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Abstract

The electrical power system is an enlarging infrastructure with a continuously growing

demand for energy. Thus, regional grids are being interconnected for power exchange,

and renewable generation is being integrated to serve the load demand. However, the

growing intricacy increases the possibility of contingencies and severity of its outcome.

Increasing penetration of asynchronous renewable generation decreases the overall inertia

of the system, thereby, reducing its resilience to withstand major events. Additionally, the

mounting stress on the electric grid due to deregulation further increases its vulnerability

to instability. In an integrated power system, an event such as loss of generation or short-

circuit fault affects rotor angle separation of generators, bus voltages, and frequency of

the system, which can incite a sequence of unpredictable cascading failures subject to the

tolerance of the system. Therefore, efficient monitoring and emergency control schemes

are necessary for maintaining power system stability.

The operation and control of the power system are being revitalized due to the assimilation

of information and communication technology in its real-time monitoring. A situational

awareness framework for assessing the performance of the system allows the operators

to undertake informed decisions promptly to maintain the system security and integrity.

The development of Phasor Measurement Units (PMUs) is the driving force behind the

real-time monitoring. PMUs measure various power system parameters such as voltage,

current, and frequency, etc. This measurement set, known as ‘Synchrophasor measure-

ments’ or simply ‘Synchrophasors’ is time-stamped by utilizing Global Positioning Sys-

tem (GPS) satellites which ensure the synchronization accuracy of 1µs. Measurements are

taken at a rate of 30-120 samples per second and sent to the Phasor Data Concentrators

(PDCs) installed at the central control location. The high temporal resolution of PMUs

allows accurate tracking of the changing dynamics of the system which was previously

unattainable with the conventional monitoring system of Supervisory Control And Data

Acquisition (SCADA). This complete infrastructure comprising of PMUs, communication

channels, and data storage for monitoring and control of a large power system has been

termed as Wide-Area Monitoring System (WAMS).

The first step in the development of WAMS is the selection of suitable locations in the grid

for installation of PMUs. With a huge amount of capital associated with PMU installation,

utilities are looking for a suitable placement strategy that minimizes the investment but

ensures a complete observability of the system. This work proposes a method for optimal

placement of PMUs considering system configuration and its attributes during the planning
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phase of PMU deployment. Each bus of the system is assessed on four diverse attributes,

and a consolidated ‘degree of criticality’ is determined. A modified objective function

which incorporates values of the degree of criticality of buses is developed. As budgetary

restrictions on utilities may not allow installation PMUs even at optimal locations in a

single phase, multi-horizon deployment of PMUs is also addressed. The proposed approach

is tested on IEEE 14-bus, IEEE 30-bus, New England (NE) 39-bus, IEEE 57-bus and IEEE

118-bus systems and compared with some existing methods.

Power systems suffer from unforeseen events, e.g., short-circuit faults, generator outage,

etc. which endanger its security. Therefore, early detection of events and the informa-

tion about its location and characteristics is vital to preserve system integrity. The PMU

assisted surveillance of power system can render unparalleled insights in the state of the

system. Synchrophasor measurements from the installed PMUs are utilized for the auto-

matic diagnosis of power system events. A new index for early detection of events and

its geographical localization is proposed. A supervised learning-based event classification

module is proposed for real-time identification of the events. The discontinuities gener-

ated in voltage and frequency measurements due to events are adequately localized in the

wavelet domain. Therefore, the discrete wavelet transform is used for the detection and

localization of events. Wavelet transform has been extended to establish coherency of

generators by determining the instantaneous phase difference between their rotor angles.

The effectiveness of the proposed approach is demonstrated on the NE-39 bus test system.

An event anywhere in the system will influence the power transfer capability of the trans-

mission corridor and confront the stability of the system. The aim of the proposed work

is to identify such events at the earliest utilizing supervised learning based classification

modules and initiate the suitable emergency control action. The imbalances of active and

reactive power in the aftermath of an event have been utilized to predict the stability of the

system. A new formulation has been presented for estimation of reactive power imbalance.

An event predicted as unstable is counteracted by prompt load-shedding. Conventionally,

load-shedding is based on frequency or voltage information independently which reduces

the effect of load shedding. In this thesis, a new load-shedding procedure has been pro-

posed considering both active and reactive power available in the system. The proposed

scheme is tested on NE-39 bus system and the results of the load-shedding have been

compared with two existing load-shedding schemes.

The proposed work is an effective scheme for situational awareness, stability assessment

and emergency control of electrical grids. It envisions an intelligent and regenerative grid
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capable of enduring significant events efficiently. At the end of the thesis, the future scope

of the research work is discussed.
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Chapter 1

Introduction

The increasing demand for electricity has compelled the utilities to interconnect regional

grids together and integrate renewable energy resources to the main grids. Thus, mod-

ern power systems are large dynamic systems having many complicated interconnections

with adjoining networks. This has made the operation and control of the power system

more complex. The intermittency of renewable resources and uncertainties in operating

conditions directly affect the dynamics of the power system. Unlike conventional syn-

chronous generators which can resist event-driven frequency oscillations because of their

inertia, asynchronous renewable energy generators such as wind, micro/mini hydro, etc.

supplement no inertia to the grid. Therefore, increasing penetration of renewables lowers

the resilience of the grid to endure major events. Environmental restrictions on power

system expansion, market pressure for the cost-efficient supply, enlarging urban infras-

tructure, and increased power demand; drives the operators to run the power system

under stressed conditions leaving narrow margins of stability. Any disturbance under

such circumstances can prove to be fatal and cause the system to lose operating equilib-

rium. Numerous widespread blackouts observed throughout the globe testify that lack

of situational awareness and efficient schemes to counteract instability stemming from a

disturbance can cause catastrophic failure [1]. These blackouts directly result in socio-

economic deprivation. India suffered two such severe power outages on 30th and 31st July

2012 successively. Often considered as the largest power outage in the history, counting

the number of people affected, 31st July blackout resulted in loss of about 48,000 MW

of load and deprived 620 million Indian residents of electricity [2]. Investigations suggest

that both the disturbances were initiated by tripping of a bulk power carrier single circuit

transmission line. The heavy active power flow and reactive power loss resulted in low

1
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voltage and high current in the line. This was misinterpreted as a line fault by a distance

relay, and it tripped the line on zone-3 of Main-II protection. It proved to be the first in

a cascade of dominoes and afterward, numerous lines tripped on load encroachment and

power swings, eventually leading to complete collapse of the grid leaving only small islands

of generation and load in operation [3].

Some recommendations of the report of the enquiry committee on 2012 Indian blackouts

are as under:

1. Deployment of Wide Area Monitoring Systems (WAMS)

2. Intelligent relays to distinguish between load encroachment and faults

3. Exploration of applications of synchrophasor measurements from PMUs for protec-

tion systems

4. Improve the visibility and situational awareness of the system

5. Analyse the system behaviour under different network status/tripping of lines/outage

of generators.

6. Possibility of voltage collapse prediction

It is observed from these recommendations that situational awareness about various events

taking place in the grid and prediction of its consequences is a pressing concern. The

necessity of developing more efficient and robust monitoring control schemes to capture

even the small deviation of the system from the normal operating state and to develop

efficient emergency control schemes is the motivation of the proposed work.

An effective monitoring scheme of the power system is indispensable for its proper op-

eration and control. Conventionally, power system has been monitored using SCADA

since the 1970s. SCADA measurement set includes Root Mean Square (RMS) values of

power flows, power injections, voltages and line currents which are non-linear functions

of system state viz. voltage and angle at each bus. These measurements are periodically

obtained from Remote Terminal Units (RTUs) installed in substations. These data are

then analyzed by a computer program called State Estimator (SE) which estimates the

state of the power system. State vector of the power system comprises of voltage magni-

tude and angle of all busbars in the system. Traditional SEs used iterative Weighted Least

Square (WLS) SE technique which utilized first-order Taylor’s series expansion to convert

non-linear equations into linear form. However, SCADA suffers from low sampling rate
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and low accuracy. During fast disturbances, dynamics of the power system change very

rapidly in the fraction of a second. Also, the data obtained from SCADA is unsynchro-

nized, and phase angles of busbar voltages are not measured directly. Thus, SCADA is

not an effective strategy for real-time monitoring of power system.

The outset of PMUs is a breakthrough in wide area monitoring of electrical power systems.

The idea of representing alternating currents and voltages by the mathematical form of

phasors was first conceived by Charles Proteus Steinmetz in 1893. Phasors represent

amplitude, angular frequency and the initial phase of a sinusoidal function. The invention

of PMU is credited to Phadke and Thorp [4] at Virginia Tech., Blacksburg, USA in the

early 1980s. A PMU installed at a bus is capable of measuring following parameters:

1. Voltage phasor of that bus,

2. Current phasors of all the lines directly connected to that bus,

3. Local frequency, and

4. Rate Of Change Of Frequency (ROCOF).

PMUs can also be modified to measure harmonics, positive, negative and zero sequence

quantities. Their ‘Synchrophasor measurements’ or ‘Synchrophasors’ directly indicates the

state of the system and state estimator associated with PMUs in linear and doesn’t require

any iteration based solution. These fast and accurate readings enable the operator to track

dynamics of the system in real-time. Some potential applications of synchrophasors have

been discussed below:

1. Improved situational awareness [5, 6],

2. Optimization of transmission corridor [7, 8],

3. Improved state-estimation [9, 10],

4. Load shedding and other load control techniques such as demand response mecha-

nisms to manage a power system [11,12],

5. Increase the reliability of the power grid by detecting faults early, allowing isolation

of healthy system, and the prevention of power outages [13,14],

6. Network model validation [15,16],
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7. Monitoring of electromechanical dynamics, such as inertial response [17, 18], and

inter-area oscillation [19–21].

However, it is not possible to install a PMU at every bus of the system due to high cost

related to PMUs and required infrastructure. Since the voltage at one end of a line and

current flowing through it can be measured through PMUs, the voltage at another end of

the line can also be calculated by utilizing known line parameters. Thus, a PMU placed

at a bus makes that bus, as well as all adjacent buses, observable. Clearly, installation

of PMUs at each bus in a power system is not required. Thus, site selection for PMU

placement needs to be addressed rationally. The Optimal PMU Placement (OPP) problem

revolves around minimizing the number of PMU installed while maintaining the complete

observability of the system.

Power blackouts witnessed all over the globe have shown that power systems suffer from

unforeseen disturbances or events which endanger its security. Any event, as small as mal-

operation of a relay, may lead to cascading collapse of the entire grid. Common events in

a power system include unintentional line trips, faults in transmission lines, unintentional

load shedding, unintentional generator tripping, unintentional islanding, and a capaci-

tor or reactor outage. Such events may be reflected in adjacent grids as well, which is

unacceptable in the era of competitive electricity markets. Several instances of relay mal-

operations and hidden failures have been observed and attributed to blackouts in the past.

Although relay trip status is transmitted to the control centers, the current monitoring

setup lacks the amenities to authenticate operation of relays and other protective devices

in real time. An event anywhere in the system will influence the power transfer capability

of the transmission corridor and confront the stability of the system. Promptly mitigat-

ing such disturbances can prevent the system from probable grid collapse. With aging

infrastructure, increasing intricacy of the network and mounting stress on the grid due

to deregulation, it will not be possible to rely solely on relays in the near future. An

oversight support framework to validate every maneuver of protective devices in the grid,

and an efficient plan for emergency control of the power system is indispensable for its

appropriate operation and control. Any event in the system will leave a signature response

in WAMS. The objective of event analysis is to extract such signatures and map them to

their corresponding events.

An event can confront both frequency as well as voltage stability of the system. Fre-

quency instability results in a gradual decline of frequency or sustained frequency swings

while voltage instability is identified as the progressive decline of voltage magnitudes in

significant parts of the power system. Both instabilities result in load rejection, loss of
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transmission lines and even loss of synchronism among alternators [22]. While frequency

stability can be easily monitored by measuring the frequency at the Center of Inertia

(COI) [23], the real-time assessment of voltage stability is a challenging task due to the

participation of various equipment such as generators, transmission lines, shunt capaci-

tors, etc. in both reactive power generation and consumption. The estimate of reactive

power imbalance in the system is a measure of voltage instability. As the operators run

the power system closer to its stability limits for deriving maximum financial profit, it is

necessary to develop indices which can forewarn the operator about impending instabil-

ity. The information of arising instability will allow early activation of remedial measures.

Load shedding is an emergency control required to maintain stability of system against

critical events. Both deterministic and adaptive load shedding are triggered when either

frequency or voltage violates a pre-determined threshold. However, reactive power is gen-

erally not considered in load shedding problem. Thus, new avenues can be explored for

detecting impending stability and enhanced load shedding considering reactive power.

This thesis is divided into 6 chapters. In Chapter 1, the motivation of this thesis has been

discussed and a brief introduction to the research work carried out has been provided.

Chapter 2 provides an insight into the state-of-the-art optimal PMU placement and its

applications in wide area monitoring and control of power systems. A detailed literature

survey of the existing methods of optimal PMU placement, event detection techniques,

stability assessment, and emergency control along with the limitations of these existing

methods has been presented.

Chapter 3 discusses the optimal location for PMU installation for complete power sys-

tem observability. The proposed approach traces the crucial buses in the network and

prioritizes them for PMU installation.

Chapter 4 presents a real-time event diagnosis approach for improved situational awareness

in power systems using synchrophasor measurements available from PMUs. A new method

for detecting and localizing events from real-time PMU measurements has been presented.

An event classifier module has been proposed for identifying the event type. The coherent

groups of generators are also identified from the rotor angles oscillating after an event.

Chapter 5 proposes a scheme for real-time monitoring and protection of stability of the

power system after an unanticipated event that endanger the frequency or voltage stability

of the system. A new load shedding formulation is presented considering both active and

reactive power imbalances, incorporating constraints of capacitor removal.
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In Chapter 6, major contributions, conclusions and future scope of the proposed research

work are discussed.



Chapter 2

Literature Survey

Large-scale blackouts in the recent past have stimulated worldwide deployment of

PMUs [24]. The installation of PMUs in electric grids can give a quantum leap to standards

of wide area monitoring. Unlike traditional SCADA based monitoring, which has a slow

scan rate, PMUs capture measurements as fast as one phasor measurement per cycle of

the system frequency. This helps the operator to track power system dynamics in real-

time. As deployment of PMUs is still in a primitive stage, an extensive scope for research

is available in the development of schemes competent of improving situational awareness

and emergency control. The prime objective of this research is to harness the benefits of

PMUs in power system event detection, predictive instability assessment and mitigation.

In this chapter, state-of-the-art on deployment of PMUs in power system networks and its

applications in wide area event detection, stability assessment and emergency control has

been discussed.

2.1 Optimal PMU Placement

Optimal locations for PMU installation for complete power system observability has been

a topic of research for power system academicians and researchers since PMUs came into

existence. It aims at determining the minimum number of PMUs and/or minimizing the

investment associated with PMU installation and their locations such that each bus of

the network is observed by atleast one PMU or the network is topologically observable.

The OPP is inherently an NP -complete problem with a solution space of 2NB potential

combinations for an NB-bus electric power system [25]. Baldwin et al. [26] provided the

7
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pioneer solution to OPP problem by implementing a dual search algorithm comprising of

a modified bisecting search and simulated annealing. Bisecting search iteratively finds the

minimum number of PMUs for complete observability. Later, simulated annealing mini-

mizes the number of unobserved buses keeping the number of PMUs constant. Results con-

cluded that about one-fourth to one-third of the system buses needed to be equipped with

PMUs for complete observability. Milosevic et al. [27] proposed a non-dominated sorting

genetic algorithm for achieving optimal solution to two conflicting objectives simultane-

ously: minimization of number of PMUs and maximization of measurement redundancy.

Bei et al. [28], Abbasy et al. [29] and Gou [30] proposed an Integer Linear Programming

(ILP) framework for OPP solution with and without the presence of conventional mea-

surements and zero-injection buses. Nuqui et al. [31] introduced a novel concept of ‘depth

of unobservability’. Optimal location of PMUs was found using tree search technique and

spanning tree of the power system graph. It further extended the problem to unavailability

of communication facilities in the network and phased installation of PMUs. Chakrabarti

et al. [32] suggested integer quadratic programming for minimizing the number of PMUs

and maximizing the measurement redundancy. The proposed PMU configuration was

capable of ensuring complete observability of the system even under outage of a single

transmission line or a single PMU (N − 1 contingency). A study on probability of outages

of various WAMS components (e.g. transmission lines, communication links, CTs, PTs,

PMUs etc.) is performed by Aminifar et al. [33, 34]. A Probability of Observability Index

for each bus and a System Observability Redundancy Index (SORI) are proposed and used

in selection of best solution among multiple solutions with same installation cost resulting

from ILP solution in [34]. In [33] average probability of observability is maximized in each

horizon of multi-horizon establishment of PMUs. Selection of best solution from multiple

ILP solutions based on minimization of state Estimation Error Covariance (EEC) is pro-

posed by Tai et al. [35]. Theodorakatos et al. [36] used quadratic programming approach

with non-linear constraints and proved that it gives same number of PMUs as the Binary

Integer Programming (BIP) method. Chakrabarti et al. [37] utilized a binary exhaustive

search for determining minimum number of PMUs considering single branch outages. A

methodology for selecting best solution from the set of final solution was also proposed.

Dua et al. [38] advocated a two stage ‘master-slave’ ILP. Stage 1 finds the minimum num-

ber of PMUs while Stage 2 detects the best solution on the basis of two formulated indices,

Bus Observability Index (BOI) and System Observability Redundancy Index (SORI). BOI

of a bus is the number of PMUs observing it, and SORI is the sum of all BOI for the

system in the given PMU configuration. Stage 1 provides multiple solutions with same

cost for optimal PMU placement. Thereafter, in Stage 2, the solution set which maximizes
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SORI is selected as the best PMU configuration. Optimal multistage deployment of PMUs

using ILP approach is also reported in [33], [39], [40] and [41]. Gou [42] and Esmaili et

al. [43] formulated ILP and mixed-integer linear programming respectively for optimal

PMU placement incorporating already installed conventional power flows and injection

measurements. Roy et al. [44] and Alvarez [45] proposed a heuristic approach for optimal

site selection. An ILP based PMU installation method for complete observability even in

case of controlled island of the system is presented by Huang et al. [46]. Quantification

of benefits of deploying PMUs against capital investment is done in [47]. A pragmatic

approach to placement of PMUs with limited number of channels is presented in [48], [49]

and [50]. However, these all methods were only focused on minimizing the number of

PMUs and failed to take dynamics of power system into account. There may be some

buses or lines which are crucial and heavily govern transient or dynamic stability of the

power system depending upon system configuration. Such buses should be kept under

constant supervision of a PMU directly as failure to monitor such buses can lead to catas-

trophic results. Sodhi et al. [51] proposed an ILP approach including voltage stability

based contingency ranking of buses. Thukaram et al. [52] suggested critical buses on the

basis of transient stability analysis for PMU placement. Gomez et al. [53] identified critical

buses/area based on inter-area and intra-area oscillations. Placement of more PMUs at

bus with higher sensitivity of node voltage with respect to line parameters to effectively

monitor disturbances is proposed in [54]. A multi-criteria selection on critical buses is also

available in [39], [41] and [55]. Other techniques employed in solution of OPP problem

include iterated local search [56], quadratic minimization subject to non-linear observabil-

ity constraints [57], binary particle swarm optimization [58], Tabu search [59], recursive

Tabu search [60], non-dominated sorting differential algorithm [61], fuzzified artificial bee

colony algorithm [62], greedy algorithm [63].

2.2 Event Detection and Localization

Real-time detection of events can enable the operator to initiate appropriate remedial ac-

tions and preserve the integrity of the system. Large imbalance between power demand

and supply generate frequency variations around the rated value. Thus, it is straightfor-

ward to visually detect large, and sudden imbalances in generation and load by monitoring

frequency; however, information related to events such as transmission line reclosing and

trips and other equipment trips is not readily available. But, such events leave their sig-

nature in PMU data which can be extracted and much research is devoted to this feature

extraction. North American Reliability Corporation (NERC) published standards based
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on magnitude of voltage, frequency, and ROCOF for detection of events in Western Elec-

tricity Coordination Council (WECC) system [64]. However, studies have reported that

only few events have been recorded by these standards [14]. Some more responsive tech-

niques based on the divergence of the voltage in the moving window and the estimation

of power spectral density to screen PMU data for possible events are proposed in [65].

However, their performance is system dependent and susceptible to the threshold values

selected. An energy function of cumulative magnetic and potential energy contained in

loads, transmission lines, and generators is proposed for detection of events in [66]. It

has been demonstrated that energy functions of loads, transmission lines and generator

are sensitive to corresponding disturbances. However, it requires dynamic internal state

of generators which are directly immeasurable and need the implementation of complex

filters for their estimation. The backward difference derivatives of voltage and frequency

are applied for the detection of events in [67, 68]. However, these criteria are vulnerable

to false triggering whenever measurements are polluted with noise. If the input signal

is constant or steadily varying but corrupted by high-frequency noise, the entire value of

its derivative is of variation of noise. The computation of derivatives over longer time

frames can overcome their susceptivity to incorrect triggering. However, the derivatives

calculated upon longer periods may omit an event particularly if it occurs between the

two extremities of the frame [69]. Other signal processing methods deployed for event

detection are Principal Component Analysis (PCA) [70], Wavelet transform [71, 72], and

Kalman filtering [73].

The variance is considered a more reliable indicator of events than the rate of change. Event

detection by observing the size of the error ellipsoid between the variances of frequencies

measured at two distant locations, along their first principal component is proposed in [74].

The method has certain limitations, primarily for coherent buses where frequencies hold

a tendency to swing together even after the disturbances. The detection and location of

events through the variance of rotor speed of one representative machine from all coherent

set of generators is proposed in [75,76]. However, the coherency of the generators is varying

i.e. a set of generators oscillating together after a contingency may not necessarily oscillate

together for different contingency. Also, squaring the difference from the mean value of the

frequency in the measurement window to calculate the variance eliminates positive and

negative values and hence hinder in classifying events as frequency rise or dip. Therefore,

this approach offers limited applications. A multidimensional Minimum Volume Enclosing

Ellipsoid (MVEE) which accommodates a stream of PMU measurements is proposed for

detection of events in [71] and coupled with multiclass Decision Tree classifier in [77] for

their real-time classification. The geometrical attributes of MVEE such as size, change
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in size, and center are used in the feature vector as input to the classifier. However, the

number of features is significantly high and hence, the classifier requires extensive training

data set following the ‘curse of dimensionality’.

