.2 200.6830 131.973

Case 4 1.3743 1.8761 1695.6 296.400 129.312

Case 5 1.3743 1.1193 1860.400 132.477 131.281

7.5 Summary

A multi user electricity usage model is developed for the shiftable and non-shiftable
appliance load. The real-time pricing information is transferred to the user by utilizing
the smart metering infrastructure. The load and cost optimization problem of the user
in centralized form is converted to distributed parallel algorithm. The optimization of
an individual user is implementing in parallel iteration procedure. The optimization
problem is solved by using an alternating direction method of multiplier in distributed
manner. The different case study is proposed to evaluate the performance of optimiza-
tion process. The results in terms of user bills and PAR have shown the effectiveness
of the proposed algorithm. The specific user saving for each case study has proven the
capability of the proposed algorithm.
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Conclusion and Future Work

8.1 Conclusion

Demand response emerges as a highly constructive solution to reduce peak energy de-
mand in the electricity network infrastructure. DR has shown potential to increase the
interaction between energy customers and electricity grid. The aim of DR is not only
reducing customer’s electricity bill or saving energy, but also advantageous for system
operation, grid flexibility, system expansion, energy efficiency. The smart meters played
a significant role to enable bi-directional communication between customer and utility.
To achieve interactive environment, the computational techniques such as game theory
proven beneficial for the system operations. By adopting of EV and renewable sources
in the DR, makes it more convenient for energy users. DR programs need to be in-
stalled to encourage customer participation in electricity infrastructure. The significant
findings for this work are summarized below:

• In Chapter 3, residential users are equipped with distinct type of appliances at
their homes. The appliances have distinct characteristics in individual houses, and
it is necessary to model the appliances in an appropriate way that user should not
comprise their comfort while executing DR. For this purpose different appliances
with their priority operating time is considered in this research.

• In Chapter 4, the large number of EVs are executed for DR. When number of
EVs emerges at same time, the grid overloading can not be avoided. Therefore
the application of smart charging is proven beneficial for reducing peak demand
and grid overloading can be avoided. The bi-directional power transaction among
users and grid are beneficial as the point of economics.

129
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• In Chapter 5, the home energy management with EV and renewable provides
flexible operation with grid transaction. Incorporating dissatisfaction factor in DR
problem is proven more realistic due to uncertain behavior of users. The penalty
with dissatisfaction can make system reasonable. The EV and BESS played a
role of enabling technologies to reduce the energy bill of household user and to
maintain the comfort. The incorporation fluctuation term in DR problem avoid the
formation of unwanted peak in desired load curve. The application of renewable
sources is beneficial to reduce carbon impacts in society.

• In Chapter 6, dynamic demand response model introduces correlated equilibrium
approach in a game theoretic scenario for the residential consumer. This approach
provides a suitable platform to execute DR in residential frame and to achieve
economic benefits, comfort reliability and most important fair environment.

• In Chapter 7, the distributed framework offers a secure operation of user in DR. To
preserve the privacy of user single objective for each user is executed in parallel
simulation. While parallel operations can save operating time.

8.2 Future Scope of Work

The future utilization of presented work is summarized a follows,

• With regard to user load model throughout this work, it is assumed that consumer
previous day load is known to user . For future work, the application of load
prediction techniques can be integrated to user load model. The user behavior on
the basis of preferences and conditions can be considered in the load model as
future work.

• In power systems, ancillary services are important for the well-being of the sys-
tem. However, such services have usually been provided from the supply side as
opposed to the demand side. In the power system, ancillary services are required
for the well-operation of the system. These services are produced from supply
side network. So, the integration of supply side can be done in future. At present
the operation of DR is considered from demand side consumer only. The future
problem can be extended to the operation of DR in the presence of electricity
distribution system.
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• Mostly the energy consumption scheduling done on day-ahead basis is imple-
mented here. With the development of fast forecasting techniques it is possible to
perform the energy consumption scheduling on hour-ahead basis or real-time.

• EV uncertainty is employed but the renewable sources are assumed to supply
constantly on the basis of given data. The uncertainty can also be employed for
renewable sources in future work.

• The modeling and analysis for residential sector only is presented in this work
which can be further extended to the combination of residential, industrial and
commercial sectors.