The information of the location of disturbances allows activating corrective schemes e.g.

load shedding, actuation of reactive power reserves, and controlled islanding. Any signifi-

cant event in the power system triggers perturbations in frequencies which traverse the en-

tire grid as electromechanical waves at a measurable speed [78]. Majority of contemporary

monitoring setup exploit these perturbations to localize events in terrestrial boundaries.

A wide area frequency based event location using Internet Based Frequency Monitoring

Network (FNET) is proposed by Tao [79]. The frequency disturbance recorders dispersed

in the network determine ‘wave-front arrival time’ at different locations [80]. The product

of the propagation time of the wave and the speed of the wave is then applied to trace

the locus of disturbance. This method is based on the underlying assumption that the

wave propagation speed is invariable. However, practically the wave propagation speed

shows a significant variation in the range 100 to 1000 miles/sec. depending upon network

configuration and surrounding conditions [81]. An additional discrepancy between actual

location and determined location is generated due to the inconsistency between geographic

distance and electrical distance.

2.3 Frequency and Voltage Stability Assessment

Power transfer capability of a system is restricted by rotor angle stability as well as thermal

loading limits of the transmission line [82]. However, expanding infrastructure, increasing

load demands, change in energy portfolio, increased penetration of renewable energy re-

sources etc. are prime factors which force utilities to operate power systems under stressed

conditions making it more vulnerable to instability. In this thesis, event-driven frequency

and voltage stability have been discussed. Frequency instability is an outcome of imbalance

between active power generation and active load demand. Voltage instability is caused by

insufficient generation of reactive power by reactive power resources and/or incompetence

of transmission lines to transfer reactive power to the load bus. Events like element outages

(transmission line tripping, generator outage, capacitor outage etc.) can propel the system

towards both frequency and/or voltage instability. Frequency instability is conventionally

monitored using ROCOF at the COI. However, real-time voltage stability assessment is

more complex because of non-linear nature of power system which becomes more and more

noticeable when stress on the system is increased [83]. Several indices have been proposed
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for assessment and anticipation of voltage stability. The conventional P-V and Q-V curves

are extensively used as a tool to study voltage stability and for determination of maximum

permissible loading. To generate these curves, large numbers of repetitive load-flow solu-

tions are required. Thus, these methods are time consuming, computationally inefficient

and not fit for real-time assessment. Also, Jacobian of the Newton-Raphson load flow

becomes singular at steady state voltage stability limit (Bifurcation Point) and getting

a convergence becomes improbable. In such situations, Continuation Power Flow (CPF)

formulated by Ajjarapu and Christy [84] is used. Several other methods such as modal

analysis [85], L-index [86], bifurcation theory [87], energy function methods [88], Fast Volt-

age Stability Index (FVSI) [89], Voltage Collapse Proximity Indicator (VCPI) [90], etc.,

have been proposed in the literature. The uniqueness of static voltage stability irrespective

of the adopted technique is proved in [91]. Static indices such as L-index [86], extended

L-index [92], Voltage Collapse Proximity Index (VCPI) [90] and Lmn [93] are suitable for

long-term (e.g. slow load increase) voltage stability assessment. Such indices fail to con-

vergence to their limiting values in large-disturbance voltage instability. Similarly, indices

based on static load flow methods lose their efficacy when used in the dynamic analysis

because of interaction between several control actions such as generator excitation limits

and prime mover controls. Furthermore, these indices do not provide explicit information

about the deficiency of reactive power following an event. The reactive power deficit has

been calculated by assuming the power factor of generation and total load to be equal

in [94]; which is generally not correct as other sources also contribute to generating re-

active power. The amount of reactive power reserve (RPR) available from generators,

synchronous condensers and static VAR compensators can be used as a signal of system

stress. Bruno and Ajjarapu [95] developed a multi-linear regression model to establish

a relationship between RPR and Voltage Stability Margin (VSM). It was observed that

relationship between RPR and VSM can be linear or quadratic subject to operating range.

Machine learning and data mining are emerging tools in dynamic security assessment

(DSA) of power systems. Computer based algorithms are trained offline through exper-

imental data, simulation, or knowledge of the system operator and deployed in control

center for online monitoring. These can be trained with any logical power system at-

tribute such as active/reactive power flow, voltage magnitude, phase angles etc. For their

effective performance, they need to be trained with as much data and scenarios as possible.

Such algorithms are called Artificial Intelligence (AI) techniques. Measurements collected

from PMUs dispersed throughout the network are gathered at a central location where

system voltage security assessment is performed by AI techniques. Kamalasadan et al. [96]

postulated application of Artificial Neural Network (ANN). Feed forward neural network
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is trained with real power, reactive power and voltage phasor of all generator and load

buses. Output vector of the neural network is L-index values for all buses for normal and

contingent cases. Being fast and devoid of complex mathematical calculations, Decision

Trees (DTs) are an adequate choice for machine learning based applications. Prompt re-

sponse by DTs gives ample time to operators to take preventive action in case system is

adjudged to be insecure. Khatib et al. [97] correlated voltage security and reactive power

flow in transmission lines and bus angle difference and use them as attributes to train DTs.

Diao et al. [98, 99] advocated DTs for online voltage security monitoring. Past operating

condition data was collected and used to forecast operating condition data for the next 24

hours. Voltage security analysis was performed on the forecasted data and DT is trained

for the next day. On the following day, DT is updated on hourly basis to incorporate newly

predicted operating conditions. A supervised learning based method using bus voltages as

input features for determining the probability of generators hitting their over-excitation

limits is presented in [100] for voltage stability monitoring.

Voltage instability is coupled with combined maximum power transfer capability of trans-

mission and generation systems. Therefore, significant amount of literature focusing on

maximum power transfer condition or impedance matching is available. Real-time iden-

tification of Thevenin’s parameters based on synchrophasor measurements are proposed

in [101–104]. Using similar approach, a new index namely Voltage Stability Load Bus

Index (VSLBI), defined as the ratio of load bus voltage and voltage across transmission

impedance, is proposed by Milosevic [105]. Thevenin’s parameters were calculated using

a sliding window of discrete data samples by using a parameter identification algorithm

such as Least Square or the Recursive Least Square. Although, voltage instability is char-

acterized by low voltages in considerable part of power system, voltage magnitude is a

poor indicator of voltage instability [106], [107]. Hence, protection system based on mon-

itoring of merely bus voltage magnitude is ineffective. Vu et al. proposed estimation of

Thevenin’s equivalent of generation and transmission systems as seen by a load bus using

recursive least-square identification method on continuous local measurements for Voltage

Instability Detection (VID). However, load power-factor and non-linear nature of power

system was ignored. A similar approach is presented by Julian et al. [108] with proximity

to maximum load expressed in terms of power margin. Vournas and Cutsem [109] proposed

a voltage stability index using Tellegen’s theorem and adjoint networks for local voltage

stability monitoring. A new index for voltage stability margin by measuring rate of change

of apparent power with respect to load admittance (dS/dY ) considering load power factor

is presented in [107], [110]. As a power system reaches in the proximity of voltage collapse,

reactive power transferred to the load starts decreasing because transmission lines itself
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become a reactive power consumer. Based on this approach, Verbic and Gubina [111]

proposed S Difference Criterion by measuring time derivative of apparent power at the

receiving end of the transmission line. However, an adequate emergency control should

assure both frequency and voltage stability following an event. Also, most of the existing

stability indices lack anticipation. Therefore, there is a need to develop schemes which can

predict the stability of the system after an event.

2.4 Emergency Control: Load Shedding

Preventive actions must be taken forthwith after the system is found to be insecure. Under-

Frequency Load Shedding (UFLS) and Under-Voltage Load Shedding (UVLS) are most

extensively exercised countermeasures to sustain the stable operation. These methods are

activated when frequency or voltage violates a predefined threshold. UFLS sheds fixed

quantum of the load from predefined locations, irrespective of the magnitude and nature

of the event which may have an adverse impact on voltage [112]. Similarly, UVLS is

a local operation and does not necessarily restore the frequency. Both schemes operate

autonomously, and are inefficient in administering combined instability [94] as voltage/M-

VAR and angle/MW problems are inseparable for a system operating at its physical lim-

its [113]. Moreover, both UFLS and UVLS are inadequate for maintaining rotor angle

stability, which necessitates immediate remedial action.

Adaptive UFLS has been proposed to overcome the deterministic nature of UFLS in [23,

114]. A heuristic method for optimal load shedding which restores frequency and also

minimizes frequency overshoot/undershoot is presented in [115]. A discrete load shedding

scheme based on ROCOF for self-healing is presented in [116]. However, these extended

methods still are only frequency dependent. An adaptive UFLS at load buses after an

event is presented in [117, 118]. It is a unified approach against frequency and voltage

instability by calculating disturbance power from ROCOF. Buses were ranked according to

voltage dips at respective buses and higher ranked buses were selected for load curtailment.

However, it requires parameters to violate a pre-determined system-specific threshold and

hence can be initiated only after a time delay. A similar approach based on the selection

of the load shedding location by the magnitude of bus voltages and their static voltage

stability VQ margins is presented in [119]. However, it doesn’t consider the contribution

of reactive power injected by controllable resources. A unified load shedding plan based

on frequency and a local voltage stability index using Thevenin equivalent of the system

as seen from the load bus is proposed in [120]. The method is unsuitable for dynamic
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voltage stability analysis as (i) Thevenin equivalent is only an approximate model of the

network and does not indicate rapid changes in the system states; (ii) for the estimation of

Thevenin equivalent, voltage and impedance must remain constant over the measurement

window. A scheme that prioritizes buses for load shedding on basis of ROCOF and rate

of change of voltage is suggested in [121]. The minimization of total load shedding cost

for maintaining transient stability is performed in [122]. Leonardi et al. [8] determined

sensitivity of RPR with respect to each of active power generation, shunt compensation

and active and reactive load shedding. A convex quadratic objective function comprising

of weighted sum of squares of each control action to determine minimum amount of control

required is formulated. It is subjected to minimum RPR, minimum VSM, voltage limits

at buses, constant power factor and load shedding constraints.

2.5 Critical Review

Widespread blackouts experienced throughout the globe in the recent past, testify that

there is still a dearth of proficient schemes for situational awareness and emergency control

in the power system. Optimally installed PMUs in the network can enable enhanced real-

time assessment of power system dynamics. However, most of the existing methods focus

exclusively on minimizing the number of PMUs to ensure topological observability. This

results in a random distribution of PMUs across the grid. However, the PMUs installed at

critical locations can provide vital information of the system health at the remote control

center [52]. Therefore, a suitable strategy should be devised for selection for optimal

locations for PMU installation considering criticality of buses. Additionally, OPP has

a non-unique solution, i.e., it offers multiple solutions with the same number of PMUs.

Hence, methods for selecting the best alternative among these optimal solutions, taking

into consideration different criteria, have to be developed. The average overall cost per

PMU (cost for procurement, installation, and commissioning) ranged from $40,000 to

$180,000 (2014) [123]. Therefore, most of the utilities can’t install PMUs at all buses (or

even at optimal locations) in a single time horizon. Thus, a suitable approach for multi-

horizon deployment of PMUs needs to be developed. The synchrophasor measurements

obtained from PMUs can be utilized in event analysis for increased situational awareness.

The proliferation of PMUs coupled with data mining and signal processing techniques

provide a potential solution to the identification of events and predict its consequences.

A comprehensive scheme which identifies events and is also able to find its location can

serve as a supervisory framework for events occurring in the power system. The developed
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scheme should be capable of classifying the type of event and quantify the magnitude of

the event in real-time also, so that effective control measures can be devised to limit the

consequence of disturbances.

Traditionally, the power system has been monitored through static stability indices. How-

ever, deregulation, increased penetration of distributed generation and the growing number

of interconnections have mounted stress on the power system. Thus, with increasing com-

plexity, it is necessary to develop faster approaches to anticipate instability from the initial

response of the system to an event. It is found from the literature survey, that most of the

voltage stability assessment approaches are only suitable for static analysis as they fail to

reach their expected values in dynamic scenarios. Further, they do not provide explicit

information about the deficiency of reactive power following an event. Additionally, criti-

cal events also pose a threat to frequency stability. However, a combined study of voltage

and frequency stability is limited. Therefore, there is a need to evolve predictive methods

to recognize impending frequency and voltage instability accurately.

An event generally perturbs the equilibrium of both active and reactive power in an op-

erating power system. However, reactive power is generally not considered in load shed-

ding, which leads to improper load shedding distribution. Hence, adaptive load shedding

schemes need to be developed based on the knowledge of both active and reactive power

deficits caused by an event. Shunt capacitors may also be installed in the grid for reac-

tive power support. After load shedding, the capacitor output should also be adjusted

in accordance with the newer load schedule; otherwise, overvoltages are observed in the

system. Hence, capacitor regulation must be considered along with load shedding.

2.6 Research Objectives Attempted

In the light of literature survey, problems associated with the existing methods of PMU

placement, event analysis and its impact on stability and emergency control are identified

and the research objectives for the present work are framed as follows:

1. To develop an effective scheme for optimal PMU placement taking dynamics of the

system into consideration.

2. To develop a suitable strategy for multistage deployment of PMUs.

3. To analyze different power system events and implement analytics for detecting and

locating events through PMU data.
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4. To develop a suitable scheme for early detection of imminent frequency and voltage

instability under critical events using wide-area synchrophasor measurements.

5. To device suitable plan of action for prompt load shedding considering the balance

of both active and reactive powers.

In this chapter, a detailed literature survey of the existing methods of optimal PMU

placement, event detection techniques, stability assessment, and emergency control along

with the limitations of these existing methods has been presented.

In the next chapter, the optimal placement of PMUs considering critical buses has been

presented and compared with some existing schemes.





Chapter 3

Strategic PMU Placement

3.1 Introduction

The outset of PMUs was a breakthrough in the surveillance of electrical power systems.

A PMU installed at a bus measures its voltage phasor, frequency, ROCOF and current

phasors of all transmission lines connected to it [4]. Since voltage phasor at one end of

the line and current flowing through it are known; the voltage at another end of the line

can be estimated by utilizing line parameters. Thus, a PMU observes the bus where it is

installed and all adjacent buses. Apparently, PMUs located optimally in the system can

make the system completely observable. The Optimal PMU Placement (OPP) problem is

concerned about minimizing the number of PMUs required while preserving the complete

observability of the system.

As discussed in Chapter 2, many optimization algorithms have been suggested in the lit-

erature for finding the optimal locations for PMU placement for complete power system

observability. Most of these methods aim to achieve topological observability only. How-

ever, a severe situation may be encountered because of instability stemming from vulner-

able buses such as angle instability at generators or voltage instability arising at reactive

power deficit buses, etc. Therefore, it is essential to monitor these buses using PMUs

continuously. This chapter recommends a strategic planning before PMU deployment.

A comprehensive investigation of system topology is conducted, and each placement site

is evaluated by quantifying four attributes; namely, redundancy of measurements, rotor

angle and frequency monitoring of generator buses, reactive power deficiency, and maxi-

mum loading limit under line outage contingency. An overall score of criticality of the bus

and, subsequently its rank is evaluated through the Technique for Order of Preference by

19
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Similarity to Ideal Solution (TOPSIS). In this method, Euclidean Distance of all the alter-

natives from the theoretical ideal and the theoretical negative ideal solution is computed,

and relative proximity of a particular alternative to the ideal solution is taken as a measure

of criticality of a bus. Buses with higher ‘degree of criticality’ are provided greater weight

in the problem formulation. The problem is expressed in binary integer programming

model as the maximization of aggregate criticality of the entire network. The resultant

PMU configuration covers more critical buses with the same number of PMUs as proposed

in the available literature [37], [45], and [124]. This further eliminates the issue of the

non-unique solution generated by conventional ILP.

3.2 Proposed Optimal PMU Placement Problem Formula-

tion

Any plausible contingency, including, but not limited to, line outage, generator outage

can lead to the instability in the system. The voltage, and frequency of the buses and

rotor angles of machines can be severely disturbed if not taken care of timely. Under such

conditions, an adequate monitoring scheme must be available to track down the cause of the

stemming instability and report it to the operator for timely initiation of the corrective

measures if the need arises. The PMUs installed at critical locations can provide vital

information of the system health at the remote control center. In the present work, four

attributes are utilized for quantifying the severity of each candidate bus in the network.

The considered attributes are: (a) redundancy of measurements, (b) rotor angle and

frequency monitoring of generator buses, (c) reactive power deficiency, and (d) maximum

loading limit under line outage contingency. Each bus is scored on these attributes and

a consolidated degree of criticality is computed employing TOPSIS. Finally, buses are

prioritized on the basis of the criticality for potential locations for PMU installation.

3.2.1 Evaluation of the Attributes at Each Bus

The four attributes considered in the present work are evaluated for each bus, and a

composite score is calculated to adjudge its suitability for PMU placement. The buses

having better scores for all the attributes are considered to be better locations for PMU

installation. The four attributes and their assessment are demonstrated below:



Chapter 3. Strategic PMU Placement 21

1. Increased Redundancy of Measurements

In any power system, several buses have a higher number of connections to other

adjacent buses. Such buses are a better choice for PMU installation as they increase

redundancy which is essential for the determination of the unique system state and

bad data detection [124]. For instance, a PMU installed at a radial bus observes two

buses exclusively. However, a PMU placed at a bus directly connected to a radial

bus, monitors more than two buses and, consequently, is a better site for PMU

installation. In this work, connectivity of the buses to their adjacent buses is used to

prioritize them, and each bus is scored equal to the number of lines emerging from

that bus. Thus, a Redundancy Criteria Score (CR,i) is calculated for the ith bus in

an NB-bus system as follows:

CR,i =

NB∑
j=1

Aij − 1 (3.1)

where A is a graph theory based binary connectivity matrix as explained below [28].

Ai,j =


1 if i = j

1 if bus i and bus j are directly connected

0 otherwise

(3.2)

2. Rotor Angle and Frequency Monitoring of Generator Buses

Angular stability and frequency stability issues can stem from any generator outage

followed by the loss of synchronism among generators resulting in a cascading black-

out. Moreover, the reactances of the generator change from their effective values

during the transient state following a disturbance, which introduces an inconsis-

tency between the rotor angle of the alternator and its terminal voltage angle. A

PMU installed at a generator bus produces fast and accurate measurements which

facilitate the estimation of rotor angle of the generator [125]. Thus considering these

issues, it is suggested that all generator buses are suitable locations for keeping under

constant supervision of a PMU. Therefore, a Generation Bus Criteria Score (CG,i)

is calculated for the ith bus in an NB-bus system as follows:

CG,i =

1 if ith bus is a generator bus

0 otherwise
(3.3)
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All generator buses have been scored equally to keep the computation simple. How-

ever, generator buses may also be scored in accordance with their generation capac-

ity, the inertia of connected generator, load demand served, participation in damping

low-frequency oscillations and so forth.

3. Maximum Loading Limit under Line Outage Contingency

A transmission line outage can push the system towards instability. For a secure

operation of the system, the operator must ensure that system can supply the present

load for each possible line outage contingency; a condition acknowledged as N − 1

contingency stability criterion. In the proposed work, CPF [84] is utilized to assess

maximum loading limit λmax under the impact of each line outage contingency. If

contingency evaluation results in λmax < 1, where 1 signifies the current loading

level, then stable operation under such a line outage is not possible. Hence, the

installation of PMU on buses connecting such lines is paramount. Therefore, a Line

Contingency Criteria Score (CL,i) is expressed for the ith bus in an NB-bus system

as follows:

CL,i = min

[
λmaxi−j × Γ

]
; j = 1, 2, ....NB, j 6= i (3.4)

Γ =

1 if ith and jth bus are connected

0 otherwise
(3.5)

where λmax
i−j is the maximum loadability limit in case of the outage of transmission

line connecting ith and jth bus.

4. Reactive Power Deficiency

Although voltage stability is correlated to load dynamics [82], transmission and gen-

eration systems play significant roles. Voltage instability originates when loads at-

tempt to withdraw power beyond the combined transfer capability of transmission

and generation [126]. In a modern power system, it mostly results from an insuffi-

cient generation of reactive power, the incompetence of transmission lines to deliver

required reactive power to the load bus, or both. Hence, buses with reactive power

deficiency are a viable option for monitoring using a PMU. The method proposed

in [127] is used to determine deficit or surplus reactive power available at all load

buses. Every bus is assigned score equal to reactive power deficiency at that bus, the

procedure for determining the reactive power deficiency at each bus is summarized

as follows:

Step 1: For a power system with NG generator and NL load buses, arrange steady



Chapter 3. Strategic PMU Placement 23

state generator bus current injection IG and load bus current injection IL equations

as follows:

[IG] = [YGG][VG] + [YGL][VL] (3.6)

[IL] = [YLG][VG] + [YLL][VL] (3.7)

where [YGG], [YGL], [YLG] and [YLL] are submatrices of reshuffled bus admittance

matrix Ybus.

Step 2: Each generator is modeled as equivalent shunt admittance YG,j as follows:

YG,j =
1

VG,j

(
−
SG,j
VG,j

)∗
(3.8)

where SG,j and VG,j are apparent power and bus voltage of jth generator respec-

tively. Equivalent shunt admittances of each generator are added to corresponding

diagonal elements of bus admittance matrix which is repartitioned as in Step 1 to

obtain [Y ′GG], [Y ′GL], [Y ′LG] and [Y ′LL].

Step 3: Following (3.6), voltages of generator buses are formulated as a linear

function of voltages of load buses as follows:

[VG] = −[Y ′GG]−1[YGL][VL] = [Y B
GL][VL] (3.9)

Step 4: Eliminating VL from (3.6) using (3.7) and substituting VG from (3.9),

generator bus injection current can be expressed as:

[IG] = −
(

[YGG]− [YGL][YLG]

[YLL]

)
[Y B
GL][VL] +

[YGL]

[YLL]
[IL] (3.10)

Step 5: VG, VL, and IL are modified to form diagonal matrices. The reactive power

contribution of all generators can be formulated as:

[Qgen]G×L ==
(
[VG]G×G [IG]∗G×L

)
(3.11)

==
(

[VG]G×G

(
−
(

[YGG]− [YGL][YLG]

[YLL]

)
[Y B
GL][VL]L×L +

[YGL]

[YLL]
[IL]L×L

))∗
(3.12)
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Table 3.1: Decision matrix

Bus No. Criterion Score of ith bus
i CR,i CG,i CL,i CQ,i
1 M11 M12 M13 M14

2 M21 M22 M23 M24

: : : : :
NB MNB1 MNB2 MNB3 MNB4

Step 6: The reactive power loss assigned to each load bus i can be estimated as:

Qloss,i =

NG∑
j=1

Qgen(j, i) −QL,i (3.13)

where QL,i is the reactive power load demand at ith bus. Finally, the Reactive Power

Loss Criterion Score (CQ,i) can be computed for the ith bus as follows:

CQ,i =

Qloss,i if Qloss,i > 0

0 otherwise
(3.14)

Buses having surplus reactive power are not considered for PMU installation and,

hence, assigned zero score.

3.2.2 Quantification of the Consolidated Degree of Criticality of Buses

Multiple criteria scores evaluated in the preceding section are incommensurable. In this

work, TOPSIS is used to process these numerical values. TOPSIS is a Multi-Criteria De-

cision Making (MCDM) approach applied to select the best alternative when dealing with

manifold, and usually, contradictory criteria. It is based on the notion that the accepted

alternative should have the minimum Euclidean distance to the ideal solution, and the

maximum Euclidean distance to the negative-ideal solution [128]. The steps for imple-

menting TOPSIS are summarized as follows:

Step 1: A decision matrix is constructed comprising of the scores of four attributes

of each bus as shown in Table 3.1.

Step 2: The decision matrix is normalized to transform diverse attribute dimensions

into dimensionless numerals. Each element rij of the Normalized Decision Matrix (NDM)
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is calculated by dividing individual score in the decision matrix by l2-norm of all the scores

in a particular attribute, as stated below:

ri j =
Mi j√
NB∑
i=1

M2
i j

(3.15)

where j ∈ {1, 2, 3, 4} for an NB-bus power system.

Step 3: As utilities can have varied hierarchy of priorities among the four attributes,

a set of weights W = (w1, w2, w3, w4) as decided by the utility is incorporated in the

decision matrix to form the weighted normalized decision matrix ν. Each element of ν is

defined as follows:

vi j = wj ∗ ri j (3.16)

A weighted normalized decision matrix substantiates the preferences of the decision maker

on various criteria. This work considers w1 = w2 = w3 = w4 = 1. However, other suitable

values may also be selected without the loss of generality.

Step 4: Next, ideal (Λ+) and (Λ−) negative-ideal solutions are decided. The ideal so-

lution is a hypothetical solution containing the best value for each attribute while the

negative-ideal is a hypothetical solution comprising of worst value of each attribute among

all alternatives.

Λ+ =
{

(max vi j | j ∈ J) ,
(
min vi j | j ∈ J ′

)
, i ∈ 1, 2...NB

}
(3.17)

Λ− =
{

(min vi j | j ∈ J) ,
(
max vi j | j ∈ J ′

)
, i ∈ 1, 2...NB

}
(3.18)

where J is related to criteria to be maximized and J ′ is related with criteria to be min-

imized. In a power system, buses with higher redundancy score (CR,i), availability of

generator (CG,i), higher reactive power loss (CQ,i), but lower maximum loading limit un-

der N − 1 contingency (CL,i), should be preferred for installing PMUs. Accordingly,

Λ+ = {max(vi 1), max(vi 2), min(vi 3), max(vi 4)}, i ∈ 1, 2...NB

= {v+
1 , v

+
2 , v

+
3 , v

+
4 }

(3.19)

and
Λ− = {min(vi 1), min(vi 2), max(vi 3), min(vi 4)}, i ∈ 1, 2...NB

= {v−1 , v
−
2 , v

−
3 , v

−
4 }

(3.20)
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Figure 3.1: Flowchart of the proposed optimal PMU placment formulation

Step 5: In this step, Euclidean Distance from each alternative to the ideal solution and

the negative-ideal solution is determined.

S+
i =

√√√√ 4∑
j=1

(vi j − v+
j )

2
, i = 1, 2..NB (3.21)

S−i =

√√√√ 4∑
j=1

(vi j − v−j )
2
, i = 1, 2..NB (3.22)

Step 6: Finally, the relative proximity of an alternative to the ideal solution Λ+ is deter-

mined as follows:

Υ∗i =
S−i

S+
i + S−i

, i = 1, 2...NB (3.23)

where 0 ≤ Υ∗i ≤ 1,∀ i is a consolidated degree of criticality of the ith bus. The bus with the

highest value of Υ∗i has minimum Euclidean distance to the ideal solution and maximum

Euclidean distance to the non-ideal solution. Buses arranged in decreasing order of Υ∗i

indicate the most suitable and least suitable alternative, respectively, for PMU installation.

The flowchart of the complete proposed methodology is shown in Fig. 3.1.
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3.2.3 Optimal PMU Placement Problem Formulation Considering De-

gree of Criticality

The objective of the proposed scheme is to minimize the total number of PMUs in the

system while ensuring complete power system observability such that most of the PMUs

remain concentrated at critical buses. For an NB-bus power system, the problem is for-

mulated as integer linear programming with binary decision variables as follows:

min

NB∑
i=1

(1−Υ∗i )xi (3.24)

subject to the following constraints of connectivity of buses:

A.[x1 x2 . . xNB ]T ≥ 1 (3.25)

where A is the binary connectivity matrix defined in Section 3.2.1 and xi ∈ {0, 1} , ∀ i is

the PMU placement variable defined as:

xi =

1 if PMU is installed at ith bus

0 if PMU is not installed at ith bus
(3.26)

Minimizing
NB∑
i=1

(1−Υ∗i ) is equivalent to maximizing the total sum of the degree of criti-

cality in the network. Connectivity constraints in (3.25) guarantee that at least one PMU

observes every bus in the network. A higher redundancy also can be achieved, such as at

least 2 PMUs observe each bus, by substituting 2 in the right-hand side of (3.25).

3.3 Simulation and Results

The effectiveness of the proposed methodology is examined on IEEE 14-bus, 30-bus, NE 39-

bus, 57-bus and 118-bus test systems. The single line diagrams and elaborate system data

for each of these networks is available in [129,130]. For more realistic results a distributed

slack bus model [131] was utilized, and all the generators contributed equally to the system

power losses. The reactive power loss (Qloss,i) at each load bus are determined at peak

loaded condition retaining a spinning reserve of 10 %.
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Table 3.2: Decision matrix of IEEE 14-bus system

Bus No. i
Criterion Score of ith bus Degree of Criticality
CR,i CG,i CL,i CQ,i Υ∗i

1 2 1 0.9955 0 0.4212
2 4 1 0.9955 0 0.4423
3 2 0 1.3024 0 0.0885
4 5 0 1.5980 0.2020 0.2820
5 4 0 1.3081 0.9255 0.5832
6 4 0 1.3081 0 0.1856
7 3 0 1.5038 0.1587 0.1838
8 1 0 1.6929 0 0.0092
9 4 0 1.5038 0.0487 0.1887
10 2 0 1.7507 0.0163 0.0680
11 2 0 1.7507 0 0.0661
12 2 0 1.7582 0 0.0661
13 3 0 1.6758 0 0.1259
14 2 0 1.6632 0.0306 0.0726

Table 3.3: Optimal location of PMUs for IEEE 14 bus system

No. of PMUs Required PMU Locations PMU Installation %

4 2, 6, 7, 9 28.57 %

3.3.1 Test results of the proposed method on IEEE-14 bus test system

IEEE 14-bus is a small network consisting of 20 transmission lines, 2 alternators connected

to buses 1, 2, whereas 3 synchronous condensers are installed at buses 3, 6, 8, and a shunt

capacitor connected to bus 9. The decision matrix obtained for this system is presented in

Table 3.2. The transmission line connecting buses 1-2 transfers 63.79% of the total load

demand under peak loading condition. N − 1 Contingency analysis using CPF shows that

maximum loading limit (λmax) drops below 1 in the event of line 1-2 outage, indicating

instability of the system under the given contingency. Hence, both buses 1 and 2 have

CL,i = λmax
1−2 = 0.9955. An ample number of generators in this system provide abundant

reactive power reserves and allow sufficient voltage control capability. As buses 11, 12,

13 are lightly loaded; there is surplus reactive power available at these buses additionally.

Hence, buses 1, 2, 3, 6, 8, 11, 12, and 13 have CQ,i = 0 as given in (3.14). It can be observed

from the table, that the buses numbered 1, 2, 4, 5, 6, 7 and 9 have a high consolidated

score of criticality as compared to other buses indicating potential PMU placement sites.

Table 3.3 shows the optimal location and minimum number of PMUs required for complete

observability of the system. PMU installation percentage which denotes ratio between the

number of PMUs and the number of system buses is also calculated. As evident from the
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table, 4 PMUs located at buses 2, 6, 7 and 9 are required for complete observability of the

system. However, as utilities prefer the installation of PMUs in a multi-horizon manner

in a large system due to financial limitations, therefore the bus in the obtained solution

set with a highest degree of criticality (Υ∗i ) in the decision matrix must be equipped with

the PMU first and so on. As observed from Table 3.2, for multi-horizon PMU placement,

bus 2 is to be installed with PMU first, followed by bus 9, 6 and 7.

Table 3.4: Decision matrix for IEEE-30 bus system

Bus No. i Criterion Score of ith bus Degree of Criticality
CR,i CG,i CL,i CQ,i Υ∗i

1 2 1 0.9211 0 0.4403
2 4 1 0.9211 0 0.4558
3 2 0 1.2358 0.8560 0.5275
4 4 0 1.2438 0.4949 0.3926
5 2 0 1.1407 0 0.0649
6 7 0 1.3915 0 0.2429
7 2 0 1.3925 0 0.0516
8 2 0 1.5018 0 0.0492
9 3 0 1.4099 0.1114 0.1342
10 6 0 1.4099 0.0027 0.2110
11 1 0 1.4810 0 0.0068
12 5 0 1.2932 0.0066 0.1774
13 1 0 1.4740 0 0.0076
14 2 0 1.5381 0.0123 0.0504
15 4 0 1.5036 0.0175 0.1384
16 2 0 1.5367 0.0072 0.0495
17 2 0 1.5416 0.0223 0.0529
18 2 0 1.5371 0.0082 0.0497
19 2 0 1.5320 0.0267 0.0543
20 2 0 1.5144 0.0058 0.0495
21 2 0 1.5233 0.0488 0.0644
22 3 0 1.5307 0 0.0944
23 2 0 1.5334 0.0089 0.0498
24 3 0 1.5307 0.0262 0.0980
25 3 0 0.6845 0 0.1267
26 1 0 0.6845 0.0135 0.0903
27 4 0 1.2639 0.0000 0.1392
28 3 0 1.2639 0 0.0987
29 2 0 1.4913 0.0084 0.0500
30 2 0 1.4567 0.0403 0.0608
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Table 3.5: Optimal location of PMUs for IEEE 30 bus system

No. of PMUs Required PMU Location PMU Installation %

10 2, 3, 6, 9, 10, 12, 15, 19, 25, 27 30 %

3.3.2 Test results of the proposed method on IEEE-30 bus test system

IEEE 30-bus consists of 41 transmission lines, 2 alternators connected to buses 1, 2 whereas

4 synchronous condensers are installed at buses 5, 8, 11 and 13. The shunt capacitors are

connected to bus 10 and 14. Decision matrix obtained for this system is presented in Table

3.4. The transmission line connecting buses 1-2 is a bulk power carrier line, individually

transferring 64.73 % of the total load demand under peak loading condition. N − 1

Contingency analysis using CPF reveals that maximum loading limit (λmax) drops below

1 in the event of line 1-2 outage, indicating that stable operation under this contingency

is not possible. Hence, both buses 1 and 2 have CL,i = λmax
1−2 = 0.9211. The buses 6, 9,

11, 13, 22, 25, 27 and 28 do not have any load connected to them while bus 7 has surplus

reactive power available. Therefore, buses 1, 2, 5, 6, 7, 8, 9, 11, 13, 22, 25, 27 and 28 have

CQ,i = 0 as given in (3.14).

Table 3.5 shows the minimum number of PMUs required for complete observability and

their optimal locations. It can be observed that only 30 % of the total buses require PMUs

installation and PMUs located at buses 2, 3, 6, 9, 10, 12, 15, 19, 25 and 27 completely

observe the system.

3.3.3 Test results of the proposed method on NE 39-bus, IEEE 57-bus,

and IEEE 118-bus test systems

The proposed methodology is tested further on NE 39-bus, IEEE 57-bus, and IEEE 118-

bus networks to validate its efficacy. The decision matrices associated with these systems

are presented in Table 3.6, Table 3.7 and Table 3.8 respectively. Simulation results for

the minimum number of PMUs and their optimal locations are summarized in Table 3.9

and compared with 3 existing techniques proposed in [37], [45], and [124]. Table 3.9

shows the number of PMUs reported by the proposed method is consistent with other

methods; however, a difference in optimal locations can be observed. Large networks

can have a significant number of alternative PMU configurations which allow complete

observability with the same number of PMUs. Most of the methods proposed earlier rely

on the selection of PMU configuration which maximizes the redundancy in the system.

The proposed method selects the configuration which has more PMUs on critical buses.
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Table 3.6: Decision matrix for NE-39 bus system

Bus No. i Criterion Score of ith bus Degree of Criticality

CR,i CG,i CL,i CQ,i Υ∗i

1 2 0 1.2213 0 0.0731

2 4 0 0 0 0.2898

3 3 0 1.1259 0.6761 0.2428

4 3 0 1.1259 1.5185 0.4355

5 3 0 1.1763 0 0.1388

6 4 0 0 0 0.2898

7 2 0 1.0989 2.7662 0.6128

8 3 0 1.0846 1.7594 0.4873

9 2 0 1.0846 0 0.0811

10 3 0 0 0 0.2635

11 3 0 1.1428 0 0.1398

12 2 0 1.2455 0.1592 0.0875

13 3 0 1.1966 0 0.1383

14 3 0 1.1824 0 0.1386

15 2 0 1.1084 0.9157 0.2728

16 5 0 0.3458 0.7181 0.3717

17 3 0 1.2258 0 0.1378

18 2 0 1.2308 0.3824 0.1338

19 3 0 0 0 0.2635

20 2 0 0 0.9406 0.3678

21 2 0 1.192 0.5565 0.1778

22 3 0 0 0 0.2635

23 3 0 0 0 0.2635

24 2 0 1.2323 0.6044 0.1892

25 3 0 0 0 0.2635

26 4 0 1.222 0.2734 0.2165

27 2 0 1.222 0.7 0.2139

28 2 0 1.2335 0.3383 0.1235

29 3 0 0 0 0.2635

30 1 1 0 0 0.3571

31 1 1 0 0 0.3571

32 1 1 0 0 0.3571

33 1 1 0 0 0.3571
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34 1 1 0 0 0.3571

35 1 1 0 0 0.3571

36 1 1 0 0 0.3571

37 1 1 0 0 0.3571

38 1 1 0 0 0.3571

39 2 1 1.1297 0 0.3086

It can be observed from the table, that inclusion of the degree of criticality in the objective

function by the proposed technique causes more critical buses to be directly observed by

the PMUs. Table 3.9 shows that certain PMU locations are common among the proposed

method and other methods. However, the advantage of the proposed method can be

observed in dissimilar PMU locations. The proposed methodology proposes buses 11, 32,

33, 37 as suitable buses for PMU placement in NE-39 bus system. Bus 11 offers high

redundancy CR,11 = 3 (only two other buses 6 and 16 have greater redundancy (CR,6 =

CR,16 = 4) than bus 11). Similarly, buses 32, 33 and 37 are generator buses and monitoring

such buses directly is essential as loss of generator at any of these buses will instigate power

imbalance and risk the stability of the system. Similarly in IEEE 118 bus system, buses

10, 36, 87 and 91 in the solution set are generator buses, bus 30 is a high redundancy bus

CR,30 = 4 and buses 44 and 47 are reactive power deficit and undergo rapid voltage decline

on load increase. Thus, the solution set obtained using the proposed approach encompasses

more critical buses than other methods. As the number of PMUs is increased to achieve

higher redundancy of measurements, the proposed approach concentrates even more PMUs

on critical buses, which shows the effectiveness of the presented scheme.

Table 3.7: Decision matrix for IEEE-57 bus system

Bus No. i Criterion Score of ith bus Degree of Criticality

CR,i CG,i CL,i CQ,i Υ∗i

1 4 1 1.4723 0 0.3457

2 2 0 1.4723 0 0.0409

3 3 1 1.5558 0 0.3399

4 4 0 1.5558 0 0.1091

5 2 0 1.6286 0 0.0388

6 4 0 1.5475 0 0.1092

7 3 0 1.1128 0.7821 0.6483

8 3 1 1.0951 0 0.3421
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9 6 0 1.0951 0 0.1738

10 3 0 1.5665 0 0.0753

11 4 0 1.6093 0 0.1089

12 5 1 1.5706 0 0.3519

13 6 0 1.5706 0 0.1698

14 3 0 1.5654 0.0091 0.0765

15 5 0 1.4921 0 0.1409

16 2 0 1.6013 0.0604 0.0768

17 2 0 1.5807 0.1558 0.1724

18 2 0 1.6241 0.0355 0.0552

19 2 0 1.6316 0.0064 0.0396

20 2 0 1.6388 0.0053 0.0394

21 2 0 1.641 0 0.0388

22 3 0 1.5536 0 0.0754

23 2 0 1.5536 0.0131 0.0422

24 3 0 1.5452 0 0.0754

25 2 0 1.0268 0.0194 0.065

26 2 0 1.5895 0 0.039

27 2 0 1.4902 0.0123 0.043

28 2 0 1.3934 0.0056 0.0439

29 3 0 1.1128 0.0144 0.0869

30 2 0 1.0268 0.0163 0.0639

31 2 0 1.3698 0.0303 0.0556

32 3 0 1.057 0.0078 0.0875

33 1 0 1.057 0.0186 0.0501

34 2 0 1.0643 0 0.0586

35 2 0 0 0.0171 0.1265

36 3 0 0 0 0.1369

37 3 0 1.1907 0 0.0822

38 5 0 1.1907 0.0304 0.1504

39 2 0 1.6357 0 0.0388

40 2 0 1.6402 0 0.0388

41 4 0 1.6084 0.0124 0.1108

42 2 0 1.6084 0.0221 0.0461

43 2 0 1.6093 0.0019 0.039

44 2 0 1.5839 0.0189 0.0445
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45 2 0 1.5839 0 0.039

46 2 0 1.565 0 0.0392

47 2 0 1.565 0.0566 0.0735

48 3 0 1.6162 0 0.0751

49 4 0 1.5923 0.0344 0.1172

50 2 0 1.625 0.0405 0.0592

51 2 0 1.5665 0.0167 0.0436

52 2 0 1.3697 0.0071 0.045

53 2 0 1.5843 0.0301 0.0514

54 2 0 1.6089 0.0045 0.0393

55 2 0 1.4193 0 0.0424

56 4 0 1.6325 0.0225 0.1131

57 2 0 1.6357 0.0218 0.0459

Table 3.8: Decision matrix for IEEE-118 bus system

Bus No. i Criterion Score of ith bus Degree of Criticality

CR,i CG,i CL,i CQ,i Υ∗i

1 2 0 2.0725 0 0.0289

2 2 0 2.0801 0 0.0288

3 3 0 2.042 0 0.0564

4 2 0 1.996 0 0.0295

5 5 0 1.2722 0.5632 0.1384

6 2 0 2.0785 0 0.0288

7 2 0 2.1142 0 0.0288

8 3 0 0.3428 0 0.1012

9 2 0 0 0.8475 0.1525

10 1 1 0 0 0.2218

11 4 0 2.0463 0 0.0825

12 7 1 0 0 0.2587

13 2 0 2.0463 0 0.029

14 2 0 2.1207 0 0.0288

15 5 0 2.0583 0 0.1074

16 2 0 2.1044 0 0.0288

17 6 0 1.99 0 0.1312

18 2 0 2.0715 0 0.0289
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19 4 0 2.1162 0 0.0824

20 2 0 2.098 0 0.0288

21 2 0 2.0705 0.0146 0.029

22 2 0 2.0399 0.0084 0.0291

23 4 0 2.0399 0.9276 0.1463

24 3 0 2.0728 0 0.0563

25 3 1 2.0441 0 0.2122

26 2 1 1.9421 0 0.208

27 4 0 2.0441 0 0.0825

28 2 0 2.1128 0 0.0288

29 2 0 2.1164 0 0.0288

30 4 0 1.9421 0.9699 0.151

31 3 1 2.1102 0 0.2121

32 5 0 2.0765 0 0.1074

33 2 0 2.1109 0 0.0288

34 4 0 2.0666 0 0.0825

35 2 0 2.1147 0 0.0288

36 2 0 2.1167 0 0.0288

37 6 0 1.6571 0 0.1328

38 3 0 1.6571 0 0.0607

39 2 0 2.0882 0 0.0288

40 4 0 2.0882 0 0.0824

41 2 0 2.1073 0 0.0288

42 3 0 2.0209 0 0.0565

43 2 0 2.0666 0.0075 0.0289

44 2 0 2.0684 0.0197 0.0291

45 3 0 2.0436 0 0.0564

46 3 1 2.0436 0 0.2122

47 3 0 2.0992 2.6059 0.3351

48 2 0 2.1091 0 0.0288

49 9 1 2.0209 0 0.268

50 2 0 2.1138 0 0.0288

51 3 0 2.1082 0 0.0562

52 2 0 2.1172 0.0164 0.0289

53 2 0 2.1096 0 0.0288

54 5 1 2.1096 0 0.2262
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55 3 0 2.1101 0 0.0562

56 5 0 2.113 0 0.1073

57 2 0 2.1181 0 0.0288

58 2 0 2.1176 0 0.0288

59 6 1 2.0142 0 0.2355

60 3 0 2.1124 0 0.0562

61 4 1 2.1075 0 0.2183

62 4 0 2.1182 0 0.0824

63 2 0 2.0089 0 0.0293

64 3 0 1.9113 0 0.0572

65 4 1 1.6589 0 0.2195

66 4 1 2.0783 0 0.2184

67 2 0 2.1186 0.0245 0.029

68 4 0 0 7.2118 0.7646

69 6 1 1.9059 0 0.2358

70 5 0 1.9754 0 0.1076

71 3 0 0.0001 0 0.1139

72 2 0 2.1113 0 0.0288

73 1 0 0.0001 0 0.101

74 2 0 2.0954 0 0.0288

75 5 0 1.5824 3.0883 0.4076

76 2 0 1.7845 0 0.0335

77 6 0 1.7845 0 0.132

78 2 0 2.1187 0 0.0288

79 2 0 2.1169 0 0.0288

80 7 1 2.1056 0 0.2456

81 2 0 2.1034 0 0.0288

82 3 0 2.1188 0 0.0562

83 3 0 2.1184 0 0.0562

84 2 0 2.1184 0 0.0288

85 5 0 0.3421 0 0.1339

86 2 0 0 0 0.1047

87 1 1 0 0 0.2218

88 2 0 2.1159 0.1359 0.0339

89 4 1 2.0821 0 0.2184

90 2 0 2.1194 0 0.0288
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91 2 0 2.119 0 0.0288