Appendix A

Proof of Theorem 1

The optimization problem is the Nash Equilibrium of the game. Let X
∗

k is the strategy
at which the corresponding cost C∗ is minimum. Hence,

C∗ ≤
T∑

t=0

C(Wt + �̂a,k) (A.1)

Multiplying by (−) on both sides

−C∗ ≥
tend
a,k∑

t=tstart
a,u

C(Wt + �̂a,k) (A.2)

Pk(X
∗

k, X−k) ≥ Pk(Xk, X−k) (A.3)

The optimal solution of problem in 6.13 assures the existence of a Nash equilibrium The
proposed optimization problem is Nash equilibrium [ [115], Theorem 1]. Moreover, the
Nash equilibrium is unique due to [ [115], Theorem 3].
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Appendix B

Proof of Theorem 2

Let there be two users u1 and u2 with appliances a1 and a2, respectively.

B.1 Case I

When there is no ordering and all users try to schedule optimally at the same time, i.e.
tos1 = tos2 . In such a case due to the fact that cost functions are convex all user will
find the same time t to schedule their appliances.

Hence, cost levied on each user,

C
(
Wt + �̂a1,u1 + �̂a2,u2

)
(B.1)

Cost levied on system = 2 * cost levied on each user

2 ∗C
(
Wt + �̂a1,u1 + �̂a2,u2

)
(B.2)

B.2 Case II

When there is ordering. Let tos1 < tos2.

Let time at which appliances are scheduled to run be t1 and t2 respectively.
Cost levied on user 1,

C
(
W1 + �̂a1,u1

)
(B.3)
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Cost levied on user 2,

C
(
W1 + �̂a2,u2

)
(B.4)

Where, W2 = W1 + �̂a1,u2 if t1 = t2

W2 < W1 + �̂a1,u1 if t1 , t2

Total cost on system is expressed by combining (B.3) and (B.4),

C
(
W1 + �̂a1,u1

)
+ C

(
W1 + �̂a2,u2

)
(B.5)

By comparing case I and case II, since cost functions are quadratic.

2 ∗C
(
Wt + �̂a1,u1 + �̂a2,u2

)
>

[
C
(
W1 + �̂a1,u1

)
+ C

(
W1 + �̂a2,u2

)]
Hence, in case of ordering in tos cost levied on system on a whole is lesser when there
is no ordering in tos.



Appendix C

Proof of Theorem 3

Let C(W tos1
t ) and C2(W tos2

t ) be the cost of using appliances at hour t on load W tos1
t and

W tos2
t by two random users, where tos1 and tos2 are time at which the process of com-

putation of costs at various hour for user 1 and user 2 took place.

C.1 Case I

Both appliance scheduled at hour t.

W tos2
t = W tos1

t + �̂a1,u1

Therefore, W tos2
t > W tos1

t

Since, cost function is quadratic. Therefore,

C(W tos1
t ) < C(W tos2

t ) (C.1)

C.2 Case II

a1 is scheduled at hour t but a2 is not. So,

W tos2
t = W tos1

t
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Therefore, C(W tos1
t )u1 = C(W tos2

t )u2 (C.2)

So, it can be inferred from (C.1) and (C.2).

If tos1 < tos2, measuring cost of using appliance at various hours and for scheduling for
user 1 is earlier than that of user 2.

C(W tos1
t )u1 ≤ C(W tos2

t )u2 (C.3)

Therefore, it can be stated that the user who has scheduled their appliances before an-
other (i.e. tos1 < tos2) will get less energy cost and gain more benefit on daily electricity
bill.



Appendix D

Proof of Theorem 4

Let u1 and u2 be two different users, a1 and a2 be their respective appliances, tos1 and
tos2 be their respective time at which the process of finding their optimal running time
is run. Let tos1 < tos2,

D.1 Case I

When prescribed chronology by ALCU is adhered. Let t1 and t2 time at which they are
scheduled to run. Wt1 & Wt2 be the respective base loads.
Cost to be incurred on user 1,

C
(
Wt1 + �̂a1,u1

)
(D.1)

Cost to be incurred on user 2,

C
(
Wt2 + �̂a2,u2

)
(D.2)

Where, Wt2 = Wt1 + �̂a1,u1 , if t1 = t2

Wt2 < Wt1 + �̂a1,u1 , if t1 , t2

D.2 Case II

When u2 deviates from prescribed chronology prescribed by ALCU and run process of
finding the optimal time of along with u2, i.e. tos1 = tos2



In such a case the minimum cost incurring scheduled time would be same for both u1 &
u2, Therefore t2 = t1 = t, due to the reason that the cost functions are convex in nature.
Hence, cost incurred on both u1 & u2,

C
(
Wt1 + �̂a1,u1 + �̂a2,u2

)
(D.3)

By comparing both the cases.
For user 1: Since cost functions are quadratic then from (D.1) and (D.3) it can be justi-
fied that,

C
(
Wt1 + �̂a1,u1 + �̂a2,u2

)
> C

(
Wt1 + �̂a1,u1

)
For user 2: Again, cost function are quadratic, from (D.2) and (D.3) it can be proved
that,

C
(
Wt1 + �̂a1,u1 + �̂a2,u2

)
> C

(
Wt1 + �̂a2,u2

)

Hence, It can be seen that no user can gain more by unilaterally deviating from the
prescribed chronological order. Such deviations would increase the cost levied on all
users. Through the validation of Theorem 4, it is analyzed that all the users in the
system is operating under a fair environment so no user can gain benefit with deviating
by prescribed strategy offered through coordination game.