92 6 0 2.0821 0 0.131

93 2 0 2.1185 0 0.0288

94 5 0 2.1184 0.1815 0.1115

95 2 0 2.1184 0.054 0.0297

96 5 0 2.1192 0 0.1073

97 2 0 2.1195 0 0.0288

98 2 0 2.1131 0.004 0.0288

99 2 0 2.1184 0 0.0288

100 8 1 1.6484 0 0.2576

101 2 0 2.1186 0.1149 0.0326

102 2 0 2.1181 0 0.0288

103 4 1 1.6484 0 0.2195

104 3 0 2.0052 0 0.0565

105 5 0 2.1047 0 0.1073

106 3 0 1.9591 0 0.0568

107 2 0 2.1047 0 0.0288

108 2 0 2.119 0 0.0288

109 2 0 2.119 0 0.0288

110 4 0 0 0 0.1272

111 1 1 0 0 0.2218

112 1 0 0 0 0.101

113 2 0 2.0496 0 0.029

114 2 0 2.1191 0 0.0288

115 2 0 2.1162 0 0.0288

116 1 0 0 0 0.101

117 1 0 0 0.0101 0.1011

118 2 0 1.5824 0 0.0396
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Table 3.9: Comparison of optimal PMU locations obtained by proposed methodology
with available techniques

Test system

No. of
PMUs
required for
complete
observability

PMU in-
stallation
%

Optimal PMU locations
Common
PMU
location

Proposed
methodology

Chakrabarti
and Kyri-
akides [37]

Alvarez et
al. [45]

Roy et
al. [124]

NE 39-bus 13 33.33 % 2, 6, 9, 14,
17, 20, 22,
23, 29

11, 32, 33,
37

10, 11, 19,
25

NA 10, 12, 19,
25

IEEE 57-
bus

17 29.82 % 1, 4, 9, 32,
36, 38, 41

7, 15, 20,
24, 25, 28,
47, 50, 53,
57

NA 7, 15, 19, 22,
25, 27, 47, 51,
53, 57

20, 24, 27,
29, 30, 39,
45, 46, 51,
54

IEEE 118-
bus

32 27.12 % 5, 12, 17,
21, 23, 49,
56, 62, 68,
71, 75, 77,
80, 85, 94,
105, 110

3, 10, 15,
28, 30, 36,
40, 44, 47,
52, 64, 87,
91, 101, 115

NA 3, 9, 15, 25,
29, 34, 37, 40,
45, 52, 64, 86,
90, 102, 115

1, 9, 13, 26,
28, 34, 37,
41, 45, 53,
63, 86, 90,
101, 114

3.4 Summary

The major finding of this chapter are summarized below:

1. This chapter presented a methodology for determining the minimum number of

PMUs and their optimal locations for complete topological observability of the sys-

tem considering critical buses. Four different attributes; namely redundancy of mea-

surements, rotor angle, and frequency monitoring of generator buses, reactive power

deficiency, and maximum loading limit under transmission line outage contingency

are considered for selecting a bus for PMU installation.

2. Each attribute is evaluated for all the buses in the system and a consolidated score,

referred as the degree of criticality, is determined using TOPSIS.

3. The optimal PMU placement problem is formulated as a binary integer linear pro-

gramming problem.

4. The bus with the high degree of criticality is assigned more weight for PMU instal-

lation in the optimization problem.

5. The results verify that the majority of PMU locations are at the buses having a high

degree of criticality.
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6. The proposed scheme is also compared with the three existing methods for PMU

placement. The resultant PMU configuration has an equal number of PMUs as

reported by other methods but different PMU locations.

7. The multi-horizon deployment of PMUs is also addressed for utilities with limited

financial resources.

Next chapter deals with development of machine learning based modules for real-time

analysis of events using the synchrophasor measurements obtained from PMUs.





Chapter 4

Real-time Event Detection and

Classification

4.1 Introduction

Several accounts of power outages have been determined to be either initiated or ac-

celerated by relay maloperations and hidden failures. Although control centers receive the

response of protective devices in the form of relay trip status and circuit breaker flags, an

additional layer of security can be added by identification of events from the real-time PMU

signals. In this chapter, an event analysis framework has been proposed utilizing wide-area

synchrophasor measurements received from PMUs. The purpose of the framework is to

automatically identify an event occurring in the system and validate the response of relays

and other protective equipment to the event.

A three-phase fault is the most critical event that occurs in a power system in operation.

It subjects the generator to mechanical stress and excessively high-temperatures exceeding

the operating limits, that deteriorate its mechanical strength and insulation. A more severe

fault may result in rotor angle instability, sudden loss of transmission-lines, oscillations

in the rotor, vigorous machine vibrations and even breakdown. Low-inertia generators,

such as mini-hydro, micro-turbines, are most affected by these disturbances. Thus, timely

detection and clearance of faults is indispensable to safeguard the stability of the system.

From a critical review of the literature presented in Chapter 2, it is observed that there is a

pressing need for the development of a comprehensive scheme which not only detects events

41
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but is also able to find its location. The developed scheme should be capable of classifying

the type of event and quantify the magnitude of the event in real-time also so that effective

control measures can be devised to limit the consequence of disturbances. Therefore in this

chapter, a new unified scheme is proposed for detection of events, their localization, and

classification by analyzing both voltage and frequency waveforms. Simultaneous analysis

of both voltage and frequency ensures that both active and reactive power events are

detected due to the existence of a strong coupling between frequency and active power;

and voltage and reactive power. The signal energy has been used to recognize an event

and identify its location. For event classification, a supervised learning based approach

has been proposed. A dataset with various events has been first simulated, and labelled

with its respective class. It is randomly shuffled and divided into the training and testing

sets with 60 % and 40 % cases respectively. A multi-class Support Vector Machine (SVM)

classifier is trained using appropriate features extracted from the training dataset, while

the testing dataset remains unseen to the classifier. SVM algorithm automatically infers

the mapping function from the input features to the output class. After it is trained, its

performance is validated on the testing dataset. However, non-stationary dynamic nature

of the power system is its intrinsic characteristic. As a consequence, the measurement

signals like rotor angle, rotor speed, frequency, and voltage after a disturbance perturbs

the system are also non-stationary. Therefore, in this work, the wavelet transform has

been used to interpret these signals.

4.2 Wavelet Transform (WT)

Wavelet Transform is an excellent tool for investigating signals of non-stationary, aperiodic,

and abrupt nature. It renders superior temporal as well as frequency resolution. It finds

its applicability in diverse spheres such as noise cancellation, data compression, pattern

recognition, seismic signal analysis, etc. It resolves the signal of interest into ‘wavelets’

which are dilated and translated variants of the ‘mother wavelet (ψa,b)’ [132]. A mother

wavelet at scale a and position b is defined as:

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
(4.1)

where a and b are called dilation parameter and translation parameter respectively. It

is squeezed or dilated and translated to and fro along the length of the signal. WT is

the convolution of a input continuous-time signal x(t) with the scaled variants of mother
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(a) Voltage Variation (b) Frequency Variation

(c) Plot of WCs of voltage (d) Plot of WCs of frequency

Figure 4.1: Time-frequency plots of generator outage at bus 31

wavelet. Mathematically,

Ta,b =
1√
a

∫ ∞
−∞

x(t)ψ
( t− b

a

)
dt (4.2)

where Ta,b are termed as detail coefficients or directly wavelet coefficients (WCs). The

values of Ta,b quantify the correlation between the mother wavelet and a local segment of

the signal. These coefficients show proportionally higher magnitude at a particular scale

indicating the existence of a strong frequency component. The dilation and contraction of

the mother wavelet govern its characteristic frequency. WCs show proportionally higher

magnitude at particular scales and time indicating the existence of a strong frequency

component as can be observed in Fig. 4.1 in case of outage of generator 2 in NE 39

bus system. Fig. 4.1(a) and 4.1(b) show voltage and frequency variation at bus 31 after

the outage of the generator. Both voltage and frequency are observed to oscillate at

approximately 1 Hz. The corresponding plots of WCs for continuous values of a and b

normalized by maximum absolute value of the coefficient at each scale using ‘db2’ mother

wavelet are shown in Fig. 4.1(c) and Fig. 4.1(d). These plots are known as Continuous

Wavelet Transform (CWT) plots. It is observed that WCs delineate abrupt discontinuities
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and oscillations present in both voltage and frequency waveforms. The discontinuities

result in large absolute values of WCs concentrated at the time of generator outage. Also,

WCs adequately localize oscillations present in the input signal at particular scales. It is

observed that abrupt discontinuities in signals result in large absolute values of wavelet

coefficients concentrated in a narrow region centered at the time of generator outage. The

perimeter of this region is called the Cone of Influence (COIn). The event of generator

outage is more precisely localized at lower scales where the wavelet is less dilated than at

higher scales inside the cone of influence. The transform plot also shows the large value of

coefficients at intermediate scales inferring that wavelet size at these scales approximates

the waveform.

4.2.1 Discrete Wavelet Transform (DWT)

CWT translates and dilates the mother wavelet over the entire signal for continuous values

of a and b. Consequently, it generates substantial quantity of redundant information.

Hence, DWT is favored due to more efficient and simpler practical implementation. In

DWT, both a and b are discrete values exclusively; a = am0 and b = nb0a
m
0 ; m,n ∈ Z. For

typical values of a0 = 2 and b0 = 1, a dyadic grid mother wavelet ψm,n(t) and its scaling

function φm,n(t) are described as:

ψm,n(t) = 2−m/2ψ(2−mt− n) (4.3)

φm,n(t) = 2−m/2φ(2−mt− n) (4.4)

The detail and approximation coefficients are obtained by convolution of x(t) with mother

wavelet and scaling function respectively as stated in (4.5) and (4.6):

Tm,n =

∫ ∞
−∞

x(t)
1

2m/2
ψ(2−mt− n)dt (4.5)

Sm,n =

∫ ∞
−∞

x(t)
1

2m/2
φ(2−mt− n)dt (4.6)

The detail coefficients Tm,n characterize the sudden changes or high frequency components

present in the signal. Conversely, approximation coefficients Sm,n describe the trend of

the signal or the low frequency component [133]. Both approximation and detail com-

ponents reconstructed from approximation and detail coefficients of a signal at a specific

level are downsampled by a factor of 2, and the approximation are utilized for further

decomposition. The process is repeated until the required level of detail coefficients is

obtained [134,135].
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4.2.2 Cross Wavelet Transform (XWT)

Non-stationary nature of power system signals hinders their phase estimation using simple

methods such as Cross-correlation and Fourier transform. Therefore, the instantaneous

phase of oscillating signals has been estimated using Cross-Wavelet transform. The XWT

of two signals x(t) and y(t) is defined as:

T x,ya,b = T xa,bT
y∗
a,b (4.7)

The modulus of XWT,
∣∣∣T x,ya,b

∣∣∣, is cross wavelet power while its complex argument, ςa =

arg(T x,ya,b ), is instantaneous relative phase difference between x(t) and y(t).

4.3 Event Detection and Classification

Normally, power system functions in a quasi-static state. However, the unexpected occur-

rence of an event initiates power imbalance in the system, which is reflected as an abrupt

variation in voltage and frequency measurements recorded by PMUs. This imbalance is

corrected by governor action and excitation control, which take up to 2 s to participate

in stabilizing the system. The voltage and frequency waveforms during this period are

deemed as the natural response of the power system to the event. The post-disturbance

waveforms of voltage and frequency associated with the similar type of events exhibit very

similar characteristics in both time and frequency domain [136]. It illustrates that suffi-

cient information for detection and classification of events is available in the waveform.

But, the absence of fundamental frequency in the event signals hinder their frequency

representation by simple Fourier Transform [69]. Short-Term Fourier Transform (STFT)

which requires sectionalizing the signal and applying the conventional Fourier Transform

on individual section is another procedure for analysis of non-stationary signals. But,

choice of a suitable window and inverse relationship between time and frequency resolu-

tion limit its applicability. Hence, the simultaneous analysis in time-frequency domain is

a suitable choice. The DWT renders a better trade-off between temporal and frequency

resolution, i.e. it offers good time resolution at high frequencies and good frequency res-

olution at low frequencies. Therefore, in this work, DWT is used to analyze the voltage

and frequency signals received in real-time through synchrophasor measurements.

Fig. 4.2 shows the outline of the proposed event analysis approach. The real-time voltage

and frequency measurements are received from PMUs. These signals are continuously
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Figure 4.2: Flowchart of the event analysis

scanned for detecting events. Once an event is detected, it is immediately checked for

being a fault. If a fault is reported, it is cleared. In the absence of fault, the event

localization and classification module is initiated. Next, the impact of the event on the

stability of the system is checked and remedial measures are undertaken if it leads to

instability. Stability assessment and emergency control have been discussed in the next

chapter.

4.3.1 Signal Energy

In this work, signal energy has been utilized to detect the occurrence of an event. It is a

mensuration of intensity or magnitude of the signal. For a signal x(t) of length L = 2M ,

the signal energy is obtained as:

E =

∫ ∞
−∞
| x(t) |2 d(t) = (SM,0)2 +

M∑
m=1

N∑
n=0

(Tm,n)2 (4.8)

where N = 2M−m − 1 and N + 1 is the number of coefficients in level m. The energy

corresponding to details in level m is stated as:

Em =

N∑
n=0

(Tm,n)2 (4.9)

It is a direct assessment of local energy in a particular frequency sub-band. At the instant

of the event, the energy of voltage and frequency signals is significantly higher than its

value during steady-state operation of the system.



Chapter 4. Real-time Event Detection and Classification 47

4.3.2 Proposed Event Detection and Localization Scheme

Voltage and frequency remain almost stationary for a power system operating in equilib-

rium. When an event occurs, these parameters abruptly deviate from their equilibrium

values. This work exploits the ability of wavelets to distinguish such abrupt transitions or

edges from the stationary parts in the measured signal. A wavelet is a localized function

and approaches to zero at a short distance from its center. Under normal operating con-

ditions, wavelet convolutes with a virtually constant signal to give near-zero values of the

integral in (4.5). As the wavelet traverses across the discontinuity present in the signal,

significantly large values of WCs are obtained. The polarity and magnitude of the WCs are

determined by the geometry of the wavelet used. The event detection procedure proposed

in this work is based upon constant inspection of the squared detail coefficients, i.e., en-

ergy corresponding to details of fixed width moving window of voltage and frequency data.

Squaring the wavelet coefficients assures that the positive and negative contributions to

the integral in (4.5) are not neutralized when the discontinuity coincides with the center

of a symmetrical wavelet. A new index has been formulated for detection of events. It is

described as the ratio of energy corresponding to detail coefficients of the present window

and mean energy of 10 preceding windows. For lth bus and tth time instant, it is defined as:

R(J,l)[t] =
E

(J,l)
m [t]

1
10

t∑
j=t−10

E
(J,l)
m [t]

; J ∈ {V, F}, ∀ l ∈ NB (4.10)

where NB denotes the set of all buses. The average of 10 continuous cycles has been

taken as it is generally used in the aggregation of continuously varying power system

measurements [14, 137]. The ratio is computed for both voltages (R(V,l)) and frequency

(R(F,l)) measurements over a 30 sample moving window with an increment of 1 sample.

The size of moving window was selected according to natural frequency of oscillation of

voltage and frequency after the system is perturbed by an event. If the frequency of

oscillation is high, a shorter moving window size may be selected and vice-versa; such that

it contains a sufficient part of voltage and frequency waveform. As observed in Fig. 4.1 (a)

and (b) voltage and frequency oscillate at about 1 Hz in NE-39 bus system after outage of

a generator at bus 31, i.e., 1 complete cycle in 1 s. In this work, only half cycle data or 30

samples of voltage and frequency measurements have been considered for event detection

as the energies of positive half cycle and negative half cycle are equivalent in sinusoidal

waveforms. The occurrence of an event is indicated when either R(V,l) or R(F,l) exceeds

its predefined threshold value ζV and ζF respectively anywhere in the grid at any instant
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Table 4.1: Voltage and frequency response to various events

Event Voltage response Frequency response

Fault Drastic fall Rise
Generator outage Fall/Rise§ Fall
Load rejection Increase Increase
Industrial load starting Fall Fall
Shunt capacitor outage Drastic fall Insignificant increase
Shunt reactor outage Drastic rise Insignificant decrease
§When synchronous generator is over-excited/under-excited

of time. The threshold values are system-specific and also depend on the wavelet family

used. Under normal operating conditions:

R(V,l) < ζV and R(F,l) < ζF (4.11)

After the detection of the occurrence of an event, it is first checked for being a short-circuit

fault.

4.3.3 Fast Fault Identification Module

The Distance or Impedance Relays are commonly used as primary and backup protection

against faults. However, the distance protection can incorrectly perceive heavy load as

a fault due to low voltage and heavy current flow in the transmission line. This type of

misinterpretation is known as load encroachment, and is typically observed at the beginning

stage of a blackout. Therefore, a new two-step confirmation technique has been devised

for prompt detection of faults and separation from all other types of events.

4.3.3.1 Fault Suspicion Criterion

A comparison of the characteristics of faults with some regular events occurring in a power

system is presented in Table 4.1. It is observed that a fault leads to drastic fall in voltage

while an impulsive increase in generator speed. These transient voltage and frequency

responses of the power system to faults have been used in the proposed method. Due

to the drastic decrease in voltage magnitude at a bus (voltage may even drop to almost

zero depending upon the fault impedance), the change in voltage magnitude is used as

an attribute of a fault. At bus l, the change of voltage is calculated using the backward-

difference approach between real-time consecutive voltage samples obtained from PMUs.
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When it declines a predefined threshold, ϑFl, a fault is suspected. Accordingly, a Fault

Suspicion Criterion is formulated as:

Fault Suspicion Criterion: ∆Vl[t] = Vl[t]− Vl[t− 1] < ϑFl (4.12)

The threshold value ϑFl is system specific and should be judiciously decided after exhaus-

tive contingency analysis through offline time-domain simulation. The nearest location of

the fault is determined as the bus with the maximum decrease in voltage at the time of

the event. Mathematically, it is expressed as:

Suspected Fault Bus : BFl = arg max
l∈[1,2,..NB ]

(
|∆Vl[t]|

)
(4.13)

where NB is the total number of buses in the system. The reduction in voltage cannot

alone serve as an effective parameter for fault recognition, because other events, such as

staring of heavy industrial loads can also result in steep voltage drop. Also, the quantum of

voltage dip observed at a bus depends upon fault impedance and distance from the actual

fault location. Thus, a secondary check has been suggested to validate the occurrence of a

fault. The power fed by a generating machine abruptly decreases to zero at the inception

of fault. The turbine governor is unable to respond spontaneously due to inherent delay

in the opening of steam valves, and mechanical torque exceeds electrical torque causing

the generator to accelerate [138]. The rise in frequency followed by a fault is observed

to be its signature response. On that premise, a supervised learning based binary SVM

classification module has been proposed as an affirmative check for a fault. It is a predictive

analytic tool that is first trained offline using pre-labelled data, and then implemented

online to predict the state of the system based on ambient measurements. The change

in magnitude of voltage and frequency have been used as two features as input to the

classifier which distinguishes faults from other events. SVM finds the maximum-margin

hyperplane between the Fault class from the Other Event class.

4.3.3.2 Supervised Learning Based Fast Fault Identification

In this work, supervised learning classification has been used to serve as a Fast Fault

Identification (FFI) module for real-time confirmation of the occurrence of a fault. The

FFI module accepts the amount of change in voltage and frequency at the Suspected Fault

Bus as inputs and classifies the event either in Fault class or in Other event class. It is a fast

and accurate tool; and can be used in conjunction with conventional distance protection

scheme. When both schemes confirm a fault, it is cleared by opening the transmission
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line using circuit breakers. However, in case of inconsistency between the judgement of

both schemes, such as in case of load encroachment or formation of electrical centers, the

proposed module may overrule the distance protection scheme.

If the detected event is not a fault, event localization algorithm is initiated for determining

the location of the origin of the event. An event involving contingencies of reactive power

apparatus do not impact system frequency significantly. However, both active as well

as reactive power contingencies affect the voltage. Hence, voltage magnitude has been

preferred over frequency for event localization. The proposed event localization algorithm

requires a 1 s data window of voltage magnitude of each bus obtained in real-time through

PMUs. The data window is composed of 30 samples of pre-event and 30 samples of post-

event voltage magnitude readings. This data window is significantly small for real time

use and confines the resultant voltage deviation precisely in its midpoint. The inclusion of

pre-event voltage data in event localization facilitates the estimation of the relative change

in the bus voltages before and after an event. The bus electrically adjoining the location

of the event undergoes maximum deviation in the voltage magnitude which is apparent

in the detail coefficients. The algorithm determines the energy corresponding to details of

voltage magnitude for each bus as stated in (4.9). Accordingly, the bus with the highest

wavelet energy is nearest to the location of the origin of the event.

4.3.4 Selection of Mother Wavelet and Decomposition Level

The discontinuities present in the input signal affect the wavelet coefficients at all levels.

WCs corresponding to such discontinuities have a greater absolute magnitude than WCs

corresponding to smoother features of the signal. However, the discontinuities are most

accurately localized at the smallest level of wavelet decomposition because of the high-

frequency components in the discontinuity. Furthermore, the event localization and clas-

sification module, proposed in this work, requires only 60 samples of PMU data. Wavelet

coefficients of such short signals are also contaminated by spurious values or the edge ar-

tifacts as the number of decomposition level increases. Hence, smaller decomposition level

has been considered as more suitable for wavelet decomposition. Several mother wavelet

families (Daubechies 1-20 and Symlets 1-20) were also tested to check the accuracy of the

classifier. After a thorough investigation, best classification results were achieved with

Daubechies-2 (‘db2’) wavelet. This wavelet offers excellent performance in edge detection

and transient signal analysis. Hence, ‘db2’ with decomposition level 1 is used for further

analysis.
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4.3.5 Proposed Feature Extraction and Dendrogram Based Support Vec-

tor Machine (DSVM) Event Classification Module

A classification module is developed for non-fault events. It aims to classify the identified

event into one of the four major classes of disturbances frequently occurring in power

system, viz. generator outage, load rejection, capacitor outage, and starting of induction

motor. The classification of events is crucial to devise efficient corrective measures for

maintaining the stability of the system. In the proposed scheme, the event classification

is initiated after event localization algorithm. Both event localization and classification

modules utilize the same data window as input.

4.3.5.1 Time-Frequency Feature Extraction

The proposed method processes voltage and frequency measurements of the bus where

event is detected using DWT and extracts the features suitable for classification. These

features are detailed as follows:

1. Energy Dispersion (DE): It measures the distribution of energy among all levels

of wavelet decomposition. A signal of length 2M , has maximum ‘M’ levels of decom-

position. The signal energy corresponding to each level is calculated using (4.9) and

its dispersion is defined as:

DE =
σ2
E

µE
(4.14)

where σE and µE are standard deviation and mean of energies in each level respec-

tively.

2. Average Frequency (υA): The voltage and frequency waveforms following an

event can be separated into their spectral components in each frequency sub-band

corresponding to the decomposition level. The average frequency of the oscillation

is calculated as:

υA =

M∑
m=1

f
′
m × Em

M∑
m=1

Em

(4.15)

where f
′
m and Em are the associated pseudo-frequencies and energy in mth decom-

position level.
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3. Log Energy Entropy (Hlog): Entropy is an estimate of information contained in

a signal. For wavelet coefficients at mth decomposition level, it is expressed as:

Hlog =

N∑
n=0

log2(pn)2 (4.16)

where pn is the energy probability distribution of wavelet coefficients defined as:

pn =
(Tm,n)2

Em
(4.17)

with the convention log2(0) = 0.

4. Median Absolute Deviation (MAD): MAD is a robust indicator of the central

tendency of a sample of univariate quantitative data. It is expressed as the median

of the absolute deviations of data points from its median; i.e.,

MAD = median(| Xk −median(X) |) (4.18)

where X is the measurement sequence in the current measurement window and

k = 1....60 . As similar events generate similar measurements sequences, the spread

of data points along their median is also distinctive feature for different types of

events.

Four features from voltage magnitude and four from frequency measurements are com-

puted. Thus, the consolidated feature vector comprises a total of 8 features, i.e. F ∈ R1×8.

Since these features are diversified, they vary over a wide range of values. In machine learn-

ing algorithms, the features in greater numeric ranges dominate those in shorter numeric

ranges. Consequently, the ranges of all features are normalized so that each feature is rep-

resented proportionately. Therefore, the raw feature vector has been scaled using Z-score

standardization. The Z-score of the jth feature in the feature vector is determined as:

Zj =
Fj − µF
σF

(4.19)

where µF and σF are mean and standard deviation of F respectively and j = 1, 2...8. It

scales the features to have mean 0 and standard deviation 1 and eliminates the skewness

in the data. This scaled feature vector is utilized as the input to the classifier which

segregates the event into one of the four predefined classes.
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4.3.5.2 Multi-Class Support Vector Machine Event Classification Module

SVM is a supervised learning based approach for classification problems. It classifies the

data set by determining the decision boundary or hyperplane with the largest margin

between the data points of the two classes [139]. For a given data set (αz, βz), z =

1, 2, 3...Nd ,where αz ∈ Rn is the feature vector with the corresponding class label βz ∈
{+1,−1} , the SVM is formulated as the following optimization problem [140]:

min
w,B,ξ

1

2
wTw + C

Nd∑
z=1

ξz (4.20)

subject to

βz(w
TΩ(αz) +B) ≥ 1− ξ; ξ ≥ 0. (4.21)

where w is the vector of coefficients, B is a bias term, ξ is the error term with penalty

constant C > 0. The variation in parameter C adjusts the weight on the distance between

the hyperplane and error points. The kernel function K(αz, αz′) ≡ Ω(αz)
TΩ(αz′) is used

to project the input features into higher dimensional space and the separating hyperplane

with maximum margins in higher dimensions is obtained. SVM classifier is inherently

a binary classification algorithm and needs to be suitably modified to achieve multiclass

classification. In this work, a Dendrogram based SVM classifier [141] has been used. It

requires two steps (i) create an ascendant hierarchical cluster tree of known classes based

on the smallest distance between data points (ii) link a binary SVM at each node of the

tree that classifies the input sample into either of the subclasses below the node. Accord-

ingly, s-1 SVMs are created for classification in s-classes.

4.4 Simulation and Results

The effectiveness of the proposed methodology is demonstrated on New-England 39 bus

test system. The data of dynamic models of synchronous machines and excitation systems

taken in the analysis are provided in Appendix A. The dynamic simulation was performed

in PSAT toolbox [142] on MATLAB R2010a platform [143] of a Windows 7 computer

with a Core i5 CPU and 4 GB of usable RAM. The system is completely observable by

PMUs installed in the grid at locations suggested in Chapter 3. The reporting rate of

PMUs to the centralized control center is taken as 60 samples/s. A latency of 100 ms

due to the communication lag between PMUs and the central control is considered [117].
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White Gaussian noise with zero mean and SNR 45 has been added to all measurements

to emulate noise present in actual PMU data [144].

4.4.1 Dataset Generation

The dataset was generated by simulating five different events, namely, Generator Outage

(GO), 3-phase fault (3PF), Load Rejection (LR), Capacitor Outage (CO) and Induction

Motor Starting (IMS). The load in the system was varied from 85 % to 110 % of base case

in step of 5 % and each event was simulated at all loading levels. The NE-39 bus system

has 10 generators and 18 load buses. The dataset for class GO and LR was simulated

by the abrupt rejection of each generator and load individually from the system during

operation. Similarly, three phase faults, each of 8 cycles and varying fault impedance,

were simulated at all zero-injection and load buses. Shunt capacitors of variable rating

were placed at load bus to improve its power factor to approximately unity, and class CO

data was generated by sudden elimination of the capacitor. For IMS class, a fifth-order

double-cage induction motor was installed at load bus and measurements were taken at

the start-up of the motor. As detailed in Table 4.2, total 558 events were created and

labelled with its respective class. Synchronized voltage and frequency readings available

from PMUs were recorded. Thus, the cumulative dataset was composed of 21,762 cases

of events from all buses. The dataset was randomly shuffled and divided into the training

and testing sets as 60 % and 40 % cases respectively.

Table 4.2: Composition of the generated dataset

Types of events
Number of events at a
specific loading level

GO 10
3PF 29
LR 18
CO 18
IMS 18

Total number of events at a
specific loading level

93

Number of loading level
considered

6

Total number of events 93 × 6=558

Cumulative number of cases
recorded from all buses

93× 6× 39 = 21762
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Figure 4.3: Selection of threshold value of R(V,l) and R(F,l)

4.4.2 Selection of Threshold Values

The proposed approach requires values of three thresholds viz. ϑFl, R(V,l) and R(F,l).

All thresholds are system specific, and their values must be decided with caution. The

maximum value of ∆Vl after a fault in the prepared dataset was selected as the threshold

for Fault Suspicion Criterion. It was found to be ϑFl = −0.45 p.u. The values of other

thresholds, R(V,l) and R(F,l), were selected after thorough investigation of the training

dataset for lowest value of wavelet energy for each type of event. Fig. 4.3 shows the

minimum values of R(V,l) and R(F,l) observed throughout the grid at the instant of event.

It is observed that capacitor outage does not affect the frequency of the system significantly

due to weak coupling between reactive power and frequency. The negligible value of R(F,l)

in case of class CO is due to the noise present in the measurement. Thus, these values

were neglected while selecting thresholds for R(F,l). Consequently, taking the minimum

values in the training dataset, the threshold for R(V,l) and R(F,l) were taken to be 50 and

30 respectively.
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4.4.3 Event Detection and Localization

In this section, large number of events were simulated and analyzed by employing the

proposed method on voltage and frequency measurements observed from every bus. Two

representative cases are presented below:

4.4.3.1 Event 1: Generator Outage at Bus 30

The synchronous generator installed at bus 30 delivering a load of 250 MW is disconnected

suddenly at t = 5 s (300th sample) by opening the breaker connecting the generator to the

network. It causes reduction in voltage magnitude and inter-machine oscillations among

other generators. The 15 s time frame of voltage and frequency oscillation at bus 30 are

shown in Fig. 4.4(a) and 4.4(b) respectively. Both ratios R(V,l) and R(F,l) are continuously

computed for a sliding window of 0.5 s as discussed in Section 4.3.2 and their variation

with time at bus 30 is presented in Fig. 4.4(c) and 4.4(d). A sudden increase in their

magnitude is observed immediately after the outage of the generator. Both ratios overreach

their respective thresholds at t = 5.0167 s (301st cycle) following the event. An identical

increment in their values is witnessed at all remaining buses also. As ∆V = −0.04 > ϑFl,

fault is not suspected. The event localization is triggered after 0.5 s of the detection of

the event. Fig. 4.4(e) shows the energies corresponding to detail coefficients at all buses

computed using (4.9). It is noticed that bus 30 has the highest wavelet energy among all

buses suggesting the location of the event. The impact of disturbance in the grid is also

visible in the wavelet energy plot as buses electrically close to bus 30 have higher value of

energy. Accordingly, bus 2 shows the greatest wavelet energy after bus 30 followed by bus

3 and 25. After localization of the event, the same data window is used to classify events.

It results are presented in Section 4.4.4.

4.4.3.2 Event 2: 3-phase Fault at Bus 3

A 8 cycle 3-phase fault is simulated at bus 3 at t = 5 s. The variations in voltage and

frequency at bus 3 after the event are shown in Fig. 4.5(a) and 4.5(b). Fig. 4.5(c) and

4.5(d) illustrate that both R(V,l) and R(F,l) simultaneously violate their threshold limits ζV

and ζF respectively in the subsequent sample after the event. The FFI module is initiated

immediately after the detection of event. As Fault Suspicion Criterion is also violated

(∆V = −0.6 p.u. approximately), FFI is used to confirm the occurrence of the fault. FFI

module accepts the change in event bus voltage and frequency (∆V and ∆F ) as inputs
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and confirms the fault. The output of the event localization algorithm is presented in Fig.

4.5(e). The wavelet energy is highest at bus 3 showing the neighborhood of the event.

The performance of the proposed indices was validated on unseen cases available in the

testing dataset. Table 4.3 summarizes the results of event detection and localization when

events from testing dataset were verified using the selected thresholds. It was observed

that 9 events were undetectable by both R(V,l) or R(F,l) ratios while 47 cases remain

undetected by R(F,l) independently. It was found that among these 9 undetected events, 3

(a) Voltage Variation (b) Frequency Variation

(c) R(V,l) (d) R(F,l)

(e) Event localization results for generator outage at bus 30

Figure 4.4: Generator outage at bus 30
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events correspond to load rejection at bus 12 at different loading conditions. The amount

of load at bus 12 is considerably less (0.123 % of the total load) to generate any significant

deviation in either voltage or frequency on its rejection as well it does not affect the

system stability. The remaining 6 cases belong to capacitor outage at buses 3 and 29,

where power factor was 0.9997 and 0.9995 respectively. Hence, the size of capacitors

required to compensate their power factor to unity was relatively small. Similarly, 47

cases undetected by R(F,l) were of capacitor outages at different buses. Therefore, these
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(a) Voltage variation (b) Frequency variation

(c) R(V,l) (d) R(F,l)

(e) Event localization results for 3-phase fault at bus 3

Figure 4.5: 3-phase fault at bus 3
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events didn’t have any noticeable effect on frequency. The event localization was tested

on successfully detected events. Its accuracy was estimated to be 100 % signifying that

the voltage deviation is maximum at the bus closest to the site of the event.

4.4.4 Training and Testing Event Classification Module

In this section, classification accuracy of both FFI and non-fault event classifier has been

discussed. The characteristic voltage and frequency responses of a power system to faults

constitute the underpinning for the proposed FFI module. The dataset is prepared for

the offline training of the classifier as discussed in Section 4.4.1. The change in voltage

and change in frequency at the Suspected Fault Bus are selected as the two features input

to the classifier. Fig. 4.6 shows these features from the training dataset on x and y-

axis respectively. The ∗ sign indicates data points of class Fault, and + indicates data

points of class Other Event. As evident from the figure, the two classes can be distinctly

separated on ∆V −∆F plane; thus, a ‘linear’ kernel and hard margins are suitable for fault

classification. Fig. 4.6 also shows optimal hyperplane between the two classes identified

by SVM with a blue straight line. The performance of the trained classifier is validated

on unseen data from the test set. Table 4.4 shows the cumulative confusion matrix of

FFI module. It can be observed that the SVM classifier separates faults from other events

with 100 % accuracy. The high accuracy is attributed to the existence of wide separation

between the two classes because of peculiar voltage and frequency responses corresponding

to fault events.

For non-fault events, features were extracted for each event case and used as input to train

a DSVM classifier. Since the existence of separating margins between various classes is

not known, classifier was trained with both soft and hard margins and different kernel

Table 4.3: Event detection and localization results

Total no. of events tested for event detection 226

Events correctly detected by R(V,l) 217

Events correctly detected by R(F,l) 179

Events correctly detected by R(V,l) or R(F,l) criteria 217

Events undetected by R(V,l) 9

Events undetected by R(F,l) 47
Total no. of events tested for event localization 217
Events correctly localized 217
Event inaccurately localized 0
Event detection accuracy (%) 96.01
Event localization accuracy (%) 100.00
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Figure 4.6: Decision boundary between Fault and Other Event classes for FFI module

Table 4.4: Confusion Matrices of Fast Fault Identification Module in NE-39 Bus Test
System

Predicted
Actual Fault Other Event

Fault 1 0
Other Event 0 1

Accuracy 100 %

functions. The linear separability between various classes facilitates efficient classification

and reduces computational overhead. Thus, the classifier was first trained with a linear

kernel and hard margins. The penalty term C in (4.20) provides flexibility to obtain either

soft or hard margins. Hard margins enable a stricter boundary between two classes leaving

lesser extent for misclassification while soft margins increases slackness in the constraint

(4.21) allowing some data points to misclassify resulting in a larger margin. When trained

with hard margins and linear kernel, DSVM failed to converge indicating that data are

highly nonseparable [145]. Subsequently, soft margins along with linear kernel were used

for training. The performance of the classifier was validated with features extracted from

testing-dataset. The result of the classification is presented in the form of a confusion

matrix in Table 4.5. It is observed that, it offers a mean classification accuracy of only
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Table 4.5: Confusion Matrix of event classification with linear kernel and soft margins

Predicted
Actual GO LR CO IMS

GO 0.77 0.15 0.08 0.00
LR 0.15 0.84 0.00 0.01
CO 0.15 0.00 0.85 0.00
IMS 0.02 0.03 0.00 0.95

Accuracy 85.25 %

Table 4.6: Confusion matrix of event classification with Gaussian Radial Basis function
kernel and soft margins

Predicted
Actual GO LR CO IMS

GO 0.95 0.05 0.00 0.00
LR 0.06 0.94 0.00 0.00
CO 0.04 0.00 0.96 0.00
IMS 0.02 0.02 0.00 0.96

Accuracy 95.25 %

85.25 %. The poor performance of the classifier confirms the absence of a linear separating

hyperplane between the classes in lower dimensions. Non-separable features often become

linearly separable after they are mapped to a high dimensional feature space. Thus,

Gaussian Radial Basis Function kernel with soft margins was used for training and testing

with the previous data set. Confusion matrix for the analysis is presented in Table 4.6.

As observed from the table, the increased accuracy of the classifier shows that events are

separable in higher dimensions. The mean accuracy of the classifier is calculated as 95.25

%.

The suitability of the presented methodology for the real-time deployment was also veri-

fied. The average time elapsed in various stages of the proposed event analysis scheme is

presented in Table 4.7. The approximate time needed for the execution of event detection

and localization methods was < 10−4 s, and feature extraction and event classification

required < 10−2 s. The time consumed in the FFI module is < 10−3 s. Therefore, a

fault can be identified and cleared after two cycles of its occurrence. This latency is small

for real-time situational awareness, considering that the instability generally arises after a

few seconds (or even several minutes) after a critical event as observed in previous black-

outs [14]. This implies that the presented approach is appropriate for diagnosis of events

and functional in online polling mode of all protective devices in the grid.
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Table 4.7: Average computation time of the proposed event analysis scheme

Stage
Time
elapsed (s)

Event detection < 10−4

FFI module < 10−3

Waiting period = 5× 10−1

Event localization < 10−4

Feature extraction < 10−2

Event classification < 10−2

4.5 Coherency Identification of Generators Using Complex

Wavelet Transform

In this section, a new approach for identification of coherent groups of generators in a

multi-machine electrical power system has been proposed. The approach is based on

the estimation of the instantaneous phase difference between oscillating rotor angles of

generators after an event using XWT. Coherent groups of generators are automatically

formed using k -means clustering.

Fig. 4.7 shows three pure sinusoidal signals s1, s2, and s3, each of frequency 0.5 Hz and

duration 10 s sampled at 100 Hz. Signals s1 and s2 are identical, but s2 leads s1 by a

Figure 4.7: Three sinusoidal signals s1, s2 and s3
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Figure 4.8: Normalized distances between signals s1, s2 and s3

phase difference of π radians (or 180◦). On the contrary, s1 and s3 are in phase; however,

s3 is an amplitude shifted version of s1. Clearly, signals s1 and s3 are coherent while

s3 is out of phase with both s1 and s3. Therefore, a clustering algorithm should cluster

s1 and s3 in one coherent group while s3 as an independent cluster. Several standard

distance measures e.g. Euclidean distance, Standardized-Euclidean distance, City distance

etc. were tested to quantify the similarity among the three signals. These distances are

normalized for clarity and are presented in Fig. 4.8. It is observed from the figure that

in all measures, distances between s1 and s2 is less than the distance between s1 and

s3. Therefore, it can be concluded that the amplitude difference has dominated phase

difference between signals. Hence, a clustering algorithm will always be inclined to group

s1 and s2 in one cluster rather than s1 and s3. Considering the inadequacies of these

similarity measures, a new approach is suggested. A Phase Difference Matrix (PDM)

based on the difference in instantaneous phase of the most dominant frequency component

of two signals obtained using XWT has been developed. A new index for determination of

most dominant frequency component is also suggested. PDM transforms the difference in

instantaneous phase among NG generators in a NG×NG dimensional space where coherent

generators are in relative proximity then non-coherent generators. Morlet wavelet has been
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Figure 4.9: Cross Wavelet Transform plot between signals s1 and s2

used as mother wavelet for phase angle estimation. It is defined as:

ψ(t) = π−
1
4 eiω0te−

1
2
t2 (4.22)

where ω0 is the central frequency of the Morlet wavelet. For a value of ω0 = 6, it provides

a decent compromise between time and frequency localization [146]. Fig. 4.9 shows the

XWT plot between signals s1 and s2. The dark black outline indicates 5 % significance

level against red noise and the COIn where a signals may be contaminated by edge effects.

The inclination of the arrows depicts the relative phase difference between the two signals.

It is observed that both signals have significant common power in the frequencies of the

period of approximately 2 s (or frequencies of 0.50 Hz). Additionally, the arrows pointing

leftwards indicate a 180◦ phase difference between the signals. Thus, it can be concluded

that the two signals are non-coherent.

4.5.1 Instantaneous Phase Angle Estimation

The variations in rotor angles of the generators are reflected at all scales in wavelet spec-

trum. The instantaneous phase of a generator can be obtained by observing the phase
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of the most dominant frequency component [147]. Therefore, the difference between in-

stantaneous phases of two generators can manifest coherency of generators. The selection

of proper scale for accurate estimation of the phase angle is vital. Dominant frequency

component has been considered for this purpose. A dominant frequency component carries

maximum energy among all frequencies found in the spectrum. By determining the phase

of the dominant non-zero frequency component in the time domain, the swing characteris-

tic of the machine can be obtained, and coherency of generators can be established [148].

It is defined as the ratio of Cross Wavelet Power at a particular scale to Cumulative Cross

Wavelet Power across all scales. It is defined as:

η =

N∑
a=1

∣∣∣T x,ya,b

∣∣∣2
N∑
a=1

M∑
b=1

∣∣∣T x,ya,b

∣∣∣2 (4.23)

where N is the number of wavelet coefficients at scale b, and M is the number of scales. The

complex argument arg(T x,ya,b ) at a scale corresponding to maximum value of η is averaged

over certain duration to obtain a reasonable estimate of the instantaneous phase difference

between oscillating signals using the circular mean. For a set of angles (ςa, a = 1, 2...N),

the circular mean is defined as:

φx,ym = arg(α, β) withα =
N∑
a=1

cos(ςa) andβ =
N∑
a=1

sin(ςa) (4.24)

The phase difference of zero value indicates that signals x(t) and y(t) move together at

the specified frequency, while the phase difference of π or (−π) indicates an anti-phase

relation between x(t) and y(t).

4.5.2 Proposed Phase Difference Matrix

A Phase Difference Matrix (PDM) has been proposed in this section. PDM is a consoli-

dated matrix representing the relative phase difference between each pair of data points.

For a system with NG generators, PDM is of dimensions NG ×NG and is defined as:

PDM(i, j) =

{
φi,jm if i 6= j

0 if i = j
i, j ∈ {1, 2...NG} (4.25)

PDM maps the coherency of generators in a NG × NG dimensional space. Each row of

PDM represents the pairwise relative phase difference between signals. Following matrix
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Figure 4.10: Relative phase difference between signals s1, s2 and s3

presents the PDM of signals s1, s2 and s3 discussed in the previous section:

s1 s2 s3

PDMs1,s2,s3 =

s1

s2

s3


0 180◦ 0

180◦ 0 180◦

0 180◦ 0

 (4.26)

The PDM of signals in Fig. 4.7 is presented in a 3-dimensional space in Fig. 4.10. It

is observed that points corresponding to coherent signals (P1 and P3) lie in proximity

(overlap in this specific case) than other points. Therefore, such points can be easily

clustered using any clustering algorithm. k -means algorithm has been used for clustering

in this work because of its simplicity and fast response.