Appendix E

Mixed Integer Linear Programming
(MILP)

Mixed integer linear programming (MILP) refers to optimization problems with con-
tinuous and integer variables and linear functions in the objective function and/or the
constraints. Mixed-integer linear programming theory provides a mechanism for opti-
mizing decisions of mathematical programming. Where, mathematical programming
formulations include a set of variables, which represent actions that can be taken in the
system being modeled. Then attempts to optimize (either in the minimization or maxi-
mization sense) a function of these variables, which maps each possible set of decisions
into a single score that assesses the quality of the solution that take place in complex
systems.

A standard mixed integer linear program has the formulation:

Min cT x

subjected to Ax{≥,=,≤}b

l ≤ x ≤ u

xi ∈ Z ∀ ∈ S

where
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x ∈ Rn is the vector of structural variables

A ∈ Rm×n is the matrix of technological coefficients

c ∈ Rn is the vector of objective function coefficients

b ∈ Rm is the vector of constraints right-hand sides

l ∈ Rn is the vector of lower bounds on variables

u ∈ Rn is the vector of upper bounds on variables

S is a nonempty subset of the set {1.......,n} of indices

In this model, some or all of x must take integer values, which may be in the form of bi-
nary {0,1}. A typical MILP problem can have several equality and inequality constraints
to model real-life applications.
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[23] S. El-Férik, S. A. Hussain, and F. M. Al-Sunni,“Identification of physically based
models of residential air-conditioners for direct load control management,” in 5th

Asian Control Conf., vol. 3, pp. 2074-2087, 20 Jul 2004.

[24] K. Y. Huang and Y. C. Huang, “Integrating direct load control with interruptible
load management to provide instantaneous reserves for ancillary services,” IEEE

Trans. Power Syst., vol. 19, no. 3, pp. 1626-1634, Aug 2004.

[25] A. Wehbe and H. Salehfar, “Direct load control for reducing losses in the main
and laterals of distribution systems,” in Power Eng. Soc. Summer Meeting, IEEE,
vol. 3, pp. 1593-1598, 25 Jul 2002.

[26] T Ericson, “Direct load control of residential water heaters,” Energy Policy,
vol. 37, no. 9, pp. 3502-3512, Sep 2009.

[27] H. A. Aalami, M. P. Moghaddam, and G. R. Yousefi, “Demand response modeling
considering interruptible/curtailable loads and capacity market programs,” Applied

Energy, vol. 87, no. 1, pp. 243-250, Jan 2010.

[28] D. W. Caves, J. A. Herriges, and P. Hanser et al., “Load impact of interruptible
and curtailable rate programs: evidence from ten utilities (tariff incentives),” IEEE

Trans. Power Syst., vol. 3, no. 4, pp. 1757-1763, Nov 1988.

[29] J. Saebi, H. Taheri, J. Mohammadi et al., “Demand bidding/buyback modeling
and its impact on market clearing price,” in IEEE Int. Energy Conf. Exhibition

(EnergyCon), pp. 791-796, 18-22 Dec 2010.

[30] Y. Liao and L. Chen, “The distribution electric price with interruptible load and
demand side bidding,” in China Int. Conf. Electricity Distrib. (CICED), pp. 1-6,
13-16 Sep 2010.

[31] A. Mehdizadeh and N. Taghizadegan,“Robust optimization approach for bidding
strategy of renewable generation-based microgrid under demand side manage-
ment,” IET Renew. Power Gen., vol. 11, no. 11, pp. 1446-1455, Jun 2017.



148 BIBLIOGRAPHY

[32] C. O. Adika and L. Wang,“Demand-side bidding strategy for residential energy
management in a smart grid environment,” IEEE Trans. Smart Grid, vol. 5, no. 4,
pp. 1724-1733, Jul. 2014.

[33] R. Tyagi and J. W. Black, “Emergency demand re sponse for distribution system
contingencies,” in IEEE PES T&D, pp. 1-4, 19-22 Apr 2010.

[34] D. M. Kim and J. O. Kim,“Design of emergency demand response program using
analytic hierarchy process,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 635-644,
Jun 2012.
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