4.5.3 k-means Clustering

Clustering is an unsupervised learning technique that assorts given data points into disjoint

clusters such that data points within each cluster are similar to each other and distinct from

data points in other clusters. The similarity between clusters is assessed using distance
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measures. k -means clustering has been used in this work to partition data points in the

rows of PDM for clustering of coherent generators. k -means clustering algorithm divides

Nd objects into k (≤ Nd) clusters such that each object is closest to the centroid of its

cluster. For a given set of data points {α1, α2, ...αNd}, where αX ∈ Rn, ∀X ∈ Z : X ∈
[1, Nd], k -means finds clusters S = {S1, S2, . . . , Sk} so as to minimize the Within-Cluster

Sum of Squares (WCSS) (i.e. variance). It is formulated as the following optimization

problem [149]:

arg min
S

k∑
i=1

∑
α∈Si

∥∥∥αi − µi∥∥∥2
= arg min

S

k∑
i=1

∣∣∣Si∣∣∣Var Si (4.27)

where µi is the centroid of points in cluster Si. k -means clustering requires the number of

clusters in the data set to be known beforehand. Therefore, the elbow method has been

used to select the value of k. This method checks the percentage of variance explained

by the clusters against the number of clusters. The percentage of variance explained is

the ratio of the between-group variance to the total variance. The value of k where the

addition of another cluster doesn’t substantially increase the variance explained is adopted

as the optimal value of k. We have considered k as the cluster number corresponding to

90 % of variance explained.

4.5.4 Coherent Groups in NE-39 Bus System

The proposed methodology is demonstrated on NE-39 bus test system. The dynamic

models of synchronous machines and excitation systems are taken into account in the

analysis. The system consists of 9-generators (G1-G9) at buses 30-38 while the system is

connected to the main grid (G10) through bus 39. The fourth-order model of generators

G1-G9 is considered, and G10 is modeled in third-order. It is worthwhile to mention that

the coherency of generators is independent of the Fault Clearing Time (FCT) [150, 151].

Thus, an FCT that doesn’t confront the stability of the system could be considered without

the loss of generality.

Fig. 4.11 shows 15 s duration of varying rotor angles with respect to the COI of all the

generators after a three-phase short circuit solid fault is simulated at the midpoint of

transmission line 2-25 at t = 5 s. The fault is cleared by opening the circuit breakers at

both ends of the connected transmission line after eight cycles of its inception. However, a

different FCT may also be adopted as discussed previously. The XWT between each pair

of rotor angles of 10 generators were obtained. Fig. 4.12 shows the XWT plot between



Chapter 4. Real-time Event Detection and Classification 68

Figure 4.11: Rotor angle responses of 10 generators

Figure 4.12: XWT plot between rotor angles of generators G1 and G8

rotor angle responses of generator G1 and G8. It is observed that the relative phase differ-

ence between G1 and G8 at various frequency levels is varying with time. Therefore, the
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Figure 4.13: Silhouette Scores of the two clusters

instantaneous phase difference is determined for the frequency component with maximum

common power. Equation (4.23) reveals that the highest common is in 0.5 Hz frequency

component. The complex argument arg(T x,ya,b ) corresponding to 0.5 Hz component is the

instantaneous phase difference between the two rotor angle signals. The relative phase

difference between each pair of rotor angles is quantified using (4.24). For 10 generator

system, PDM is a 10× 10 dimensional matrix where each row exhibits the instantaneous

phase difference between each pair of rotor angles. Each row of PDM serves as coordinates

of an individual point in a 10× 10 dimensional space. Thus, total 10 points are available

for clustering in the dataset. Next, these data points are separated into clusters using

k -means algorithm.

Fig. 4.11 shows the coherent groups and their member generators. Group 1 consist of gen-

erators G1-G7, G9 while generators G8 and G10 swing together to form another coherent

group. The results can also be verified by inspection of Fig. 4.11, where rotor angles of

coherent group 1 are in phase and anti-phase with rotor angles of coherent group 2. To

further corroborate the efficacy of clustering, a plot showing silhouette scores from both

clusters is shown in Fig. 4.13. It can be observed that scores of both clusters are close to

+1, indicating that each data point is correctly grouped in its respective cluster.
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4.6 Summary

The outcome of this chapter is summarized as follows:

1. A new approach for real-time automated detection, localization, and classification of

events in power system using wavelet transform has been presented. It is motivated

by the observation that any event will cause voltage and frequency to sharply deviate

from their normal values and retain a signature post-event voltage and frequency

waveform.

2. A new index formulated as the ratio of energy corresponding to wavelet detail coef-

ficients of the present and 10 previous voltage and frequency data windows has been

proposed for real-time event detection.

3. It is observed from the results that the index detects an event in the following cycle

after occurrence of the event. As the variation in voltage is maximum at the location

closest to the event, the wavelet energy is highest at the bus electrically nearest to

the site of the event and displays a decreasing tendency as the distance from event

location increases. This reveals the dispersion of disturbance in the network and

facilitates the actuation of remedial measures.

4. A FFI module for quick identification of short-circuit faults is proposed. It utilizes

change in voltage (∆V ) and change in frequency (∆F ) as two features to discriminate

faults from other events.

5. For non-fault event, the features from both time and frequency domain are extracted

from voltage and frequency waveforms, and a multiclass DSVM classifier is trained

after scaling the feature vector with Z-score standardization.

6. It was observed that classifier offers poor accuracy with linear kernel and soft mar-

gins. Therefore, RBF kernel was used to transform features to higher dimensions to

obtain a separating hyperplane.

7. The proposed approach improves the situational awareness and can serve as a su-

pervisory framework for observing the activity of protective devices in the grid.

8. Identification of coherency of generators enables the power system operators in the

dynamic reduction of the system for security evaluation and to take enhanced cor-

rective measures such as controlled islanding. Two generators are called coherent if

the difference between their instantaneous phases is zero.
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9. XWT is used to study relation in time frequency space between two time series

presented to visualize the phase relationship between their frequency components.

10. XWT approach was applied for estimation of the instantaneous phase of rotor angle

oscillations after the system is subjected to a severe perturbation. It is used to study

the pairwise relationship between rotor angles of generators in time-frequency space.

11. A new consolidated matrix of the relative phase difference between each pair of

machines is proposed. The data-points in the matrix are clustered using k -means

algorithm.

12. The validation of the results of clustering is performed by using Silhouette Score

approach. It provides a measure to adjudge the appropriateness of each object

within its own cluster. It is observed that scores of both clusters are close to +1,

indicating that each data point is correctly grouped in its respective cluster.

13. The proposed approach aids visualization of interrelationships between coherent

groups of generators in power system. The magnitude of the wavelet coefficients

establishes the strength of coherency (strong or weak) between generators pairs.

In the next chapter, the impact of events on frequency and voltage stability of system has

been studied and emergency control has been suggested for unstable events.





Chapter 5

Frequency and Voltage Stability

Predictive Assessment and Unified

Load Shedding

5.1 Introduction

A well-designed scheme is essential for real-time monitoring and protection of stability of

the power system after an unanticipated event. The power system operates at equilibrium

with only small but continuous variations in load demand. An event perturbs the power

balance and may even jeopardize the stability of the system. The immediate knowledge

of the severity and nature of the event can enable more effective countermeasures to

preserve system security. The previous chapter addressed the issue of real-time event

analysis. This chapter proposes a scheme for regulating critical events that endanger

the frequency and/or voltage stability of the system. The aim is to identify such events

at the earliest utilizing supervised learning based classification module and initiate the

suitable emergency control action. The imbalances of both active and reactive power in

the aftermath of an event have been utilized to predict the stability of the system. Machine

learning automatically recognizes patterns in the training data and makes predictions on

unseen test cases. Therefore, the approach is threshold-parameter free and can detect

an impending instability before its actual manifestations are witnessed in the system. A

new optimization-based formulation has been presented for estimation of reactive power

imbalance from the bus-voltage magnitudes. An event classified as unstable is counteracted

73
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by prompt load-shedding. Conventionally, load-shedding is based on frequency or voltage

information independently which reduces the effect of load shedding. This work proposes

a new load-shedding procedure considering both active and reactive power available in

the system. The proposed scheme is tested on NE-39 bus system, and results of the

load-shedding have been compared with two existing load-shedding schemes.

5.2 Overview of the Proposed Methodology

This section is devoted to the development of a supervised machine learning reinforced di-

agnostic tool for identification of imminent instability due to critical events. The objective

of using machine learning is to predict the future response of the system by learning pat-

terns from previous characteristics instead of using pre-determined rules. A classification

module has been proposed to differentiate stable events from events leading to frequency

and/or voltage instability. The module aims to achieve maximum classification accuracy

using a minimum number of features to ensure quick response and minimal complexity. In

case an event is assessed as unstable, load shedding is initiated to obtain stable operating

condition.

5.2.1 Simultaneous Monitoring of Frequency and Voltage Stability

An event may result in a gradual increase in angular difference among generators, a de-

cline of bus voltages, or rapid variations in system frequency [152] and can also cause

unpredictable cascading failures, leading to complete power system blackout. The prompt

initiation of remedial actions such as load shedding, islanding, etc. can avoid instability

arising due to the disturbance. The knowledge of the severity of the event is essential

to create more secure and self-healing power grids. The focus of this section is real-time

estimation of both active and reactive power imbalance in the system following a major

event.

5.2.1.1 Estimation of Active Power Imbalance

The imbalance of active power instigated due to an event in the system is reflected in

rotor speeds of the generators, and consequently in the frequency measured at the gener-

ator buses. The frequency at the COI, fc, signifies the average dynamic response of all
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generating machines to an immediate event. It is expressed as:

fc =

NG∑
G=1

HG × fG

NG∑
G=1

HG

(5.1)

where HG and fG are the inertia constant and the frequency of the Gth generator re-

spectively and NG is the total number of generators. The synchronizing oscillations of

individual machines are filtered out in fc and it retains the mean frequency behavior of an

equivalent single machine. The Active Power Imbalance (API), ∆P , is determined from

the initial ROCOF at the COI immediately after the event using the swing equation as

follows:

∆P = 2×

NG∑
G=1

HG ×
(∆fc

∆t

)
fn

(5.2)

where fn is the nominal frequency of the system, and ∆fc/∆t is the discrete derivative of

frequency at COI with time. Both ∆P and fc are calculated immediately after the event

from real-time frequency measurements obtained from PMUs.

5.2.1.2 Estimation of Reactive Power Imbalance

An unanticipated event causes the imbalance of reactive power in the system. Both deficit

and surplus reactive power are equally harmful. While deficiency of reactive power causes

undervoltage and may invite voltage instability; surplus reactive power causes overvoltage

at buses and excessive magnetic flux in generators and transformers, resulting in tripping

due to V/Hz protection. Events such as generator outage, capacitor/reactor outage incite

the imbalance of reactive power and can contribute to the failure of the power system if

corrective measures are not initiated promptly. The estimate of reactive power lost after

an event can help undertake quantified countermeasures.

Unlike active power, whose principal source is generating units, the reactive power has

multiple sources and sinks. It is produced as well as consumed in synchronous generators,

transmission lines, and secondary reactive power support devices such as capacitors and

synchronous condensers. The power lost due to an event is distributed between remaining

devices in service. Thus, the estimation of Reactive Power Imbalance (RPI) is a compli-

cated task. In this thesis, a new method has been proposed for calculation of the amount

of reactive power shortage in the aftermath of an event during the transient condition.
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RPI has been defined as the amount of reactive power, ∆Q, injected at the event bus to

restore post-event voltage to pre-event voltage at all buses.

∆Q =

{
ϕ|ϕ = arg min

ϕ

(
NB∑
l=1

(V LF
l − V 0

l )2

)
, ∀ l ∈ NB

}
(5.3)

where V LF
l and V 0

l denote ad hoc bus voltage variable and pre-event voltage at lth bus

respectively. The problem of RPI estimation is formulated as the minimization of the dif-

ference between these two voltages at all buses subject to system constraints as illustrated

below:

Objective fn. : min

NB∑
l=1

(V LF
l − V 0

l )2 (5.4)

subject to power balance constraints:

Pl −
∑

(V LF
l V LF

m (Glm cos δlm +Blm sin δlm)) = 0; ∀ l ∈ NB (5.5)

ϕ+Ql −
∑

(V LF
l V LF

m (Glm sin δlm +Blm cos δlm)) = 0; l = BEv (5.6)

Ql −
∑

(V LF
l V LF

m (Glm sin δlm +Blm cos δlm)) = 0;∀ l ∈ NB; l 6= BEv (5.7)

where:

Pl & Ql Post-event active and reactive power injection at lth bus;

Glm & Blm Real and imaginary parts of element lm in bus admittance matrix;

δlm difference between voltage angles of lth and mth bus.

The event bus is the one where maximum deviation in voltage occurs, and is determined

using (5.8) [153].

Suspected Event Bus : BEv = arg max
l∈[1,2,..NB ]

(
|∆Vl[t]|

)
(5.8)

where ∆Vl is the change in voltage calculated using the backward-difference approach

between real-time consecutive voltage samples obtained from PMUs. The event bus is

modeled as a load bus in both (5.5) and (5.6). The proposed formulation is a nonlinear

optimization problem, and has been solved using quasi-Newton approach.

Apparent Power Imbalance, ∆S, in the system is expressed as the sum of ∆P and ∆Q as

shown below:

∆S = ∆P + j ∗∆Q =
∣∣∣S∣∣∣ cos Ψ (5.9)
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Figure 5.1: Flowchart of the proposed stability assessment and emergency control ap-
proach

Load shedding equivalent to ∆S will restore system states to pre-event values.

5.2.2 Supervised Learning Based Predictive Stability Assessment Mod-

ule

In this thesis, supervised learning classification has been used to propose a Predictive

Stability Assessment (PSA) module to classify an event as stable or unstable. Thus, it is

a problem of binary classification. After an event has been detected and classified using

the approaches proposed in previous chapter, PSA module is initiated. It analyzes both

active and reactive power imbalances in the system evoked by an event and predicts if the
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event belongs to Stable or Unstable class. Fig. 5.1 shows the flowchart of the complete

scheme.

A crucial challenge in supervised machine learning is the selection of an appropriate classi-

fier. The choice of a classifier is subject to the characteristics of data-set being considered,

response time and available computation overhead. As aforementioned, the utility of a

classifier in this problem is binary classification. Single layer perceptron, Logistic Regres-

sion, Decision Trees, and Naive Bayes are commonly used binary classification algorithms.

A single layer perceptron and Logistic Regression are suitable for learning only linearly sep-

arable decision boundaries while Decision Trees are preferable when the decision boundary

is piece-wise linear. Naive Bayes classifier assumes the features in dataset to be indepen-

dent of each other. Considering the limitations of these classifiers, SVM is applied for

real-time classification application. SVM offers high accuracy, low-overfitting, and can

classify data which is not linearly separable in the base feature space by transforming it

in higher dimensions using a kernel function. An introduction to SVM has been already

provided in Section 4.3.5.2.

5.3 Emergency Control Activation: Proposed Frequency and

Voltage Stability Unified Load Shedding

The prompt initiation of a remedial scheme can limit the adverse consequences of an

event and prevent a potential blackout. The decline in frequency caused by the API

could lead to tripping of steam-turbine governed generators by under-frequency relays,

thus worsening the situation further. The imbalance of power instigated by an event can

be sufficed immediately by increasing the generation, only up to the limits of spinning

reserve available. Also, a thermal unit can initially pick-up a load of about 10 % of

rated turbine output followed by an increase of 2 % per minute without causing damage

to the turbine [138]. Therefore, a centralized adaptive Frequency and Voltage Stability

Unified (FVSU) load shedding scheme has been proposed in this thesis, as an emergency

countermeasure against an event that is classified in Unstable class by the PSA module.

It is based on the observation that most approaches to load shedding are API-driven, i.e.,

the amount of active power to be shed at a bus is determined while the reactive load is

shed proportionally keeping the ratio of active load to reactive load constant at the bus

irrespective of the reactive power lost in an event. This leads to an imbalance between

reactive load and reactive power generation causing poor voltage profile at load buses.

Conversely, the proposed FVSU load shedding is based on the power factor of apparent
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power imbalance which signifies both API and RPI. It aims to shed more load at buses

where load power factor is closer to the power factor of apparent power imbalance. Thus,

the maximum balance of power between generation and load is maintained after the event.

The amount of load shed can be reduced by shedding the minimum load such that the

frequency at COI does not drop below a preset critical value. After the sudden loss of

generation, remaining generators share the imbalance in proportion to their inertia for

equal droop speed control [138]. Thus, the incremental load on generator G is expressed

as:

P IncG = 1.05× (∆P − PCritical)× HG

NG∑
G=1

HG

(5.10)

where PCritical is maximum API for which frequency does not falls below a critical thresh-

old Fmin. The factor of 1.05 is included to counterbalance the approximation involved in

linear System Frequency Response (SFR) model [23]. When P IncG is more than the maxi-

mum turbine output of a generator, it is included in the load to be shed. Accordingly,

PShed = 1.05× (∆P − PCritical) +

NG∑
G=1

max(τmaxG − (P g0G + P IncG ), 0) (5.11)

where τmaxG and P g0G are maximum turbine output and initial generation of generator G.

The reactive power to be shed QShed is determined by proportional reduction of ∆Q as

below:

QShed = PShed × ∆Q

∆P
(5.12)

The proposed emergency control scheme determines power factor of the apparent power

imbalance, cos Ψ, using ∆P and ∆Q. The magnitude of cos Ψ suggests about the nature

of the event, a value close to 1 indicates active power event, while a reactive power event

is suspected when it is close to 0. A definite threshold, κmin has been considered to

discriminate between the two types of events. For cos Ψ ≥ κmin, the event is considered

as an active power event; otherwise, it is treated as reactive power event. The value of

κmin is taken as 0.7071, which corresponds to ∆P = ∆Q. In this work, load shedding has

been suggested only for active power events, while regulated reactive power compensation

or a combination of load shedding and reactive power compensation may be undertaken

depending upon the available reactive power support and experience of the operator. The

proposed load shedding scheme sheds more load from load buses with power factor closer to

cos Ψ. It has been formulated as an optimization problem which minimizes the difference

between cos Ψ and power factor of load bus cos φL0
l , and is solved using ‘interior-point’
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algorithm. It is expressed as under:

Objective fn. : min

NL∑
l=1

(
cos Ψ− cos φL0

l

)2
(5.13)

subject to:

(a) Load-shed constraint:

0 < χPLl < PL0
l ; ∀ l ∈ NL (5.14)

0 < χQLl <
∣∣∣QL0

l

∣∣∣ ; ∀ l ∈ NL (5.15)

(b) Constant power-factor constraint:

χPLl −
χQLl

tanφL0
l

= 0;∀ l ∈ NL (5.16)

(c) Active power shed constraint:

NL∑
l

χPLl =

NL∑
l

PL0
l − P

Shed (5.17)

where:

cos Ψ & cos φL0
l Power factors of apparent power imbalance and load at lth load bus;

PL0
l & QL0

l Initial active and reactive components of load at lth load bus;

χPLl & χQLl Ad hoc decision variables for active and reactive load at lth load bus;

NL & φL0
l Total number of load buses and initial angle subtended between

active power and apparent power at lth load bus;

PShed Amount of active power load to shed.

The constraints (5.14) and (5.15) ensure that the final load is less than the initial load at

lth bus. Eq. (5.16) is the linearized variant of constraint enforcing that the power factor

at load buses remain constant even after load shedding. The absolute value of QL0
l is used

in (5.15) as the upper bound on new reactive load rather than its actual value. Capaci-

tors banks are installed at certain buses to inject reactive power locally into the system.

The value of QL0
l is negative at such buses. When the system operator resorts to load

curtailment, reactive power injection must also be reduced; else there will be the surplus

reactive power. |QL0
l | modifies the injected reactive power to an equivalent inductive load
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consuming reactive power. Thus, the new reactive load at lth bus indicates the decreased

reactive power injected by capacitor bank.

The active and reactive components of the new load schedule at lth load bus after proposed

load-curtailment are:

PLl = χPLl (5.18)

and

QLl =

χ
QL
l if sgn(QL0

l ) = +1

−χQLl if sgn(QL0
l ) = −1

(5.19)

Eq. (5.19) ensures that both injected and consumed reactive powers are shed.

5.4 Results and Discussion

The effectiveness of the proposed methodology is demonstrated on NE 39-bus test case.

The complete data of the system is available in Appendix A. The dynamic models of

synchronous machines and excitation systems are taken into account in the analysis as

discussed in the previous chapter. The dynamic simulation was performed in PSAT toolbox

[142] on MATLAB R2010a [143] platform of a Windows 7 computer with a Core i5 CPU

and 4 GB of usable RAM. The system is completely observable by PMUs installed in the

grid at locations suggested in Chapter 3. The reporting rate of PMUs to the centralized

control center is 60 samples/s. A latency of 100 ms due to the communication lag between

PMUs and the central control location is considered [117]. White Gaussian noise with

zero mean and SNR 45 has been added to all measurements to emulate noise present

in actual PMU data [144]. NE-39 bus system has 9 generators at buses 30-38, and one

aggregate generator of a large number of generators at bus 39, which has been considered

as slack bus. The system consists of 18 load buses and 42 transmission lines. The base

apparent power rating and the nominal frequency of the system are 100 MVA and 60 Hz

respectively. The active power imbalance for which the frequency does-not fall below its

critical threshold of 59 Hz determined using SFR model is 3.95 p.u.

5.4.1 Dataset Generation

The proposed PSA module is a supervised learning based method, i.e., it is first trained

offline with sample data before its online implementation. Once trained, it can analyze

an unseen input data point to make predictions about the event. The event dataset was
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Table 5.1: Composition of dataset

Event Specification Location No. of cases

Fault 8-cycle
All zero-injection, load buses and
mid-points of transmission lines

11+18+42=71

Generator outage Sudden generation loss Generator buses 9
Load rejection Sudden load loss Load buses 18

Industrial load starting
25% fluorescent lighting and 75%
small induction machines [154]

Load buses 18

Shunt capacitor outage
Reactive load increased keeping
the PF of load at unity approxi-
mately

Load buses 18×5=90

Loading levels considered=3 Total cases 206×3=618

generated by simulating multiple instances of events listed in Table 4.1. The dataset

for generator outage, and load rejection was simulated by the abrupt rejection of each

generator and load individually from the system during operation. Similarly, three-phase

faults, each of 8 cycles and varying fault impedance, were simulated at all zero-injection

buses, load buses and at mid-point of each transmission line. Shunt capacitors and reactors

of variable rating were placed at load bus keeping its power factor to unity approximately,

and data was recorded after their sudden elimination. The industrial loads were modeled

as 25% fluorescent lighting and 75% small induction machines [154]. An equivalent fifth-

order induction motor was installed at load bus, and start-up transient of the motor were

recorded. Three levels of loading were considered as 0.9, 1.0, and 1.1 times of base case,

and each event was simulated at all loading levels. As detailed in Table 5.1, total 618 events

were simulated and labelled as Stable or Unstable for PSA module. Events resulting in

either decline of frequency below Fmin or singularity of system Jacobian matrix were

labelled as Unstable [155]. Synchronized voltage and frequency readings available from

PMUs in each case were recorded. The dataset was randomly shuffled and partitioned

into 5 equal size sub-datasets for 5-fold cross-validation. Next, 4 sub-datasets were used

in training the classifier, and the remaining sub-dataset was used to test the performance

of the trained classifier. The procedure was repeated 5-times with a new sub-dataset used

for validation.

5.4.2 Classification Results of Predictive Stability Assessment Module

The proposed PSA module classifies an event in Stable or Unstable class using API (∆P )

and RPI (∆Q) as two features. Fig. 5.2 shows data points from both classes on ∆P −∆Q

plane. Events like industrial load starting, and reactor outage didn’t pose any threat to the

stability of the system; hence, they were neglected in the stability assessment. From the
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Figure 5.2: Decision boundary between Stable and Unstable classes for PSA module

Table 5.2: Confusion matrix of Predictive Stability Assessment module

Predicted
Actual Stable Unstable

Stable 0.99 0.01
Unstable 0.06 0.94

Accuracy 96.5 %

figure, it can be visually inspected that the two classes are inseparable by a linear hyper-

plane. This was also confirmed as SVM failed to converge within the maximum number of

iterations using hard margins [145]. Non-separable features often become linearly separa-

ble after they are mapped to a high dimensional feature space. Subsequently, soft margins

along with Radial Basis Function (RBF) kernel were used for training. From the figure, the

two classes can be observed to be distinguished by means of a blue non-linear hyperplane

which represents the decision boundary at maximal distance to both classes. The perfor-

mance of the classifier was 5-fold cross-validated with features from testing sub-dataset

and results are presented in Table 5.2 as a cumulative confusion matrix. It is observed

that the classifier separates the two classes with 96.5% accuracy.
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Figure 5.3: Case (a)-3 phase fault at midpoint of transmission line 3 in NE-39 bus
system

5.4.3 Event Analysis and Proposed Load Shedding

Three representative cases of events in NE-39 bus system have been presented in this

section.

5.4.3.1 Case (a)-3 phase fault at midpoint of transmission line 3

The transmission line 3 between bus 2 and bus 3 is delivering 3.78 p.u. of active power and

0.033 p.u. of reactive power from bus 2 to bus 3. A three-phase solid fault is simulated at

its midpoint at t = 5 s. The voltage at both bus 2 and 3 decline drastically to 0.75 and 0.61
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p.u. respectively immediately after the fault as observed in Fig. 5.3(a). The event detec-

tion algorithm continuously monitors the real-time PMU data at the centralized control

center for events. The fault suspicion criterion calculated by (4.12) is found to be violated

at t = 5.0167 s indicating the occurrence of a fault. As discussed earlier, the FFI module

is initiated to confirm the fault. Fig. 5.3(b) shows the absolute deviation in voltage at

t = 5.0167 s at all buses in the system. It may be noted that voltage deviation at bus 2 is

lower than bus 3 as bus 2 holds more voltage control capability than bus 3, because of its

direct connection to the generator at bus 30. Fig. 5.3(c) shows the increase in frequency

at t = 5+ s at bus 3. The change in voltage ∆V = −0.49 p.u. and frequency ∆F = 0.04

Hz or 0.67 × 10−3 p.u. at bus 3 are used as input features. The classifier confirms the

fault, and the transmission line is opened instantly at t = 5.04 s, i.e., within 2 cycles of

the nominal frequency. The impact of the contingency on system stability is assessed by

PSA module. API ∆P = 0.26 p.u. and RPI ∆Q = 0.002 p.u. are observed in the system

after the event. The values of ∆P and ∆Q are low because opening the transmission line

merely results in the rerouting of power. Therefore, PSA module predicts the event to be

stable and, no further action is required.

5.4.3.2 Case (b)-Generator outage at bus-32

The generator at bus 32 is injecting 6.50 p.u. of active power and 2.17 p.u. of reactive

power into the system. As shown in Fig. 5.4(a), the frequency of the system is stable

at 60 Hz till t = 5− s. The sudden outage of the generator at t = 5 s transfers the load

on other generators. During the initial transient phase, the increase in output of remain-

ing generators is inversely proportional to the reactance between them and location of

generation loss [138]. The additional load on generators is essentially served by the angu-

lar kinetic energy stored in their rotor because the turbine governor mechanism responds

relatively slowly. This results in deceleration of rotors causing the frequency at COI to

drop as observed in Fig. 5.4(a). The incremental load on the generator at bus 33 exceeds

its maximum turbine output. Thus, its power output reaches maximum limits within its

capability curves resulting in other generators being even more burdened. The situation is

further deteriorated as Automatic Voltage Regulator (AVR) gains of generators at bus 34

and bus 38 are set too low to respond to increase in load. Consequently, both generators

lose their voltage control capability causing reactive power deficiency in the system, and

complete voltage collapse occurs at t = 15.6 s. ∆P caused by the event is shown in Fig.

5.4(b). The voltage variation at few weak buses selected on basis of proximity to voltage
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(d) Voltage Collapse Proximity Index (VCPI)

Figure 5.4: Case (b)-Generator outage at bus 32 in NE-39 bus system

collapse using CPF [84] is shown in Fig. 5.4(c). The voltage stability of the system is

assessed using Voltage Collapse Proximity Index (VCPI) at critical buses as shown in Fig.

5.4(d). It is observed that voltage collapse takes place much before VCPI can achieve its

expected value of 1. It indicates the inefficiency of VCPI for dynamic voltage stability

assessment where the voltage collapse is mostly due to limit-induced bifurcation rather

than saddle-node bifurcation.

This voltage collapse could be prevented by utilizing the proposed scheme. As soon as

the event is detected and classified, API and RPI are calculated using (5.2) and (5.4)

respectively. ∆P and ∆Q are found to be 6.67 p.u. and 2.18 p.u. respectively. They are

fed as inputs to PSA module which predicts the event to be unstable. Thereafter, load

shedding presented in Section 5.3 is initiated at t = 5.72 s as an emergency countermeasure
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(d) Voltage Collapse Proximity Index (VCPI)

Figure 5.5: Case (b)-Generator outage at bus 32 in NE-39 bus system followed by load
shedding

to attain a stable operating equilibrium. The power factor of apparent power imbalance

is calculated from ∆P and ∆Q as cos Ψ = 0.9505. The proposed load shedding scheme

aims to shed minimum load to stabilize the frequency and voltage within acceptable limits.

Buses with power factor closer to cos Ψ are subjected to more curtailment of the load.

The load schedule before and after load shedding is given in Table 5.3. It may be observed

that power factor of the bus remains unchanged before and after load shedding. Also, the

reactive power injection at bus 24 has reduced from 0.92 p.u. to 0.87 p.u. The frequency

at COI after load shedding sustains at approximately 59 Hz as observed in Fig. 5.5(a). It

may be noted that difference between nominal, and steady-state frequency is due to the

intentional difference of 3.95 p.u. kept between API and PShed in (5.11). The difference

can be recovered by turbine governor action. The corresponding API converged to 0 after
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load shedding as seen in Fig. 5.5(b). Similarly, the voltages and VCPI are observed to

settle down at acceptable values as visible in Fig. 5.5(c) and (d).

The performance of the proposed scheme is compared with conventional UFLS [138] and

Voltage Deviation Proportionate Load Shedding (VDPLS) [94, 117] and results are pre-

sented in Table 5.4. UFLS is a predetermined rule based approach that sheds definite

quantum of the load when frequency falls below preset thresholds, irrespective of the mag-

nitude of the event. In VDPLS, the API is divided between load buses in proportion to

change in voltage after the event. In this work, the amount of load shed in VDPLS has

been considered equal to PShed and is initiated when load bus voltages decrease below

0.8 p.u., which is the conventional threshold for under-voltage load shedding [117]. The

power factor of the load bus has been assumed to remain unchanged before and after load

shedding in each method.

As aforementioned, UFLS and VDPLS have been exercised when frequency at COI and

load-bus voltage decline below 59 Hz and 0.8 p.u. respectively. On the contrary, the

proposed load shedding scheme is initiated immediately after it is classified as Unstable

and load shedding optimization is solved. The involved calculation is simple and introduces

only a minuscule time delay. Therefore, time of initiation of the proposed scheme is earlier

Table 5.3: Load schedule before and after proposed load shedding for Case (b)

Bus Initial load (p.u.) Final load (p.u.)

No. Active load (PL0
l ) Reactive load (QL0

l ) Active load (PLl ) Reactive load (QLl )

3 3.22 0.02 3.05 0.02
4 5.00 1.84 4.83 1.78
7 2.34 0.84 2.18 0.78
8 5.22 1.76 5.05 1.70
12 0.08 0.88 0.05 0.49
15 3.20 1.53 3.05 1.45
16 3.29 0.32 3.12 0.31
18 1.58 0.30 1.43 0.27
20 6.28 1.03 6.11 1.00
21 2.74 1.15 2.57 1.08
23 2.48 0.85 2.31 0.79
24 3.90 -0.92 2.92 -0.87
25 1.39 0.47 2.08 0.44
26 2.81 0.17 1.24 0.15
27 2.06 0.76 2.65 0.71
28 2.84 0.28 1.90 0.26
29 2.84 0.27 2.67 0.25
39 11.04 2.50 10.91 2.40
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Figure 5.6: Frequency restoration after various load shedding schemes in NE-39 bus
system for Case (b)

Table 5.4: Comparison among load shedding methods on NE-39 bus system for Case
(b)

UFLS [138] VDPLS [94,117]
Proposed
FVSU load
shedding

Time of initiation after event (s) 7.5§ 9.8> 0.72
Active load shed (p.u.) 6.0879 2.7676 2.7676
Steady-state frequency at COI (Hz) 59.85 59 59
Maximum % deviation in mean load
bus voltage

14.0024 22.36 5.6319

Steady-state error % in mean load bus
voltage

0.6470 16.6290 3.2021

Secondary check required Yes Yes No
§ Initiated when fc < 59 Hz
> Initiated when V < 0.8 p.u.

than UFLS and VDPLS as provided in Table 5.4. UFLS sheds 10 % of the total load in

the area (equivalently, 10 % on each load bus). For the event under discussion, the actual

loss of generation was 6.5 p.u. while UFLS shed 6.0879 p.u. of active load. Hence, the
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frequency at COI has been maintained at 59.85 Hz, slightly lower than nominal frequency.

In both VDPLS and proposed schemes, an adequate amount of load is shed to limit

frequency above 59 Hz. The variation of frequency after each load shedding scheme is

illustrated in Fig. 5.6. It is observed that frequency settles closer to its nominal value

in UFLS than VDPLS and proposed UVFS load shedding; however the amount of load

shed in UFLS is more. Thus, it is economically disadvantageous to the system operator.

Another disadvantage of VDPLS was also noted during the investigation. Load buses

which undergo more voltage change receive more share of PShed to shed. For certain

buses, this share may even exceed the amount of actual load on the bus. For instance, in

the considered case, voltage reduction at bus 12 after the event is higher than other buses

because of its relative electrical proximity to event bus 32. Correspondingly, it received

more share of PShed, which was found to be more than its load. This could pose a major

bottleneck in real-time operation. In the presented case, the share of PShed at bus 12 was

shed at the bus next in the hierarchy of voltage drop.

Bus voltages continue to decrease during the time elapsed in undertaking UFLS and VD-

PLS. The proposed FVSU load shedding requires information of initial drop in voltage and

frequency only and, is initiated immediately after new load schedule is calculated from ∆P

and ∆Q. Therefore, the maximum deviation in mean load bus voltages in FVSU load shed-

ding is significantly less than UFLS and VDPLS. The difference between the steady-state

error in mean load bus voltages is also presented in Table 5.4. UFLS restores voltages to

pre-event level by shedding more load which is undesirable. VDPLS and FVSU shed an

equal amount of active load; however, the voltages are restored closer to initial values in

FVSU load shedding. This is because VDPLS sheds more active load from weak voltage

buses and the reactive load is shed proportionally irrespective of reactive power needed to

maintain balance in the system. The proposed FVSU load curtailment sheds more load

from buses with power factor close to power factor of the event; so as to maintain the

power balance in the system. Thus, the bus voltages in the new steady state acquired are

more stable. Further, no secondary check for stability is required because the balance of

power has been reinstated in the proposed approach.

5.4.3.3 Case (c)-Capacitor outage at bus 20

The performance of the proposed approach has been further checked on reactive power

events. For this purpose, the reactive load at bus 20 is increased and shunt capacitor is

connected to support bus voltage maintaining the bus power factor approximately unity.
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(a) Voltage variation at critical buses
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(b) Voltage Collapse Proximity Index (VCPI)
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(c) Voltages at critical buses after regulated shunt com-
pensation
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(d) Voltage Collapse Proximity Index (VCPI) after reg-
ulated shunt compensation

Figure 5.7: Case (c)-Capacitor outage at bus 20 in NE-39 bus system

The sudden elimination of the capacitor injecting 7.50 MVAR at bus 20 has been considered

at t = 5.0 s in Fig. 5.7. It leads to a major deficit of reactive power in the system. The

voltage variation and VCPI after the event are shown in Fig. 5.7(a) and (b) respectively.

It is observed that voltage collapse occurs at t = 5.9 s; however, VCPI shows no indication

of voltage collapse. Most drastic fall in voltage is observed at bus 20.

Prompt emergency control could have prevented this voltage collapse. The outage leads

to the immediate drastic voltage drop at bus 20 which can also be determined using

(4.12). Subsequently, ∆P , ∆Q and cos Ψ are determined as 0.82 p.u., 7.49 p.u. and

0.1088 respectively. The relatively small value of ∆P is because of weak coupling between

frequency and reactive power. PSA classifies the event to be unstable based on ∆P and
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Table 5.5: Average computation time of the proposed scheme

Stage Time elapsed (s)

Event detection and classification module < 6× 10−1

API (∆P ) calculation < 10−4

RPI (∆Q) calculation < 2× 10−1

PSA module < 10−3

Proposed load shedding optimization < 10−2

Total time elapsed < 8× 10−1

∆Q values. As cos Ψ < κmin, load shedding is not suggested. Instead, an equivalent

regulated shunt compensation is used to inject reactive power at bus 20. In Figs. 5.7(c)

and (d), voltages and VCPI variation are observed to settle to acceptable values after

reactive power injection.

Suitability of various components of the proposed approach for real-time application was

also examined. The average time elapsed in various components of the proposed scheme for

an event is presented in Table 5.5. It can be observed that it generates a total time delay

of approximately 0.80 s before emergency control can be activated. This latency is small

because instability generally occurs several seconds after a system is perturbed by an event

[14]. This infers that the proposed method is well suited for real-time implementation.

5.5 Summary

The contributions of this chapter are summarized below:

1. The frequency and voltage are effective parameters for monitoring the deficits of

active and reactive powers after an event. Therefore, predictive analytics can be

implemented using frequency and voltage for anticipating instability in the system.

2. Active power imbalance is defined as additional active power generation necessary to

restore the frequency at COI to nominal value. Similarly, reactive power imbalance

is reactive power required to be injected at the event bus to restore post-event bus

voltages to pre-event bus voltages.

3. A new method has been proposed for estimation of reactive power imbalance. The

objective function is formulated as minimization of the difference between post-event

bus voltages to pre-event bus voltages at all buses subject to power-flow constraints.

The optimization problem is nonlinear, and has been solved using quasi-Newton

approach.
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4. A supervised learning assisted binary classification module has been proposed for

predictive assessment of both frequency and voltage stability. It classifies the system

in Stable or Unstable class using imbalances of both active power and reactive power

measured from the initial change in frequency and voltage respectively after the

event.

5. For unstable events, control actions are activated for alleviating instability. A new

load shedding scheme has been proposed that sheds more load from buses with load

power factor closer to the power factor of apparent power imbalance. Thus, the

maximum balance of both active and reactive powers after the event is restored.

6. It is crucial to reduce the reactive power injection of shunt capacitors after load

shedding to prevent overvoltages. Therefore, capacitor regulation constraint has

been incorporated in the load shedding formulation.

7. The results of the proposed load shedding are compared with conventional UFLS and

VDPLS. The results obtained show that the proposed approach is fast, sheds less

amount of load and provides better voltage profile at load buses. As it is initiated

earlier than UFLS and VDPLS, it diminishes oscillations and steady-state error in

voltage response.





Chapter 6

Conclusions and Future Scope

The purpose of this chapter is to compile the main contributions and outcomes of the

work carried out in this thesis and to recommend guidelines for potential research work in

this domain.

6.1 Important Findings

Synchronized phasor measurements from PMUs provide a foundation for enhanced sit-

uational awareness and emergency control of electrical grids. In chapter 3, the optimal

placement of PMUs has been carried out. The following points are the key findings of the

chapter:

1. It is observed that not all buses have the same degree of preference from the technical

viewpoint. Therefore, the optimal locations for PMU installation are determined

considering degree of criticality of buses.

2. All buses are scaled on four parameters of criticality and a Multi-Criteria Decision

Making approach has been adopted for selection of critical buses.

3. The proposed method can handle a mixture of criteria types (integer values, binary

values, actual values etc.) and produce a consolidated degree of criticality of buses.

4. The OPP objective function is modified to contain degree of criticality and is solved

using ILP.

95
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5. The incorporation of the degree of criticality in the problem formulation ensures that

more PMUs are clustered on critical buses.

6. An appropriate staging strategy for multi-horizon PMU placement has been pro-

posed.

7. The utilities can obtain maximum benefits in terms of the voltage stability monitor-

ing, generator bus observability, critical line observability, and maximum redundancy

of measurements from a PMU installation project using the proposed approach.

In chapter 4, real-time event analysis has been studied. A new approach for automated

detection, localization, and classification of events in power system using wavelet transform

has been presented. A three-phase fault is more critical event than other events. Hence, a

Fast Fault Identification module is proposed for its earlier verification than other events.

Supervised learning has been used for extracting relevant features from both time and

frequency domain. Wavelet transform is further extended to trace coherent groups of

generators. The key findings of this chapter are presented below:

1. It is observed that events disturb the equilibrium of active and reactive power, which

is observed as large fluctuations in frequency and voltage. Each event can be iden-

tified by its own characteristic features.

2. An index formulated as the ratio of energy corresponding to wavelet detail coefficients

of the present and 10 previous voltage and frequency data windows has been proposed

for real-time event detection. It is observed from the results that the index detects

an event in the following cycle after occurrence of the event.

3. For locating events, an event localization module has been proposed. As the variation

in voltage is maximum at the location closest to the event, the wavelet energy is

highest at the bus electrically nearest to the site of the event and displays a decreasing

tendency as the distance from event location increases. This reveals the dispersion of

disturbance in the network and can facilitate in the actuation of remedial measures.

4. A two-step verification procedure to recognize short-circuit faults within two-cycles

of nominal frequency is developed. Step 1 is a voltage magnitude threshold-based

fault suspicion criterion while Step 2 is Fast Fault Identification tool using SVM

classifier for affirmative indication of a fault.

5. The three-phase short-circuit fault case is distinguished from all other events with

100 % accuracy. The reason is existence of linear separating margin between the two

classes on the ∆V −∆F plane.
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6. For classification of other events, features from both time and frequency domain are

extracted from voltage and frequency waveforms using wavelet decomposition, and

a multiclass DSVM classifier is trained after scaling the feature vector with Z-score

standardization.

7. The proposed event detection and classification is appropriate for real-time diagnosis

of events. The small latency implies that the presented approach is functional in

online polling mode of all protective devices in the grid.

8. The swing characteristic of the machine can be obtained from the phase of the domi-

nant non-zero frequency component in the time domain, and coherency of generators

can be established.

9. The power system response to events is non-linear and non-stationary, which limits

the phase estimation of rotor angle response using simple methods such as Cross-

correlation and Fourier transform. XWT is a suitable tool for discovering common

power and phase difference between pairwise rotor angles in time-frequency space.

10. XWT plot aids visualization of coherency interrelationship between the groups of

generators in power systems at different components of frequency.

11. The frequency components of rotor angle of a generator have varying phase difference

with other machines. The mean phase difference can be estimated as the difference

between the circular mean of the instantaneous phase angles.

12. A new consolidated Phase Difference Matrix of the relative phase difference between

each pair of machines is proposed. It transforms the coherency of NG generators in

a NG ×NG dimensional space.

13. The magnitude of the wavelet coefficient signifies the strength of coherency (strong

or weak) between generator pairs.

Chapter 5 deals with predictive stability assessment and actuation of emergency control.

The imbalances of both active and reactive power preceding an event are used as features

to predict if an event results in loss of frequency and/or voltage instability. An event

leading to instability is countered with prompt lead shedding. The key findings of this

chapter are presented below:

1. The frequency and voltage variation following an event provide sufficient information

to implement predictive analytics for stability assessment and countermeasures.
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2. A supervised learning based classification module has been presented for near real-

time detection of imminent frequency and/or voltage instability. It predicts the sta-

bility of system using imbalances of both active power and reactive power measured

from the initial change in frequency and voltage respectively after the event.

3. Active power imbalance is determined from the initial ROCOF at COI. Reactive

power imbalance has been defined as the necessary amount of reactive power to be

injected at event bus to restore post-event voltage magnitudes to pre-event values.

A new formulation for estimating reactive power imbalance has been presented.

4. It is observed that stable and unstable events cannot be separated using linear hy-

perplanes on ∆P − ∆Q plane. Therefore, the features were transformed to higher

dimensional space using Radial Basis Function kernel.

5. In dynamic scenarios, the voltage collapse is mostly due to limit-induced bifurcation

rather than saddle-node bifurcation. Therefore, voltage stability assessment using

static indices is inefficient. Voltage collapse may be observed much before static

indices attain their limiting value.

6. A new load shedding formulation is presented considering both active and reactive

power imbalances. It sheds more load at buses with load power factor closer to power

factor of apparent power imbalance.

7. The incremental load on generators after an event can exceed its maximum tur-

bine output. This overloads the generator and reduces its frequency. Hence, this

incremental load must be added to the amount of load to be shed.

8. The incorporation of capacitor output regulation constraint in the load shedding

ensures that its reactive power output is reduced when load is shed. This prevents

overvoltage in the system.

9. The proposed load-shedding approach is fast, sheds less amount of load and provides

better voltage profile at load buses. As it is initiated earlier than UFLS and VDPLS,

it diminishes oscillations and steady-state error in post-event voltage response.

The proposed work is an effective scheme for increased situational awareness, stability mon-

itoring and emergency control of electrical grids. It envisions an intelligent and regenerative

grid capable of enduring critical events efficiently. The transformation of traditional grids

into cyber-physical systems will further increase the acceptability of proposed machine

learning based applications. Emergency control scheme proposed herein will constitute a

decision support system for restricting events from driving widespread blackouts.



Chapter 6. Conclusions and Future Scope 99

6.2 Future Scope

Further research can be carried along the following lines:

1. In OPPP, all generator buses have been scored equally to keep the computation sim-

ple. However, generator buses may also be scored in accordance with their genera-

tion capacity, the inertia of connected generator, load demand served, participation

in damping low-frequency oscillations and so forth.

2. The selection of critical buses is highly subjective and system-specific. Several ad-

ditional buses including, but not limited to, substantial power transfer buses, buses

with high DG penetration, buses in high voltage corridor, buses contributing in

damping inter-area oscillations, buses with FACTS and small-signal controller sup-

port, HVDC terminal buses, may also be considered and assessed in the similar

manner.

3. Certain essential components, such as Current Transformers (CTs), Potential Trans-

formers (PTs), are also installed along with PMUs. Therefore, a more pragmatic

placement scheme can be developed considering effects such as equipment failure,

saturation of the current transformer, etc.

4. Other signal processing and machine algorithms can be explored for better perfor-

mance of event detection module.

5. The proposed work can be extended to locate and classify multiple events in real-

time.

6. Predictive Stability Assessment module can be extended to incorporate rotor angle

stability. Therefore, a combined scheme for assessment power system stability under

critical events can be developed.

7. Emergency control can be further enhanced considering coherency of generators.

The knowledge of coherency can also serve manifold purposes such as dynamic re-

duction, controlled islanding, transient stability assessment, generation rescheduling,

and deployment of special protection relays.





Appendix A

Test System Data

A.1 IEEE New England 39 Bus Test System

The IEEE NE-39 bus test has total active and reactive power demand of 60.879 MW and 14.043

MVAR respectively. The base rating is 100 MVA, 345 kV. The dynamic data of the system are

tabulated below:

Table A.1: Bus data

Bus Pd Qd Vm Vθ
(p.u.) (p.u.) (p.u.) (rad.)

1 0 0 1.048 -0.1646
2 0 0 1.0505 -0.1203
3 322 2.4 1.0341 -0.1698
4 500 184 1.0116 -0.1838
5 0 0 1.0165 -0.1637
6 0 0 1.0172 -0.1515
7 233.8 84 1.0067 -0.1892
8 522 176 1.0057 -0.1979
9 0 0 1.0322 -0.1946
10 0 0 1.0235 -0.1101
11 0 0 1.0201 -0.1243
12 7.5 88 1.0072 -0.1246
13 0 0 1.0207 -0.1225
14 0 0 1.0181 -0.1511
15 320 153 1.0194 -0.1581
16 329 32.3 1.0346 -0.1337
17 0 0 1.0365 -0.151
18 158 30 1.0343 -0.1656
19 0 0 1.0509 -0.0531
20 628 103 0.9914 -0.0777
21 274 115 1.0337 -0.0918
22 0 0 1.0509 -0.0143
23 247.5 84.6 1.0459 -0.0178
24 308.6 -92.2 1.0399 -0.1316
25 224 47.2 1.0587 -0.0962
26 139 17 1.0536 -0.1182
27 281 75.5 1.0399 -0.1532
28 206 27.6 1.0509 -0.0571
29 283.5 26.9 1.0505 -0.0089
30 0 0 1.0475 -0.078
31 0 0 1.04 0.0123
32 0 0 0.9831 0.0284
33 0 0 0.9972 0.038
34 0 0 1.0123 0.0129
35 0 0 1.0493 0.0723
36 0 0 1.0635 0.1192
37 0 0 1.0278 0.022
38 0 0 1.0265 0.1143
39 0 0 1.03 0
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Table A.2: Line data

Line From To Line Impedance Half Line Charging Tap

No. Bus Bus Resistance (p.u.) Reactance (p.u.) Susceptance (p.u.) Ratio

1 1 2 0.0035 0.0411 0.6987 1
2 1 39 0.001 0.025 0.75 1
3 2 3 0.0013 0.0151 0.2572 1
4 2 25 0.007 0.0086 0.146003 1
5 2 30 0 0.0181 0 1.025
6 3 4 0.0013 0.0213 0.2214 1
7 3 18 0.0011 0.0133 0.2138 1
8 4 5 0.0008 0.0128 0.1342 1
9 4 14 0.0008 0.0129 0.1382 1
10 5 8 0.0008 0.0112 0.1476 1
11 6 5 0.0002 0.0026 0.0434 1
12 6 7 0.0006 0.0092 0.113 1
13 6 11 0.0007 0.0082 0.1389 1
14 7 8 0.0004 0.0046 0.078 1
15 8 9 0.0023 0.0363 0.3804 1
16 9 39 0.001 0.025 1.2 1
17 10 11 0.0004 0.0043 0.0729 1
18 10 13 0.0004 0.0043 0.0729 1
19 10 32 0 0.02 0 1.07
20 12 11 0.0016 0.0435 0 1.006
21 12 13 0.0016 0.0435 0 1.006
22 13 14 0.0009 0.0101 0.1723 1
23 14 15 0.0018 0.0217 0.366 1
24 15 16 0.0009 0.0094 0.171 1
25 16 17 0.0007 0.0089 0.1342 1
26 16 19 0.0016 0.0195 0.304 1
27 16 21 0.0008 0.0135 0.2548 1
28 16 24 0.0003 0.0059 0.068 1
29 17 18 0.0007 0.0082 0.1319 1
30 17 27 0.0013 0.0173 0.3216 1
31 19 33 0.0007 0.0142 0 1.07
32 19 20 0.0007 0.0138 0 1.06
33 20 34 0.0009 0.018 0 1.009
34 21 22 0.0008 0.014 0.2565 1
35 22 23 0.0006 0.0096 0.1846 1
36 22 35 0 0.0143 0 1.025
37 23 24 0.0022 0.035 0.361 1
38 23 36 0.0005 0.0272 0 1
39 25 26 0.0032 0.0323 0.513 1
40 25 37 0.0006 0.0232 0 1.025
41 26 27 0.0014 0.0147 0.2396 1
42 26 28 0.0043 0.0474 0.7802 1
43 26 29 0.0057 0.0625 1.029 1
44 28 29 0.0014 0.0151 0.249 1
45 29 38 0.0008 0.0156 0 1.025
46 6 31 0 0.025 0 1.07

Table A.3: Generation limits

Generator No. Bus No. PG QGmax QGmin
(p.u.) (p.u.) (p.u.)

1 30 250 800 -6000
2 31 472.93 800 -6000
3 32 650 800 -6000
4 33 632 800 -6000
5 34 508 400 -300
6 35 650 800 -6000
7 36 560 800 -6000
8 37 540 800 -6000
9 38 830 800 -6000
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Table A.4: Synchronous machine data

Generator No. Bus No. Model xl ra x
′
d x

′′
d T

′′
d0 xq x

′
q x

′′
q M TAA

(p.u.) (p.u.) (p.u.) (p.u.) (s) (p.u.) (p.u.) (p.u.) (kWs/kVA) (s)

1 30 4 0.0125 0.00014 0.1 0.031 10.2 0.069 0.031 1.5 84 0.002
2 31 4 0.035 0.0027 0.295 0.0697 6.56 0.282 0.0697 1.5 60.6 0.002
3 32 4 0.0304 0.000386 0.2495 0.0531 5.7 0.237 0.0531 1.5 71.6 0.002
4 33 4 0.0295 0.000222 0.262 0.0436 5.69 0.258 0.0436 1.5 57.2 0.002
5 34 4 0.054 0.00014 0.67 0.132 5.4 0.62 0.132 0.44 52 0.002
6 35 4 0.0224 0.00615 0.254 0.05 7.3 0.241 0.05 0.4 69.6 0.002
7 36 4 0.0322 0.000268 0.295 0.049 5.66 0.292 0.049 1.5 52.8 0.002
8 37 4 0.028 0.000686 0.29 0.057 6.7 0.28 0.057 0.41 48.6 0.002
9 38 4 0.0298 0.0003 0.2106 0.057 4.79 0.205 0.057 1.96 69 0.002
10 39 3 0.003 0.0001 0.02 0.006 7 0.019 0.006 0.7 1000 0.002

Table A.5: Turbine governor data

Generator No. Turbine Governor Type Reference Speed Droop Tmax Tmin Ts Tc T3 T4 T5
(p.u.) (p.u.) (p.u.) (p.u.) (s) (s) (s) (s) (s)

1 1 1 0.04 8 0 0.1 0.45 0 12 8
2 1 1 0.04 10 0 0.1 0.45 0 12 8
3 1 1 0.04 15 0 0.1 0.45 0 12 8
4 1 1 0.04 6.5 0 0.1 0.45 0 12 8
5 1 1 0.04 10 0 0.1 0.45 0 12 8
6 1 1 0.04 10 0 0.1 0.45 0 12 8
7 1 1 0.04 10 0 0.1 0.45 0 12 8
8 1 1 0.04 8.5 0 0.1 0.45 0 12 8
9 1 1 0.04 20 0 0.1 0.45 0 12 8
10 1 1 0.04 15 0 0.1 0.45 0 12 8

Table A.6: Exciter data

Generator No. Exc. Type Vr max Vr min µ0 T1 T2 T3 T4 Te Tr Ae Be
(p.u.) (p.u.) (p.u.) (s) (s) (s) (s) (s) (s)

1 2 5 -60 5 0.06 0.04 0.1 0 0.25 0.001 0.0039 1.555
2 2 5 -60 6.2 0.05 0.06 0.05 0 0.41 0.001 0.0039 1.555
3 2 5 -60 5 0.06 0.08 0.1 0 0.5 0.001 0.0039 1.555
4 2 5 -60 5 0.06 0.08 0.1 0 0.5 0.001 0.0039 1.555
5 2 30 -10 40 0.02 0.03 0.1 0 0.785 0.001 0.0039 1.555
6 2 5 -60 5 0.02 0.08 0.125 0 0.471 0.001 0.0039 1.555
7 2 6.5 -6.5 40 0.02 0.03 0.1 0 0.73 0.001 0.0039 1.555
8 2 5 -60 5 0.02 0.09 0.126 0 0.528 0.001 0.0039 1.555
9 2 10.5 -10.5 5 0.02 0.03 0.1 0 0.5 0.001 0.0039 1.555
10 2 10.5 -10.5 40 0.02 0.03 0.1 0 1.4 0.001 0.0039 1.555





Bibliography

[1] O. P. Dahal, H. Cao, S. Brahma, and R. Kavasseri, “Evaluating performance of classifiers for

supervisory protection using disturbance data from phasor measurement units,” in Innovative

Smart Grid Technologies Conference Europe (ISGT-Europe), 2014 IEEE PES. IEEE, 2014,

pp. 1–6.

[2] A. Pal, G. A. Sanchez-Ayala, V. A. Centeno, and J. S. Thorp, “A PMU placement scheme

ensuring real-time monitoring of critical buses of the network,” IEEE Transactions on Power

Delivery, vol. 29, no. 2, pp. 510–517, 2014.

[3] A. Bakshi, A. Velayutham, S. Srivastava, K. Agrawal, R. Nayak, S. Soonee, and B. Singh,

“Report of the enquiry committee on grid disturbance in northern region on 30th July 2012

and in Northern, Eastern & Northern-Eastern region on 31st July 2012,” New Delhi, India,

2012.

[4] A. G. Phadke and J. S. Thorp, Synchronized phasor measurements and their applications.

Springer, 2008, vol. 1.

[5] S. Ghosh, D. Ghosh, and D. K. Mohanta, “Impact assessment of reliability of phasor mea-

surement unit on situational awareness using generalized stochastic petri nets,” International

Journal of Electrical Power & Energy Systems, vol. 93, pp. 75–83, 2017.

[6] C. Heng, L. Zhang, M. Jianzhong, and K. E. Martin, “Synchrophasor-based real-time state

estimation and situational awareness system for power system operation,” Journal of Modern

Power Systems and Clean Energy, vol. 4, no. 3, pp. 370–382, 2016.

[7] C. V. B. Reddy, S. Srivastava, and S. Chakrabarti, “Fast assessment of available transfer

capability using synchrophasor measurements,” Electric Power Components and Systems,

vol. 42, no. 7, pp. 716–726, 2014.

[8] B. Leonardi and V. Ajjarapu, “An approach for real time voltage stability margin control via

reactive power reserve sensitivities,” IEEE Transactions on Power Systems, vol. 28, no. 2,

pp. 615–625, 2013.

[9] F. Aminifar, M. Shahidehpour, M. Fotuhi-Firuzabad, and S. Kamalinia, “Power system

dynamic state estimation with synchronized phasor measurements,” IEEE Transactions on

Instrumentation and Measurement, vol. 63, no. 2, pp. 352–363, 2014.

105



References 106

[10] R. Sodhi, S. Srivastava, and S. Singh, “Phasor-assisted hybrid state estimator,” Electric

Power Components and Systems, vol. 38, no. 5, pp. 533–544, 2010.

[11] ——, “A simple scheme for wide area detection of impending voltage instability,” IEEE

Transactions on Smart Grid, vol. 3, no. 2, pp. 818–827, 2012.

[12] H.-Y. Su and C.-W. Liu, “Estimating the voltage stability margin using PMU measure-

ments,” IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3221–3229, 2016.

[13] A. K. Singh and M. Fozdar, “Supervisory framework for event detection and classification

using wavelet transform,” in 2017 IEEE Power & Energy Society General Meeting. IEEE,

2017, pp. 1–5.

[14] M. Biswal, S. M. Brahma, and H. Cao, “Supervisory protection and automated event diagno-

sis using PMU data,” IEEE Transactions on Power Delivery, vol. 31, no. 4, pp. 1855–1863,

2016.

[15] Z. Huang, P. Du, D. Kosterev, and S. Yang, “Generator dynamic model validation and param-

eter calibration using phasor measurements at the point of connection,” IEEE Transactions

on Power Systems, vol. 28, no. 2, pp. 1939–1949, 2013.

[16] Y. Zhang, E. Muljadi, D. Kosterev, and M. Singh, “Wind power plant model validation

using synchrophasor measurements at the point of interconnection,” IEEE Transactions on

Sustainable Energy, vol. 6, no. 3, pp. 984–992, 2015.

[17] P. Ashton, G. Taylor, A. Carter, M. Bradley, and W. Hung, “Application of phasor mea-

surement units to estimate power system inertial frequency response,” in Power and Energy

Society General Meeting (PES), 2013 IEEE. IEEE, 2013, pp. 1–5.

[18] P. M. Ashton, C. S. Saunders, G. A. Taylor, A. M. Carter, and M. E. Bradley, “Inertia

estimation of the GB power system using synchrophasor measurements,” IEEE Transactions

on Power Systems, vol. 30, no. 2, pp. 701–709, 2015.

[19] Q. Liu, M. Watanabe, and Y. Mitani, “Global oscillation mode analysis using phasor measure-

ment units-based real data,” International Journal of Electrical Power & Energy Systems,

vol. 67, pp. 393–400, 2015.

[20] O. Antoine and J.-C. Maun, “Inter-area oscillations: Identifying causes of poor damping

using phasor measurement units,” in Power and Energy Society General Meeting, 2012 IEEE.

IEEE, 2012, pp. 1–6.

[21] N. R. Chaudhuri, B. Chaudhuri, S. Ray, and R. Majumder, “Wide-area phasor power os-

cillation damping controller: A new approach to handling time-varying signal latency,” IET

Generation, Transmission & Distribution, vol. 4, no. 5, pp. 620–630, 2010.

[22] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou,

D. Hill, A. Stankovic, C. Taylor et al., “Definition and classification of power system stabil-

ity,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1387–1401, 2004.



References 107

[23] P. Anderson and M. Mirheydar, “An adaptive method for setting underfrequency load shed-

ding relays,” IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 647–655, 1992.

[24] M. Glavic, D. Novosel, E. Heredia, D. Kosterev, A. Salazar, F. Habibi-Ashrafi, and M. Don-

nelly, “See it fast to keep calm: Real-time voltage control under stressed conditions,” IEEE

Power and Energy Magazine, vol. 10, no. 4, pp. 43–55, 2012.

[25] F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, A. Davoudi, and M. Shahidehpour, “Syn-

chrophasor measurement technology in power systems: Panorama and state-of-the-art,”

IEEE Access, vol. 2, pp. 1607–1628, 2014.

[26] T. Baldwin, L. Mili, M. Boisen, and R. Adapa, “Power system observability with minimal

phasor measurement placement,” IEEE Transactions on Power Systems, vol. 8, no. 2, pp.

707–715, 1993.

[27] B. Milosevic and M. Begovic, “Nondominated sorting genetic algorithm for optimal phasor

measurement placement,” IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 69–75,

2003.

[28] B. Xu and A. Abur, “Observability analysis and measurement placement for systems with

PMUs,” in Power Systems Conference and Exposition, 2004. IEEE PES. IEEE, 2004, pp.

943–946.

[29] N. H. Abbasy and H. M. Ismail, “A unified approach for the optimal PMU location for power

system state estimation,” IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 806–813,

2009.

[30] B. Gou, “Generalized integer linear programming formulation for optimal PMU placement,”

IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1099–1104, 2008.

[31] R. F. Nuqui and A. G. Phadke, “Phasor measurement unit placement techniques for complete

and incomplete observability,” IEEE Transactions on Power Delivery, vol. 20, no. 4, pp.

2381–2388, 2005.

[32] S. Chakrabarti, E. Kyriakides, and D. G. Eliades, “Placement of synchronized measurements

for power system observability,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp.

12–19, 2009.

[33] F. Aminifar, M. Fotuhi-Firuzabad, M. Shahidehpour, and A. Khodaei, “Probabilistic mul-

tistage PMU placement in electric power systems,” IEEE Transactions on Power Delivery,

vol. 26, no. 2, pp. 841–849, 2011.

[34] ——, “Observability enhancement by optimal PMU placement considering random power

system outages,” Energy Systems, vol. 2, no. 1, pp. 45–65, 2011.

[35] X. Tai, D. Marelli, E. Rohr, and M. Fu, “Optimal PMU placement for power system state

estimation with random component outages,” International Journal of Electrical Power &

Energy Systems, vol. 51, pp. 35–42, 2013.



References 108

[36] N. P. Theodorakatos, N. M. Manousakis, and G. N. Korres, “Optimal placement of phasor

measurement units with linear and non-linear models,” Electric Power Components and

Systems, vol. 43, no. 4, pp. 357–373, 2015.

[37] S. Chakrabarti and E. Kyriakides, “Optimal placement of phasor measurement units for

power system observability,” IEEE Transactions on power systems, vol. 23, no. 3, pp. 1433–

1440, 2008.

[38] D. Dua, S. Dambhare, R. K. Gajbhiye, and S. Soman, “Optimal multistage scheduling of

PMU placement: An ILP approach,” IEEE Transactions on Power delivery, vol. 23, no. 4,

pp. 1812–1820, 2008.

[39] R. Sodhi and M. I. Sharieff, “Phasor measurement unit placement framework for enhanced

wide-area situational awareness,” IET Generation, Transmission & Distribution, vol. 9, no. 2,

pp. 172–182, 2015.

[40] S. M. Mahaei and M. T. Hagh, “Minimizing the number of PMUs and their optimal placement

in power systems,” Electric Power Systems Research, vol. 83, no. 1, pp. 66–72, 2012.

[41] R. Sodhi, S. Srivastava, and S. Singh, “Multi-criteria decision-making approach for multi-

stage optimal placement of phasor measurement units,” IET Generation, Transmission &

Distribution, vol. 5, no. 2, pp. 181–190, 2011.

[42] B. Gou, “Optimal placement of PMUs by integer linear programming,” IEEE Transactions

on Power Systems, vol. 23, no. 3, pp. 1525–1526, 2008.

[43] C. Rakpenthai, S. Premrudeepreechacharn, S. Uatrongjit, and N. R. Watson, “An optimal

PMU placement method against measurement loss and branch outage,” IEEE transactions

on power delivery, vol. 22, no. 1, pp. 101–107, 2007.

[44] B. S. Roy, A. Sinha, and A. Pradhan, “Optimal phasor measurement unit placement for power

system observability—a heuristic approach,” in Computational Intelligence Applications In

Smart Grid (CIASG), 2011 IEEE Symposium on. IEEE, 2011, pp. 1–6.

[45] M. Alvarez, F. Sellschopp, and E. Vazquez, “A PMUs placement methodology based on

inverse of connectivity and critical measurements,” International Journal of Electrical Power

& Energy Systems, vol. 68, pp. 336–344, 2015.

[46] L. Huang, Y. Sun, J. Xu, W. Gao, J. Zhang, and Z. Wu, “Optimal PMU placement consid-

ering controlled islanding of power system,” IEEE Transactions on Power Systems, vol. 29,

no. 2, pp. 742–755, 2014.

[47] F. Aminifar, M. Fotuhi-Firuzabad, and A. Safdarian, “Optimal PMU placement based on

probabilistic cost/benefit analysis,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp.

566–567, 2013.

[48] M. Korkali and A. Abur, “Placement of PMUs with channel limits,” in Power & Energy

Society General Meeting, 2009. PES’09. IEEE. IEEE, 2009, pp. 1–4.



References 109

[49] R. Kumar and V. S. Rao, “Optimal placement of PMUs with limited number of channels,”

in North American Power Symposium (NAPS), 2011. IEEE, 2011, pp. 1–7.

[50] F. Aminifar, A. Khodaei, M. Fotuhi-Firuzabad, and M. Shahidehpour, “Contingency-

constrained PMU placement in power networks,” IEEE Transactions on Power Systems,

vol. 25, no. 1, pp. 516–523, 2010.

[51] R. Sodhi, S. Srivastava, and S. Singh, “Optimal PMU placement to ensure system observ-

ability under contingencies,” in Power & Energy Society General Meeting, 2009. PES’09.

IEEE. IEEE, 2009, pp. 1–6.

[52] D. Thukaram, B. Ravikumr, V. S. S. Kumar, Y. P. Rao, S. Surendra, and S. Kolla, “Real-

time monitoring of critical nodes with minimal number of phasor measurement units,” in

Power Systems, 2009. ICPS’09. International Conference on. IEEE, 2009, pp. 1–6.
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